Follow the guide

GRASP

Walk the line

We study the motion of a droplet in submerged linear cavities, of different widths D. The drop remains in the deep water region, and can not walk in the shallow water region

Forcing frequency : $f=70 \mathrm{~Hz}$
Forcing acceleration : $\Gamma=4.0$
Memory parameter : $\mathrm{Me}=20$
Faraday wavelength : $\lambda=5 \mathrm{~mm}$

2d and 1d trajectories

Trajectories of a drop within four channels, of width $D / \lambda=\{1.5,2,4,6\}$.
The path followed by the walker is linear in the two first channels.
In contrast the walker wobbles in the two last ones.
Below each trajectory: pictures of the Faraday pattern within each cavity.
Along the y axis, one can observe the Faraday periodic pattern.
Along the x axis, it corresponds to a bump In addition we evidence a substructure along the x axis

Faraday propagation / waveguide analogy

A waveguide separates the wave characteristics into a transport component and a stationary one. The stationary component correspond to the transverse lines. The transport component can be seen as the propulsive component along the channel.
We assume the wave propagation is similar to a waveguide or a quantum wire system.
This leads to the relationship: $k_{x}^{2}+k_{y}^{2}=\frac{\omega^{2}}{c^{2}}=\left(\frac{2 \pi}{\lambda_{F}}\right)$
is set as the Faraday bump excited in the transverse direction
In the longitudinal direction, upon estimating $v_{y} \propto k_{y}$,
we obtain: $v_{y}=v_{0 y} \sqrt{1-\left(\frac{\lambda_{F}}{D}\right)}$
Considering the transversal energy proportional to $(a m)^{2}$, where a is the amplitude of undulations of size λ_{F}, and $m=\left[D / \lambda_{F}\right]$ corresponds to an integer number of undulations along the transverse direction, one obtains the following

Ratios of the kinetic energies along the y and x axis What is the optimal width D to limit speed fluctuations along the x axis?
One can observe a peak around $1.5 \leq D / \lambda \leq 2.25$
Here, the trajectory of the drop is quasi mono-dimensional

The experiment is fitted with
where σ corresponding to the magnitude of speed fluctuations our system in both directions.

A walker and its wavefield in a channel of 2λ width

One ring to rule them all

We investigate the case of a droplet confined in a submerged annular cavity.
The experimental parameters remain the same The width is adjusted to ensure a 1d motion to the drop.

A string of 8 identical droplets in an annular cavity. One can notice the antisynchronous bounces for the successive drops,
but also the quantized interdistances.

It is possible to confine a drop in a 1 d geometry.
The channels are waveguides for Faraday waves
A single mode dominates the longitudinal motion.

Conclusions

A fine structure of m modes is observed in the transversal direction.
Fits in good agreement with our experimental datas.
Optimal width limiting speed fluctuations along the x axis.
Channels between $\left\{\lambda_{F}, 2 \lambda_{F}\right\}$ are considered as linear droplet guides

The results differ from the 2d case.
Quantization, influence of the distance between droplets.
Influence of the number of drops on the speed of a string.
A model developed, in good agreement with the experiment
A chain of drops share the same coherent wave
Constructive interferences cause an increase of the speed.

