Walking Droplets In Confined Geometries

B. Filoux', M. Hubert', P. Schlagheck ${ }^{2}$ \& N.Vandewalle'

Abstract

I) Abstract

Since the pioneering works of Couder and coworkers [I], a growing interest has emerged about bouncing and walking droplets. Various experimental works have been performed in 2d systems. Recent studies focused on droplet confinement. In particular, it was shown that by using a magnetic force it is possible to trap a drop in a harmonic potential $[2,3]$. For the very first time, we present the possibility to control droplet trajectories so that droplets are confined along Id paths, thanks to linear submerged cavities used as waveguide for the drop. Thus, we work with an annular cavity and we evidence differences with 2d behaviors [4].

2.a) Walk the line

We study the motion of a droplet in submerged linear cavities, of different widths D, proportional to the Faraday wavelength λ_{F}. The cavity is vertically vibrated. The drop remains in the deep water region and can not walk in the shallow water region.

2.b) From Id to 2d trajectories

Trajectories of a drop within four channels, of width $D / \lambda_{F} \simeq\{1.5,2,4,6\}$.

Narrow channels: linear motion. Large channels: wobbling motion.

Pictures of the Faraday Instability.

Faraday periodic pattern along

 the y axis.

Bump along the x axis.
We evidence a substructure of m modes along the x axis.

2.c) Faraday propagation, waveguide analogy

Analogy with the light group velocity in TEI

 waveguide:$v_{y}=v_{y}^{0} \sqrt{1-\left(\frac{\lambda_{F}}{D}\right)^{2}}, v_{y}^{0}$ is the 2 d speed of a drop.
Some differences:

- the Faraday instability auto-adapts to the channel width.
λ_{F} varies in the experiment while it is
constant in the electromagnetic case.
evanescent waves outside the channel [5].

3.a) One ring to rule them all

Case of droplets confined in a submerged annular cavity.
The width is chosen to ensure a Id motion for the walkers.

A string of 8 identical droplets with:

- antisynchronous bounces - quantized interdistances.

The space between drops is given by $s=\left(n-\varepsilon_{0}\right) \lambda_{F}$ where n is an integer.

3.b) Influence of the distance between droplets
v_{2} / v_{1} decreases exponentially.
Model in good agreement with the experiment [6].

The closer a pair of walkers are, the faster they move.

3.c) Influence of the number of droplets

Speed of a string of droplets regularly spaced.
The speed rises exponentially with \mathbf{N} until saturation.
Model in good agreement with
the experiment [6].
All the drops interact and share
a coherent wave.

4) Conclusion

- We confine a drop in a Id geometry.
- The channels are waveguides for Faraday waves.
- A fine structure of m modes is observed in the transversal direction.
- We model the longitudinal speed of a walker within a linear channel.
- Analogies and differences with waveguides.
- Quantization and influence of the distance between droplets.
- Influence of the number of drops on the speed of a string.
- A model developed in good agreement with the experiment.
- A chain of drops share the same coherent wave.
- Constructive interferences cause an increase of the speed.

