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Introduction

This chapter consists in giving examples of sequences that are pure
morphic or morphic words. Moreover these words come from fixed
points of morphisms of constant length ` ∈ {2, 3}. The author
wants to show how these morphic words can also be defined by an
automatic property of the `-adic development of the integers and
how some of them are answers to some problem.

In order to do so, the author introduces four famous sequences:
Thue–Morse,
Rudin–Shapiro,
Baum–Sweet,
Cantor.
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Definitions and properties

Definition
The Thue–Morse sequence u = (un)n∈N is defined as the (unique)
fixed point beginning by a of the Morse morphism σ defined on the
alphabet {a, b} by σ(a) = ab, σ(b) = ba, i.e.

u = abbabaabbaababbabaababbaabbabaab · · · .



If we denote a by 0 and b by 1, it is easy to see that the Thue–Morse
sequence verifies the following combinatorial properties.

Properties

(i) We have u0 = 0 and, for all n ∈ N, u2n = un and
u2n+1 = 1− un.

(ii) For all k , n ∈ N, at position of the form k2n of the sequence
appears σn(0) if uk = 0 and σn(1) if uk = 1.



If we define, for all r ∈ N,

Ur = σr (a) and Vr = σr (b),

we can prove by induction that these sequences of words over {a, b}
are uniquely defined by the following relations:{

U0 = a
V0 = b

and
{

Ur+1 = UrVr

Vr+1 = VrUr .

Remark
If we define the exchange morphism E on {a, b} by E (a) = b, E (b) =
a, then we have Vr = E (Ur ) for all r ≥ 0.



Another definition of the Thue–Morse sequence is then given by the
following result.

Proposition
We have u = lim

r→+∞
Ur .

Proof: It is clear by definition.

�

Remark
The other fixed point of σ begining by b is equal to lim

r→+∞
Vr .



Consequence
In order to build the Thue–Morse sequence, we can concatenate rules
of the form Ur+1 = UrVr . In other words, each block is obtained
by concatenating the previous block and its opposite. The first few
blocks are

0
01
0110
01101001
0110100110010110
...



Remember the following result from chapter 1.

Proposition 1.3.1.
A sequence w is k-automatic in direct reading if and only if w is the
image by a letter-to-letter projection of a fixed point of a morphism
of constant length k .

In particular, if a sequence w is a fixed point of a k-uniform mor-
phism, then w can be defined by a property of the k-adic develop-
ment of the integers. Moreover, this property is simple enough to be
recognisable by a finite automaton.



In our case, we define the two following subsets of N:
Na the set of integers n such that un = a;
Nb the set of integers n such that un = b.

If we observe the first letters of the Thue–Morse sequence, we see
that

Na = {0, 3, 5, 6, 9, 10, 12, 15, ...},
Nb = {1, 2, 4, 7, 8, 11, 13, 14, ...}

because

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
u = a b b a b a a b b a a b a b b a · · ·

It is clear that Na ∩Nb = ∅ and Na ∪Nb = N, so that Na and Nb

form a partition of N.



For all n ∈ N, we denote by S2(n) the sum (with carry) of the digits
in the dyadic development of n, i.e.

S2(n) =
∑
i≥0

ni if n =
∑
i≥0

ni2i

with ni ∈ {0, 1} for all i ≥ 0. For example, we have

n 0 1 2 3 4 5 6 7 · · ·
(n)2 0 1 10 11 100 101 110 111 · · ·
S2(n) 0 1 1 2 1 2 2 3 · · ·

if we denote by (n)2 the dyadic development of n.



We can show the following result by induction.

Proposition
We have

Na = {n ∈ N | S2(n) is even},
Nb = {n ∈ N | S2(n) is odd}.

We thus obtained the wanted property of the dyadic development
of integers. Thanks to that simple property, we can construct an
automaton recognising the Thue–Morse sequence.



Automaton

The following 2-automaton with initial state a and exit map id given
by id(a) = a and id(b) = b recognises the Thue-Morse sequence (in
direct reading).

Indeed, we have

un = a⇔ n ∈ Na ⇔ S2(n) is even⇔ (n)2 has an even number of 1’s,
un = b ⇔ n ∈ Nb ⇔ S2(n) is odd⇔ (n)2 has an odd number of 1’s.



The Prouhet–Tarry–Escott problem

The Prouhet–Tarry–Escott problem
Given the positive integers q and r , find an infinite number of se-
quences of qr numbers that can be cut in q sets of qr−1 elements
such that, for any k < r , the sum of all the k-th powers of the
elements of each set is the same.

The solution to this problem was given by Prouhet in 1851. If q = 2,
a solution to this problem is given by the Thue–Morse sequence as
we will see.



By induction, we can easily prove the following lemma.
Lemma
Let r be a nonnegative integer. Then exactly half of the integers

0, 1, ..., 2r+1 − 1,

namely 2r integers, have a dyadic development containing an even
number of 1’s.

Corollary
For all nonnegative integer r , we have

#{n ∈ Na | n < 2r+1} = 2r = #{n ∈ Nb | n < 2r+1}.



Proposition
For all k , r ∈ N such that k < r , we have∑

n∈Na
n<2r

nk =
∑
n∈Nb
n<2r

nk .

Proof: First of all, define

Ar = {n ∈ Na | n < 2r},
Br = {n ∈ Nb | n < 2r}.



For all k < r , we have∑
n∈Na
n<2r

nk =
∑
n∈Nb
n<2r

nk ⇔
∑
n∈Ar

nk =
∑
n∈Br

nk

⇔
2r−1∑
n=0

(−1)S2(n)nk = 0.

Now define the polynomial Fr ∈ Z[X ] by

Fr (X ) =
2r−1∑
n=0

(−1)S2(n)X n.

By induction on r , we can show that

Fr (X ) =
r−1∏
k=0

(
1− X 2k

)
.



Since 1− X n = (1− X )(1+ X + X 2 + · · ·+ X n−1) for all n ∈ N0,
we actually have

Fr (X ) = (1− X )rGr (X )

with Gr ∈ Z[X ]. It follows that

(DkFr (X ))(1) = 0

for all k < r , i.e.

(DkFr (X ))(1) =
2r−1∑
n=k

(−1)S2(n)n(n − 1) · · · (n − k + 1) = 0

for all k < r .



Since n(n − 1) · · · (n − k + 1) = 0 for n ∈ {0, ..., k − 1}, we have

2r−1∑
n=0

(−1)S2(n)n(n − 1) · · · (n − k + 1) = 0

for all k < r . Now, by induction on k ∈ {0, ..., r − 1}, we show that

2r−1∑
n=0

(−1)S2(n)nk = 0.

Thanks to the previous lemma, the case holds for k = 0. Suppose
the property is true for k ∈ {0, ..., `− 1} with ` < r .



We will now show it still holds for k = `. We know that

2r−1∑
n=0

(−1)S2(n) n(n − 1) · · · (n − `+ 1)︸ ︷︷ ︸
=n`+

∑`−1
j=0 αjnj with αj∈Z∀j

= 0

⇒
2r−1∑
n=0

(−1)S2(n)n` +
`−1∑
j=0

αj

2r−1∑
n=0

(−1)S2(n)nj︸ ︷︷ ︸
=0 by induction

= 0

⇒
2r−1∑
n=0

(−1)S2(n)n` = 0

which is what we wanted to prove.

�



Proposition
For all k , r , n0 ∈ N such that k < r , we have∑

n∈n0+Na
n<n0+2r

nk =
∑

n∈n0+Nb
n<n0+2r

nk . (1)

Proof: For α ∈ {a, b}, we have, by using the binomial theorem,

∑
n∈n0+Nα
n<n0+2r

nk =
∑
n∈Nα
n<2r

(n0 + n)k =
k∑

i=0

(
k
i

)
nk−i0

∑
n∈Nα
n<2r

ni .

Thanks to the previous result, we actually proved (1).

�



Let r be a positive integer. We have to find an infinite number
of sequences of 2r numbers that can be cut into two sets of 2r−1

elements such that, for any k < r , the sum of all the k-th powers
of the elements of each set is the same. The Thue–Morse sequence
answers the question because:

As #Ar = #Br = 2r−1, we know that, for all n0 ∈ N, the sets

Ar ,n0 = {n ∈ n0+Na | n < 2r},Br ,n0 = {n ∈ n0+Nb | n < 2r}

both have 2r−1 elements.
As n0 varies into N, we actually have an infinite number of
sequences.
For a fixed value of n0, each sequence has 2r elements that are
equally partitioned into the two sets Ar ,n0 and Br ,n0 .
For a fixed value of n0, each sequence verifies∑

n∈n0+Na
n<n0+2r

nk =
∑

n∈n0+Nb
n<n0+2r

nk .

⇒ We have a solution of Prouhet’s problem in the case q = 2.



A statistical property

By a theorem of Fréchet, any monotone function f can be decom-
posed as f = f1 + f2 + f3 where

f1 is a monotone step-function,
f2 is a monotone function which is the integral of its derivative,
f3 is a monotone continuous function which has almost
everywhere a derivative equal to zero.

Thanks to the statistical property of the Thue–Morse sequence we
will show, Malher gave an explicit example of the Fréchet decompo-
sition where f3 6= 0.



Statistical property
For all positive integers k ,N, if

γN(k) =
1
N

∑
n<N

(−1)S2(n)(−1)S2(n+k),

then, for any k , the sequence (γN(k))N>0 converges and its limit is
non-zero for infinitely many k ’s.

⇒ The Thue–Morse sequence has positive correlations.
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Definitions and properties

Definition
The Rudin–Shapiro sequence ε = (εn)n∈N over the alphabet {−1, 1}
is defined by the relations ε0 = 1 and, for any nonnegative integer
n, {

ε2n = εn
ε2n+1 = (−1)nεn.

We thus have

ε = 111− 111− 11111− 1− 1− 11− 1 · · · .



The sequence ε can also be obtained as follows. Let σ be the mor-
phism over {a, b, c, d} defined by

σ(a) = ab, σ(b) = ac, σ(c) = db, σ(d) = dc .

Then σ is prolongable on a and thus has a unique infinite fixed point
beginning by a that we will denote by v := σω(a). If we denote by
ψ the coding given by

ψ(a) = 1 = ψ(b), ψ(c) = −1 = ψ(d),

we can prove by induction that ε = ψ(v).



By analogy with the fact that un gives the parity of the sum of
the digits of the dyadic development of n, it is easy to verify by
induction that εn gives the parity of the number of words 11 in the
dyadic development of n.

Proposition
For any nonnegative integer n with a dyadic development n =∑

i≥0 ni2
i with ni ∈ {0, 1}, we have

εn = (−1)
∑

i≥0 nini+1 .

Indeed, the sum
∑

i≥0 nini+1 exactly counts the number of 11’s in
(n)2.



Another useful property of ε is the following one.

Property
For any nonnegative integers a, b and n such that b < 2n, we have

ε2n+1a+b = εaεb.



Automaton

The following 2-automaton with initial state a and exit map ψ given
by ψ(a) = 1 = ψ(b) and ψ(c) = −1 = ψ(d) recognises the Rudin–
Shapiro sequence (in direct reading).

Indeed, we have

εn = 1⇔ the factor 11 appears an even number of times in (n)2,

εn = −1⇔ the factor 11 appears an odd number of times in (n)2.



The Salem problem

For any sequence α = (αn)n∈N ∈ {−1, 1}N and for all N ∈ N0, we
have ∫ 1

0

∣∣∣∣∣∑
n<N

αn e2iπnθ
∣∣∣∣∣
2

dθ

=

∫ 1

0

∑
n<N

αn e2iπnθ
∑
m<N

αm e2iπmθ dθ

=
∑

n,m<N

αnαm

∫ 1

0
e2iπ(n−m)θ dθ



However, we have∫ 1

0
e2iπ(n−m)θ dθ =

{
1 if n = m,
0 otherwise.

Consequently, we get

∫ 1

0

∣∣∣∣∣∑
n<N

αn e2iπnθ
∣∣∣∣∣
2

dθ =
∑
n<N

αnαn︸ ︷︷ ︸
=1

= N.



We hence have

sup
θ∈[0 ;1]

∣∣∣∣∣∑
n<N

αn e2iπnθ
∣∣∣∣∣ ≥

∫ 1

0

∣∣∣∣∣∑
n<N

αn e2iπnθ
∣∣∣∣∣
2

dθ

 1
2

=
√
N

because, if f ∈ L∞([0 ; 1]), then we can show that f ∈ L2([0 ; 1])
and ||f ||2 ≤ ||f ||∞.



In 1950, Salem asked the following question.

The Salem problem

Is it possible to find a sequence α ∈ {−1, 1}N such that there exists
a constant c > 0 for which

√
N ≤ sup

θ∈[0 ;1]

∣∣∣∣∣∑
n<N

αn e2iπnθ
∣∣∣∣∣ ≤ c

√
N

holds for any positive integer N?

The answer is "yes" and was given by Shapiro in 1951 and then
Rudin in 1959. The answer they gave involves the Rudin–Shapiro
sequence.



Proposition
For any nonnegative integer N, we have

sup
θ∈[0 ;1]

∣∣∣∣∣∑
n<N

εn e2iπnθ
∣∣∣∣∣ ≤ (2+

√
2)
√
N

where ε is the Rudin–Shapiro sequence.

I will not give the proof of this result, but I would like to insist on
the fact that I had to take Allouche and Shallit’s proof because it is
easier to understand.



A statistical property

Proposition
For any positive integers k and N, we have∣∣∣∣∣∑

n<N

εnεn+k

∣∣∣∣∣ < 2k + 4k log2

(
2N
k

)
.

Again, I will not prove it and I did not understand Mauduit’s proof.



Corollary
For any nonnegative integers k and N, define

γN(k) =
1
N

∑
n<N

εnεn+k .

Then, for any nonnegative integer k , the sequence (γN(k))N>0 con-
verges and

lim
N→∞

γN(k) = 0 for every k ≥ 1.



This result shows an unexpected behaviour.

Indeed, as the Thue–Morse sequence, the Rudin–Shapiro is defined
by a very simple algorithm and its behaviour should be far from the
"random" sequence. The possibility of predicting next terms of the
sequence from a specific term should then be high. However, the
latest corollary shows the contrary: the correlations are zero.
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Definitions and properties

Definition
The Baum–Sweet sequence f = (fn)n∈N with values in the alphabet
Z2 = Z /2Z = {0, 1} is defined by

fn =


1 if the dyadic development of n contains

no block of consecutive 0’s of odd length,
0 otherwise

for all n ∈ N. We have

f = 1101100101001001 · · · .



We can easily show by induction that the Baum–Sweet sequence
verifies the following recurrent property.

Property
We have f0 = 1 and, for any nonnegative integer n, we have

f2n+1 = fn,

f4n = fn,

f4n+2 = 0.



The sequence f can also be obtained as follows. Let σ be the mor-
phism over {a, b, c, d} defined by

σ(a) = ab, σ(b) = cb, σ(c) = bd , σ(d) = dd .

Then σ is prolongable on a and thus has a unique infinite fixed point
beginning by a that we will denote by v := σω(a). If we denote by
ψ the coding given by

ψ(a) = 1 = ψ(b), ψ(c) = 0 = ψ(d),

we can prove by induction that f = ψ(v).



Automaton

The following 2-automaton with initial state a and exit map ψ given
by ψ(a) = 1 = ψ(b) and ψ(c) = 0 = ψ(d) recognises the Baum–
Sweet sequence (in direct reading).

Indeed, we have

fn = 1⇔ (n)2 contains no block of 0’s of odd length,
fn = 0⇔ (n)2 contains at least one block of 0’s of odd length.



A solution to some problem

Remember the Lagrange’s theorem stating that the continued frac-
tion expansion of an irrational algebraic number x ∈ R is ultimately
periodic if and only if x is quadratic.

However we know nothing about the expansion of nonquadratic ir-
rational algebraic numbers.

The problem
Is there any algebraic number of degree at least 3 with bounded
continued fraction expansion, i.e. such that the partial quotients in
the expansion are bounded?



If we replace R by the field Z2[[X
−1]] of formal power series in X−1

over Z2, the analogous problem was solved in 1976 by Baum and
Sweet. Indeed, they gave an example of an algebraic element of
degree 3 with a bounded continued fraction expansion, i.e. with
partial quotients in Z2[X ] of bounded degree.

Proposition

Let F (X ) =
∑

n≥0 fnX
−n be the formal power series with coefficients

given by the Baum–Sweet sequence. Then,
(1) F is an algebraic element of degree 3 over Z2[X ], i.e. there

exists a nontrivial polynomial P of degree 3 with coefficients in
Z2[X ] such that P(F ) = 0.

(2) The continued fraction expansion of F is bounded and consists
of elements of the set {1,X ,X + 1,X 2,X 2 + 1}.



Proof: I will show the first part, not the second one. We have

F (X ) =
∑
n≥0

fnX
−n

=
∑

2n+1≥0

f2n+1︸ ︷︷ ︸
=fn

X−(2n+1) +
∑
4n≥0

f4n︸︷︷︸
=fn

X−4n +
∑

4n+2≥0

f4n+2︸ ︷︷ ︸
=0

X−(4n+2)

= X−1
∑
n≥0

fnX
−2n +

∑
n≥0

fnX
−4n

= X−1F (X 2) + F (X 4).

If A(X ) =
∑

n≥0 anX
n is a formal power series with an ∈ Z2 for all

n ≥ 0, we have A(X 2) = A(X )2. Consequently, we get

F (X ) = X−1F (X )2 + F (X )4 ⇒ XF (X ) = F (X )2 + XF (X )4

⇒ X = F (X ) + XF (X )3 ⇒ XF (X )3 + F (X ) + X = 0.



If we take the polynomial P(Y ) = X 3Y + Y + X , we get

P(F ) = 0

and P is a nontrivial polynomial of degree 3 with coefficients in
Z2[X ].

�
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Definitions and properties

Definition
The Cantor sequence c = (cn)n∈N is defined as the (unique) fixed
point beginning by a of the Cantor morphism τ defined on the al-
phabet {a, b} by τ(a) = aba, τ(b) = bbb, i.e.

c = ababbbababbbbbbbbbababbbaba · · · .



Let’s define the two following subsets of N:
Ca the set of integers n such that cn = a;
Cb the set of integers n such that cn = b.

If we observe the first letters of the Cantor sequence, we see that

Ca = {0, 2, 6, 8, ...},
Cb = {1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, ...}

because

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
c = a b a b b b a b a b b b b b b b · · ·

It is clear that Ca ∩Cb = ∅ and Ca ∪Cb = N, so that Ca and Cb

form a partition of N.



Then we can show the following result by induction.

Proposition
We have

Ca = {n ∈ N | if n =
∑
i≥0

ni3i with ni ∈ {0, 1, 2} ∀i ≥ 0,

then ni 6= 1 ∀i ≥ 0}

and

Cb = {n ∈ N | if n =
∑
i≥0

ni3i with ni ∈ {0, 1, 2} ∀i ≥ 0,

then ∃i ≥ 0 such that ni = 1}.



Automaton

The following 3-automaton with initial state a and exit map id given
by id(a) = a and id(b) = b recognises the Cantor sequence (in direct
reading).

Indeed, we have

cn = a⇔ (n)3 does not contain any 1’s,
cn = b ⇔ (n)3 contains at least one 1.
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A solution to some problem

After these four examples of sequences obtained as the image, under
a coding, of a fixed point of a constant length morphism and their
arithmetic description, the following question arises.

Problem
Is it possible to find a sequence that is a fixed point of a non-constant
length morphism and can also be defined by some simple arithmetic
property of the integers?

The answer is "yes" and is given by the Fibonacci sequence as we
will see.



Definitions and properties

Definition
The Fibonacci sequence f = (fn)n∈N is defined as the unique non-
empty fixed point of the Fibonacci morphism ϕ defined on the al-
phabet {a, b} by ϕ(a) = ab, ϕ(b) = a, i.e.

f = ababbbababbbbbbbbbababbbaba · · · .



The Fibonacci numeration system

Let (Fn)n∈N be the sequence of integers defined by the relations
F0 = 1, F1 = 2 and, for any integer n ≥ 1, Fn+1 = Fn + Fn−1. This
sequence of integers is called the Fibonacci sequence of numbers.
We can show the following proposition.

Proposition
Every positive integer n can be written in a unique way as

n =
k∑

i=0

niFi

with nk = 1, ni ∈ {0, 1} and nini+1 = 0 for any i ∈ {0, ..., k − 1}.
This numeration system is called the Zeckendorff numeration system.



We can thus define the Fibonacci expansion of an integer.

Definition
Let n be a positive integer. If

n =
k∑

i=0

niFi

with nk = 1, ni ∈ {0, 1} and nini+1 = 0 for any i ∈ {0, ..., k − 1},
then we say that

Fib(n) = nknk−1...n0 ∈ {0, 1}k+1

is the Fibonacci expansion of n. If n = 0, we set Fib(0) = 0.



Let’s define the two following subsets of N:
Fa the set of integers n such that fn = a;
Fb the set of integers n such that fn = b.

If we observe the first letters of the Fibonacci sequence, we see that

Fa = {0, 2, 3, 5, 7, 8, 10, 11, 13, 15, ...},
Fb = {1, 4, 6, 9, 12, 14, ...}

because

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
f = a b a a b a b a a b a a b a b a · · ·

It is clear that Fa ∩Fb = ∅ and Fa ∪Fb = N, so that Fa and Fb

form a partition of N.



A solution to the problem

Proposition
We have

Fa = {n ∈ N | Fib(n) ∈ {0, 1}∗0},
Fb = {n ∈ N | Fib(n) ∈ {0, 1}∗1}.



Automaton

Just as Fibonacci representation is the analogue of base-k repre-
sentation, we can define the notion of Fibonacci-automata as the
analogue of the more familiar notion of k-automata. The following
Fibonacci-automaton with initial state a and exit map id given by
id(a) = a and id(b) = b recognises the Fibonacci sequence (in direct
reading).

Indeed, we have

fn = a⇔ Fib(n) ends with a 0,
fn = b ⇔ Fib(n) ends with a 1.
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The problem

Problem
Let d and q be two integers greater or equal to 2. Is it possible
to decide only from its q-adic development whether a given positive
integer is divisible by d or not?



Let v be the periodic sequence over the alphabet {0, 1, ..., d − 1}
given by

v = 01 · · · (d − 1)01 · · · (d − 1)01 · · · (d − 1) · · · = (01 · · · (d − 1))ω.

Actually, the sequence v codes the rests modulo d of all nonnegative
integers. In order to solve this problem, a solution may be to find a
q-automaton
(1) with d states: 0, 1, ..., d − 1;
(2) with initial state 0;
(3) with exit map id where

id(0) = 0, id(1) = 1, ..., id(d − 1) = d − 1;

(4) which recognises the sequence v.



Indeed, thanks to that automaton, we will be able to decide whether
a nonnegative integer is a multiple of d uniquely from its q-adic
development:

if the final state reached after reading the q-adic development
of the integer (in direct reading) is 0, then the integer is
divisible by d ;
if the final state reached after reading the q-adic development
of the integer (in direct reading) is different from 0, then the
integer is not divisible by d .

By the result 1.3.1. I recalled at the beginning of this talk, it is
enough to find a morphism ρ of constant length q such that v is a
fixed point of ρ. This can be done by cutting v into blocks of length
q and rewriting v as

v = ρ(0)ρ(1) · · · ρ(d − 1)ρ(0)ρ(1) · · · ρ(d − 1) · · · .



Example

Example
Consider the case where q = 2 and d = 5. We thus have

v = 0123401234012340123401234012340123401234 · · · .

We take ρ as follows

ρ(0) = 01, ρ(1) = 23, ρ(2) = 40,
ρ(3) = 12, ρ(4) = 34.

We see that v is a fixed point of ρ. We are now able to show the final
2-automaton which was described above. Indeed, the proof of the
result 1.3.1. indicates how to build the wanted 2-automaton: there
exists an edge from a to b if b occurs in ρ(a). If such an edge exists,
it is labelled by i if b is the (i + 1)-th letter of ρ(a).



Example (continued)

We can thus build the following 2-automaton. With initial state 0
and exit map id, it recognises v (in direct reading).

We see that this 2-automaton answers the problem: if n =
∑k

i=0 ni2
i

with ni ∈ {0, 1} and nk = 1, then we can feed the automaton
with the word nknk−1 · · · n1n0. We reach a final state labelled by
r ∈ {0, 1, 2, 3, 4}. If r = 0 (resp. r 6= 0), then n is divisible (resp.
is not divisible) by 5 and we only decide this by using the dyadic
development of n.



Thank you for listening!



Do you have any questions?
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