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X-ray Micro-CT: How Soil Pore
Space Description Can Be
Altered by Image Processing

Sarah Smet* Erwan Plougonven, Angélique Leonard,
Aurore Degré, and Eléonore Beckers

A physically accurate conversion of the X-ray tomographic reconstructions of
soil into pore networks requires a certain number of image processing steps.
An important and much discussed issue in this field relates to segmentation,
or distinguishing the pores from the solid, but pre- and post-segmentation
noise reduction also affects the pore networks that are extracted. We used
15 two-dimensional simulated grayscale images to quantify the perfor-
mance of three segmentation algorithms. These simulated images made
ground-truth information available and a quantitative study feasible. The
analyses were based on five performance indicators: misclassification error,
non-region uniformity, and relative errors in porosity, conductance, and
pore shape. Three levels of pre-segmentation noise reduction were tested,
as well as two levels of post-segmentation noise reduction. Three segmenta-
tion methods were tested (two global and one local). For the local method,
the threshold intervals were selected from two concepts: one based on the
histogram shape and the other on the image visible-porosity value. The
results indicate that pre-segmentation noise reduction significantly (p <
0.05) improves segmentation quality, but post-segmentation noise reduc-
tion is detrimental. The results also suggest that global and local methods
perform in a similar way when noise reduction is applied. The local method,
however, depends on the choice of threshold interval.

Abbreviations: CT, computed ftomography; GM, gradient masks; IK, indicator kriging; ME,
misclassification error; NU, non-uniformity; PBA, porosity-based; RE_g, relative errorin the
pore shape; RE_K, relative errorin conductance; RE_P, relative error in calculated poros-
ity; RS, real soil; TH, threshold.

Characterizing the soil’s physical properties and understanding the result-
ing functions of the soil is of major importance for many agricultural and environmental
issues. The soil is at the interface of most physical, chemical, and biological processes. In
this regard, there is increasing interest in the use of noninvasive X-ray microtomography
to obtain a microscopic three-dimensional view of the inner soil pore space (for a full
description of the technology, see Landis and Keane, 2010).

Several reviews (Taina et al., 2008; Helliwell et al., 2013; Wildenschild and Sheppard, 2013)
have discussed the use of X-ray microtomography in soil and hydrological sciences. In these
fields, the technique has been used at both the core scale (e.g., Gantzer and Anderson, 2002;
Jassogne etal., 2007; Elliot et al., 2010; Luo et al., 2010; Pifiuela et al., 2010; Capowiez et al.,
2011; Kéhne et al., 2011; Garbout et al., 2013; Larsbo et al., 2014; Katuwal et al., 2015) and
the aggregate scale (e.g., Nunan et al., 2006; Peth et al., 2008; Papadopoulos et al., 2009;
Kravchenko et al., 2011; Zhou et al., 2013) for describing the pore space and studying the
impact of land use and agricultural management on soil structure (Gantzer and Anderson,
2002; Nunan et al., 2006; Jassogne et al., 2007; Peth et al., 2008; Papadopoulos et al., 2009;
Luo etal., 2010; Capowiez et al., 2011; Kravchenko et al., 2011; Garbout et al., 2013; Zhou et
al., 2013), as well as for analyzing the relationships between soil pore networks and soil physi-
cal properties (Elliot et al.,2010; Kohne et al., 2011; Larsbo et al., 2014; Katuwal et al., 2015).
Flow simulations in observed pore networks (Dal Ferro et al., 2015) or a similar constructed
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pore network (Vogel et al., 2005) have also been conducted. These
analyses assumed that the pore space description generated from
the image processing accurately represents the physical reality of the
sample microstructure, but the choice of X-ray computed tomog-
raphy (CT) image processing methodology has a visible impact on
the resulting structure. Figure 1 shows an example of the processing
steps from sample acquisition to binary image. Each step involves
choosing the appropriate method and parameters, which are numer-
ous and can have a profound effect on the resulting structure. These

choices ultimately depend on the experience of the operator.

What is important here is not only the diversity of these choices but
also the fact that they are often inadequately described or justified.
Table 1 shows an example of the diversity of methodologies used in

SCANNER
Acquisition parameters
Metal filters

X-RAY CT PROJECTIONS

RECONSTRUCTION 1
Ring artefact correction
Misalignment compensation
Beam hardening correction
32-bit to 8-bit )|

GRAYSCALE IMAGES

PRE-SEGMENTATION
Edge enhancement
Noise reduction

SEGMENTATION
Type of method

BINARY IMAGES

POST-SEGMENTATION
Noise reduction
Clean-up

[ |

A 4

POST-SEGMENTATION
Preparation for structural analysis

Fig. 1. Processing steps from sample to binary image. Some sources of
variability are written in lowercase.

aselection of soil science research papers (selection based on number
of citations and diversity of research teams). Within Table 1, the
pre-segmentation and post-segmentation steps are differentiated.
Pre-segmentation steps are varied and are more efficient at handling
image degradation than post-segmentation processing; a general
rule (for more than just image analysis) is that the more upstream a
problem is corrected, the easier is it to process the data downstream.
Segmentation is the essential step when pixels are assigned to either
the solid or porous phase. There are numerous segmentation meth-
ods; a review of those used in soil science was provided by Tuller et
al. (2013). In this study, we differentiated global and local thresh-
olding methods. The aim of a thresholding method is to select a
grayscale value, manually or automatically, that separates the image
gray levels into two groups: greater than or equal to the threshold
(TH) and less than the TH. In soil science, these two groups are
often defined as the solid phase (soil matrix) and the void phase
(pore space). With global thresholding, a constant TH is chosen
for the entire image, whereas with local thresholding, the value is
computed for every pixel based on the local neighborhood (Tuller et
al., 2013). Segmentation precision depends on the initial quality of
the grayscale images. Enhancing the projections before reconstruc-
tion and the reconstructed images before segmentation is the typical
approach, but each research team has its own procedures (see Table
1). An efficient method for enhancing image quality is to apply noise
reduction filters (Kaestner et al., 2008; Wildenschild and Sheppard,
2013) as mentioned in six of the 15 studies listed in Table 1.

Some researchers have shown (Beckers et al., 2014b; Lamandé et
al., 2013; Peth et al., 2008; Peng et al., 2014; Tarquis et al., 2009)
that, in most practical cases, the choice of segmentation method
plays a crucial role in the resulting pore structure, but no standards
have yet been proposed. Several studies have sought to classify
thresholding techniques based on information available from the
resulting binary images (Baveye et al., 2010; Houston et al., 2013b;
Tassonov et al., 2009; Schliiter al., 2014). So far as we know, only
Wang et al. (2011) have used synthetic soil aggregate images, from
which ground-truth information was available, to compare thresh-
olding methods. Even these studies were based on image-by-image
analyses and did not provide a tool with which to properly evaluate

the processing methodologies.

Within this context, our study sought to provide a statistical analy-
sis of the segmentation processing effects on the resulting data. By
evaluating Otsu’s global method (Otsu, 1979), the local adaptive-
window indicator kriging (IK) method (Houston et al., 2013a), and
the porosity-based (PBA) global method (Beckers et al., 2014b) on
two-dimensional simulated soil images from which ground-truth
information was available, we could also objectively support existing
reviews. The first objective of our study was to quantify the effects
of pre-segmentation noise reduction on the accuracy of the thresh-
olding method based on the performance indicators. The second
objective was to evaluate the impact of post-segmentation process-

ing on pore functionalities. The third objective was to propose an
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approach for calculating the initial TH interval necessary using the
local IK method based on the global TH calculated using the PBA
method (Beckers et al., 2014b), considering that IK is sensitive to
the initial choice of TH interval (Tassonov et al., 2009; Schliiter et
al., 2010; Wang ct al., 2011; Houston et al., 2013a).

Materials and Methods

Here we focus initially on the construction of our simulated images.
The general framework was based on the methodology described
by Wang et al. (2011). It involved superimposing a realistic binary
pore image (real soil [RS] images) on an image representing partial
volume effects and then adding Gaussian noise (see Fig. 2 for a
detailed illustration). We created 15 simulated images from the
combination of 15 selected RS binary images and 15 generated par-
tial volume effect images using a method based on fractals and the
method of Wang et al. (2011). The thresholding methods tested
should identify the pore region from the original RS image.

Real Soil Images

The RS images were derived from the Beckers et al. (2014a) study.
We selected 15 two-dimensional images from silt loam soil. Details
about the materials, sampling, and X-ray acquisition parameters can
be found in Beckers et al. (2014a). Reconstructions were performed
using NRecon software provided free of charge by Brucker micro-
CT. This software provides tomographic artifact correction methods,
which were not tested in this study. Automatic misalignment com-
pensation was used, along with a Level 7 (out of 20) ring artifact
correction. The RS images were not subjected to a beam hardening
correction. In X-ray microtomography, the most commonly cited arti-
fact is beam hardening due to the polychromatic nature of the X-ray
beam, implying a deviation from the Beer Lambert law. For cylindri-
cal objects, it results in a radial grayscale intensity variation from the
edges to the center. The beam hardening effect is barely distinguish-
able from the circular compaction that occurs when sampling soil,
and removing beam hardening effects might create noise. Finally, an
intensity rescaling was applied to increase contrast (Tuller et al., 2013).

Partial Volume Effect Images

The partial volume effect images were generated through the overlay-
ing of decreasing resolution images, as proposed by Wang et al. (2011).
Our addition to Wang’s method was to produce decreasing resolution
fractal images with a fractal dimension calculated from the RS images’
fractal dimension (Steps A and B). Those images were then combined
to form one partial volume effect image (Step C).

Fractal Geometry

Fractal geometry states that a fractal object has comparable fea-
tures at different scales and can be described by a so-called fractal
dimension, D, which is power-law dependent (Mandelbrot, 1983):

_ log(N)

b= log(l/r)

(1]

Real soil Partial
image 3 volume i
(RS) effect

image
Step A
/3 fractal iterations™,
Step B
3 fractal iterations

Step C
construction

Simulated

Noise = 4
image

Fig. 2. Detailed illustration of the simulated image construction.

where N is the constant number of transformed elements at each
iteration and 7 is the ratio between the dimension of the parent

element and the dimension of the transformed element.

Because power-law dependencies have been observed in soil science,
researchers have applied fractal geometry to the study of soil behav-
ior (Pachepsky et al., 2000). For example, Russell and Buzzi (2012)
successfully derived a soil-water retention curve from the pore-size
distribution fractal dimension of a silt loam soil. Many studies
have reported that this concept provides a good description of the
complexity of soil microstructure (e.g., Kravchenko et al., 2011).

The Fractal Generator: Steps A and B

We generated two-dimensional fractal images with a fractal gen-
erator using the pore—solid fractal approach (Perrier et al., 1999),
which works as follows. The first action is the division of an initia-
tor into 7% elements. Within these elements, a proportion of x/n*
is allocated to pore pixels and a proportion of )//n2 is allocated to
solid pixels. The remaining pixels (2/72) are available for the next
iteration, which involves their division by 7. This is a recursive

process. Equation [1] then becomes

log(z) 2]

D=d+
log(#)

where d is the Euclidian dimension.

To construct partial volume effect images, we first generated decreas-
ing resolution fractal images. This process was based on two main
steps (A and B), each consisting of three fractal iterations. Step A
involved generating fractal images to be used as the background of
the final constructed partial volume effect image and represented by
white pixels in Fig. 3c. These pixels could not be further modified
during the rest of the process. Step B involved allocating smaller
pixels to the solid and pore phases; the black pixels of Fig. 3¢ were
the pixels subjected to further fractal divisions.

The fractal dimension in the Step A iterations was set as follows:

1. The fractal dimension of the associated RS image (D, in Table 2)
was calculated using the Fractal Box Counting tool available in the
public domain image processing ImageJ (Version 1.47c, National



Fig. 3. Step A in the generation of decreasing resolution fractal images for Image no. 1, sorted by iteration from left to right: construction of the partial

volume effect background. The white pixels represent the soil matrix.

Institutes of Health, http://rsb.info.nih.gov/ij). The number of

diminishing size boxes containing pore pixels was counted.

2. The variable z of the RS image was calculated using Eq. [2] (2,
in Table 2), considering that 7 = 6.

3. The variable z of the simulated image (z;,, in Table 2) was cal-
culated to represent the complement of zy .. It was calculated
based on the fractal generator theory (see above), and therefore

_ 2 _
Zobs =7~ Zgim = Xgim T Ysim [3]

4. The fractal dimension of the simulated image (D, in Table 2)
was then calculated from z;  and z = 6 (Eq. [2]).

As noted above, Step B involved allocating smaller pixels to the
solid and pore phases, and the black pixels in Fig. 3¢ are the pixels
subjected to further fractal divisions. The three iterations of Step
B (see Fig. 4) were produced withz=2,7=2,and D = 1:

Table 2. Calculation of the fractal dimension (D ) for the simulated
images, using the fractal dimension observed on the real soil image
(D,,0)» the observed number of fractals (z;, ), and the simulated num-
ber of fractals (z; ).

Image Do Zobs Zsim Dy ‘
1 1.20 9 27 1.85

2 1.43 13 23 1.75

3 1.53 15 21 1.69

4 1.52 15 21 1.70

5 1.21 9 27 1.84

6 1.30 10 26 1.81

7 1.14 8 28 1.86

8 1.72 22 14 1.48

9 1.31 10 26 1.81

10 1.38 12 24 1.78

11 1.61 18 18 1.62

12 1.58 17 19 1.65

13 1.61 18 18 1.61

14 1.48 14 22 1.72

15 1.45 13 23 1.74

e 7 =2 because those images were used to construct the partial
volume effect within a 2 by 2 pixels averaging process (sce below).

* z =2 because this was the only way of having at least one pore
pixel and one solid pixel with at least two elements remaining
for the next step.

Partial Volume Effect Image

Construction: Step C

The partial volume effect construction following the method of
Wang et al. (2011) was applied to the generated fractal images
(from Step B), and Fig. 4c shows the first image to be processed.
From a size of 1728 by 1728, the image was scaled down into an
864 by 864 image by calculating the average of 2 by 2 squares. The
down-scaled image (Fig. 4c) was then overlaid on Fig. 4b, which
had also been down-scaled from 1728 by 1728 to 864 by 864, by
adding the corresponding pixel color to fully represent the effect of
all sizes of pores. This newly created image (not shown) was scaled
down to 432 by 432 using the same averaging process, overlaid on
Fig. 4a, and the resulting image was then scaled down to 216 by
216 by averaging. The result is shown in Fig. 5. Figure 6 illustrates
the impact of the averaging process between Fig. 4c and Fig. 5.

Simulated Image Construction

The next step involved the overlaying of Fig. 5 on the correspond-
ing RS image derived from Beckers et al. (2014a). We then added
random normal noise to the pure white and pure black pixels, and
variance and means were calculated from our scanner noise by scan-
ning the empty chamber (within [0; 255]: mean = 222 and variance
=15.9). The final step was to add Gaussian noise (mean = 0; variance
=0.01) to the whole image to represent high-frequency noise (Fig. 7).

Pre-Segmentation Processing

Adhering to an algebraic comparison in its strictest sense, the effect
of a pre-segmentation median filter (PREO, none; PREL, radius one
pixel; PRE2, radius two pixels) was tested on the segmentation qual-
ity of the simulated images. Median filters assign the median value of
the neighboring pixels to the center pixel. These filters are less sensi-
tive to extreme values and no grayscale value is created near the object

boundary, resulting in the object edges being better preserved (Tuller
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Fig. 4. Step B in the gencration of decreasing resolution fractal images for Image no. 1, sorted by iteration from left to right. The black pixels represent pores.

et al., 2013). The use of a median filter before segmentation seems
to be a common step in the field of soil X-ray CT image processing.

Tested Segmentation Methods

The complexity of segmentation is linked to the noise, artifacts,
and partial volume effects in the grayscale images. Other sources
of image degradation include ring artifacts, streak artifacts, high-
frequency noise, scattered photons, and distortions (Baruchel et
al., 2000). Therefore, besides enhancing image quality, choosing
the right segmentation method is crucial.

Global Methods

The global thresholding method described by Otsu (Otsu, 1979)
was tested because it provides acceptable results (Iassonov et al.,
2009) and can be used in preference to the IK method where there
are poorly distinguishable histogram peaks (Wang et al., 2011).
Despite its non-reliability and the existence of more recent and
more efficient methods, it is still a widely used method for soil
images, probably because it is rapid and easy to use. It automati-
cally chooses a TH based on the minimization of the intraclass

variance between two intensity classes of pixels. In our study, it was

performed with MATLAB R2015a (The MathWorks).

Aswe had ground-truth information available, the TH that should
be applied could be estimated. Through an iterative loop, the TH

Fig. 5. Final partial volume effect constructed by the fractal generator
for Image no. 1.

that minimized the difference between calculated porosity and
ground-truth porosity was selected, and this value served as a bench-
mark. This procedure was based on the method described by Beckers
et al. (2014b). The MATLAB R2015a code was provided by the
authors. Hereafter, we refer to the method as the PBA method.

Local Method

The IK method (Oh and Lindquist, 1999) has provided good results
in various studies (Houston et al., 2013a, 2013b; Peth et al., 2008;
Tassonov ct al.,, 2009; Wang ct al., 2011). Its variation, the adaptive-
window indicator kriging method (Houston et al., 2013a), was
chosen because Houston et al. (2013a) concluded that the adaptive
method required fewer computational resources than the fixed one
while providing very similar results. The IK concept relies on the
selection of a TH interval, T1 to T2. All grayscale values below T1
are set at 0 and all values above T2 are set at 1. The values between
T1 and T2 are assigned to a specific color, namely a phase, depend-
ing on their grayscale value and their already classified neighboring
pixels. The adaptive-window IK method modifies this neighboring
area based on locally available information to reduce the computa-
tional costs when possible. The method was applied using the authors’
software, AWIK. The choice of T1 and T2 was based on edge detec-
tion using the gradient masks (GM) method (Schliiter et al., 2010),
an option available within AWIK software. Hereafter, we refer to
the method as IK/GM.

Fig. 6. The left-hand image is an enlargement of Fig. 4c (black rounded
square in the upper right corner). The right-hand image is an enlarge-
ment of a portion of Fig. 5 (black rounded square in the upper right
corner).




Fig. 7. Final simulated grayscale image for Image no. 1. |

Hybrid Method

The PBA method was shown to be satisfactory, although its perfor-
mance was poorer than that of IK/GM (Beckers et al., 2014b). The
weakness in IK is the choice of the T1 to T2 interval. Schliiter et
al. (2010) proposed an improved automatic TH interval selection
method, although it remained sensitive to noise. We therefore sought
to combine the physical robustness of the PBA method with the edge-
preserving IK method. The aim was to select a TH interval based
on the global PBA threshold and then compute the IK method. The
TH intervals tested were £10, £20, =30, 40, and £=50% of the
global TH value. For example, if the PBA TH was 94 (on a 0-255
grayscale), the 10% IK-PBA interval would be 85 to 103, the £20%
interval would be 75 to 113, and so on. Commonly, histogram percen-
tiles would have been tested. We have, however, chosen this approach
because the final objective would be to apply the IK-PBA to real soil
images from which the porosity would be estimated with laboratory
measurements. Because this porosity value would be uncertain, the
global TH obtained with the original PBA method would also be
uncertain. Therefore, the priority was that the interval include the
supposedly “true” global TH value, corresponding to the “true” soil
sample porosity. Hereafter, we will refer to the method as IK-PBA.

Post-Segmentation Processing

For a functional comparison, a post-segmentation median filter
(POSTO, none; POST2, radius two pixels) was also tested on the
simulated images. A post-processing cleanup was also applied by
removing the pores smaller than five pixels in area. The pore char-
acterization was performed using the Analyze Particles tool that is
available in the public domain image processing Image] (Version
1.47c, National Institutes of Health, http://rsb.info.nih.gov/ij).

Results Analysis
Performance Indicators

We used the ground-truth information available to compute the
misclassification error (ME), whose value is between 0 and 1. It

gives the proportion of pixels wrongly assigned to a phase. The

value 0 reflects perfect segmentation and the value 1 the opposite
(Sezgin and Sankur, 2004):

|P0 mPT|‘|‘|So mST|

ME=1-
|2 |+1S0]

(4]

where P, is the number of pore pixels in the ground-truth image,
P is the number of pore pixels in the tested image, S is the
number of solid pixels in the ground-truth image, and S+ is the
number of solid pixels in the tested image. We chose this simple
indicator for its clear interpretation and because it offered the
possibility of comparison with other studies (Wang et al., 2011;
Schliiter et al., 2014).

Similarly, we used the relative error in the calculated porosity
(RE_P) as a performance indicator. Calculated porosity is the ratio
of black pixels (pores) to the total number of pixels.

Region non-uniformity (NU) was calculated to evaluate segmen-
tation quality without using ground-truth information (Wang et
al., 2011). High intra-region uniformity is achieved with a suitable
segmentation method because there is a similarity of property in
the region element; the variance in that property is then adequate
for expressing the uniformity (Zhang, 1996):
Po’
NU=— (5]
To
where P is the number of pore pixels, 7'is the total number of pixels,
o Pz is the grayscale value variance in the pore pixels in the original
grayscale simulated image, and 02 is the total grayscale value vari-
ance in the original grayscale simulated image. Non-uniformity
is a natural choice given the uniformity that a pore space should
have, although it gives a poorer performance than the ground-
truth information based indicator (Zhang, 1996).

Physical Performance

The physical evaluation of the segmentation methods was based on
the pore network modeling concept, which is effective, for exam-
ple, in computing soil-water retention curves (Vogel et al., 2005).
Because we were dealing with two-dimensional images, we could
focus only on the effects of segmentation on the two-dimensional
pore network characteristics, such as pore geometry. More spe-
cifically, we focused on the irregular pore shapes, which, despite
their name, tend to be the norm rather than the exception in real
soils. In addition to the empty-filled dynamic within pores, the
wetting film plays an important role in fluid displacement (Celia
etal., 1995). Irregular pore shapes have corners where there might

be an accumulation of wetting fluid.

For each pore, we computed its shape factor as defined by Mason
and Morrow (1991):

A

G:F

(6]
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where A is the surface area (pixel?) and P is the perimeter (pixel).
Depending on the G value, we calculated the specific dimension-
less conductance of each pore (Patzek and Silin (2001) (see Table
3). The dimensionless conductance g multiplied by the squared
cross-section surface area (42) and divided by the fluid viscosity
(1), gives the conductance g (L> T M™1):

s
v

g (7]
The volumetric flow rate through one pore was obtained by multi-
plying the conductance (g) by the fluid displacement driving force.
Asin an electric circuit, where resistances are summed in series, con-
ductance values were summed in parallel. We therefore multiplied
cach pore’s dimensionless conductance ( g ) by its squared surface
area (4?) to sum all the conductance values (g) for each image, which
resulted in a global conductance value. The relative error in conduc-
tance (RE_K) was calculated for cach image. We also calculated the
dimensionless conductance ( g ) relative error of each pore (RE_g).

For the physical analysis, we then had two types of parameters:
RE_K, reflecting the global conductance of the image, and RE _g,
describing the pore shape accuracy. The RE_K and RE_g indica-
tors were studied as absolute values.

Statistical Analysis

To assess whether or not the quality of the segmentation methods
was altered by noise reduction, a three-way ANOVA was conducted
to test for significant differences in the ME, NU,RE_P,and RE_K
indicators for the various levels of noise reduction and the three
segmentation methods. A randomized complete block design was
applied, the simulated images being the random blocks. For the sig-
nificant fixed interaction, three two-way ANOVAs were conducted
(one per segmentation method) to test for a significant impact of
noise reduction on the segmentation results. Tukey’s post-hoc test

was performed in cases of a significant effect (p < 0.05).

To determine which segmentation method and noise reduction
combination performed most accurately and to see if the IK-
PBA method brought improvement, four two-way ANOVAs
were conducted to test for significant differences in the ME, NU,
RE_P, and RE_K values between the segmentation method and
noise reduction combinations (10 levels). In cases of significance
(p < 0.05), a post-hoc Dunnett test was conducted, with IK-PBA

as the control.

Table 3. Dimensionless conductance (g ) calculation depending on
shape factor values (G) (Patzek and Silin, 2001).

G value Associated shape Conductance
G>1/16 circle z ~ (/56
(372)/36< G< 1/16 square 7 ~05236G
G<(3V2)/36 triangle z ~ (/26

ME, NU [-]

In each case, similar analyses of RE_g were conducted. Because
cach pore had its own shape factor, each one of the 229 pores (for

all 15 images combined) was considered as a random block.

Results and Discussion

From a Structural Analysis

Figure 8 shows the ME, NU, and RE_P averaged for the 15 simu-
lated images. With OTSU and IK/GM, PRE] noise reduction
filtering improved the segmentation accuracy because a decrease
in indicator value meant an increase in segmentation accuracy.
Compared with the results obtained by Hapca et al. (2013), Wang
et al. (2011), and Schliiter et al. (2014), the ME and NU values
for PREI and PRE2 were satisfactory. Without noise reduc-
tion (PREO), the ME value for OTSU was 60% lower than that
obtained by Schliiter et al. (2014) but 34% higher for IK/GM.
These high differences probably arose because we considered aver-
aged ME values with high standard errors. The OTSU_PREOQ and
IK/GM_PREOQ performed very well for some images but poorly
for others, with some porosity relative error values about 315% for
OTSU and 500% for IK/GM. The PBA method performed well,
with ME indicators below 0.01 and NU indicators below 0.05. In
this case, where the exact porosity to reach was known, noise reduc-
tion did not improve the PBA method. This is consistent with the
working principle of PBA and with our experimental conditions.
The segmentation was not perfect, however, highlighting the main
disadvantage of the selection of one threshold value for an entire

two- (or three-) dimensional image.

Table 4 presents the relative variations in performance indicator
values between two noise reduction levels for each segmentation
method. First, the variations among the indicators were not com-

parable. Therefore, to characterize the effect of one noise reduction,

= Avg. ME [C—3Avg. NU —a—Avg. RE_P
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Fig. 8. Averaged misclassification error (ME), region non-uniformity (NU),
and porosity relative error (RE_P) for all segmentation methods (OTSU,
porosity-based [PBA], and adaptive indicator kriging + gradient masks
[IK/GM]) and for all pre-segmentation noise reductions (PREO, PRE1,
and PRE2).
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it is advisable to use multiple and various performance indicators.
Then, the variations from a PRE1 to a PRE2 noise reduction were
greater for the global segmentation methods (OTSU and PBA)
than for the local IK/GM method albeit the histogram bimodal-
ity was sharpened. This is, however, consistent with the study of
Houston et al. (2013b), who found that O'TSU gave a greater mean
difference between two noise reduction levels than IK. Figure 9
shows the resulting images after OTSU and IK/GM segmentation
for both noise reduction levels. Black pixels represent the pores
that match the ground-truth information, the blue pixels represent
pixels that are allocated to the soil matrix but should have been
allocated to pores, and the red pixels are those allocated to pores
but shouldn’t have been. With OTSU, from PRE1 to PRE2, small
features are removed (blue pixels) and bigger pores have growing
edges (red pixels). The differences between PREI and PRE2 for
IK/GM are less striking.

With regard to the occurrence of the lowest ME, PBA_PREOQ
provided the lowest indicator 12 times; together, PBA_PREI and
OTSU_PREI provided the lowest one three times and almost
always had the same ME value (13 times out of 15). In terms of NU,
PBA_PREO always provided the lowest indicator value and, if its
performance had not been taken into account, OTSU_PREI would
always have provided the lowest ME and NU values. With regard to
RE_P, OTSU_PREI and PBA_PREI provided the identical clos-
est value to real porosity for 13 images. The IK/GM_PREI twice
provided the lowest RE_P. This is not consistent with the findings
reported by Wang et al. (2011), who concluded that IK performed
better than OTSU in the case of clear bimodal histograms, which
was the case with the simulated images. The difference between the
two studies was probably due to the TH interval choice when using
IK. The gradient masks method (Schliiter et al., 2010) for calculat-
ing the TH interval was developed for unimodal images. We discuss
this point further below. At no point did OTSU_PRE2 or IK/
GM_PRE2 give the best performance. Because the added noise on
our simulated images is uncorrelated, PRE2 noise reduction seems
to be disproportionate and destroys true information.

Statistical analyses confirmed that the PREI filter significantly
improved segmentation accuracy with OTSU and IK/GM in

terms of ME. With regard to N'U, there was a significant difference

between the three OTSU values (PREO-PREI-PRE2), but post-
Tukey’s test was not able to determine the source of the difference.
Similarly, PREO to PRE1 and PREOQ to PRE2 were significantly
different for IK/GM, but in contrast RE_P significantly differen-
tiated PREO to PRE1 and PREO to PRE2 for OTSU but not for
IK/GM. These contrasting results illustrate the variability in indi-
cator definitions and reflect the working principles of the global

and local methods. The OTSU method gives different porosities

by identifying porosity within the soil matrix where grayscale

values are low (porosity is represented by black pixels). This leads

to porosity without physical meaning, as noted by Hapca et al.
(2013). The IK/GM method identifies the right pore region, but

the limits might not be accurate. Therefore, despite a high gray-
scale value, some pixels were taken into account, which increased

the grayscale value variance and subsequently the NU. Wang et al.
(2011) concluded that the use of NU is not enough for character-
izing segmentation quality but provided acceptable results in the

absence of ground-truth information. They observed that selecting
the best segmentation method based on both ME and NU agreed

for most images. Again, the use of multiple indicators allowed us

to better characterize the accuracy of the segmentation methods.
From ME, NU, and RE_P analyses and according to the experi-
mental conditions, we showed that OTSU and IK/GM were more

accurate with a PRE1 noise reduction and that OTSU_PRE1 and

IK/GM_PREI were not statistically different.

OTSU_PRE2 "

OTSU_PRE1

\J

IK/IGM_PRE2  «

\J

Table 4. Misclassification error (ME), region non-uniformity (NU),
porosity relative error (RE_P), and conductance relative error (RE_K)
relative variations among the noise reductions (PREO, PRE1, and
PRE2) for the segmentation methods (Otsu, 1979 [OTSU], porosity-
based [PBA], and adaptive indicator kriging + gradient masks [IK/
GM)).
Processing Relative variations
Noise reduction Segmentation ME NU RE_P RE_K
%
From PREO to PRE1 OTSU -96 =71 -99 -49
PBA 39 29 -14 152
IK/GM —92 74 -97 =20
From PRE1 to PRE2 OTSU 131 27 132 66
PBA 129 42 28 80
IK/GM 62 8 -29 28

Fig. 9. Resulting Image no. 10 after the OTSU and the adaptive indi-
cator kriging + gradient masks (IK/GM) segmentation methods for
two level of pre-segmentation noise reduction (PRE1, PRE2). Black
pixels represent the pores that match the ground-truth information,
the blue pixels represent pixels that are allocated to soil matrix but
should have been allocated to pore and the red pixels are the one allo-
cated to pore but shouldn’t have been.
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From a Functional Analysis

With regard to the global conductance results (RE_K), Fig. 10
depicts the averaged relative error for RE_K for all 15 images.
Post-segmentation noise reduction always provided higher aver-
aged RE_K with high standard errors. Indeed, post-segmentation
noise reduction alters the pores edges and has influenced the pore
conductance values (Fig. 11). However, post-segmentation has the
advantage of removing small features wrongly assigned to porosity,
albeit a post-segmentation cleanup could also do the job if those

features are small enough.

Table 5 presents the variations in RE_K between OTSU or IK/
GM and PBA. As noted above, PBA is here based on the images’
ground-truth information and should therefore perform well. The
two global methods performed in a similar way when a PREI noise
reduction was applied (low relative variations), which is consistent
with previously discussed results. In this case, where we compared
one segmentation method to a supposedly accurate segmentation
method (PBA), the relative variations of RE_ K were fairly similar
to NU values. This is an interesting point because the NU indica-
tor is calculated without ground-truth information, while RE_Kis.

The statistical analyses concluded that the segmentation method and
combination of noise reduction factors separately had a significant
impacton RE_K. Figure 12 shows the main factor effect plot for these
factors. It shows that applying a post-segmentation noise reduction
without any pre-segmentation noise reduction (combination PREO—
POST?2) led to a significantly higher averaged relative error when
compared with any combination of pre-segmentation noise reduction
(PREO-PRE1-PRE2) without post-segmentation noise reduction
(POSTO). In particular, a Tukey post-hoc test concluded that the com-
parison of PREO-POSTO (or PRE1-POSTO) and PREO-POST2
was highly significant (p < 0.01), and the comparison between PRE2—~
POSTO0and PREO-POST?2 was significant (p < 0.05). Post-hoc tests
also concluded that there was a significant difference between the

Fig. 11. Resulting Image no. 6 after the OTSU (Otsu, 1979) seg-
mentation method. The left-hand image was obtained without a
pre- or post-segmentation noise reduction. The right-hand image was
obtained without a pre-segmentation noise reduction and with a two-
level post-segmentation noise reduction. Black pixels represent the
pores that match the ground-truth information, the blue pixels rep-
resent pixels that are allocated to the soil matrix but should have been
allocated to pores, and the red pixels are those allocated to pores but
shouldn’t have been.

PBA and IK/GM methods but none between OTSU and IK/GM
or between OTSU and PBA, as also illustrated in Fig. 13.

Figure 14 shows the tendency between noise reduction levels and
segmentation methods with regard to RE_g (the relative error
across the shape factor). We did not compute the PREO results
because some pores had merged with OTSU and IK/GM and
relative errors would increase without meaning. The OTSU and
PBA methods had almost the same mean. This is consistent with
the fact that global TH variation would lead to porosity variation
within the soil matrix but less so around the pore region edges (also
illustrated in Fig. 13). Post-segmentation noise reduction led to
higher relative errors, which was consistent with the RE_K results.
Some small pores were removed and pore edges were smoothed
when POST2 was applied. There was no significant difference,
however, among segmentation methods or the noise reduction

levels, which was in contrast with the statistical results of RE_K.

0.50 1 mPOSTO OPOST2
045 1 _
0.40 -
0.35 Table 5. Misclassification error (ME), non-region uniformity (NU),
X 030 porosity relative error (RE_P), and conductance relative error (RE_K)
‘C‘ICJ 0'25 variations among the segmentation methods (Otsu, 1979 [OTSU],
o porosity-based [PBA], and adaptive indicator kriging + gradient masks
< 020 [IK/GM]) for an identical pre-segmentation noise reduction (PREO,
0.15 PREL or PRE2).
0.10
0.05 Processing Relative variations
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Fig. 10. Averaged conductance relative error (RE_K) for all segmen- PRE2 7 11 —-54 11
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adaptive indicator kriging + gradient masks [IK/GM]), for all pre-
segmentation noise reductions (PREO, PREI, and PRE2), and for PRE1 -38 28 —-64 45
both post-segmentation noise reductions (POST0 and POST?2). PRE2 12 s _35 23
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Fig. 12. Main effect plots for the conductance relative error (RE_K).
The upper graph displays the pre-segmentation (PREO, PRE1, and
PRE2) and post-segmentation (POST0 and POST2) noise reduction
combinations as variables. The lower graph displays the segmentation
methods (porosity-based [PBA]; Otsu, 1979 [OTSU]; and adaptive
indicator kriging + gradient masks [IK/GM]) as variables.

From a Threshold Analysis

Table 6 shows the TH median values for the segmentation meth-
ods and associated noise reduction. For IK/GM, the TH interval
boundaries tended to decrease from PREQ to PRE1 and PRE2. For
OTSU, this was also the case from PREOQ to PRE1. The TH then

Fig. 13. Image no. 10 at various steps: (a) simulated image; (b) image
after a PREO pre-segmentation noise reduction and OTSU segmen-
tation (Otsu, 1979); (c) image after a PREQ pre-segmentation noise
reduction and the porosity-based segmentation (PBA); and (d) image
after a PREQ pre-segmentation noise reduction and the adaptive indi-
cator kriging + gradient masks segmentation (IK/GM).
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Fig. 14. Main effect plots for the shape factor relative error (RE_g).
The upper graph displays the pre-segmentation (PREO, PRE1, and
PRE2) and post-segmentation (POSTO0 and POST2) noise reduction
combinations as variables. The lower graph displays the segmentation
methods (porosity-based [PBA]; Otsu, 1979 [OTSU]; and adaptive
indicator kriging + gradient masks [IK/GM]) as variables.

increased, however, from PRE1 to PRE2. There was indeed a right-
hand shift in the lower part of the soil matrix peak (see Fig. 15). At
noise reduction PRE1, OTSU and PBA even had an identical TH.
This could therefore be seen as a satisfactory noise reduction for
the global method. As noted above, IK/GM performed better with
pre-segmentation noise reduction. In those cases, the TH interval
included the global TH from OTSU and PBA. With increasing
noise reduction, the IK/GM TH interval increased. The TH2
was selected as the pore—solid boundary intensity level, and this
one moved to a lower value with noise reduction (see Fig. 15). The
THI selection was based on the TH2 value and the mode value.
On the basis of these findings, we investigated the choice of a TH
interval around the global TH computed by PBA.

Testing the Relevance of the IK-PBA Method

The IK-PBA method tended to combine the precision of the local
IK method with the robustness of the global PBA method by select-
ing the initial local TH interval around the global TH calculated by
PBA. To perform a sensitivity analysis of the TH interval impact on
the IK method, the TH interval around the global TH selected with

Table 6. Median threshold values according to segmentation methods
(Otsu, 1979 [OTSU], porosity-based [PBA], and adaptive indica-
tor kriging + gradient masks [IK/GM]) and pre-segmentation noise
reductions (PREO, PRE1, and PRE2); TH1 and TH2 represent the
threshold interval for the local method.

Segmentation method

Noise reduction  OTSU PBA IK/GM TH1 IK/GM TH2
PREO 125 102 147 180
PRE1 121 121 114 162
PRE2 123 135 96 151
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Fig. 15. Image no. 14 histograms with different pre-segmentation
noise reductions. Top to bottom: PREO, PRE1, and PRE2. The dotted
line represents the global threshold obtained with the porosity-based
(PBA) segmentation method; the plain bold line represents the upper
threshold obtained with adaptive indicator kriging + gradient masks
(IK/GM) segmentation.

PBA ranged from 10 to £50%. We found that the ME indicator
remained unchanged for the intervals +10, 20, and £30%. After
that, ME increased constantly, reaching about 25% of the initial ME
value at the £50% interval. For the following operations, we present
only the segmentation results with a £10% TH interval. First, the
averaged ME (0.0023), NU (0.0217), RE_P (0.0096), and RE_K
(0.064) values for IK-PBA were all in the same range as those from
PBA or OTSU_PREI. For ME, IK-PBA had the best performance
twice, but for NU, RE_P, or RE_K it never had the best perfor-
mance. The statistical analyses confirmed this trend by showing
only OTSU_PREO and IK/GM_PRED as significantly different
from IK-PBA in terms of ME, NU, and RE_P. When including
post-segmentation noise reduction, RE_K analyses showed that
post-segmentation noise reduction did not produce a significantly
different result with IK-PBA. The IK-PBA method provided a
significant improvement, however, compared with IK/GM_PREO_
POST2, which was consistent with previous findings. The RE_g
again gave contrasting results. According to this indicator, IK-PBA
gave the best results and differed significantly from any other com-
bination of method and noise reduction. The IK-PBA method
therefore produced the correct binary images without the use of a
noise reduction process (as opposed to OTSU_PREL1) and without
knowing the real characteristics of the RS image used to construct

the simulated images (as opposed to PBA). This is consistent with

the recommendation made by Iassonov et al. (2009) and Iassonov
and Tuller (2010) that a local method could be used as an alterna-
tive to pre-segmentation processing. As noted above, the choice of
the TH interval is of prime importance when using IK. With the
two-peak histogram simulated image, the interval around the global
PBA TH produced far better results than the interval calculated by
the gradient masks method (Schliiter et al., 2010), and this made the
original idea of IK-PBA attractive.

Conclusion

X-ray computed tomography is widely used in soil and hydrological
sciences. To be able to apply it to many situations, the prior con-
cern is to have an accurate and correct pore space description. This
comes with suitable choices of image processing that will modify the
information initially available on grayscale images. The conscious
and relevant processing decisions are therefore of great importance.
Within this context, various noise reduction and segmentation
method combinations were tested on multiple simulated grayscale
images to perform statistical analyses on five types of indicators.

It was shown that pre-segmentation noise reduction through a
median filter led to a significant improvement in segmentation accu-
racy for the global segmentation method introduced by Otsu (1979)
and for the local adaptive-window indicator kriging (Houston ct al.,
2013a) segmentation method whose threshold interval was calculated
with the gradient masks method (Schliiter et al., 2010). Moreover,
the statistical analyses did not significantly differentiate those two
methods when a pre-segmentation median filter was applied.

The PBA method calculated the global threshold value that
should be applied; however, the global segmentation wasn’t per-
fect. Therefore, a pre-segmentation noise reduction filter seems to
be a necessity with global thresholding. Post-segmentation noise
reduction was shown to be detrimental to segmentation quality by
altering the pore shapes.

The threshold interval choice with the IK method is of major
importance. Adapting the calculating method to the type of image
histogram is advised. Our approach (IK-PBA) based on the global
threshold value calculated with the PBA method performed well
by providing indicator values that were similar to those generated
by PBA, but IK-PBA had the advantage of using neither ground-

truth information nor noise reduction filters.
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