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Abstract

This paper focuses on the design of a dedicated P1 function space to model elliptic boundary

value problem on a manifold embedded in a space of higher dimension. Using the traces of

the linear P1 shape functions, it introduces an algorithm to reduce the function space into an

equivalent space having the same properties than a P1 Lagrange approximation. Convergence

studies involving problems of codimension one or two embedded in 2D or 3D show good

accuracy with regard to classical finite element and analytical solutions. The effects of the

relative position of the domain with respect to the mesh are studied in a sensitivity analysis;

it illustrates how the proposed solution allows to keep the condition number bounded. A

comparative study is performed with the method introduced by Olshanskii et al. 2009 on

a closed surface to validate our approach. The robustness of the proposed approach is

investigated with regard to their method and that of Burman et al. 2016. This paper is the

first in a series of two, on the topic of embedded solids of any dimension within the context

of the extended finite element method. It investigates problems involving borderless domains

or domains with boundary subject to Dirichlet constraint defined only on the boundaries

of the bulk mesh, while the forthcoming paper overcomes this limitation by introducing a

new stable Lagrange multiplier space for Dirichlet boundary condition (and more generally

stiff condition), that is valid for every combination of the background mesh and manifold

dimensions. The combination of both algorithms allows to handle any embedding i.e. 1D,

2D and 3D problems embedded in 2D or 3D background meshes.
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1. Introduction

Computer-Aided Design (CAD) is now the traditional design tool, able to combine

manifolds of different dimensions to represent the geometry of a part. It is usually associated

with Computer Aided Engineering (CAE) tools such as the Finite Element (FE) method in an

overall optimization process. Now ubiquitous in industry, the standard version of FE method

requires a discretized representation of a manifold that conforms to its geometry. This is

done with specific mesh generation algorithms and often implies tedious user interactions.
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1 INTRODUCTION

The same discretization is then used for the field approximation, see Figure 1(a). According

to [1], this preliminary step may even represent up to 80% of the time taken by the whole

CAE process. To reduce these costs in the transition from the continuous CAD model to the

discrete FE model, various meshless techniques and approaches using non-matching meshes

have been proposed in the literature. Among these, the eXtended Finite Element Method

(X-FEM) has originally been developed to simulate the propagation of cracks in solids [2, 3].

A crack is indeed a submanifold of codimension one and is considered as a discontinuity of

one dimension lower than that of the solid. By analogy, boundaries or internal boundaries of

the solid also define geometric discontinuities and may be embedded in a background mesh.

The mesh thus no longer depends on the position of the interfaces in the domain. This allows

to dissociate the field approximation and the boundary representation, see Figure 1(b).

For the sake of completeness, the issue relating to the CAD–CAE transition is also tackled

in a different way in IsoGeometric Analysis (IGA). In this method, the purpose is to reuse the

CAD description (instead of a mesh) to represent the computational domain and approximate

the unknown field, see Figure 1(c). Starting with the same paradigm for the geometric

description, a Geometry-Independent Field approximaTion (GIFT) introduced in [4] suggests

using a different discretization space for the field approximation, see Figure 1(d). This

allows to adapt the approximation of the solution regardless of the geometric description,

preserving thereby similar flexibility given by h- or p-refinement in the FEM. However, it

remains challenging for both of these methods to generate volume parameterizations for 3D

manifolds by employing existing CAD models.

CAD representation

FEM

X-FEM

IGA

GIFT

≠

≠

=

=

=
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Computational domain
representation

Field approximation
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Figure 1: Paradigms introduced by the FEM, the X-FEM, IGA and GIFT through the

CAD–CAE transition.
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Currently, the X-FEM has only been applied to embed domains having the same dimension

as the FE mesh [5], i.e. submanifolds of codimension zero. Thus, a two-dimensional geometry

must be contained in a planar mesh, just like a three-dimensional solid may be embedded

into a 3D bulk mesh. But how to represent a curve, or a curved surface ? In this paper

we propose a new approach to embed a manifold of codimension one or two. For this, new

function spaces must be specifically designed to solve classical PDEs defined on the manifolds

using a background mesh of a higher dimension, either 2D or 3D.

Several questions arise when using a non-conforming mesh to carry out a simulation on a

domain of zero or higher codimension:

(i) Which geometric representation should be used to describe all CAD manifolds within

the X-FEM, in particular, embedded curves in 3D ?

(ii) Which function space (possibly based on the linear shape functions of the FEM) allows

to model a solid embedded in a space of higher dimension ?

(iii) How to enforce boundary conditions, especially Dirichlet like boundary conditions, in

such a setting ?

The general treatment of boundary conditions is actually a problem in its own right, we

will therefore propose some solutions in a subsequent paper [6]. This paper is focused on the

definition of an optimal way of representing fields on an embedded manifold of codimension

one to two.

1.1. Background

In order to reduce the dependence of the FE approximation on the geometric description,

various approaches have been proposed in the literature. Here, we describe some of them,

starting with the case of solids embedded in a background mesh of the same dimension.

When boundaries cross most of the elements of the mesh, a first approach is to use

classical FEs, solving a problem defined on a conforming mesh. This consists in remeshing

the narrow-band of elements neighbouring the interface. Two possibilities arise: either (i)
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move the nodes of the mesh in order to be aligned with the boundaries, as proposed in [7]—

this requires specific algorithms to insert the geometry into the mesh [8, 9]—or (ii) roughly

approximate the domain by the set of elements covering it, resulting in an approximated

interface (the interface is approximated toward the exterior of the domain). To recover a

good approximation of the embedded boundary, the discretization may be locally adapted

with multi-level refinement [10] or anisotropic mesh adaptation [11].

Another approach combines different meshes associated with each domain so as to avoid

the constant update of the interface, e.g. in case of a moving boundary in large displacements

with fluid-structure interaction. Among them, let us mention in particular embedded

meshes [12], overlapping domain decomposition also called chimera [13, 14], or more atypical:

the s-method [15] and the Arlequin method [16]. The combination of overlapping finite

element meshes induces an additional memory cost and requires to update several meshes,

e.g. in case of solid deformation. Moreover, these meshes are subject to continuity constraints

at the boundary, for example, between the foreground embedded mesh and the background

domain. These coupling constraints are similar to boundary condition enforcement and can

be dealt with in different ways (mortar method [17] or Lagrange multipliers [18], Nitsche’s

methods [19], discontinuous Galerkin methods [12]).

Nevertheless, those approaches do not completely dissociate the mesh generation step

from the representation of the domain. To achieve this, some others use a unique mesh,

which is independent of the geometry of the problem. These approaches differ from FEM

in specific treatment of the narrow-band of elements neighbouring the interface, when both

physical and non-physical parts are defined on an element. Depending on how these elements

are treated, two approaches are possible. On the one hand, spread interface approaches

have been initially introduced in [20]; among them the Immersed Boundary Method (IBM)

in [21] and the Fat Boundary Method (FBM) in [22]. The equations are smoothed on whole

elements near the interface and not only on the physical part of these elements. On the

other hand, various thin interface approaches have been proposed in the literature, e.g. the

Fictitious Domain Method (FDM) [23] which nevertheless requires an interfacial mesh, the

Immersed Interface Method (IIM) [24, 25] modifying the discrete operator near the interface
5



1 INTRODUCTION

with Taylor series, and the X-FEM [26, 27] benefiting from Partition of Unity Methods

(PUM) [28, 29]; where the approximated interface has the same dimension as the original

interface.

Here, in case of a solid embedded in a bulk mesh of the same dimension, it is appropriate

to simply use the classical FE function space built on the background mesh and integrate

only on the interior of the domain. Therefore, the mesh used for the field approximation

can be kept, and only the domain of integration must be adapted in order to be body-fitted.

This allows to preserve the mesh topology and avoid time-consuming remeshing processes.

To this end, a partition of the elements intersected by an interface into sets of sub-elements

is used [30]. This procedure allows to introduce a geometric discontinuity into an element

without any enrichment of the function space. Starting with shape functions defined over

classical FE (called parent elements in the sequel— see Figure 2a), restrictions of the parent

shape functions are used on sub-elements of the domain (see Figure 2b).

1

0 0

0

(a) 2D parent

elements with one

associated shape

function.

(b) Trace of the

shape function over

sub-elements of

codimension 0.

(c) Trace of the
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codimension 1.

v1

v2

v3

v4
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(d) Vertices vi supporting

DOFs and nodes nj of the

resulting discretization of

the embedded line.

Figure 2: Two triangular elements with an embedded line.

Moreover, embedded interfaces may require especial treatment if boundary conditions

have to be enforced. Because these interfaces have a higher codimension than that of the

domain, dedicated integration rules should be used. Furthermore, if Lagrange multipliers

are to be used for boundary condition enforcement, an appropriate function space must

be designed. As we will see, this is not the only case where a dedicated function space is

necessary.
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The direct use of the FE shape functions of the bulk mesh is possible for a problem domain

of codimension zero. However, this approach is no longer possible in other configurations,

when the problem domain and the discretization do not have the same dimension.

To tackle this difficulty, one may return to a problem of codimension zero. Similarly

to the spread interface approaches introduced in codimension zero, this approach extends

the domain of integration to a narrow-band of elements [31, 32]. Although robust, it lacks

consistency by solving a different problem on a domain of a higher dimension (that of the

mesh).

To preserve the nature of the problem, one might instead try to build the function space on

the resulting intersection with the background mesh. On this induced surface triangulation,

the quality of the approximation depends on a maximum angle condition [33], for which a

sufficient condition results in a minimum angle condition on a tetrahedral background mesh,

as proved in [34]. The latter condition is reasonable since the mesh generation algorithms are

freed from the respect of boundaries. Unfortunately, the induced surface triangulation may

be formed of arbitrarily small triangles (e.g. at the vicinity of the background mesh vertices),

which numerically lead to an ill-conditioned system. A specific preconditioning based on

diagonal scaling has been proposed in [34] to address this problem. But, this approach

does not take advantage of the background mesh, since new elements supporting the shape

functions must be generated on the surface.

In order to address 1D or 2D problems without remeshing (especially benefiting with

evolving domains), one may use the trace of a higher dimensional space built upon the bulk

mesh. An illustration of the trace of a shape function used in 2D is shown in Figure 2c.

Concerning the codimension one with closed curves in 2D and closed surfaces in 3D, the

resulting discrete method based on P1 FE has already been studied in [35].

In that case, the complete function space defined on the mesh is not suitable to model

piecewise linear fields. To illustrate this fact, a simple case of codimension one in 2D is

shown in Figure 2d. For two triangles connected by an edge and intersected by a straight

line, there are four vertices (the vertices vi of the triangles) and only three intersection
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points (the nodes nj). These intersection points may be used as support for degrees of

freedom (DOFs) to get a piecewise linear approximation along the line. There are obviously

more DOFs associated with vertices than nodes along the line. We thus need to deplete the

function space that is, in this particular case, allowing one given field to be represented in

multiple independent ways. The resulting system of equations would be singular if nothing

is done.

To overcome this ill-posed problem, the algebraic system may be treated to reduce the

kernel to be null and ensure that all equations of the linear system are independent as

proposed in [36]. The method proposed by Olshanskii et al. [35] considers a specific solver

using a Gauss-Seidel preconditioned Conjugate Gradient method, which has been applied

on surface PDEs [37] with local adaptation [38, 39] and higher order approximation [40].

Another method consists in additional stabilisation terms computed over the bulk mesh.

In this way, we tend to recover a well-posed problem of codimension zero. This has been

achieved by Burman et al. [41] with a face-based stabilisation, and more recently, with a full

gradient stabilisation [42]. Here, we propose to directly build a linear algebraic system free

of singularities by modifying the function space.

Concerning the case of the codimension two, very few studies do exist, and most of them

recover a body-fitted mesh or use independent overlapping meshes, cf. [43, 44].

1.2. Objectives

Here, we choose to use only one mesh in which manifolds of various dimensions can be

embedded and coupled. This choice may be justified by:

• the reduction of the generation of the mesh supporting the FE approximation to its

simplest form. It is then possible to drastically optimize both its memory footprint

and the CPU (Central Processing Unit) cost, by taking advantage of grid structures or

GPU (Graphic Processing Unit) computational power for instance.
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• the a priori compatibility for function spaces defined on each manifold, which alleviates

many practical problems. For example, to evaluate integrals mixing discrete spaces

defined on different grids with an adequate quadrature, or to satisfy inf–sup condition

potentially introduced by a mixed-formulation on two grids. These problems happen,

e.g., with fluid-structure interaction.

Of course, the accuracy of the approximation is constrained by the h- or p-refinement of

the background mesh. Consequently, each manifold cannot be refined independently, leading

the whole coupled problem to be treated on an equal footing.

The objectives of this paper are hence fourfold:

1. Propose an approach dealing with any embedding in a single framework, neither

modifying the variational formulation, nor requiring a dedicated solver;

2. Demonstrate its optimal convergence through several numerical examples covering all

codimension configurations;

3. Compare with methods available in the literature on borderless domains, and show

that our approach is compatible with the enforcement of boundary conditions using

former algorithms based on Lagrange multipliers.

4. Show the robustness of the approach with regard to alternative methods from the

literature.

1.3. Outline

The remainder of this paper is outlined as follows. We formulate the model problem in

the next section and highlight compatibility requirements for its discretization. In order to

design P1-equivalent function space for codimension one and two, Sect. 3 introduces concepts

suitable for each dimension into a new dedicated algorithm. Numerical results demonstrating

the accuracy and robustness of our approach are presented in Sect. 4. Finally, the last section

provides a summary and some concluding remarks.

9
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2. Model problem

Let us consider a Poisson equation as an elliptic boundary value problem posed on a

manifold Ω of dimension m embedded in a Cartesian domain T ⊂ Rn, with 1 ≤ m ≤ n and

n = 1, 2 or 3. The case of embeddings in 1D is straightforward and will not be developed in

the sequel (see [45] for instance).

In order to solve the model problem, a special care should be given to the difference of

dimensions between Ω and the underlying domain T , the codimension denoted codimT (Ω) :=

dim T − dim Ω = m− n . Indeed, the space, in which to search for a solution, will not be

directly defined on Ω but in the ambient domain T . Therefore, different operators must be

introduced depending on the codimension of the problem. For instance, a tangent space to

Ω may be recovered by using tangential differential calculus.

When the codimension is equal to zero, the Poisson problem just involves the ordinary

Laplace operator. In case of a higher codimension, the extension of the Euclidean Laplacian

to an arbitrary Riemannian manifold— the Laplace-Beltrami operator— is used. Both cases

may be handled by the following notation: let g : T → R be a sufficiently smooth function,

let nΩ and tΩ be the normal and tangent vectors to Ω, we define the derivative of g along Ω

by:

∇Ωg :=


∇g if codimT (Ω) = 0,

∇g −∇g · nΩnΩ if codimT (Ω) = 1,

∇g · tΩtΩ if codimT (Ω) = 2.

(1)

This definition allows to write the Laplacian in a more general operator ∆Ω := ∇Ω ·∇Ω .

In this way, the different configurations of the model problem may be written in a single set

of equations:
−∆Ωu = f in Ω ,

u = uD on ΓD ,

∇nu = tN on ΓN .

(2)

Here, ∇nu is the outward flux through the boundary ΓN of Ω . Furthermore, uD and tN
define respectively Dirichlet and Neumann BCs.

10
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In the definition (1), the first case is associated with solids embedded in a space of

the same dimension, the main difference with a standard FE problem being the use of a

non-conforming mesh. The second case corresponds to the hyperplanes of Rn, e.g. with curves

embedded in a two dimensional grid or surfaces in a 3D mesh. The last case is associated

with curves in 3D. The latter two cases have potential applications in mixed-dimensional

coupling, or when the m-dimensional problem domain has curvatures in the ambient space

of dimension n. Then, the model problem covers any embedding as depicted in Figure 3.

Figure 3: Embedded solids (from left to right): 2D and 3D problem domains of codimension

zero, 1D and 2D problem domains of codimension one, 1D problem domain of codimension

two.

2.1. Weak formulation

The weak form of the model problem given in Equation (2) is presented below. Considering

U := H1(Ω) with its usual norms, we define two subsets UD := {u ∈ U : u = uD on ΓD} and

U0 := {u ∈ U : u = 0 on ΓD}.

Find u ∈ UD :
∫

Ω
∇Ωu ·∇Ωv dΩ =

∫
Ω
fv dΩ +

∫
ΓN

tNv dΓ , ∀v ∈ U0 . (3)

Note that, from an implementation perspective, the gradient operator defined on Ω may

be expressed using projection operators. In the case of codimension one (e.g. a surface

embedded in 3D), the projector onto the surface Ω is PΩ := I−nΩ⊗nΩ . For a line embedded

in 3D (codimension two), the projector onto the tangent line of Ω is PΩ := tΩ ⊗ tΩ . In both

cases the projected gradient may be written as ∇Ω = PΩ∇ for scalar fields.

11
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2.2. Finite element discretization

To begin with, the discretization of the geometry must be introduced. In order to

dissociate the problem domain from the finite element mesh discretization, the bulk domain

must completely contain the problem domain. Let h be the characteristic mesh size. We

consider a quasi uniform mesh T h of shape-regular linear elements (lines in 1D, triangles in

2D or tetrahedra in 3D) in which the problem domain is embedded. It results in an unfitted

discretized domain Ωh of the problem.

Representation of embedded solids

The geometry of the problem domain can be represented either implicitly or explicitly.

Both approaches can be used within the X-FEM. The use of level-sets [46, 47], for instance,

is valuable in the case of moving interfaces, such as cracks [2, 3], two-phase and free-surface

flows [48] with potential topology changes. The iso-zero surface of a signed distance scalar

function is used to describe manifolds of codimension one. It may be extended to the

codimension m by using m level-sets as proposed with vector valued level-set functions in [49].

Considering a CAD geometry handled in the context of the X-FEM, the set of surfaces

defining the boundaries of a solid could be described by level-sets as well. However, most

of— if not all—CAD representations are based on B-Rep (Boundary Representation), which

makes a conversion to level-sets difficult because the flexibility of an implicit representation

is limited in the case of 3D edges. In fact, due to numeric error in CAD data, the edge

identification by level-set intersections in the case of tangent surfaces leads to a lack of

robustness. Moreover, the representation of 1D models with fixed topology such as beams

is not well suited with this type of implicit approach. We suggest an explicit approach to

describe 3D curves, in a way similar to that introduced in [50]. In order to represent all

the CAD manifolds in a robust way, an extension of this kind of explicit approach may be

investigated, but this is not the scope of the present work.

The resulting approximation of the domain must be suitable to define a function space.

Indeed, the supports of relevant function space based only on FE shape functions should be

free of overlap, like those (dark shaded) shown in Figure 4a. Otherwise, locking will occur

12
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on the domain because the function space cannot represent linear functions any more. The

identification of these overlapping regions and the creation of an adequate geometry for the

FE computation may be done by post-processing the embedded solid representation, see

Figure 4b. The overlapping regions are detected by finding, in each element, the upper and

lower bounds of the parametric coordinates associated with the line. The left and centre

patterns shown in Figure 4a present elements for which bounds define a subset already

covered by those of another element. The right pattern introduces two elements connected

by an edge (hatched) and not consecutively crossed by the line.

(a) Incompatible discretization with some

overlapping regions.

(b) Post-processed geometry free of overlap.

Figure 4: Illustration of some locking on an embedded line in 2D and solution retained after

post-treatments.

Note that most of these patterns disappear naturally when the mesh is refined. Others

are due to bad properties of the input geometry, with a lack of injectivity on the immersion

(i.e. the curve crossing itself). Here, we consider only embedding and not immersion. At this

stage, the final discretization is compatible with the representation of any linear field on the

embedded domain.

Definition of the discrete function space

The discretization of the weak form given in Equation (3) is made using finite element.

Let Uh be the discrete space of the field of unknowns, and Ni Ωh the trace on Ωh of the linear

13



2 MODEL PROBLEM

shape function associated with the vertex i:

Uh :=
{∑

i

qiNi Ωh , qi ∈ R
}
. (4)

Let Uh
D and Uh

0 be two subsets of Uh with adequate constraints, these spaces are used for

the discretized weak formulation:

Find uh ∈ Uh
D :∫

Ωh
∇Ωhuh ·∇Ωhvh dΩ =

∫
Ωh
fvh dΩ +

∫
Γh

N

tNv
h dΓ , ∀vh ∈ Uh

0 . (5)

As mentioned in the introduction, the definition of a function space using traces of finite

element shape functions defined on T h must be done with caution when the problem domain

is embedded in a non-conforming mesh of higher dimension, i.e. if codimT h

(
Ωh
)
> 0 . Using

all the FE shape functions for the the discretization of the bulk field uh, the resulting full P1

space leads to a singular linear system. In case of a line crossing tetrahedra, as shown in

Figure 5 for instance, the three equations at each intersection point involve five unknowns

associated with vertex shape functions, resulting in an ill-posed problem with non unique

solutions.

Ω
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Figure 5: A domain of interest Ω embedded in a 3D background mesh not matching the line.
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To overcome this problem, we propose to recover the algebraic independence of the

equations by reducing the function space in line with algorithms found in [51, 52, 53]. These

were designed to generate a stable Lagrange multiplier space from P1 FE. The resulting

space is then appropriate to enforce, along an embedded interface, Dirichlet type boundary

conditions for linear interpolating FE space. They rely on graph theory and take advantage of

the fixed mesh topology to satisfy the inf–sup condition. However, this dedicated space is not

able to represent a linear field (only a constant field). Therefore, we denote it P0-equivalent.

To build a function space able to represent any linear field, we introduce in Sect. 3 a new

reduction algorithm that is suitable to any combination of dimension and codimension. The

resulting space will be called P1-equivalent.

The idea itself and also several initial 2D and 3D examples were first presented at the

WCCM in Barcelona in July 2014. It is interesting to draw a parallel with a paper [54] about

the design of a stable Lagrange multiplier space to solve an embedded interface problem

with quadratic X-FEM. In the linear case, a P1 approximation of the interface geometry

may be combined with a P1 space for the primal field and a stable space P0-equivalent for

the dual field of Lagrange multipliers. In the quadratic case, both the geometric description

and the Lagrange multipliers must be carefully selected with the aim of reaching optimal

convergence rates. Thus, a reducer algorithm has been introduced to build a P1-equivalent

Lagrange multiplier space in the 2D case. Interpolation properties of the resulting space are

also analysed.

Although the design of a dedicated P1-equivalent space gives a non-singular linear system,

it may be arbitrarily ill-conditioned. A sensitivity analysis is performed Sect. 4.1 on the

position of the surface in the background mesh in order to illustrate this, and a solution is

suggested.

Finally, a specific integration quadrature is required to accurately compute integrals

given in Equation (5) and defined over embedded domains of different codimensions. To this

end, the selected geometric representation is linearly approximated. This choice is discussed

Sect. 4.5 and compared with the quadratic approximation suggested by Olshanskii [35]. In

the numerical applications, appropriate Gauss integration quadratures will be used over both
15



3 DESIGN OF THE P1-EQUIVALENT SPACE

classical and sub-elements.

3. Design of the P1-equivalent space

In order to define a unique algorithm, valid in any configuration of the embedded problem,

we briefly introduce some concepts.

3.1. Terminology

Here, we define the terminology which is used with the discrete problem. Illustrations of

the relative concepts are given in Figure 6.

Definition 3.1. Mesh component. An element (tetrahedron, triangle, line, point) is a mesh

component (volume, face, edge, vertex, see Figure 6a). A mesh component may be composed

of other components of strictly lower dimension (Figure 6b). We can extend this notion to

sub-elements with sub-components.

Note that sub-elements are especially introduced where Ω is non-conform to the mesh,

otherwise no distinction with classical elements is made.

Definition 3.2. Mesh connectivity. Each mesh component is linked to others. Its connectivity

is defined by these connected components sharing all its vertices. In this way, the hierarchy

of the connectivities is defined with strictly increasing dimension (Figure 6c).

Definition 3.3. Support. A sub-component is built on a single component: its support

(Figure 6d). A component can support multiple sub-components: its children.

Definition 3.4. Support connectivity. According to the mesh connectivity, the support

connectivity may be defined from the vertices of the underlying mesh component.

Here, the term "support" has a different meaning from that classically used in the FE

context (i.e. non-zero definition domain of a shape function). This is introduced to describe

the relation between the mesh T h and the induced discretization Ωh. Combined with the

mesh topology (components and connectivities), it gives access to the bulk shape functions

in order to design the function space.
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supportchild

0D

1D

2D

3D

0D 1D 2D 3D
a

b

c

d

Figure 6: Illustration of the concepts. On the left: mesh components (a) with the hierarchy

of components (b) and the hierarchy of connectivities (c). On the right: supports of

sub-components for each dimension (d).

These concepts are not specific to the dimensions of the problem or the background mesh.

This way, we will be able to use the same algorithm for embeddings of codimension one or

two in 2D and 3D.

3.2. Description of the algorithm

In order to set an optimal approximation over a domain with boundary, a linear extension

of the domain is used in the elements intersected by the boundary. The discretized domain Ωh

is extended to a domain Ωh whose boundaries fit with those of the elements of the background

mesh. It is exclusively built for the purpose of defining the function space properly; the

domain of integration (Ωh) remains unchanged.

The intersections between the linear extension of the embedded line and the mesh yield a

set of supports. On each support, one or more vertex shape functions are defined. Groups of

independent shapes functions are detected by using the support connectivities (rely on graph

theory). For each of those, the number of redundant shapes functions is identified, according
17
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to the topology of the mesh. Indeed, in the simple 2D example given in the introduction

(Figure 2d), only one DOF was in excess; while the 3D example of the previous section

(Figure 5) presents two DOFs that should be merged to avoid linear dependence of the traces

of the shapes functions. The proposed algorithm is illustrated in Figures 7 and 8 and is

detailed below in Algorithm 1.

Figure 7: An embedded line that is unfitted to the narrow band of elements.
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linear extension

(a) Linear extension of the embedded line.

(b) Supports of the intersection points between the linear extension of the embedded line and the mesh.

(c) Five sets of connected supports (with various dimensions of supports in the right set).

(d) Full_Shape_Functions (drawn in red) and Distributed_Shape_Functions (outlined in orange)

associated with the vertices.

(e) Resulting shape functions.

Figure 8: The four steps of the algorithm and the final P1-equivalent space.
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Algorithm 1: Vertex space reducer.
Input: (Figure 7)

A set Ωh of elements or sub-elements embedded in a background mesh.
Output: Identification of groups of independent shape functions.

Characterization of the vertex shape functions: Full_Shape_Function (resp.
Distributed_Shape_Function) associated with its vertex (resp. distributed on the
other vertices of the connected supports of dimension ≤ codimT h

(
Ωh
)
).

1: (Figure 8a)
if ∂Ω 6= ∅ then

Build Ωh the linear extension of Ωh,

else
Define Ωh := Ωh.

2: (Figure 8b)
Build the connectivities and the supports of the set Ωh.

3: (Figure 8c)
For every support of dimension zero (i.e. vertices living on Ωh), flag the associated
shape function as Full_Shape_Function. Identify the sets of connected supports with a
dimension dim ≤ codimT h

(
Ωh
)
among the others. Each set is composed by supports

of the same dimension if codimT h

(
Ωh
)

= 1 , or may be composed by multiple
connected groups of supports of dimension one or two if codimT h

(
Ωh
)

= 2 .
4: (Figure 8d)
for each set of connected supports do

if all the connected supports have the same dimension d then
Decimate a number of shape functions equal to d on this set of supports.

else
Identify the groups of supports of dimension two which are only connected
through supports of dimension one or vertices of supports of dimension one.
Decimate two shape functions for the first group of supports of dimension two,
and only one for the following groups.

The decimated shape functions are called Distributed_Shape_Functions.
The rest defines the set of Full_Shape_Functions.
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The above example (Figures 7 and 8) only illustrates the Algorithm 1 applied on an

embedded line. However, we contend that the algoritm holds with embedded surfaces and

show numerical applications in the next section.

4. Numerical validations

The versatility of the proposed approach is shown in the sequel. Problems on manifolds of

codimension one (a straight line or a flat surface), and of codimension two (a helix) are solved.

The classical convergence rate is computed through convergence studies, by decreasing the

bulk mesh size h. Ill-conditioning caused by small intersections of the domain with the mesh

is investigated in the 2D case. Validation with another approach available in the literature is

carried out on a sphere. The accuracy of all results is then discussed in relation with classical

FEM results using body-fitted meshes. Finally, the robustness of the method is investigated

with regard to two alternative methods from the literature.

4.1. Problem of codimension one in 2D - a straight line

Let us start with a Poisson problem of codimension one defined over a straight line:

−∆Ωu = f in Ω := ]−1, 1[×{0} ,

u = uD on ΓD := ∂Ω .
(6)

The source term f and the Dirichlet boundary condition uD are defined thanks to an

analytical solution given in the 2D Cartesian coordinates by:

u(x, y) = (cos(πx) + 1) /2 . (7)

Here, the Dirichlet boundary condition is enforced by using a linear combination of the

shape functions of the element containing each of the endpoints of the line.

We compare the results obtained with four different approaches on a sequence of meshes

with increasing (uniform) density:

• the classical FEM with P1-conforming elements as reference,

• the FE space resulting from the P1-hat shape functions built on the induced discretiza-

tion,
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• the method initially introduced in [53] to build stable Lagrange multipliers for boundary

condition enforcement, and used here for the discrete field uh as a P0-equivalent space,

• our newly proposed method constructing a P1-equivalent space.

The first non-matching unstructured mesh used in this study is shown in Figure 9 with

the related numerical results.

Ω

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
x

u (exact solution)
u (P1-hat)
u (P0-equivalent)
u (P1-equivalent)

Figure 9: Geometry of the computational domain (left) and solutions of the Poisson problem

of codimension one in 2D (right) related to the coarsest discretization.

The P0-equivalent space is not interpolating at some nodes. More precisely some in-

termediate nodes, called "non-vital" in the algorithm of [53], have their value fixed by the

topology of the mesh. This locking is not present with the proposed P1-equivalent space,

which gives equivalent results to the P1-hat space, since their basis are constructed as linear

combinations. We give in Figure 10 the convergence results.
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(a) Error in the H1-norm of the solution.
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(b) Error in the L2-norm of the solution.

Figure 10: Convergence study for the Poisson problem solved on a straight line of

codimension one embedded in a 2D bulk mesh.

As suggested by the preliminary results, the errors obtained with the P0-equivalent space

do not converge on the H1- and L2-norms. Furthermore, the results obtained with the P1-hat

space are indistinguishable from that of the P1-equivalent space. The performance of the

P1-equivalent space appears to be in good agreement with the P1-conforming case, and

yields optimal rates of convergence in both norms.

4.2. Problem of codimension one in 3D - a flat surface

Let us consider a Laplace problem defined over a unit-square embedded in a 3D bulk

mesh. It has already been studied in [55, 51, 53] with a surface of codimension zero embedded

in a 2D mesh. Here, the surface has a codimension equal to one. The governing equations

and the boundary conditions are detailed below:

−∆Ωu = 0 in Ω := ]0, 1[× ]0, 1[×{0} ,

u = uD on ΓD := {0}× ]0, 1[×{0} ,

∇nu = tN on ΓN := ∂Ω\ΓD .

(8)

The boundary conditions are defined according to the exact solution given by the analytical

expression:

u(x, y, z) = [cosh(πx)− coth(π)sinh(πx)] sin(πy) . (9)
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Illustrations of the embedding of the domain in a typical non-conforming mesh and the

exact solution are shown in Figure 11.

ΓD

ΓN

Ω

Figure 11: Geometry of the computational domain and exact solution of the unit-square

Laplace problem of codimension one in 3D, with a Dirichlet condition defined on a boundary

of the mesh.

In order to enforce the Dirichlet boundary condition along the line ΓD not necessarily

matched by the mesh, we introduce Lagrange multipliers. Let u ΓD
∈ H1/2(ΓD) be the

primal field defined in the trace space of U restricted to ΓD . Let λ ∈ L := H−1/2(ΓD) be the

Lagrange multipliers belonging to the dual space of H1/2(ΓD) . The new weak formulation is

given by:

Find (u, λ) ∈ U×L :
∫

Ω
∇Ωu ·∇Ωv dΩ−

∫
ΓD

λv ΓD
dΓ =

∫
Ω
fv dΩ +

∫
ΓN

tNv dΓ , ∀v ∈ U ;

−
∫

ΓD

µu ΓD
dΓ = −

∫
ΓD

µuD dΓ , ∀µ ∈ L .

(10)

Here, the stable Lagrange multiplier space introduced in [53] will be used. This allows

to deplete the Lagrange multipliers to satisfy the inf–sup condition associated within the

framework of a mixed formulation. Unfortunately, the associated algorithm is only available

for a boundary of dimension (n− 1) embedded in a mesh of dimension n, i.e. a boundary

of codimension one. Here, the surface of codimension one has boundaries of codimension

two. Therefore, we will consider only cases where the boundaries are conforming with the
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mesh own boundaries. In this way, the 1D boundary ΓD will be supported by faces of

the discretization. Lagrange multipliers are not defined in codimension two, but simply in

codimension one on these 2D elements. This makes it possible to apply directly the same

algorithm. In order to address the general problem, another algorithm is needed: this will be

the topic of a follow-up article.

In this paper, we are interested in the relative performances of several function spaces

for uh exclusively. As in the previous section, three different approaches (P1-conforming,

P0-equivalent and P1-equivalent) are considered to define the primal space; while keeping the

same Lagrange multiplier space as in [53]. We give in Figure 12 the results of a convergence

study.
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(c) Error in the L2-norm on the interfacial flux.

10−5

10−4

10−3

10−2

101 102

1
h

‖u|Γ‖L2 (P1-conforming)
‖u|Γ‖L2 (P0-equivalent)
‖u|Γ‖L2 (P1-equivalent)

1

2.0

(d) Error in the L2-norm on the interfacial field.
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Figure 12: Convergence study for the Laplace problem solved on a unit-square domain of

codimension one in 3D, with a Dirichlet condition defined on a boundary of the mesh.
26



4 NUMERICAL VALIDATIONS

The error in the H1- and L2-norms decay optimally with the P1-equivalent space as shown

in Figures 12a and 12b. The P0-equivalent space does not get convergent results as expected.

Figures 12c and 12d present the error in the L2-norm along the interface ΓD for both the flux

(given by Lagrange multipliers) and the field. The proposed approach gives comparable results

with the conforming case on this boundary. In Figure 12e, results of a numerical inf–sup

test proposed in [56] are shown, allowing to check the compatibility between the primal

field and the dual field of Lagrange multipliers. The inf–sup test considers a constant— the

solution of a eigenvalue problem—that should be mesh-independent, otherwise the inf–sup

condition is not satisfied. Previous applications of this test on stable Lagrange multipliers

with non-conforming mesh and further details of implementation can be found in [51, 53]

for conciseness. While using a stable Lagrange multiplier space defined on ΓD to discretize

the dual field, the use of a P0-equivalent space as primal field does not satisfy the inf–sup

condition. However, the P1-equivalent and P1-conforming spaces used for the primal field

provide a similar inf–sup constant and are compatible.

4.3. Problem of codimension two in 3D - a helix

We consider again the Poisson problem introduced in Sect. 4.1, but the geometry of the

domain is now a helix explicitly defined by the parametric equation:

l(t) = [sin(2πt)/2, cos(2πt)/2, t] . (11)

The problem is posed as follows:

−∆Ωu = f in Ω := {(x, y, z) ∈ R3,∃t ∈ ]−1, 1[ : (x, y, z) = l(t)} ,

u = uD on ΓD := ∂Ω .
(12)

The solution may be expressed in the 3D Cartesian coordinates by:

u(x, y, z) = (cos(πz) + 1) /2 . (13)

In comparison with the two previous cases, the discretized problem involves a largest gap

of dimension between the domain Ωh and the background mesh T h. In Figure 13, we show the

embedding of the helix in a non-matching structured mesh using an explicit representation,
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and the exact solution. Please note that the 3D aspect helps displaying the solution, it is

not the actual geometry of the helix which has zero thickness.

ΓD

Ω

Figure 13: Geometry of the computational domain and exact solution of the helix Poisson

problem of codimension two in 3D.

A convergence study is performed in a similar way to previous studies. However, the

P0-equivalent space is not available in this case (codimension two) as explained in the

comment made on the stable Lagrange multipliers in Sect. 4.2. The results of convergence

are given in Figure 14.
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(c) Number of DOFs.

Figure 14: Convergence study for the Poisson problem solved on a helix of codimension two

embedded in a 3D bulk mesh.

Figures 14a and 14b show errors in H1- and L2-norms. On both, the P1-equivalent space

achieves optimal rates of convergence. At first glance, the error generated with the FEM

using 1D elements along the line seems greater. However, a more detailed analysis must be

conducted with respect to the number of DOFs associated with the problem, see Figure 14c.

Indeed, for a same element size h, the number of DOFs obtained with an embedded curve

in a 3D grid is far greater than that obtained with a 1D conforming mesh—by a factor of

about 4.0 in codimension two.
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Figure 15: Results of the convergence study as functions of the number of DOFs.

Figures 15a and 15a reveal, not surprisingly, that the P1-conforming space provides

results in H1- and L2-norms with a better accuracy than the P1-equivalent space, for a given

number of DOFs.

4.4. Condition number of the problem

Owing to a mismatch between the mesh and the domain of integration, intersections

leaving very small supports within elements may arbitrarily occur. If one designs a function

space over it without caution, the resulting matrix of the finite element system may be

ill-conditioned. Specific treatments of the linear algebraic system of equations may be possible

by a preconditioning approach [57]. This problem has also been addressed with stabilised

formulations [41, 42].

In both cases, problems of codimension two have not been investigated. Clearly the

design of an a priori stable method is attractive because it does not pollute the original

formulation with additional terms. Therefore, the quality of the approximation depends only

on geometrical parameters. It also allows us to use off-the-shelf solvers without any algebraic

treatment. Problems involving non-linearities or multi-dimensional coupling are some of the

potential applications which may benefit from this.
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Two approaches can be considered to control the conditioning of the resulting linear

system:

• by modifying the geometry. At each vertex of the elements supporting the embedded

domain, the distance dh to Ωh, as measured in the reference element, is computed. If

dh is less than a given parameter τh, then we force the distance to be equal to zero. An

illustration on two cases with different mesh configurations is shown in Figure 16. The

initial geometry is an embedded curve (dash line), that is nearly intersecting one of

the vertices of the mesh at the top of the figure. In this case, the line is forced to pass

through the vertex. This approach was first proposed with the X-FEM in [58], taking

advantage of the flexibility given by using level-set functions. Although this method is

straightforward to implement, the geometry of the domain problem is, however, slightly

modified. This increases the error on the geometric approximation. It can cause some

oscillations in convergence studies, without changing the convergence rate.

• by modifying the function space. Here, the DOF of the vertex is eliminated when

dh < τh. The naive solution of simply removing the DOF does not preserve the

partition-of-unity. A linear combination with the other active DOFs of the element

must therefore be applied. The geometry remains unchanged. This approach stays

in line with [53]. It does not create any new independent group of shape functions,

but the linear combinations which are defined can reduce the kernel. However, the

approximation may lose the ability to represent a linear field in the vicinity of the

linear combination. An illustration of this problem is shown in case 2 of Figure 16 for

instance, where linear combinations between four DOFs define only a constant value

over two small sub-elements. Since this only happens on a very small area for τh small

enough, it has no effect on the convergence rate. This approach was studied in [54].
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Approach modifying: case 1 case 2

the geometry

the space

Figure 16: Solutions of the nearly-matching-mesh problem with both approaches: by

modifying the geometry or the space.

In this paper, the approach modifying the geometry has been implemented. Let us

mention, however, that any other approach may be used with the new function space

designed in this paper, without trouble.

In order to compare the level of conditioning with, and without specific control, a simple

problem is considered: the one introduced in Sect. 4.1. A study is performed to illustrate the

effect of the position of the line on the condition number of the resulting linear system. For

this, a straight line is embedded in a structured-triangular mesh, one-element thick. Let dh

the distance between Ωh and the (horizontal) bottom edges of the background mesh. The

first mesh of the convergence study is shown in Figure 17.

Ωh

dh
h

Figure 17: Geometry of the computational domain of the Laplace problem of codimension

one in 2D, with parameters of the sensitivity analysis.

We compare the results obtained using the approach modifying the geometry and those

obtained doing nothing at all. For the current study, the parameter τh associated with this

approach is equal to 10−3. The value may actually be derived from criteria proposed in [59].

The results of this sensitivity analysis are shown in Figure 18.
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(c) Comparative results obtained with h = 0.01 for

dh ∈ ]0, 0.5] in log scale.

Figure 18: Convergence surfaces on the condition number of the resulting stiffness matrix vs

the position of the embedded line.

Figure 18a reports a progressive increase in the conditioning as the embedded line gets

closer and closer to the mesh vertices. The value of the condition number may be bounded

by modifying the geometry as shown in Figure 18b. The Figure 18c clearly shows that the

unit slope of the condition number in a log-log scale peculiar to this configuration can be

reduced to constant using the aforementioned procedure. Furthermore, it can be seen from

the analysis of the convergence surfaces as functions of characteristic length h, that the
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contribution to ill-conditioning from small intersections may be uniformly limited by the

procedure regardless of h.

4.5. Validation on another problem of codimension one in 3D - a sphere

The purpose of this validation is twofold:

(i) compare our approach with the method proposed by Olshanskii et al. in [35],

(ii) confront results obtained with two different approaches to represent the geometry:

one using a linear approximation, which was used throughout Sect. 4, and the other,

introduced in [60] and used in [35], based on a quadratic approximation.

Let us consider a Poisson problem defined on the unit sphere, which has already been

treated in [35]:

−∆Ωu = f in Ω := {(r, θ, ϕ) ∈ R3, r = 1} . (14)

The analytical solution given in the spherical coordinates is as follows:

u(r, θ, ϕ) = 12sin3(θ)sin(3ϕ) , (15)

which allows to fully characterize the source term f . Note that its integral over the domain is

zero. This additional condition may be enforced in order to ensure uniqueness of the solution

of the problem.

Figure 19 represents the geometry of the problem with the analytical solution.

Ω

Figure 19: Geometry of the computational domain and exact solution of the unit-sphere

Laplace problem embedded in a bulk mesh.
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A convergence study is performed and allows to compare three different function spaces:

• by using a body-fitted mesh on which a P1-conforming space is built,

• by means of the method introduced by Olshanskii et al., which will be denoted

Full P1 prec. hereafter,

• or by constructing a dedicated P1-equivalent space as introduced in this paper.

For the two latter approaches based on non-conforming meshes, two different approximations

of the geometry will be used: a first order approximation called geo 1, and a second order

used by Olshanskii et al. noted geo 2. The associated results are given in Figure 20.
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Figure 20: Convergence study for the Laplace problem solved on a spherical surface

embedded in a bulk mesh.
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Optimal results are obtained with all procedures on H1- and L2-norms, see Figures 20a

and 20b. The choice of a linear geometric description does not degrade the convergence rate.

It only causes a minor additional error on the geometry if we compare geo 1 and geo 2 curves.

The choice of a quadratic approximation was initially motivated by a suboptimal convergence

rate of the surface tension force in a P2-P1 mixed formulation [60]. It is not essential in the

numerical applications presented in this paper. For each kind of geometric approximation,

the results obtained with both non-conforming approaches are indistinguishable. We perform

an analysis similar to that of Sect. 4.3 in order to check the relative performances of the

different spaces. In this case, the number of DOFs associated with an embedded surface is

greater than that obtained with a tessellation of the surface (about 2.3 time), see Figure 20c.

Figure 21 illustrates how these previous results depend on the number of DOFs.
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(a) Error in the H1-norm of the solution.
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(b) Error in the L2-norm of the solution.

Figure 21: Results of the convergence study as functions of the number of DOFs.

As expected, the error of the FEM is actually slightly lower than that of non-conforming

approaches. In conclusion, the proposed approach combined with a linear geometry description

provides optimal results, close to those obtained with FEM and equivalent to the solution

proposed by Olshanskii et al..
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4.6. Analysis of the matrix properties

This last section aims to highlight different settings bringing ill-posed problems, therefore

requiring a specific treatment. After a brief presentation, each setting is investigated

numerically. This highlights the benefit on robustness of the proposed approach, with regard

to other approaches developed in the literature.

For the sake of clarity and simplification, let us simply consider embeddings in 2D

structured meshes for our presentation. Let us start with a straight line as illustrated in

Figure 22a. A similar example was proposed in [51] (for the design of stable Lagrange

multipliers). The resulting discretization of Ω is composed of 2N − 1 nodes, while more

(vertex) shape functions are defined on the mesh (2N). This leads to the non-uniqueness in

field approximation. Let us now consider another configuration with a closed loop (e.g. a

circle) shown in Figure 22b. This setting was also studied in [35]. As in the previous example,

2N shape functions are involved here. However, an equivalent number of nodes is used to

discretize the line, due to the cycle in the topology. Nevertheless, there is still no unique way

to represent a linear field in this setting, since any opposite constant values associated with

v+
i and v−i generate an appropriate field.

Ωh

v+1

n1 n2 nN-1 nN

m1 mN-1

v+2 v+N-1 v+N

v−1 v−2 v−N-1 v−N

(a) Embedded straight line.

v+1

n1 n2 nN

m1 mN-1

v+2 v+N

v−1 v−2 v−N

v+1

n1

v−1

mN

(b) Embedded closed line.

(c) Supports of the straight line. (d) Supports of the closed line.

Figure 22: Two embeddings into structured meshes resulting in a mass matrix with one zero

eigenvalue.

Figures 22c and 22d show that all 1D supports are connected in one group of independent
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shape functions. Applying Algorithm 1 in both cases leads to eliminate one zero eigenvalue

in the mass matrix.

Other mesh configurations may lead to more than one zero eigenvalue, e.g. with meshes

given in Figures 23a and 23b. The lines (straight or closed) are now going through vertices

of the mesh. Both settings have 3N − 1 shape functions and N zero eigenvalues, one per

independent 1D support (see Figures 23c and 23d) (2N − 1 nodes along the straight line,

and 2N nodes with one cycle for the loop).

Ωh

v+1

n1 n2 nN–1 nN

v+2 v+N-1 v+N

v−1 v−2 v−N-1 v−N

(a) Embedded straight line.

v+1

n1 n2 nN

v+2 v+N

v−1 v−2 v−N

v+1

n1

v−1

(b) Embedded closed line.

(c) Supports of the straight line. (d) Supports of the closed line.

Figure 23: Two embeddings into structured meshes resulting in a mass matrix with N zero

eigenvalues.

From these observations, it is clear that the number of zero eigenvalues in the mass matrix

may potentially be greater than one, up to be proportional to the number of elements. Such

a case appears when the embedded domain may be divided into disjoint sets separated by

conforming vertices, thus leading to independent groups of shape functions.

In the sequel, numerical experiments covering the different settings previously introduced

are carried out. The matrix properties are first analysed on the Poisson problem defined on

a straight line of codimension one in 2D and introduced in Sect. 4.1. Then, we investigate

closed topologies with Poisson problems posed on circles in 2D and 3D (resp. codimension

one and two). Finally, an analysis of the eigenvalues obtained with a flat surface embedded

in a structured mesh is given.
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In order to be exhaustive, we compare results obtained by our methodology with two

alternative methods from the literature:

• modifying the variational formulation with a stabilisation term recently introduced by

Burman et al. [42],

• using a dedicated preconditioned conjugate gradient solver as proposed by Olshan-

skii et al. [35, 57].

We now briefly describe the key features of each of the aforementioned methods.

For the first one, Burman et al. propose a full gradient stabilised approach for the

Laplace-Beltrami operator. This consists of an additional stabilisation term—with a positive

parameter τ—which is defined as follows:

τ
∫
T h
h∇uh ·∇vh dT (16)

This term is computed on the entire elements of T h containing Ω, which allows to recover a

problem of codimension zero. Hence, this tends to bypass the problem of zero eigenvalue

(ill-posed problem); the parameter τ being selected to prevent ill-conditioned linear system

without significant loss of accuracy. Let us denote this approach Full P1 stab. in the sequel.

In the second approach, Olshanskii et al. apply diagonal scaling to improve the conditioning

properties of the matrices. Let [M] be the mass matrix and [S] be the stiffness matrix of the

Laplace-Beltrami equation. They introduce the diagonally scaled mass and stiffness matrices,

respectively defined by:

[M̃] := [DM]−1/2[M][DM]−1/2 , with [DM] := diag ([M]) and Mi,j :=
∫

Ωh
NiNj dΩ ;

[S̃] := [DS]−1/2[S][DS]−1/2 , with [DS] := diag ([S]) and Si,j :=
∫

Ωh
∇ΩhNi ·∇ΩhNj dΩ .

(17)

Solving PDEs by means of a Gauss-Seidel preconditioned conjugate gradient solver with a

relative tolerance t, they alleviate difficulties linked to singularities in the linear algebraic

system thanks to a judicious choice of this parameter.
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Studies on these two approaches have never mentioned—even on a simple 2D case—

the potential presence of multiple zero eigenvalues in the matrices, which may affect the

robustness of these approaches. For instance, studies reported in [40, 41] identify a single

additional zero eigenvalue induced on a closed domain.

Let us investigate these settings through the following numerical experiments. They will

outline the interest in building a dedicated function space, which defines a priori well-adapted

basis from the linear FE shape functions.

Problem of codimension one in 2D - a straight line

Let us go back to the 2D case study introduced in Sect. 4.1. In order to compare the

matrix properties of the three non-conforming approaches previously introduced (Full P1

stab., Full P1 prec. and P1-equivalent), the analysis of the eigenvalues will be systematically

performed. We begin by analysing the convergence of these approaches, and select the value

of the parameter τ involved within the stabilised approach. This stabilisation parameter

must be chosen sufficiently large to stabilise the approach, without significantly degrading

the convergence of the solution. Figure 24 shows the convergence results obtained with the

different approaches.
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(a) Error in the H1-norm of the solution.
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(b) Error in the L2-norm of the solution.

Figure 24: Identification of the stabilisation parameter τ through a convergence study for

the Poisson problem solved on a straight line embedded in a 2D unstructured mesh.
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The three non-conforming approaches lead to almost indistinguishable errors in the H1-

norm (see Figure 24a). From the Figure 24b, we select the stabilisation parameter τ = 10−1

as a sufficiently small value to preserve good accuracy of the results. In the sequel, we will

show that a lower value of the parameter does not stabilise the problem correctly.

In line with Olshanskii and Reusken [57], we analyse the distribution of eigenvalues for

the different approaches. For the mass matrix, the Full P1 and the P1-equivalent approaches

are investigated. For the stiffness matrix, we consider the Full P1, the Full P1 stab. and

the P1-equivalent approaches. In both cases, the approaches will also be investigated with

diagonal preconditioning (identified by the suffix prec.). In Figure 25, the related results are

summarized.
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Refinement level

(a) Mass matrix eigenvalues without scaling.

Refinement level

(b) Mass matrix eigenvalues with scaling.

Refinement level

(c) Stiffness matrix eigenvalues without scaling.

Refinement level

(d) Stiffness matrix eigenvalues with scaling.
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(e) Parametric study of the eigenvalues obtained with

the finest mesh.

Figure 25: Eigenvalue analysis for the Laplace problem solved on a straight line of

codimension one embedded in a 2D bulk mesh.
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The general distribution of the eigenvalues behaves in O(k2). The Full P1 approach

presents one zero eigenvalue for the mass matrix. This persists after scaling. This number

is reduced to zero using the P1-equivalent approach. For the stiffness matrix, the Full P1

approach also has one zero eigenvalue more than the others. Note that a smaller value of the

stabilisation parameter τ (cf. Figure 25e) leads to higher condition number. This supports

our previous choice.

For high refinement levels (3 and 4), we observe some worse eigenvalues by using the

Full P1 approach than with P1-equivalent one (see e.g. Figure 25e). Analysis of the mesh

intersection reveals that some nodes of the induced discretization of Ω are almost coincident

with vertices of the meshes. Applying a small perturbation on the meshes, we recover

conformity of these few vertices and test the robustness of the approaches. Let us denote

v ∈ Ωh a vertices considered as being put of the line. We give in Table 1 details on the

discretization and the zero eigenvalues.

Table 1: Details on the zero eigenvalues of the eigenvalue analysis in 2D.

Refinement
level

Number of DOFs
v∈ Ωh

Mass matrix zero eigenvalues Stiffness matrix zero eigenvalues

P1-hat Full P1 P1-eq. P1-hat Full P1 P1-eq. P1-hat Full P1 P1-eq.

2 142 143 142 0 0 1 0 1 2 1

3 424 426 424 1 0 2 0 1 3 1

4 1414 1424 1414 9 0 10 0 1 11 1

The P1-hat function space—directly built on the induced discretization— is considered

as reference. It does not generate zero eigenvalue for the mass matrix and has only one for

the stiffness matrix (similar to a rigid body motion). Here, three different configurations

may be distinguished. For the refinement level 2, a single set of connected 1D supports is

defined, which generates one additional zero eigenvalue within the Full P1 approach. For the

refinement level 3, Ωh intersects the mesh in one vertex. It results two groups of independent

shape functions defined on 1D supports, with two additional zero eigenvalues within the

Full P1 approach. For the refinement level 4, ten zero eigenvalues are added within the Full

P1 approach, due to nine vertices living on Ωh. In any case, the P1-equivalent approach

cancels these additional zero eigenvalues and recovers matrix properties similar to those of
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the P1-hat approach. This is illustrated in Figure 26.
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(c) Eigenvalues obtained with 1
h = 665.
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(d) Parametric study of the eigenvalues obtained with

the finest mesh.

Figure 26: Detailed comparison of the stiffness matrix eigenvalue analysis in 2D.

Only the newly proposed approach seems to preserve the O(k2) behaviour in high

refinement levels. Within the other approaches, multiple small eigenvalues appear.

Problem of codimension one in 2D - a circle

Let us now focus on closed domains. We consider the setting illustrated in Figure 22b,

involving a closed line (e.g. a circle) embedded in a structured mesh. The discretization is

made of 32 linear triangles. The results of an eigenvalue analysis involving the previously

introduced approaches are given Figure 27.
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(b) Stiffness matrix eigenvalues.

Figure 27: Eigenvalue analysis for the Laplace-Beltrami equation posed on a circle of

codimension one embedded in a 2D structured mesh.

Comparing with the P1-hat approach, the Full P1 presents one additional zero eigenvalue

in both matrices. Applying preconditioning technique does not reduce this number, while

stabilisation technique seem to remedy to it, as shown in Figure 27b. Furthermore, the

P1-equivalent approach addresses this issue by "cleaning" the kernel, which avoids propagation

of numerical error and leads to a better condition number.

We can conclude that the number of zero eigenvalues is not directly depending on the

topology of the domain, but it is rather linked to the number of independent groups of

shape functions. We show in the next section that it also depends on the codimension of the

embedding.

Problem of codimension two in 3D - a circle

Let us investigate the previous setting in codimension two (i.e. in 3D). We consider a

circle of radius 1.8 embedded in a structured mesh composed of unit-cubes divided into six

tetrahedra. Figure 28 represents the discretization and the embedded domain.
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Figure 28: 3D Structured mesh and embedded geometry of the circular computational

domain of codimension two.

We give in Figure 29 the results of the eigenvalue analysis.
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(b) Stiffness matrix eigenvalues.

Figure 29: Eigenvalue analysis for the Laplace-Beltrami equation posed on a circle of

codimension two embedded in a 3D structured mesh.

Once again, additional vanishing eigenvalues (two more) are introduced by the Full P1

approach in comparison with P1-hat approach. The P1-equivalent approach allows to reduce

this number, with similar effect to the Full P1 stab. approach, but without introducing any

additional parameter.

Problem of codimension one in 3D - a flat surface

The aim of this section is to illustrate, for a flat surface embedded in a 3D background

mesh, that an arbitrarily large number of vanishing eigenvalues may be involved and altered
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the matrix properties. We consider the Laplace equation within the setting depicted in

Figure 30.

Figure 30: 3D structured meshes with an embedded flat surface; form left to right: initial

mesh, embedding of the surface into the mesh of refinement level 0, 1 and 2.

Following the same scheme as for the straight line in 2D, we compare the distribution of

eigenvalues for the different approaches (see Figure 31, using τ = 10−1).
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Refinement level

(a) Mass matrix eigenvalues without scaling.

Refinement level

(b) Mass matrix eigenvalues with scaling.

Refinement level

(c) Stiffness matrix eigenvalues without scaling.

Refinement level

(d) Stiffness matrix eigenvalues with scaling.

Figure 31: Eigenvalue analysis for the Laplace problem solved on a flat surface of

codimension one embedded in a 3D structured mesh.

We can observe that the distributions of the eigenvalues evolve globally in O(k2) for the

mass matrix and close to O(k) for the stiffness matrix. The few first eigenvalues are quite

small for the Full P1. This number increases with the refinement level. This issue is not

addressed by diagonal scaling; it depends on the parameter τ of the stabilisation, while the

proposed approach is effective straight out of the box. Table 1 gives more details on the zero

eigenvalues.
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Table 2: Details on the zero eigenvalues of the eigenvalue analysis in 3D.

Refinement
level

Number of DOFs Mass matrix zero eigenvalues Stiffness matrix zero eigenvalues

P1-hat Full P1 P1-eq. P1-hat Full P1 P1-eq. P1-hat Full P1 P1-eq.

0 7 8 7 0 1 0 1 2 1

1 19 21 19 0 2 0 1 3 1

2 61 65 61 0 4 0 1 5 1

3 217 225 217 0 8 0 1 9 1

4 817 833 817 0 16 0 1 17 1

Starting with one additional zero eigenvalue for the Full P1 approach, each refinement

level doubles this number. This is due to the structure of the intersection between Ω and the

mesh, which contains a number of independent groups of shape functions proportional to

the value of refinement level. The P1-equivalent approach removes linear dependent shape

functions and recovers matrix properties similar to the P1-hat approach (see Figure 32).
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(c) Eigenvalues obtained with 1
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Figure 32: Detailed comparison of the stiffness matrix eigenvalue analysis in 3D.

5. Conclusion

In this paper, we introduced a P1-equivalent space to solve elliptic problems defined on

embedded solids within the context of the extended finite element method. The main results

may be summarized as follows:

1. The proposed approach is general and handles any embedding in a single framework. Its

originality is to build an a priori well-adapted space, preserving thereby the variational

formulation and the ability to use off-the-shelf solvers. A new algorithm, based on
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concepts suitable for each dimension, is introduced to reduce the full P1 vertex spaces

defined on the background meshes by using linear combinations.

2. Numerical validations on several examples with analytical solutions and covering all

the codimensions involved are presented. The accuracy of the results is discussed by

taking the classical FEM with body-fitted mesh as a reference. Quadratic rates of

convergence in the L2-norm and linear rates of convergence in the H1 are achieved by

the P1-equivalent space in all configurations. Specific treatments are investigated in a

sensitivity analysis to take care of the conditioning of the linear system.

3. A comparative study is carried out with another method available in the literature on

a borderless domain. This method, proposed by Olshanskii et al. [35], uses a Conjugate

Gradient solver with specific preconditioning. Our approach alleviates the resolution

routines from ill-posed algebraic system of equations. Therefore, it is possible to use

any type of solver. For instance, when using Lagrange multipliers, the new system is

no longer definite positive, thus preventing the use of Conjugate Gradient solvers.

4. Detailed eigenvalue analyses are performed for different settings of topology or codimen-

sion and compared with two alternatives: the methodology of Olshanskii et al. and the

full gradient stabilised method proposed by Burman et al. [42]. The proposed approach

dealt with the zero eigenvalues issue and shown robustness without any stabilisation

parameter or specific solver.

In order to solve problems defined on embedded surfaces with boundary, we only considered

cases of boundaries belonging to mesh surfaces. In this way, the algorithm proposed by [53]

has been directly applied to enforce Dirichlet boundary conditions. The compatibility

between the new P1-equivalent space built on the embedded domain and the stable Lagrange

multiplier space defined along the embedded boundary has been numerically verified by using

inf–sup test. To our knowledge the issue of boundary conditions applied on a boundary of

codimension two in 3D has not been investigated up to now without a body-fitted mesh.

To overcome this limitation, we explore— in a Part II [6] following this paper—a new way

of building stable Lagrange multipliers with the objective of addressing all the range of
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problems with embedded solids.

Future investigations may include vector-valued problems, like embedded membranes,

non-linear and hyperbolic PDEs.
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