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The classical Pascal triangle

k
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0

m 3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

Usual binomial coe�cients of integers:

(
m

k

)
=

m!

(m− k)! k!
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The Sierpi«ski gasket

A way to build the Sierpi«ski gasket:
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The Sierpi«ski gasket

A way to build the Sierpi«ski gasket:
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Link between those objects

• Grid: intersection between N2 and [0, 2n]× [0, 2n]

N2 ∩ [0, 2n]2
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• Color the grid:

Color the �rst 2n rows and columns of the Pascal triangle

((
m

k

)
mod 2

)

0≤m,k<2n

in

• white if
(
m
k

)
≡ 0 mod 2

• black if
(
m
k

)
≡ 1 mod 2

• Normalize by a homothety of ratio 1/2n

 sequence belonging to [0, 1]× [0, 1]
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• Color the grid:

Color the �rst 2n rows and columns of the Pascal triangle

((
m

k

)
mod 2

)

0≤m,k<2n

in

• white if
(
m
k

)
≡ 0 mod 2

• black if
(
m
k

)
≡ 1 mod 2

• Normalize by a homothety of ratio 1/2n

 sequence belonging to [0, 1]× [0, 1]
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The �rst six elements of the sequence

0 1

1

0 2

2

0 22

22

0 23

23

0 24

24

0 25

25
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The tenth element of the sequence

0

29

29

Folklore fact

This sequence converges to the Sierpi«ski gasket.
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

u = 101001 v = 101

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 1 occurrence

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 2 occurrences

⇒
(
101001

101

)
= 6

Generalized Pascal triangles Manon Stipulanti (University of Liège, Belgium) 9



Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 3 occurrences

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 4 occurrences

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 5 occurrences

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101 6 occurrences

⇒
(
101001

101

)
= 6
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Binomial coe�cient of �nite words

De�nition: A �nite word is a �nite sequence of letters belonging

to a �nite set called alphabet.

Binomial coe�cient of words

Let u, v be two �nite words.

The binomial coe�cient
(
u
v

)
of u and v is the number of times v

occurs as a subsequence of u (meaning as a �scattered� subword).

Example: u = 101001 v = 101

⇒
(
101001

101

)
= 6
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Remark:

Natural generalization of binomial coe�cients of integers

With a one-letter alphabet {a}

(
am

ak

)
=

(m times︷ ︸︸ ︷
a · · · a
a · · · a︸ ︷︷ ︸
k times

)
=

(
m

k

)
∀m, k ∈ N
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What I do

Idea: replace binomial coe�cients of integers by binomial coef-

�cients of words and

• study a similar link

• extract speci�c sequences from generalized Pascal triangles

and study their structural properties (automaticity,

regularity, synchronicity, etc.)
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An example in base 2
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What about Sage?

A lot of computations to test our results

 usually Mathematica

Another way to test our results

 become an independent user of Sage
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