A class of valid inequalities for multilinear 0-1 optimization problems

Elisabeth Rodríguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX

VOCAL Conference, Esztergom, December 2016

Multilinear 0-1 optimization

Multilinear 0-1 optimization

$$
\begin{array}{ll}
\min \sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}+I(x) & \\
\text { s. t. } x_{i} \in\{0,1\} & i=1, \ldots, n
\end{array}
$$

- \mathcal{S} : subsets of $\{1, \ldots, n\}$ with $a_{S} \neq 0$ and $|S| \geq 2$,
- I(x) linear part.

Standard Linearization (SL)

Standard Linearization

$$
\begin{array}{lr}
\min \sum_{S \in \mathcal{S}} \operatorname{as}_{S} y_{S}+I(x) & \\
\text { s. t. } y_{S} \leq x_{i} & \forall i \in S, \forall S \in \mathcal{S} \\
y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1) & \forall S \in \mathcal{S}
\end{array}
$$

$$
\left(y_{S}=\prod_{i \in S} x_{i}\right)
$$

- for variables $x_{i}, y_{S} \in\{0,1\}$, the convex hull of feasible solutions is $P_{S L}^{*}$,
- for continous variables $x_{i}, y_{S} \in[0,1]$, the set of feasible solutions is $P_{S L}$.

SL drawback: The continous relaxation given by the SL is very weak!

The 2-link inequalities

Definition

For $S, T \in \mathcal{S}$ and y_{S}, y_{T} such that $y_{S}=\prod_{i \in S} x_{i}, y_{T}=\prod_{i \in T} x_{i}$,

- the 2-link associated with (S, T) is the linear inequality

$$
y_{\mathbf{S}} \leq \mathrm{y}_{\mathbf{T}}-\sum_{\mathbf{i} \in \mathbf{T} \backslash \mathbf{S}} \mathrm{x}_{\mathrm{i}}+|\mathbf{T} \backslash \mathbf{S}|
$$

- $P_{S L}^{2 \text { links }}$ is the polytope defined by the SL inequalities and the 2-links.

Interpretation

Theoretical contributions

Theorem 1: A complete description for the case of two monomials For the case of two nonlinear monomials, $P_{S L}^{*}=P_{S L}^{2 l i n k s}$, i.e., the standard linearization and the 2 -links provide a complete description of $P_{S L}^{*}$.

Proof idea (Theorem 1):

- Consider the extended formulation (with variables in $[0,1]$)

$$
\begin{array}{lr}
y_{S \cap T} \leq x_{i}, & \forall i \in S \cap T, \\
y_{S \cap T} \geq \sum_{i \in S \cap T} x_{i}-(|S \cap T|-1), & \\
y_{S} \leq y_{S \cap T}, & \forall i \in S \backslash T, \\
y_{S} \leq x_{i}, & \\
y_{S} \geq \sum_{i \in S \backslash T} x_{i}+y_{S \cap T}-|S \backslash T|, & \forall i \in T \backslash S, \\
y_{T} \leq y_{S \cap T}, & \\
y_{T} \leq x_{i}, & \\
y_{T} \geq \sum_{i \in T \backslash S} x_{i}+y_{S \cap T}-|T \backslash S|, &
\end{array}
$$

- Notice that the two polytopes P^{0} and P^{1} obtained by fixing variable $y_{S \cap T}$ to 0 and 1 , resp., are integral.
- Compute conv $\left(P^{0} \cup P^{1}\right)$ using Balas (1974) and see that it is $P_{S L}^{2 \text { links }}$.

Theoretical contributions

Theorem 2: Facet-defining inequalities for the case of two monomials
For the case of two nonlinear monomials defined by S, T with $|S \cap T| \geq 2$, the 2 -links are facet-defining for $P_{S L}^{*}$.

Proof idea (Theorem 2): Since $P_{S L}^{*}$ is full-dimensional (dim $n+2$), find $n+1$ affinely independent points in the faces defined by the 2-links.

Computational experiments: are the 2-links helpful for the

 general case?Objectives

- compare the bounds obtained when optimizing over $P_{S L}$ and $P_{S L}^{2 l i n k s}$,
- compare the computational performance of exact resolution methods.

Software used: CPLEX 12.06.
Inequalities used

- SL: standard linearization (model),
- cplex: CPLEX automatic cuts,
- 2L: 2-links.

Random instances: bound improvement

Fixed degree:

inst.	d	n	m
rf-a	3	400	800
rf-b	3	400	900
rf-c	3	600	1100
rf-d	3	600	1200
rf-e	4	400	550
rf-f	4	400	600
rf-g	4	600	750
rf-h	4	600	800

Random instances: computation times results

Fixed degree:

inst.	d	n	m
rf-a	3	400	800
rf-b	3	400	900
rf-c	3	600	1100
rf-d	3	600	1200
rf-e	4	400	550
rf-f	4	400	600
rf-g	4	600	750
rf-h	4	600	800

Instances inspired from image restoration: definition

Image restoration											
1	0	0	0	0	0						
0	0	1	1	0	0	0	0	0	0	0	0
0	1	1	0	1	0	0	0	1	1	0	0
0	1	1	1	1	0	0	1	1	1	1	0
0	0	1	1	0	1	0	1	1	1	1	0
0	0	0	0	0	0	0	0	1	1	0	0
0	0	0	0	0	0						

Base images:

- top left rect. (tl),
- centre rect. (cr),
- cross (cx).

Perturbations:

- none (n),
- low (I),
- high (h).

$$
\text { Up to } n=225 \text { variables and } m=1598 \text { terms }
$$

Image restoration instances: bounds results

Image restoration instances: bounds results

Image restoration instances: computation times results

Image restoration instances: computation times results

When is SL a complete description?

Summary

- $S L+2$-links $=$ a complete description (two nonlinear monomials).
- 2-links help computationally for the general case.

Question:

Can we characterize when the SL alone is a complete description of the convex hull $P_{S L}^{*}$?

Joint work with C. Buchheim.
Characterization independently discovered by A. Del Pia and A. Khajavirad.

SL complete description

Multilinear 0-1 optimization
$\min \sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}+I(x)$

$$
\begin{array}{lr}
y_{S} \leq x_{i} & \forall i \in S, \forall S \in \mathcal{S} \\
y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1) & \forall S \in \mathcal{S}
\end{array}
$$

Subsets \mathcal{S} define a hypergraph H .
We write $P_{S L}=P_{S L}^{(H)}$.
Matrix of constraints M_{H}.

SL complete description

Theorem 3
Given a hypergraph H, the following statements are equivalent:
(a) $P_{S L}^{(H)}$ is an integer polytope.
(b) M_{H} is balanced.
(c) H is Berge-acyclic.

Derived from a more general result taking into account the sign pattern of the monomials.

Some references I

E. Balas Disjunctive programming: properties of the convex hull of feasible points. GSIA Management Science Research Report MSRR 348, Carnegie Mellon University (1974). Published as invited paper in Discrete Applied Mathematics 89 (1998) 3-44

B C. Berge and E. Minieka. Graphs and hypergraphs, volume 7. North-Holland publishing company, Amsterdam, 1973.

Q Y. Crama. Concave extensions for nonlinear 0-1 maximization problems. Mathematical Programming 61(1), 53-60 (1993)

Q Y. Crama and E. Rodríguez-Heck. A class of new valid inequalities for multilinear 0-1 optimization problems. Submitted for publication, 2016.

Q C. Buchheim, Y. Crama and E. Rodríguez-Heck. Berge-acyclic multilinear 0-1 optimization problems. Manuscript, 2016.

BC. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics, 79(1):71-75, 1990.

Some references II

R. Fortet. L'algèbre de Boole et ses applications en recherche opérationnelle. Cahiers du Centre d'Études de recherche opérationnelle, 4:5-36, 1959.
F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156-161, 1973.

Q P. Hansen and B. Simeone. Unimodular functions. Discrete Applied Mathematics, 14(3):269-281, 1986.
M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Mathematical Programming, 45(1-3):139-172, 1989.

SL complete description: signed case

Theorem 4

Given a hypergraph $H=(V, E)$ and a sign pattern $s \in\{-1,1\}^{E}$, the following statements are equivalent:
(a) For all $f \in \mathcal{P}(H)$ with sign pattern s, every vertex of P_{H} maximizing L_{f} is integer.
(b) $M_{H(s)}$ is balanced.
(c) $H(s)$ has no negative special cycle.
(d) $P_{H(s)}$ is an integer polytope.
$P_{H(s)}$ is defined by constraints

$$
\begin{aligned}
& y_{S} \leq x_{i} \\
& y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1)
\end{aligned}
$$

$$
\begin{aligned}
\forall i \in S, \forall S & \in \mathcal{S}, \operatorname{sgn}\left(a_{S}\right)
\end{aligned}=+1 .
$$

