

Generalized Pascal triangles for binomial coefficients of words: a short introduction

Joint work with Julien Leroy and Michel Rigo

Manon Stipulanti

FRIA grantee

Sage Days 82: Women in Sage January 10, 2017

My research interests

The classical Pascal triangle

					k				
		0	1	2	3	4	5	6	7
	0	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
m	3	1	3	1 3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5		10	5	1	0	0
	6	1	6	15	20	15	6	1	
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$\binom{m}{k} = \frac{m!}{(m-k)!\,k!}$$

The Sierpiński gasket

A way to build the Sierpiński gasket:

The Sierpiński gasket

A way to build the Sierpiński gasket:

Link between those objects

• Grid: intersection between \mathbb{N}^2 and $[0, 2^n] \times [0, 2^n]$

• Color the grid: Color the first 2^n rows and columns of the Pascal triangle

$$\left(\binom{m}{k} \bmod 2 \right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{m}{k} \equiv 0 \mod 2$
- black if $\binom{m}{k} \equiv 1 \mod 2$

• Color the grid: Color the first 2^n rows and columns of the Pascal triangle

$$\left(\binom{m}{k} \bmod 2\right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{m}{k} \equiv 0 \mod 2$
- black if $\binom{m}{k} \equiv 1 \mod 2$
- Normalize by a homothety of ratio $1/2^n$
 - \leadsto sequence belonging to $[0,1]\times[0,1]$

The first six elements of the sequence

The tenth element of the sequence

Folklore fact

This sequence converges to the Sierpiński gasket.

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example:
$$u = 101001$$
 $v = 101$

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example:
$$u = 101001$$
 $v = 101$
$$\Rightarrow \begin{pmatrix} 101001 \\ 101 \end{pmatrix} = 6$$

Remark:

Natural generalization of binomial coefficients of integers

With a one-letter alphabet $\{a\}$

$$\begin{pmatrix} a^m \\ a^k \end{pmatrix} = \underbrace{\begin{pmatrix} a & \cdots & a \\ a & \cdots & a \\ k \text{ times} \end{pmatrix}}_{k \text{ times}} = \begin{pmatrix} m \\ k \end{pmatrix} \quad \forall m, k \in \mathbb{N}$$

What I do

<u>Idea</u>: replace binomial coefficients of **integers** by binomial coefficients of **words** and

- study a similar link
- extract specific sequences from generalized Pascal triangles and study their structural properties (automaticity, regularity, synchronicity, etc.)

An example in base 2

What about Sage?

A lot of computations to test our results \rightsquigarrow usually Mathematica

Another way to test our results \rightsquigarrow become an independent user of Sage