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Abstract

Unreinforced masonry (URM) is traditionally used in North-Western Europe as load-
bearing solution for low- to mid-rise buildings. These regions are characterised by a low-
to-moderate seismicity. Hence, the earthquake action has to be considered in the structural
design. An adequate consideration of the seismic action requires to properly understand
how the URM structures behave under this speci�c dynamic action and investigations are
still needed in that �eld. The in�uence of openings and walls perpendicular to the seismic
action are two main issues. Moreover, the seismic response of these structures is a�ected by
technical solutions developed to face the demand in terms of building physics performances.
Even though, these solutions are not yet integrated in current standards.

This thesis aims at improving the understanding of the seismic behaviour of URM struc-
tures using a particular type of masonry bonding, for constructional e�ciency purposes.
Hollow clay blocks are assembled by thin-bed layered glue-mortar joints and a tongue-and-
groove system for the head joints. The consequences of speci�c details � such as an opening,
a perpendicular wall or soundproo�ng rubber layers � are also studied.

Four experimental campaigns are presented. Fourteen URM sub-structures including
speci�c details are tested in static-cyclic and dynamic conditions. Details of the set-up,
instrumentation layout and testing procedures are given. Processing of the data is then
performed and conclusions are drawn. Regarding the shake table tests, a general rocking be-
haviour strongly dependent on the length of the wall and the presence of rubber, is observed.
Recommendations for the consideration of soundproo�ng devices and for the openings are
proposed. The contribution to the strength of perpendicular walls is also highlighted.

Based on the dynamic characterisation of the specimens, equivalent mechanical properties
are calibrated thanks to the frequency equation, derived from the Timoshenko beam theory.
Two sets of boundary conditions are de�ned to �t the testing con�gurations. The relevance
of this theory is assessed and the importance of each term of the equation is discussed.

In order to extend the results to complete buildings, the tested specimens are modelled
in a software implementing an equivalent frame at the macro-scale. A multi-linear material
law is calibrated based on a single specimen chosen as reference, in order to reproduce the
experimental force-displacement curve. This law is then used for all specimens built in the
same masonry type, independently of their geometry. A good approximation is obtained,
even if the consideration of perpendicular walls could be improved.

The shear capacity of non-rectangular URM walls depends on the compressive length.
Its exact expression is thus developed with due consideration of the perpendicular section.
Non�linearities are observed due to the presence of the perpendicular section and simpli�-
cations are made for hand calculations. Both the use of the exact and simpli�ed expressions
in the assessment of the shear resistance provide results similar to the experiments.

Finally, the modelling of the rocking motion is investigated. The walls without sound-
proo�ng devices are modelled following di�erent existing models and their predictions are
compared with experimental measurements, showing that masonry cannot be assumed as
rigid. A main issue is the handling of the transition with impacts. A new model including two
rigid blocks and �exible and viscous layers is developed to reproduce the rocking behaviour
of walls including rubber layers. In presence of rubber, the URM wall can be considered as
rigid and model predictions satisfactorily corroborate the experimental measurements.

Keywords: unreinforced masonry, seismic behaviour, soundproo�ng devices, static-
cyclic test, shake table test.
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Résumé

Le parc immobilier des pays du nord-ouest de l'Europe est, en majeure partie, constitué
de bâtiments de hauteur modeste, construits en maçonnerie non armée. La conception de ces
bâtiments doit être e�ectuée en tenant compte de l'aléa sismique car la sismicité de ces régions
est quali�ée de faible à modérée. Cependant, le comportement des structures en maçonnerie
non armée sous les e�ets d'un tremblement de terre n'est pas encore totalement appréhendé
et une meilleure compréhension est nécessaire a�n de garantir un niveau de sécurité su�sant.
L'in�uence d'ouvertures et la présence de murs perpendiculaires font partie des principaux
sujets à éclaircir. De plus, des solutions techniques ont été développées pour répondre aux
exigences de plus en plus strictes concernant les performances énergétiques des bâtiments
(PEB). Bien que ces solutions modi�ent le comportement des bâtiments en maçonnerie non
armée, aucune disposition n'y fait mention dans les normes sismiques actuelles.

Cette thèse contribue à une meilleure compréhension du comportement sous action sis-
mique des structures en maçonnerie non armée dont l'appareillage est réalisé avec des joints
horizontaux collés et un système de tenons et mortaises. Les blocs d'argile mis en ÷uvre sont
creux. La présence de détails particuliers � comme une ouverture, un mur perpendiculaire ou
un dispositif d'insonorisation en caoutchouc � et leurs conséquences sont également étudiées.

Dans cette optique, quatre campagnes expérimentales sont présentées. Au total, qua-
torze structures en maçonnerie non armée ont été testées dans des conditions statiques et
dynamiques. Les informations relatives aux essais (structures, instrumentation, déroulement,
etc.) sont d'abord fournies. Les données sont ensuite exploitées et interprétées a�n que des
conclusions en soient tirées. Parmi celles-ci, des recommandations pour la prise en compte
des couches de caoutchouc et la création d'ouvertures sont proposées. Un intérêt particulier
est donné à la contribution des murs perpendiculaires à la résistance globale.

A�n de dé�nir des propriétés mécaniques équivalentes pour les murs testés sur table
à secousses, l'équation de fréquence est déterminée en utilisant la théorie des poutres de
Timoshenko pour deux modèles adaptés aux murs considérés. L'intérêt de cette théorie est
évalué et l'importance des di�érents termes de l'équation est étudiée.

Les structures testées sont analysées à l'aide d'un logiciel numérique dans lequel elles
sont modélisées par des éléments de poutre non linéaires. La comparaison des courbes �force-
déplacement� expérimentales et numériques montre une bonne correspondance, même si la
prise en compte des murs perpendiculaires peut être améliorée. La loi matérielle dé�nie pour
les éléments semble être valable pour toutes structures utilisant les mêmes matériaux et
appareillage, étendant de ce fait les résultats expérimentaux.

La résistance au cisaillement de murs non rectangulaires fait l'objet d'une attention spé-
ciale. Celle-ci dépend de la longueur comprimée de la section dont l'expression exacte est
développée et linéarisée. Ces deux formulations sont intégrées dans la méthode de véri�cation
proposée par les normes et fournissent des résultats proches des valeurs expérimentales.

Finalement, le comportement en bascule est abordé. Les résultats expérimentaux des
murs sans caoutchouc sont comparés aux prédictions obtenues à l'aide de modèles existants.
Les principales conclusions sont que le mur en maçonnerie ne peut être considéré comme un
bloc rigide et que la gestion des impacts est critique. Un nouveau modèle est développé pour
les murs avec des dispositifs en caoutchouc. En présence de ceux-ci, l'utilisation d'un bloc
rigide pour représenter le mur en maçonnerie est valable et le modèle reproduit de manière
satisfaisante les mesures expérimentales.
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Overzicht

Ongewapend metselwerk wordt traditioneel gebruikt in Noord-West Europa als dragende
oplossing voor lage tot middelhoge gebouwen. Deze regio's worden gekenmerkt door een
lage tot matige seismische activiteit en de seismische krachten dienen dus in het constructief
ontwerp te worden beschouwd.

Dit proefschrift focust op een beter begrip van het seismische gedrag van structuren op-
gebouwd uit een bepaald type van ongewapend metselwerk, namelijk holle baksteen blokken
gemetseld met dunne horizontale voegen van lijmmortel en een tand en groef systeem als ver-
ticale voegen. De gevolgen van speci�eke details, zoals openingen in de wanden, aanwezigheid
van wanden loodrecht op de richting van de aardbeving of plaatsing van geluidsisolerende
rubberlagen, worden in het bijzonder onderzocht.

Vier reeksen van experimentele testen worden gepresenteerd. Veertien substructuren
worden in cyclische en dynamische omstandigheden getest. Details van de proefopstelling,
van de instrumentatie lay-out en van de proefprocedures worden gegeven. De resultaten
worden verwerkt, gevolgd door de conclusies. Wat de dynamische proeven betreft is een
algemeen �rocking� gedrag vastgesteld, sterk afhankelijk van de lengte van de wand en van
de aan- of afwezigheid van een rubberlaag. Aanbevelingen voor de behandeling van elementen
voor geluidsisolatie en van de openingen worden voorgesteld. De bijdrage van de loodrechte
wanden aan de sterkte wordt ook benadrukt.

De Timoshenko balkentheorie wordt gebruikt om een frequentievergelijking af te leiden.
De randvoorwaarden zijn gede�nieerd om met de experimentele con�guraties overeen te
komen. De relevantie van de gebruikte theorie en het belang van elke term van de vergelijking
worden dan besproken. De frequentievergelijking wordt uiteindelijk gebruikt om equivalente
mechanische eigenschappen van de proefstukken te kalibreren.

De beproefde monsters worden gemodelleerd aan de hand van equivalente raamwerk-
modellen. Een multilineaire constitutieve wet wordt eerst gekalibreerd op basis van een
referentie proefstuk. Deze gekalibreerde wet wordt vervolgens gebruikt voor de simulatie
van alle proefstukken opgebouwd uit hetzelfde soort metselwerk, ongeacht hun geometrie en
drukniveau. Een goede benadering wordt verkregen, hoewel de behandeling van loodrechte
wanden zou kunnen worden verbeterd.

De afschuifsterkte van metselwerk wanden hangt van de lengte van het gedrukte deel
van de wand af. Deze lengte moet in principe worden berekend rekening houdend met de
haakse gedeelten van de muren. Een exacte analytische uitdrukking wordt bepaald. Niet-
lineariteiten veroorzaakt door de aanwezigheid van het loodrechte gedeelte zijn vastgesteld
en vereenvoudigingen zijn voorgesteld met het oog op handberekeningen. Zowel het gebruik
van de exacte als van de vereenvoudigde aanpakken leveren resultaten op vergelijkbaar met
de experimenten wat betreft de afschuifcapaciteit.

Tenslotte is het modelleren van de �rocking� beweging onderzocht. De muren zonder
geluidsisolatielagen zijn gemodelleerd volgens verschillende bestaande modellen en de voor-
spellingen ervan worden vergeleken met de experimentele metingen, waaruit blijkt dat met-
selwerk niet kan worden beschouwd als oneindig stijf. Een belangrijk aspect van dit rocking
probleem is de behandeling van de overgang bij de impact. Een nieuw model met twee
stijve blokken en �exibele en viskeuze lagen is uitgewerkt om het rocking gedrag van wan-
den met rubberlagen te reproduceren. In aanwezigheid van rubber kan de wand wel worden
beschouwd als oneindig stijf en modelvoorspellingen komen dan goed overeen met de expe-
rimentele metingen.
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Chapter I

Introduction

I.1 Context and motivations

I.2 Outline of the thesis

I.3 Personal contributions

1



2 CHAPTER I. INTRODUCTION

I.1 Context and motivations

Unreinforced masonry (URM) is a historical and widespread method of construction for a
number of buildings, as for instance private dwellings, town halls, churches, aqueducts, etc.
(see Figure I.1). In particular, surveys of the housing in European countries, like the United
Kingdom [37] or Belgium [117], showed that the main part of the housing stock is made
of masonry buildings. As stated by Hendry [42], the use of URM walls in low- to mid-rise
buildings presents many advantages since a single element can ful�l di�erent functions (load-
bearing elements, �re and weather protection, thermal and acoustic insulation or division
of the space) and masonry has a good durability with little maintenance if appropriately
selected. The continuous use of URM structures throughout centuries is also explained by
the local origin and the diversity of implemented materials (clay, concrete, calcium silicate)
as well as the ease of construction.

Figure I.1: Examples of masonry typologies : (a) �Le Quartier Durable� in Zulte (BE) [107],
(b) �Hôtel de Ville� in Liège (BE) [36], �Catedrale di S. Lorenzo� in Genoa (IT) [30] and �Le
pont du Gard� (FR) [105]

I.1.1 Evolution of the wall

Since the 1973 energy crisis, the demand in terms of building physics performances has
progressively increased. A speci�c attention was given to the residential sector due to its
weight in the total energy consumption [95]. As a consequence, URM walls have been
coupled to other materials to enhance the thermal insulation. These materials can be either
placed indoors, outdoors or inside the wall (hollow blocks), in�uencing its thermal behaviour
[9, 53, 10]. In some countries like Belgium, this increasing demand has led to the transition
from a monolithic masonry wall to the con�guration illustrated in Figure I.2 (a). The load-
bearing wall (right) has a reduced thickness, from 14 to 19 cm, and is separated from the
facade (left) by a gap where thermal insulation is placed (in yellow). This solution takes
advantage of the thermal inertia of the load-bearing wall and protects the insulating material
against weather and external deterioration thanks to the facade. From a structural point of
view, the load-bearing capacity is however reduced as the structure is thinner.
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Figure I.2: Con�guration of a wall in Belgium

Over the past few years, more and more demanding requirements for the thermal in-
sulation and extensions in the range of applications of URM structures resulted in new
modi�cations of the masonry wall, a�ecting its strength by reducing again its load-bearing
capacity or by increasing the applied compression level. On the one hand, the insulating
material becomes more and more thick and highly insulating units, e.g. autoclaved aerated
concrete (AAC) blocks or foamglass (see Figure I.2 (b)), have to be implemented at the
bottom of the wall to cut thermal bridges. These units are used at the �rst course of the
walls of ground �oor to create a thermal break and avoid condensation and mould growth
[75]. Their compressive strength is usually lower than the strength of traditional units in
clay or concrete. On the other hand, multi-storey apartment buildings, up to 5-6 levels, are
now built in pure URM and AAC (�Ytong�) units are used as load-bearing solution, as illus-
trated in Figure I.3 (a) and (b) respectively. These new applications have arisen from the
interest of engineers in the load-bearing masonry structures during the past decades, leading
to the progressive and continuous switch from good-practice habits to an engineering way
of designing these structures. A new generation of structural design codes, for instance the
Eurocode 6 [26], translates the improvements in the technical knowledge of masonry struc-
tures. It allows the use of the material at a performance level closer to its real ultimate
limit state than even in the past, with a su�cient reliability. In addition to the thermal
aspects, standards have been developed to guarantee the individual comfort in general. For
apartment buildings in particular, it is necessary to provide a su�cient acoustic insulation
between adjacent �ats. Such a requirement can only be met by the implementation of spe-
ci�c detailing, as for example the use of rubber elements at the bottom and top of the walls
to cut the propagation of acoustic vibrations (see Figure I.4).

Figure I.3: New applications of URM structures



4 CHAPTER I. INTRODUCTION

Figure I.4: Acoustic insulation of apartment buildings in load-bearing masonry

This thesis focuses on URM sub-structures made of hollow clay blocks and glue-mortar.
The blocks are relatively thin (from 10 to 20 cm) and have a high compressive strength,
up to 15 MPa or even more. Thin-bed layered glued joints are implemented with open
�tongue-and-groove� head joints for constructional e�ciency purposes. The walls include
soundproo�ng rubber layers at their bottom and top.

I.1.2 Seismic design of modern load-bearing URM walls

Besides the gravity loads, URM structures in general have to withstand the seismic loading.
Past earthquakes have revealed the poor performances of this type of structures under the
seismic action. This is particularly the case for regions with a high seismicity (see the
2009 L'Aquila earthquake [20] or 2016 Amatrice earthquake in Italy), but also for low-to-
moderate seismic areas like North-Western European countries, among which Belgium. As
an example, the 1983 Liège earthquake caused large damages to private dwellings in the city
centre in spite of its moderate magnitude (ML = 5.0 [17]), as shown in Figure I.5. The
quality of materials and construction technologies as well as the lack of connection (wall-
to-wall or wall-to-�oor/ceiling) are the main reasons of the damages [17, 63]. In general,
two modes of damage are observed in URM buildings because of earthquakes: the ��rst
damage mode�, involving out-of-plane damage and collapse mechanisms (local failure), and
the �second damage mode� associated to in-plane response of the walls (global failure) [70].

Figure I.5: 1983 Liège earthquake ([17, 58, 86])

The vulnerability of URM buildings partly originates from the non-engineered character
of these buildings. Therefore, the adequate consideration of the earthquake impact requires
a proper understanding of the structural behaviour under these horizontal dynamic actions.
The basic principles of this characterisation and the consequent analysis and design method-
ologies were proposed by M. Tomaºevi£ [123] and are at the basis of a speci�c chapter on
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masonry structures in the Eurocode 8 [116] whose application has become mandatory since
2011 in the European Union. These general considerations need however to be speci�cally
transposed to each particular type of masonry. As recommended by G. Magenes [70], �the
use of new materials and constructions systems should be always thoroughly validated with
speci�c reference to seismic response, not only to vertical load bearing strength�. Researchers
have also pointed out the over-conservatism and the mismatch with common construction
habits of the current standards design rules when comparing the resistance predicted based
on code rules with experimental results on full-scale houses [27, 47]. Available methods for
the consideration of the coupling of walls by spandrels and the contribution of walls perpen-
dicular to the seismic action are questionable. Moreover, the presence of speci�c details at
the bottom and top of the walls for thermal and acoustic reasons in�uences the structural
stability as it creates a discontinuity between walls and �oors. This goes in a way opposite
to the basic principle of the seismic resistance (�box-type� behaviour), yet these devices are
not currently considered in the seismic codes. Another issue concerns the seismic risk which
has become signi�cantly higher because of the decreased thickness of the wall and the in-
creasing height and inherent mass of the buildings, reducing the resistance margin to cope
with unexpected seismic action.

This thesis aims at better understanding the seismic in-plane behaviour of the studied
URM sub-structures and at investigating the consequences of the presence of soundproo�ng
rubber devices on this behaviour. Particular attention is also given to the contribution of
walls perpendicular to the seismic action, as well as the in�uence of the coupling between
walls by spandrels on the seismic response.

I.2 Outline of the thesis

The present thesis includes �ve main chapters:

� Chapter II - Experimental campaigns on URM sub-structures including speci�c detail-
ing;

� Chapter III - Frequency equation for the identi�cation of equivalent mechanical prop-
erties for URM walls;

� Chapter IV - Numerical modelling of URM sub-structures;

� Chapter V - Shear capacity of non-rectangular URM walls;

� Chapter VI - Rocking behaviour of two-stacked blocks including �exible layers.

All chapters deal with a speci�c topic related to the study of URM structures and begin
with a literature review of this topic.

The experimental campaigns which initiated this work are described in Chapter II. A
total of eight full-scale URM walls are tested in static-cyclic conditions in the �rst two
campaigns. The walls present di�erent particularities, like rubber layers at their bottom and
top, an opening or a T-shaped cross-section. Last two campaigns consist in shake table tests
on URM sub-structures. Test sequences with increasing acceleration levels are performed on
four simple walls including soundproo�ng rubber devices and on two frames with URM piers
which have a non-rectangular cross-section. Two di�erent types of masonry units are used
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and the specimens are built in clay URM with thin-bed layered glued joints and a tongue-and-
groove system for the head joints. These campaigns are parts of the Convention First 6231
and the SERIES project from the European Union Seventh Framework Program (FP7/2007-
2013) under grant agreement n°227887. In Chapter II , the experimental set-up and the
instrumentation layout are summarized and the post-processing of the test measurements is
given.

Based on the characterisation of the dynamic properties (natural frequencies, damping
ratio and mode shapes) of simple walls, Chapter III derives the expression of the so-called
frequency equation from the Timoshenko beam theory, assuming relevant boundary condi-
tions corresponding to the experimental reality. A parametric study is then carried out to
study the in�uence of the di�erent parameters and the importance of the consideration of
the shear deformability. The frequency equation is �nally used to identify couples of equiv-
alent elastic and shear moduli leading to the same frequency as the fundamental frequency
assessed experimentally.

Chapter IV discusses the di�erent modelling strategies existing for URM structures. For
computational reasons, the macro-scale approach is chosen and the tested specimens are
modelled with equivalent frames in TREMURI. A material law is de�ned for the beam
elements and the values of its parameters are speci�c to the studied type of masonry, using
the equivalent mechanical properties obtained in Chapters II and III, for instance. The
numerical predictions are compared to the experimental measurements by means of the
global force-displacement curves.

The shear capacity of non-rectangular URM walls is examined in Chapter V. The ex-
pression of the compressive length for this type of cross-section is determined. The main
parameters are highlighted and simpli�cations are proposed for current practice. The design
procedure given in the Eurocode 6 [26] is then applied to assess the shear resistance of the
tested specimens with T- or L-shaped cross-section. In this procedure, the calculation of the
compressive length is performed according to the developed exact and simpli�ed expressions.
Comparisons with experimental measurements and numerical simulations are �nally carried
out.

In Chapter VI, the rocking behaviour of rigid blocks is investigated. Existing models
are implemented with an event-driven strategy, assuming one or two blocks resting on a
rigid support. Numerical simulations resorting to these models attempt at reproducing the
experimental observations made during the shake table tests on simple walls. A new rocking
model with 2-stacked blocks including �exible and viscous interfaces is developed and is used
for walls with rubber devices.

The conclusions summarize the main contributions of this thesis and perspectives for
future works are given.

I.3 Personal contributions

The experimental campaigns summarized in this thesis focus on clay URM sub-structures
built in thin-bed layered glue-mortar joints and using a tongue-and-groove system for the
head joints, for constructional e�ciency purposes. These campaigns distinguish themselves
from previous experimental programs in three di�erent aspects:

� the in-plane behaviour of URM walls coupled with rubber material used for acoustic
reasons is characterised both in static and dynamic conditions. The di�erent test series
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allow the direct comparison between an URM wall including or not soundproo�ng
devices and the consequences of their presence are highlighted.

� the in-plane seismic response of an URM wall is a�ected by di�erent factors, among
which the compression level, the presence of an opening or the connection to a wall
perpendicular to the seismic action. Their in�uence and contribution are investigated
in the four presented campaigns.

� the e�ects of a global torsion and of two di�erent connection methods between per-
pendicular sections of a wall are examined in shake table tests.

Based on the outcomes of these experimental research, the following original and personal
works are produced:

� regarding the identi�cation of equivalent mechanical properties for URM structural
elements, a solution using the natural frequencies of the element is proposed. The
expression of the so-called frequency equation is developed assuming a cantilever beam
with an additional mass connected at its free end. The connection can be �exible
or rigid. This expression di�ers from previous works by a new formulation of the
boundary conditions at the free end and by the consideration of a �exible connection
between the free end of the beam and the additional mass. It is believed that the
proposed model shall be a reference for future work which would also need to include
thin �exible layers.

� the modelling of URM sub-structures with an equivalent frame model uses an existing
program (TREMURI). The parameters of the implemented multi-linear material law
are however calibrated for a new type of masonry and a sensitivity analysis of the
model response to these parameters is performed.

� the design of URM walls subjected to a shear loading is performed according to rec-
ommendations of the Eurocode 6. In the given methodology, the calculation of the
compressive length is of prime importance. A clear and explicit expression of the com-
pressive length is proposed with due consideration of any perpendicular walls, provided
their connection to the shear wall is e�ective. This expression is linearised for practical
use by hand calculations.

� in order to reproduce the rocking behaviour observed during shake table tests, a partic-
ular attention is given to the modelling of simple walls including soundproo�ng devices.
A new rocking model with two-stacked rigid blocks is developed and sets itself apart
from existing models with regard to the presence of �exible and viscous layers between
the lower block and the support and between the lower and upper blocks, in particular.
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II.1 Introduction

The interest in the behaviour of load-bearing masonry subjected to lateral loads and, in
particular, in its seismic response have arisen since the early 70s. The experimental inves-
tigations �rst focused on reinforced masonry [78, 127, 98, 77, 44]. URM structures were
disregarded because of a number of failures observed in past earthquakes and their non-
engineered character, leading to a lack of con�dence in the material properties. Two of the
�rst experimental campaigns on URM walls were carried out by Kwok et al. in 1987 [56] and
Mengi and McNiven in 1989 [79] in the perspective of developing a mathematical model for
their in-plane behaviour. The former submitted walls to cyclic loads, while these structural
elements were tested on a shake table by the latter.

For twenty-�ve years, several experiments on load-bearing URM have been performed
with di�erent ways to represent the seismic action. First, Anthoine et al. [5] and Gri�th et
al. [39] carried out static-cyclic tests on simple masonry walls built in a traditional bonding,
i.e. 1-cm thick mortar bed joints and head joints �lled with mortar. Magenes et al. [71]
extended these tests to a two-storey building. More recently, masonry typologies widely
used in European historical or old buildings were investigated [69, 18, 82]. The behaviour
of walls implementing a masonry bonding consisting in thin-bed layered glued joints with a
tongue-and-groove system for the head joints, received attention from da Porto et al. [25].
They compared the in-plane behaviour of clay masonry assembled with various types of head
and bed joints. This behaviour for AAC masonry walls was also the purpose of cyclic tests
performed by Costa et al. [23]. Second, Schermer [111, 112] and Zilch and Schermer [132]
operated pseudo-dynamic tests on simple classical and AAC masonry walls. Such tests on
full-scale single-storey building were also reported by Paquette et Bruneau [93]. Finally, a
number of shake table tests were performed in the last ten years. This type of test provides
a better representation of the seismic action. For instance, it allows to catch dynamic
phenomena actually observed during real earthquakes. Bergamo et al. [7] conducted some
tests on an 1:2 scale tu� URM. After some repairs, the specimen was tested again in order to
compare both responses. Bothara et al. [12], Tomazevic and Weiss [124] and Nakagawa et al.
[85] investigated the response of a 1:2 scale building with a timber �oor, assessed the values of
the behaviour factor q thanks to 1:5 scale buildings and developed a new numerical method
validated by shake table tests on a full-scale brick masonry house respectively. Interest
in the out-of-plane behaviour arose at the same time, leading to some experimental tests
[1, 48, 22]. In addition to all these separated tests, the �ESECMaSE� project [108] combined
static-cyclic, pseudo-dynamic and shake table tests on di�erent masonry types, constituting
the main and most complete experimental campaign to date. Nevertheless, most research
projects mainly focused on historical and traditional masonry. There is still a need to better
understand masonry types implementing thin-bed layered joints and a tongue-and-groove
system for thermal and e�ciency purposes.

Besides the experimental testing on classical masonry sub-structures, the in�uence of
rubber soundproo�ng devices on the behaviour of the classical walls has been studied un-
der gravity loads, but it remains unassessed under shear loading or in dynamic conditions.
Although its primary use is di�erent, such a solution can be compared to other speci�c de-
tailing used to avoid moisture, e.g. damp proof courses and soft layer wall bearings [126],
or to base isolation system [51]. Other authors have performed monotonic, static-cyclic and
dynamic shear tests on masonry triplets including insulation layers with di�erent materials
[40, 131, 83].
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As a contribution to the issues discussed in Chapter I, four experimental campaigns are
presented in this chapter. The tested specimens are load-bearing clay URM sub-structures
built in a particular masonry bonding. The �rst two campaigns consist in static-cyclic tests
carried out at the University of Liège. The last two are performed on the shake table at
the EQUALS laboratory of the University of Bristol in the framework of the European FP7
project SERIES. For each campaign, the specimens are �rst described with their instrumen-
tation and testing procedure. The experimental observations and rough results are then
provided. Finally, the results are interpreted and discussed in details.

The di�erent experimental sets aim at :
- improving the comprehension of the studied type of masonry under horizontal shear

(campaigns 1 & 2);
- improving the understanding of its dynamic behaviour (campaigns 3 & 4);
- investigating the in�uence of soundproo�ng devices on the general behaviour, both in

static-cyclic and dynamic conditions (campaigns 1 & 3);
- investigating the e�ciency of a new connection type between perpendicular walls and

comparing this solution to the classical masonry interlocking (alternated masonwork), both
in static-cyclic and dynamic conditions (campaigns 2 & 4);

- assessing the contribution of a perpendicular wall to the in-plane sti�ness and strength
(2 & 4);

- studying the frame behaviour involved by the presence of an opening in the wall, both
in static-cyclic and dynamic conditions (campaigns 1 & 4);

- studying the consequences of a global torsion (campaign 4);
- examining the e�ects of various load cases (campaign 4).
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II.2 Static-cyclic tests on simple walls including speci�c

detailing

II.2.1 Description of the specimens

The �rst campaign comprises �ve specimens with the same overall dimensions (h = 2.800 m
× L = 3.000 m × t = 0.138 m). A �rst wall without any speci�c detail is chosen as reference
(specimen A1). Two walls include 1-cm thick soundproo�ng rubber layers at their bottom
and top. These layers are continuous (specimen A2) or cut in half (specimen B2). A door
opening is created with a reinforced concrete (RC) lintel in the last two walls. The opening
is 0.9-m long (Lope) and 2.0-m high (hope). The support length of the RC lintel is increased
from one wall (specimen A3, length of 0.150 m) to the other (specimen B3, length of 0.450
m). The piers have di�erent lengths, namely Llong = 1.200 m and Lshort = 0.900 m, leading
to asymmetric con�gurations. A sketch of the specimens is given in Figure II.1.

Figure II.1: Static-cyclic tests on simple walls - Sketches of the specimens A1 to B3

All walls are built in thin bed-layered masonry with a tongue-and-groove system for the
head joints. They are constructed by professional masons between two RC beams represen-
tative of the �oors. The units constituting the walls are clay blocks with nominal dimensions
(h×l×t) of 0.188 m × 0.300 m × 0.138 m. The material and mechanical properties are given
in Table II.1. The tests according to EN 1052-1 do not include the evaluation of the elastic
modulus. No speci�c characterisation has been carried out for the shear behaviour. Usual
standard values are therefore considered.

The characteristic shear strength is

fvk = 0.5 fvk0 + 0.4σd (II.1)

where fvk0 [MPa] is given in Table II.1, σd [MPa] is the design compressive stress. This
strength is limited to 0.045 fb (= 0.585 MPa) as the vertical joints are empty.

The characteristics of the soundproo�ng layers can be found in Annex A where the elastic
modulus of the rubber is given, ranging from 3.0 to 12.0 MPa.
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Table II.1: Static-cyclic tests on simple walls - Material and mechanical properties of the
masonry units

Properties Symbol Value Units
Density ρ 850 kg/m³

Normalised compressive strength of units (En 772-1 Annex A) fb 13 MPa
Measured charact. masonry compressive strength (EN 1052-1) fk 5.6 MPa

Characteristic compressive strength (EN 1996-1-1) fk 4.2 MPa
Characteristic compressive strength (NBN EN 1996-1-1) fk 3.9 MPa

Initial shear strength (NBN EN 1996-1-1) fvk,0 0.3 MPa

The preliminary assessment design in accordance with the Eurocodes 6 and 8 predicts the
maximum sustainable horizontal shear. The value obtained is 137.7 kN for the specimen A1.
The veri�cation of walls with rubber is not covered in the current standards. Furthermore,
there is no di�erentiation with regard to the support length of the RC lintel. The assessment
of specimens A3 and B3 leads therefore to the same result, namely 45.4 kN which corresponds
to the sum of the capacities of each pier, neglecting their coupling thanks to the spandrel.

II.2.2 Testing procedure

The experimental set-up is illustrated in Figure II.2. The test sequence �rst consists in the
vertical compression of the walls up to 1 MPa. Two hydraulic jacks are used to compress the
walls. They are located under the testing slab and the vertical load is transferred to the top
of the wall through 2 pairs of Dywidag bars. The load is distributed along the length of the
wall thanks to a steel beam placed on the upper RC beam. There is no constraint on the
wall since the bars are free to move horizontally. Then, a horizontal displacement is imposed
cyclically to the upper RC beam. The imposed displacement is increased every 3 cycles with
an increment depending on the wall response. To this purpose, another hydraulic jack is
used and its reaction is equilibrated by a truss system connected to the testing slab. There
is no particular measure implemented to avoid play in connections when the horizontal load
changes direction.

The tests are �rst performed on specimens A. The experimental outcomes of these tests
are used to design the specimens B and lead to di�erences in terms of instrumentation
layout. This latter includes 5 LVDT devices measuring the global displacements of the RC
beams (see Figure II.3 left). The distance between sensors V1 and V2 is 2.100 m. The global
horizontal displacement at the level of the lintel HInt is also recorded whenever relevant
(specimens A3 and B3). Two load cells measure the vertical load acting on the wall and
the horizontal force applied to the upper RC beam. For the specimens B only (Figure II.3
right), additional LVDTs are placed to measure the horizontal displacement of the corners
of the wall and, when there are rubber layers, to study the relative horizontal and vertical
displacements between the masonry wall and the RC beams.

An important remark about the test con�guration concerns the walls with an opening
because of their asymmetry. The horizontal load is applied to the specimen A3 such that
the shorter pier is over-compressed when the sign of the load is positive. The opposite is
observed in the case of the specimen B3.

The experimental data will be available in the institutional Open Repository and Bibli-
ography of the University of Liège (ORBi [87]).
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Figure II.2: Static-cyclic tests on simple walls - Experimental set-up

Figure II.3: Static-cyclic tests on simple walls - Instrumentation layouts

II.2.3 Test observations and results

This section presents the rough experimental observations and results. These latter and the
conclusions stemming from will be interpreted and discussed in details in the next section.

Observation of the crack pattern provides clues for the determination of the failure mode.
The specimen A1 exhibits a diagonal cracking, translating a shear failure (see II.2.4). Crush-
ing of the toe is however observed under the maximum displacement. The collapse mech-
anism is therefore an interaction between shear and bending failures (see Figure II.4 (a)
and (b)). Regarding the specimens including rubber layers, the specimen A2 displays a
vertical cracking in the upper two layers of blocks. This one has been initiated during the
compression phase. The cyclic test spreads the vertical crack on the superior two-thirds of
the wall and causes the diagonal extension of this latter down to the corners of the wall
(Figure II.5 (a)). Toe crushing is also observed after the �nal cycle (Figure II.5 (b)). The
failure pattern of the specimen B2 shows sub-vertical cracking starting from the top of the
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wall and progressively reaching its bottom (Figure II.5 (c)). These observations lead to the
conclusion that the failure mode of walls with soundproo�ng devices is a shear-bending one.
Concerning the walls with an opening, a premature collapse of the wall A3 happens. It is
due to the crushing of the block directly supporting the lintel in the shorter pier, as shown in
Figure II.6 (a). This unexpected failure is avoided for the wall B3 by increasing the support
length of the lintel. This last specimen has a shear failure mode since a diagonal cracking of
the piers, starting from the blocks located under the lintel, is observed (Figure II.6 (b)). No
signi�cant damages are spotted in the spandrel.

(a) (b)

Figure II.4: Static-cyclic tests on simple walls - Crack pattern of specimen A1

(a) (b) (c)

Figure II.5: Static-cyclic tests on simple walls - Crack pattern of specimens A2 and B2

(a) (b)

Figure II.6: Static-cyclic tests on simple walls - Crack pattern of specimens A3 and B3
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The response of the specimens is characterised by the force-displacement curve. For the
compression phase, this curve is de�ned by introducing

Pcomp and d = 0.5 (V1 + V2) (II.2)

as the vertical compression obtained by the direct measurement of the vertical load and the
average value of the recorded vertical displacements of the upper RC beam, respectively.
The curve related to static-cyclic phase requires the introduction of

Pshear and δ =
Hsup −HInf

h
(II.3)

as the horizontal shear given by the direct measurement of the horizontal load and the
drift of the specimen derived from the horizontal displacements of the upper and lower
RC beams, respectively. The vertical displacementsV1 and V2 are slightly di�erent at the
end of the compression phase, inducing a rotation of the upper RC beam and a horizontal
displacement. As a consequence, the Pshear − δ curve does not start at the origin of the
axes. The curves are plotted in Figure II.7 for the compression and in Figure II.8 for the
static-cyclic phase.

In Figure II.7, the force Pcomp is equal to 417.8 kN and the displacement d is about 1.1
mm for the reference wall (black). Pcomp is halved for the specimens A2 (cyan) and B2 (blue),
whereas d is three to four times larger. Regarding the walls with an opening, Pcomp is about
300 kN for both walls. The displacement d however di�ers from A3 (magenta) to B3 (red),
with a magnitude of 1.1 mm and 0.7 mm respectively. Information given by Figure II.8 is
tabulated in Table II.2. The results are presented in terms of maximum force Pshear,max and
drift δmax measured in the positive and negative directions. The positive (negative) direction
refers to a positive (negative) drift. A last result is the dissipated energy, calculated by the
integral of the Pshear − δ curve.

Figure II.7: Static-cyclic tests on simple walls - Force-displacement curves (vertical compres-
sion)
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Figure II.8: Static-cyclic tests on simple walls - Force-displacement curves (static-cyclic)
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Table II.2: Static-cyclic tests on simple walls - Information from the force-displacement
curves (static-cyclic)

Specimen A1 A2 B2 A3 B3

Pshear,max
[103 N]

Neg. 137.1 81.28 81.12 82.20 88.14

Pos. 150.7 83.18 76.21 76.50 78.42

δmax
[%]

Neg. 0.29 0.83 0.45 0.30 0.21

Pos. 0.33 0.81 0.43 0.29 0.23

Dissipated energy

[103 Nm]
/ 2.79 17.80 5.31 1.24 1.41

The behaviour of the di�erent components of the specimens B2, A3 and B3 can be stud-
ied separately. For the specimen B2, the masonry wall and the rubber layers both contribute
to the global behaviour. The time evolution of the vertical and horizontal displacements are
drawn in Figure II.9, during the compression phase and static-cyclic test respectively. In
Figure II.9 (left), the dashed-dotted curve gives the total shrink attributable to the presence
of rubber devices. In the case of walls with an opening (A3 and B3), there are two con-
tributions, i.e. the piers and the spandrel. The �rst considers the relative displacement of
the top of the piers (2.0-m high) with respect to their base. The second is the di�erence of
horizontal displacements between the RC lintel and the upper RC beam.

Figure II.9: Static cyclic tests on simple walls - Time-evolution of the vertical (left) and
horizontal (right) displacements

Figure II.10: Static cyclic tests on simple walls - Time-evolution of the horizontal displace-
ment of specimens A3 (left) and B3 (right)
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II.2.4 Interpretation and discussion

Force-displacement and push-over curves

Despite the symmetry of the reference wall, the corresponding Pshear − δ curve depends on
the loading direction. In terms of maximum shear, the magnitude is about 10 % higher in
the positive direction. In comparison to the standards predictions, the experimental result
is slightly lower in the negative direction (-0.4 %), but the di�erence becomes signi�cant in
the other direction (+ 9.5 %). This dependence is likely due to a non-uniform distribution of
the vertical compression, as highlighted by the vertical displacements V1 and V2 at the end
of the compression phase. As a consequence, the resultant of the vertical compression is not
applied at the neutral axis of the wall and the shear capacity di�ers from one direction to the
other. The presence of the rubber seems to make more uniform the vertical load distribution,
reducing the dependence on the load direction (2 to 6 %). On the contrary, this latter is
expected for the walls with an opening and the di�erence is equal to 6.9 % for the specimen
A3 and to 11.0 % for B3. The result for A3 could be larger whether there has been no local
failure. In presence of an opening, the preliminary assessment clearly underestimates the
ultimate shear (relative di�erence of 68 % at least), certainly due to the neglection of the
frame e�ect.

Starting from their envelope, the Pshear−δ curves can be converted into equivalent elastic-
perfectly-plastic bilinear push-over curves (Figures II.11 to II.13 , in grey). These latter are
characterised by three parameters, namely the initial sti�ness kini [N/m], the yield drift dy [-]
and the ductility µ [-] which are tabulated in Table II.3. A procedure according to Tondelli
[125] is followed to build these curves and consists in: (i) de�ning the initial sti�ness as the
secant sti�ness at 50 % of the maximum measured force, (ii) de�ning the ultimate drift as
the maximum drift of the envelope and (iii) determining the yield force such that the area
under the bilinear curve is equal to the area under the envelope.

In Figure II.13, the push-over curve is not determined in one direction for the wall
A3 because of the early collapse of this specimen. It is worth noticing that the vertical
load distribution also in�uences the initial sti�ness: the more compressed the wall, the
sti�er. Table II.3 e�ectively shows a relative di�erence of 22.1 % for the specimen A1. The
information provided by the push-over curves is further commented here after.

Figure II.11: Static-cyclic tests on simple walls - Envelope and equivalent elastic-perfectly
plastic push-over curve (reference)
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Figure II.12: Static-cyclic tests on simple walls - Envelope and equivalent elastic-perfectly
plastic push-over curve (specimens with rubber)

Figure II.13: Static-cyclic tests on simple walls - Envelope and equivalent elastic-perfectly
plastic push-over curve (specimens with rubber)

Table II.3: Static-cyclic tests on simple walls - Parameters of the bilinear curves

Specimen A1 A2 B2 A3 B3

Initial sti�ness kini
[107 N/m]

Neg. 3.20 1.08 0.91 1.49 3.71

Pos. 4.11 1.08 1.07 / 2.37

Yield drift δy
[%]

Neg. 0.12 0.24 0.29 0.16 0.06

Pos. 0.10 0.26 0.22 / 0.13

Ductility µ

[-]

Neg. 2.32 3.38 1.55 1.78 2.94

Pos. 2.90 2.97 1.94 / 1.82

In�uence of rubber layers

Soundproo�ng layers modify the behaviour of the masonry wall, both in compression and
static-cyclic phases.

Two main consequences of their presence are pointed out during the �rst phase of the test
sequence. First, the compression level is halved in comparison to the reference con�guration
because of the development of a vertical crack in the case of the wall with continuous layers.
The appearance of such a crack at the top of the wall is explained by the Poisson's e�ect
and the interaction between masonry and rubber. Under an axial load, the transverse defor-
mation is more important for the rubber than for the masonry, involving tensile stresses in
this latter. Masonry being a low-tensile strength material and the head joints being empty,
vertical cracks can rapidly appear. The use of discontinuous layers (wall B2) should aim
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at dividing the main crack into smaller ones with reduced opening, but no appreciable im-
provements are obtained. Observations indeed reveal that the rubber is pushed inside the
alveoles of the masonry units, leading to their deterioration. The second consequence is the
larger vertical displacement. According to Figure II.7, a 0.5 MPa compression load induces
a vertical displacement of about 0.5 mm in the case of the wall A1. This displacement
is multiplied by 6.7 (10.4) when considering the wall A2 (B2). The main contribution to
the vertical displacement comes from the rubber, as illustrated in Figure II.9 (left) by the
dashed-dotted curve. For the wall B2, the total de�ection is around 4.5 mm with 4.0 mm
resulting from the rubber. The normal sti�ness of the overall specimens with rubber layers
is therefore reduced, as shown in Figure II.7 where the slope of the curves in blue and cyan
is smaller than the one of the black curve.

Regarding the behaviour under a horizontal shear, specimens with rubber show a lower
strength capacity and larger drifts. Table II.2 gives a reduction of about 45 % in terms
of maximum load when rubber is added. The increase of maximum drift varies from 50
to 185 % approximately. A signi�cant part (up to 50%) of the horizontal displacement is
concentrated in the �exible layers, as illustrated in Figure II.9 (right). This a�ects the lateral
sti�ness of wall with a decrease of 72 % on average in comparison to the con�guration A1
(see Table II.3). The in�uence of the soundproo�ng devices on the ductility is mitigated. It
is improved in the case of the continuous layers (+2.4 % up to +45.7 %), but lowered when
the rubber is cut in half (-33 %). In terms of energy dissipation, the presence of rubber is
favourable. The amount is doubled in the case of the wall B2 and multiplied by 6 when the
wall A2 is considered. It is also worth noticing that the hysteretic behaviour of the wall A2
damages more rapidly than the one of the wall B2 (Figure II.8 (middle)). The propagation
of the vertical cracks initiated during the compression phase could explain why the slope of
the Pshear − δ curve is smaller even for the �rst cycle and why it degrades faster.

Practically, the designer has to limit the compression level acting on the walls to avoid
early cracking and, thus, ensure a better cyclic behaviour. A proper assessment of the
sti�ness of the walls including rubber layers is also required to consider the right fundamental
period since the seismic design is usually based on the elastic response spectrum. A particular
attention should also be given to long term e�ects related to the deformation of the rubber,
to avoid problems of di�erential settling at the level of a whole building.

In�uence of an opening

The presence of an opening in the wall should have an e�ect on its axial and lateral sti�ness.
This former is reduced in the case of the specimen A3, but not for B3 which behaves similarly
to A1 under compression (Figure II.7). The masonwork and the scattering of the mechanical
properties of the materials are two possible reasons. The reduction of the latter is clear for
both specimen, except for B3 in the negative direction (Table II.3). The reason is the same
as the one alluded to the axial sti�ness.

The comparison with the reference wall outlines a decrease of the strength capacity
around 40 %. Contrary to the specimen B3 which is sti�er, the maximum drift of wall A3
is similar to the wall A1. The presence of an opening reduces the ductility of the specimen
(-20 % in average) as well as the energy dissipation (about -50 %).

An important requirement to ensure a good seismic behaviour and avoid premature
collapse is to lengthen the support of the lintel. This length has however to be limited,
otherwise cracking can be observed in static conditions. The determination of the optimum
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support length is out of the scope of this thesis. The support length of the lintel is also of
prime importance in the perspective of considering a coupling between the piers thanks to
the spandrel and, thereby, improving the shear capacity.

Equivalent mechanical properties

A current practice for the analysis of a masonry buildings consists in the modelling of the
heterogeneous components (units + mortar) of the wall with an equivalent element. From
a numerical point of view, the wall can be modelled at the macro-scale for computational
reasons, using an equivalent beam element (see Chapter IV). This element is assumed to be
homogeneous and isotropic. Its mechanical properties are usually calculated with empirical
formulae combining the properties of the units and mortar. The Eurocodes (EN - 1052) also
proposes testing procedure to assess the elastic modulus for instance. Another possibility
for the determination of equivalent elastic and shear moduli is based on the exploitation of
the force-displacement (Figure II.7) and push-over (Figure II.11) curves.

On the one hand, the slope of the curves in Figure II.7 corresponds to the axial sti�ness
k [N/m] of the specimen, given by Eq. II.4:

k =
Pcomp
d

=
E A

h
(II.4)

where E [N/m²] is an equivalent Young modulus and A [m²] is the cross-section area of
the specimen. Eq. II.4 allows the determination of E. The results are tabulated in Table
II.4, with a magnitude of 2466 MPa for the simple URM wall (A1) for instance. The values
related to the specimens A2 and B2 depend on the deformability of both the masonry wall
and the rubber layers. Eq. II.5 translates this dependence:

Especimen,A2/B2 =
hEmEr

hmEr + 2hr Em
(II.5)

where h [m] is the height of the specimen, equal to the sum of hm [m], the height of the
masonry panel, and two times hr [m], the height of a rubber layer. Em and Er [N/m²] are
equivalent elastic modulus for masonry and rubber respectively. Eq. II.5 is derived from Eq.
II.4 considering that the specimen is composed of masonry and rubber elements connected
in series. The modulus Em can be assumed as equal to 2466 MPa for three reasons. First,
the specimen A1 and the masonry panel of A2 and B2 are identical. Second, the behaviour
of the masonry alone can be supposed linear under compression, as shown by the black curve
in Figure II.7. Third, Figure II.9 (left) shows that the vertical displacement of the specimen
B2 is around 4.5 mm (solid line) under a compression level of 0.5 MPa (Pcomp = 210 000 N).
The contribution of the rubber devices to this displacement is about 4.0 mm (dashed-dotted
line). The contribution of the masonry is therefore of 0.5 mm. The point (0.5 mm, 210 000
N) being located on the black curve in Figure II.7, the assumed value for Em is relevant. It
follows Er = 3.682 · 106 N/m² (A2) or Er = 2.479 · 106 N/m² (B2). The equivalent elastic
modulus for the specimens A1 and A3 are close to each other. This latter is much higher for
the specimen B3, as concluded previously.

Table II.4: Static cyclic tests on simple walls - Elastic modulus

Specimen A1 A2 B2 A3 B3

Elastic modulus [MPa] 2.466 · 103 4.294 · 102 3.064 · 102 2.295 · 103 3.668 · 103
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On the other hand, the lateral sti�ness of the walls has been assessed by the push-
over curves and its value is given in Table II.3. The reference wall can be considered as a
cantilever beam since it is clamped at the base and free to rotate at the top. Its sti�ness
under a horizontal load applied to its top is therefore given by

kini =

(
H3

αEI
+

H

k′GA

)−1
(II.6)

where I [m4] is the inertia, k [-] is a shape factor, equal to 5/6 for rectangular cross-section
and α = 3 because the top is free. The parameter G [N/m²] is an equivalent shear modulus,
de�ned as a percentage of the equivalent elastic modulus E found here above. This de�nition
is the same as the one expressed in the Eurocode 6 [34]. The results are given in Table
II.5. They are the average between the positive and the negative directions. Regarding the
specimens with rubber, the lateral sti�ness is the sum of the contribution of the masonry
panel and the rubber layers. The ratio G/E for the rubber is taken as 1/3 given that
the corresponding Poisson's coe�cient is 0.5. Concerning the specimens A3 and B3, the
parameters A and I take into account the area and inertia of the two piers. The coe�cient
α is equal to 6 at least because the piers can be considered as simply supported at the top.
This coe�cient is taken as 12 in the case of the wall which has the lintel supported on 0.45
m because the lintel and the RC beam create a kind of clamping.

Table II.5 shows di�erences between the walls A1, A2 and B2, even though the masonry
panels has the same geometry and constituents. Di�erences are also observed between spec-
imens A1 and A3/B3 which have di�erent geometries. Two main sources seem to in�uence
the ratio G/E: the compression level and the length of the wall. The ratio increases when
the compression level is increased, while the opposite is observed when the wall is longer.
Additional investigations are necessary to con�rm these conclusions.

The equivalent mechanical properties determined in this section will be used as an input
for the modelling of the experimental specimens in Chapter IV.

Table II.5: Static cyclic tests on simple walls - ratio G/E for masonry

Specimen A1 A2 B2 A3 B3

G/E [%] 22.723 8.920 13.059 36.603 27.675
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II.3 Static-cyclic tests on T-shaped walls

II.3.1 Description of specimens

A set of three specimens (C1-3) is considered in the second campaign. They are all identical
and composed of two precast masonry walls connected together with a continuous mortar
joint over the entire height. The �rst masonry panel is called shear wall in the following. It
has global dimensions of h = 2.800 m × LshW = 2.500 m × tshW = 0.150 m. The second one,
with global dimensions of h = 2.800 m × Lfl = 1.500 m × tfl = 0.150 m, is perpendicular
to the shear wall and is named �ange (Figure II.14). The specimens have thus a T-shaped
cross-section. Di�erent compression levels are applied to the specimens C1-3.

Figure II.14: Static-cyclic tests on T-shaped walls - Sketch of the specimens

The precast walls are built in thin bed-layered masonry with a tongue-and-groove system
for the head joints. They are placed between two RC beams representative of the �oors. The
units constituting the walls are clay blocks with nominal dimensions (height×length×thickness)
of 0.249 m × 0.500 m × 0.150 m. The material and mechanical properties are given in Table
II.6. The tests according to EN 1052-1 do not include the evaluation of the elastic modulus.
No speci�c characterisation has been carried out for the shear behaviour. Usual standard
values are therefore considered. The characteristic shear strength is

fvk = 0.5 fvk0 + 0.4σd (II.7)

where fvk0 is given in Table II.6 and σd is the design compressive stress. This strength is
limited to 0.045 fb(= 0.675 MPa) as the vertical joints are empty.

The preliminary assessment design according to the Eurocode 6 for the veri�cation rules
predicts the shear resistance. The obtained values are 104.5 kN, 128.2 kN and 148.4 kN,
for the walls C1, C2 and C3 respectively. The presence of the �ange is neglected and the
considered length for the shear wall is 2.650 m (see Chapter V).
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Table II.6: Static-cyclic tests on T-shaped walls - Material and mechanical properties of the
masonry units

Properties Symbol Value Units
Density ρ 850 kg/m³

Normalised compressive strength of units (En 772-1 Annex A) fb 15 MPa
Measured characteristic masonry compressive strength (EN 1052-1) fk 6.5 MPa

Characteristic compressive strength (EN 1996-1-1) fk 4.7 MPa
Characteristic compressive strength (NBN EN 1996-1-1) fk 4.4 MPa

Initial shear strength (NBN EN 1996-1-1) fvk,0 0.3 MPa

II.3.2 Testing procedure

The test sequence is divided in two phases. The �rst one is the vertical compression of the
shear wall only (see position of the steel and RC beams in Figure II.15). The compression
level is di�erent for each wall, varying from 0.75 MPa to 1.25 MPa. The walls are then
subjected to a static-cyclic test with an imposed horizontal displacement of the upper RC
beam. This latter is increased every 3 cycles. The introduction of the compression and the
carrying out of the static-cyclic test are performed in accordance with the procedure followed
in the previous section (see Section II.2). The �ange is decompressed when the horizontal
shear is positive. The experimental data will be available in ORBi [87].

Figure II.15: Static-cyclic tests on T-shaped walls - Experimental set-up

The instrumentation layout includes 16 sensors, as illustrated in Figure II.16. Two LVDT
devices measure the horizontal displacement of the upper and lower RC beams, namely HSup

and HInf . Four are dedicated to the measurement of the vertical displacement of the upper
RC beam. The distance between V1 and V2 is 2.100 m. The rotation of this latter is also
taken. The horizontal displacement of the top corners of the shear wall is recorded (sensors
Hw,1−2), as well as the one of the �ange just above mid-height (sensors Hg,m,d). The four
last devices are used to study the behaviour of the vertical joint connection, at four di�erent
points, through either the vertical or the horizontal relative displacement between the shear
wall and the �ange (Hj,1−2/Vj,1−2). Two additional load cells measure the vertical load acting
on the wall and the horizontal force applied to the upper RC beam.
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Figure II.16: Static-cyclic tests on T-shaped walls - Instrumentation layouts

II.3.3 Test observations and results

This section presents the rough experimental observations and results. These latter and the
conclusions stemming from will be interpreted and discussed in details in the next section.

The crack pattern observed for the three specimens is similar, with diagonal cracks (see
Figure II.17). Such a con�guration translates a shear failure. No damage is observed at
the connection between perpendicular walls, leading to the conclusion that the continuous
vertical mortar joint is fully e�cient in this test con�guration.

Figure II.17: Static-cyclic tests on T-shaped walls - Crack patterns

The force-displacement curves characterising the response of the specimens are shown
in Figure II.18 and Figure II.19 for the compression and static-cyclic phases respectively.
The forces Pcomp and Pshear have been de�ned in the previous section, as well as the vertical
displacement d and the drift δ (see Section II.2.3 with Eqs II.2 and II.3). The di�erent
compression levels are visible in Figure II.18, where the wall C1 reaches a maximum vertical
force around 280 kN, while this compression force is about 375 kN for wall C2 and 470 kN
for wall C3. The behaviour of the three specimens under compression is approximately the
same, as it can be expected given that the same units and mortar are used in any case. Table
II.7 summarizes the main results of the static-cyclic test in terms of maximum forces and
drifts. The dissipated energy is also given. The positive direction refers to a positive drift δ
(�ange over-compressed).

The study of the connection of the �ange to the shear wall being a main objective of this
experimental campaign, the vertical/horizontal force versus the vertical/horizontal relative
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displacement between these sections is plotted in Figure II.20. The same interest is given to
the behaviour of the �ange during the static-cyclic test. This latter is perpendicular to the
direction of the imposed displacement. Hence, its out-of-plane behaviour is represented. The
time evolution of the horizontal drifts δk just above the mid-height of the �ange is drawn for
the wall C1 in Figure II.21. The drifts δk are calculated as follows:

δk =
Hk −HInf

hs
(II.8)

with hs = 1.680 m, the vertical distance between the sensors measuring the out-of-plane
displacement of the �ange Hk and the lower RC beam and k = g, m or d.

Figure II.18: Static-cyclic tests on T-shaped walls - Force-displacements curves (compres-
sion)

Figure II.19: Static-cyclic tests on T-shaped walls - Force-displacements curves (static cyclic)
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Table II.7: Static-cyclic tests on T-shaped walls - Information from the force-displacement
curves (static cyclic)

Specimen C1 C2 C3

Max. load

[103 N]

Neg. 119.4 161.4 182.6

Pos. 134.2 167.2 188.1

Max. drift

[%]

Neg. 0.29 0.22 0.18

Pos. 0.25 0.20 0.18

Dissipated energy

[103 Nm]
/ 9.17 5.17 4.39

Figure II.20: Static-cyclic tests on T-shaped walls - Joint behaviour

Figure II.21: Static-cyclic tests on T-shaped walls - Out-of-plane behaviour of the �ange
(wall C1)
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II.3.4 Interpretation and discussion

II.3.4.1 Push-over curves

Derived from the envelope of the force-displacement curves, the push-over curves are obtained
following the procedure used in Section II.2. The results are illustrated in Figures II.22 to
II.24 and the main parameters of the bilinear curves are tabulated in Table II.8. A clear
di�erence is observed according to the load direction. The compression level in�uences also
the wall response. Details on these di�erences are given in the next section.

Figure II.22: Static-cyclic tests on T-shaped walls - Envelope and equivalent elastic-perfectly
plastic push-over curve

Figure II.23: Static-cyclic tests on T-shaped walls - Envelope and equivalent elastic-perfectly
plastic push-over curve
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Figure II.24: Static-cyclic tests on T-shaped walls - Envelope and equivalent elastic-perfectly
plastic push-over curve

Table II.8: Static-cyclic tests on T-shaped walls - Parameters of the bilinear curves

Specimen C1 C2 C3

Initial sti�ness kini
[106 N/m]

Neg. 44.10 59.54 87.58

Pos. 100.03 110.68 133.25

Yield drift δy
[%]

Neg. 0.11 0.10 0.08

Pos. 0.03 0.04 0.03

Ductility µ

[-]

Neg. 2.74 2.28 2.29

Pos. 8.72 5.08 5.29

II.3.4.2 In�uence of the perpendicular wall and of the compression level

Contrasting the predictions of the preliminary assessment with the experimental results
underlines the in�uence of a perpendicular wall in the cyclic behaviour of masonry. In
current standards, the contribution to the strength of walls perpendicular to the seismic
action is not explicitly de�ned. Therefore, it is usually disregarded. In terms of maximum
load, the application of design rules results in an underestimation of the actual resistance.
Based on the results given in Table II.7, the relative di�erence between the theoretical and
actual values ranges from 12.5 % to 23.3 %.

Deeper investigations evidence larger discrepancies with the assessed values when the
specimen is pulled so that the �ange is over-compressed (positive direction). Thus, the
in�uence of the perpendicular wall di�ers according to the testing direction. Data in Table
II.7 e�ectively show clear di�erences between the two directions of test. Regarding the
specimen subjected to compression stresses of 0.75 MPa, the maximum load is 11.0 % larger
when considering the positive direction. The relative di�erence decreases to 3.5 % and 2.9 %
gradually with the increase of vertical compression stresses to 1.00 MPa and 1.25 MPa. On
the contrary, the maximum drift measured during the tests is lower in the positive direction
in comparison to the negative one, but the disparity further reduces with the increase of



II.3. CAMPAIGN 2 - STATIC CYCLIC TESTS 31

compression. This physical quantity varies from 14.2 % to 0.1 % for the lowest and highest
compression levels respectively. Regarding the bilinearised push-over curves in Figure II.22
and the numerical values in Table II.8, the conclusions on the initial sti�ness (the ductility)
are similar to those on the maximum load. This parameter is 55.9 % (68.6 %) higher in
the positive direction in the case of the specimen C1. For the specimens C2 and C3, the
di�erence is 46.2 % (55.1 %) and 34.3 % (56.7 %) respectively. In terms of yield drift,
the opposite is observed with larger values in the negative direction. This last parameter
is multiplied by 3.7 times from the positive to the negative direction for test on C1. The
multiplication factor is 2.4 for C2 and 2.3 for C3.

The in�uence of a perpendicular wall on the behaviour of the specimens is clearly iden-
ti�ed thanks to the experimental outcomes. It however a�ects the results in a di�erent way
according to the test direction and the compression level applied to the section of the spec-
imen oriented along the testing direction. Masonry being assumed as a no-tensile strength
material, the �rst e�ect can be explained as follows. When pushing in the negative direction,
the �ange tends to uplift and it contribution to the shear strength rapidly vanishes. The
sustainable horizontal shear is however increased in comparison to the con�guration without
any �anges because the gravity centre of the cross-section is shifted such as the compressive
length is longer under the same shear (see Chapter V). In the positive direction, the �ange
is over-compressed and contributes to the shear strength by increasing the cross-section area
in contact with the support. An important point is to ensure the transmission of the internal
forces between the shear wall and the �ange by ensuring an e�ective connection, otherwise
the contribution of the �ange will be limited. The second e�ect is a possible consequence
of the better participation of the �ange to the global behaviour. Indeed, a higher compres-
sion level could mobilise a larger part of the �ange and could homogenise the behaviour of
the sections of the piers, involving a higher strength. Di�erences between the positive and
negative directions are also reduced because the specimen remains longer in contact with
its basement, independently of the load direction. Nevertheless, increasing the compression
level also involves the reduction of the drift capacity since, for instance, the failure of the
specimen C1 occurs for larger drift than for the specimen C3.

II.3.4.3 Behaviour of the wall connection

Figure II.20 allows the study of the behaviour of the connection between perpendicular
sections of the walls. The measurements show that the vertical as well as the horizontal
displacements are lower than 0.05 mm during the compression phase (graphs on the left).
The magnitudes remain insigni�cant during the static-cyclic test. Indeed, the relative dis-
placements are very low (under 0.1 mm). Some curves however show displacements higher
than 0.1 mm. These values correspond to the post-collapse behaviour.

The wall connection can therefore be assumed as perfectly rigid and fully e�cient in this
test con�guration and the contribution of the �ange to the shear strength is complete.

II.3.4.4 Behaviour of the �ange

The time evolution of the horizontal drift measured at three points of the �ange (δg, δm
and δd) in Figure II.21 displays a larger drift at the right side of the �ange than at the
intersection with the shear wall. The drift at the left side is also lower than the one at the
intersection. Theses di�erences are unexpected, theoretically, given the symmetry of the
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specimen. Nonetheless, this can be explained by the presence of an asymmetry: either the
lengths of the �ange on the left/right of the shear wall are not exactly the same, or the
imposed horizontal displacement of the upper RC beam is not perfectly centered.

The �ange is therefore subjected to torsion. This internal force would be observable in
the shear wall, but this is not captured by the instrumentation layout.

II.3.4.5 Equivalent mechanical properties

Equivalent mechanical properties are assessed with the same procedure as in Section II.2.
The results are given in Table II.9 and will be using later for the macro-scale modelling of
the walls with isotropic non linear beam elements. To this purpose, equations II.4 and II.6
are used. The de�nition of the di�erent parameters can be questionable, especially for the
area to consider. Indeed, the compression load is introduced by a steel beam placed on the
shear wall only. The intersection between this latter and the �ange is also loaded. A possible
area is therefore given by:

A =LshW tshW + tshW tfl (II.9)

One can however suppose that a longer part of the �ange contributes to the sti�ness. From
the point of view of the �ange, the compression load can be assumed as a punctual load.
The load is therefore transferred to the base with a downward di�usion at an angle of 30°
on both sides. Thus, the length of the �ange on both side of the intersection involved in the
sti�ness varies linearly with the height of the specimen H [m]. The de�ned triangle is then
converted into a rectangle with an equivalent length Lfl,effective [m] such as their vertical
areas are the same (see Figure II.25). This length is constant over the height and is used to
assess the cross-section area of the �ange taking part to the sti�ness. The area to consider
then becomes:

A = Lsh tsh + tshW tfl + 2Lfl,eff tfl

= Lsh tsh + tshW tfl + 2

[(
h+

(
h− Lfl,eff

tan 30°

))
Lfl,eff

2

1

h

]
tfl (II.10)

where Lfl,eff [m] is the length of the �ange on both sides of the intersection. The area is
limited to Lsh · tsh + Lfl · tfl which is the cross-section area of the specimen.

The equivalent elastic modulus presents a variation of maximum 12.1 %. The scattering
can be a consequence of the variability in the material properties or in the masonwork. The
cross-section area of the �ange participating to the sti�ness can also in�uence the result
(see above). This one is the same for all specimens, but one could assume that a higher
compression a�ects a longer part of the �ange, leading to a longer equivalent length with
the compression level. The di�erence in terms of G/E ratio comes from the elastic modulus
E itself on the one hand. On the other hand, this equivalent mechanical properties depends
on the compression level. As already observed, the higher the compression level, the higher
the lateral sti�ness.
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Table II.9: Static-cyclic tests on T-shaped walls - Equivalent mechanical properties

Specimen C1 C2 C3

E [MPa] 3.311 · 103 3.765 · 103 3.655 · 103

G/E [%] 23.33 23.68 39.60

Figure II.25: Static-cyclic tests on T-shaped walls - Calculation of the e�ective length of the
�ange
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II.4 Shake table tests on simple walls including sound-

proo�ng devices

II.4.1 Description of the specimens

The third campaign studies the in-plane dynamic behaviour of four simple walls of 1.880-
m high and 0.138-m thick. The walls are constructed by professional masons. Two long
walls (2.100-m long) and two short walls (0.720-m long) are designed to fail in shear and
bending respectively. Figure II.26 illustrates the di�erent lengths by showing the �rst course
of blocks.

All specimens are built in thin-bed layered masonry with glued joints and empty head
joints (tongue-and-groove system). The units constituting the walls are clay masonry blocks
with nominal dimensions (h x l x t) of 0.188 m × 0.300 m × 0.138 m. These units are
the same as those used in the �rst campaign described in Section II.2. The mechanical and
material properties are therefore given in Table II.1. One wall of each length includes 1-cm
thick soft layers at its bottom and top, used for acoustic reasons and made of recycled rubber
(Figure II.27).

Figure II.26: Shake table test on simple walls - First course of the long (back) and short
(front) walls

Figure II.27: Shake table test on simple walls - Rubber layers at the bottom (left) and the
top (right) of walls
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The walls are loaded by an additional 5-ton steel mass placed at their top to simulate the
structural load (Figure II.28), leading to a compression stress of 0.169 MPa and 0.494 MPa
for the long and short walls respectively. Each wall is built between two HEM 160 beams to
allow its transport onto the shaking table. Interfaces between the masonry wall (the rubber
layers) and the steel beams are made of a classical mortar joint. On both sides of the walls,
steel frames are �xed on the table to prevent damages to the equipment of the laboratory
coming from the falling down of the additional mass. This latter has steel guides �xed at its
extremities, preventing excessive uplift and out-of-plane displacement.

A preliminary assessment design is performed according to the rules of the EN-1996-1-1
[34] and EN-1998-1 [116], resulting in the assessment of the maximum acceleration sustain-
able by the walls, namely 0.20 g and 0.07 g for the long and short walls respectively.

Figure II.28: Shake table test on simple walls - Long (left) and short (right) walls

II.4.2 Testing procedure

II.4.2.1 Instrumentation

All specimens are instrumented according to the same layout. The instrumentation comprises
7 accelerometers, 14 potentiometers and an Imetrum Video-Gauge vision system with 8
markers. The displacements and accelerations of the shake table are also recorded in the
three space directions, whereas its rotations and angular accelerations are measured in two
directions. The instrumentation setup is described in Figure II.29 for the long wall without
(w/o) rubber. Table II.10 gives the position of the markers with four located on the additional
mass and four on the steel frame (see Figure II.28).

The accelerometers are distributed along the wall height, especially for in-plane modal
identi�cation. The position of LVDT sensors is de�ned to study the behaviour of interfaces
between the wall and its basement as well as the additional mass, in particular when there
are rubber layers. This particular attention for the bottom and to of the wall is due to
the interest in the consequences of the use of soundproo�ng devices on the dynamics of the
masonry wall. Another reason is the low-tensile strength of masonry, allowing the uplift of
the base of the wall. Two Celesco devices measure the diagonal displacements of the wall.
The behaviour of the additional mass is characterized by the optical measurement system.
Details on the exact position and the type of devices will be available in ORBi [87].

Regarding the instrumentation of short walls, the position of the instrumentation devices
only di�ers from the long wall for the x-coordinate. The position of markers is the same.
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Figure II.29: Shake table test on simple walls - Instrumentation setup (long wall w/o rubber)

Table II.10: Shake table test on simple walls - Position of the markers for optical measurement
system

Name Position [x ; y ; z] Measurement Direction Note

tnnh (tnnv) [-0.85 ;-0.29 ; 1.80] x(z)-displacement + Marker on the mass

tnh (tnv) [-0.36 ;-0.29 ; 1.80] x(z)-displacement + Marker on the mass

tph (tph) [ 0.36 ;-0.29 ; 1.80] x(z)-displacement + Marker on the mass

tpph (tppv) [ 0.85 ;-0.29 ; 1.80] x(z)-displacement + Marker on the mass

bnnh (bnnv) [-0.85 ;-0.29 ; 1.65] x(z)-displacement + Marker on the steel frame

bnh (bnv) [-0.36 ;-0.29 ; 1.65] x(z)-displacement + Marker on the steel frame

bph (bpv) [ 0.36 ;-0.29 ; 1.65] x(z)-displacement + Marker on the steel frame

bpph (bppv) [ 0.85 ;-0.29 ; 1.65] x(z)-displacement + Marker on the steel frame

II.4.2.2 Input signal and test sequences

The input acceleration is applied in the x-direction, along the wall. It consists in a waveform
derived from a random motion using the Required Response Spectra (see ET372 Seismic
Quali�cation Test Procedures, Schedule No. 2) with 5 % damping.

The test sequence is composed of shake table tests at di�erent intensity levels increased
step by step, with some repeated levels. Table II.11 summarizes the number of runs and the
di�erent target peak ground accelerations (PGA). Before each shake and after the last one,
a white noise test is performed to characterise the in-plane dynamic properties of the walls.
The input for the white noise test is a random excitation with uniform frequency content
between 1 Hz and 100 Hz and at a level of about 0.1 g RMS generated using an Advantest
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R9211C Spectrum Analyzer. Several attempts are performed before the �rst seismic test to
ensure a proper assessment of the dynamic properties. The �rst shake is carried out after
the third identi�cation, except for the short wall without rubber (second one).

Table II.11: Shake table test on simple walls - Target PGA [g] (x-direction)

Test S01 S02 S03 S04 S05 S06 S07 S08 S09

Long wall w/o rubber 0.049 0.097 0.097 0.194 0.291 0.388 0.4850 0.582 0.679

Long wall with rubber 0.049 0.097 0.097 0.194 0.291 0.388 0.485 0.582 0.6790

Short wall w/o rubber 0.049 0.073 0.073 0.097 0.146 0.146 0.1940 0.1940 0.243

Short wall with rubber 0.049 0.073 0.073 0.0970 0.146 0.146 0.194 / /

Due to the control system of the shake table, di�erences between the measurements
(actual PGA) and the target PGA are evidenced, see Table II.12. These di�erences are
highlighted in Figure II.30 thanks to the comparison between the input and actual acceler-
ations in terms of acceleration and displacement spectra. These latter are normalized with
respect to the target PGA. The measurements recorded during the �rst shake are considered
as an example. The di�erences are maximized in the neighbourhood of the fundamental pe-
riod (see Section II.4.3.2) of the walls. An acceleration is also measured in the out-of-plane
direction (y-direction) (Table II.13). This parasitic acceleration can reach 11.74 % of the
in-plane one.

The experimental data will be available in ORBi [87].

Table II.12: Shake table test on simple walls - PGA [g] (x-direction)

Test S01 S02 S03 S04 S05 S06 S07 S08 S09

Long wall w/o rubber 0.039 0.078 0.078 0.158 0.239 0.323 0.450 0.572 0.688

Long wall with rubber 0.043 0.090 0.088 0.187 0.278 0.356 0.457 0.569 0.639

Short wall w/o rubber 0.041 0.065 0.063 0.087 0.136 0.133 0.178 0.187 0.234

Short wall with rubber 0.042 0.060 0.061 0.080 0.124 0.128 0.171 / /

Table II.13: Shake table test on simple walls - PGA [g] (y-direction)

Test S01 S02 S03 S04 S05 S06 S07 S08 S09

Long wall w/o rubber 0.005 0.009 0.007 0.012 0.017 0.021 0.024 0.032 0.053

Long wall with rubber 0.004 0.004 0.004 0.008 0.001 0.016 0.019 0.048 0.045

Short wall w/o rubber 0.004 0.004 0.005 0.004 0.006 0.008 0.014 0.021 0.022

Short wall with rubber 0.003 0.003 0.004 0.004 0.013 0.007 0.015 / /
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Figure II.30: Shake table test on simple walls - Comparison of acceleration and displacement
spectra (1st shake)

II.4.3 Observations and experimental results

This section is �rst dedicated to the proceedings of the tests, with conclusions based on
naked-eye observations. Results of the white noise tests then provide information about
the dynamic properties of the walls in terms of transfer functions, natural frequencies and
related mode shapes. Finally, measurements recorded during the shake table tests are used to
describe the seismic response of the walls. This latter is characterised by several parameters
with respect to the actual PGA, namely the maximum acceleration and displacement of the
top of the wall and mass, together with the maximum rotation of the additional mass. The
force-displacement curves are also drawn and a particular attention is given to the behaviour
of the wall base.

All the results and the conclusions stemming from will be interpreted and discussed in
details in the next section.

II.4.3.1 Observations

The test sequence and the increment of the target PGA depend on the length of the wall
considering that the design acceleration leading to the collapse is di�erent. Moreover, the
short walls are subjected twice to a repeated acceleration level (S02/03 and S05/06) because
of interactions between the additional mass and the steel frames in presence of rubber layers
(S05). Shocks are also observed during the test at the highest acceleration level for both
short walls. In terms of PGA, the walls are subjected to a magnitude about three times
higher than the PGA obtained by the preliminary assessment design (see Table II.12).

A general rocking behaviour occurs during the last three or four tests on each wall. As
to the long wall without rubber, it consists in several uplifts corresponding to strong shakes
of the table. The short wall without soundproo�ng layers shows a continuous alternation
of rotations around the bottom corners of the wall. The walls with rubber reveal smooth
oscillations, even for lowest acceleration levels, without any clear uplift of any corner. The
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damages are mainly concentrated in the mortar joint, located at the base of the walls. This
is illustrated in Figures II.31 with (a) and (b) corresponding to the long walls without and
with rubber and (c) and (d) to the short walls without and with rubber. Cracks are also
scattered on the wall, but are rather limited (Figure II.32). A last phenomenon is observed in
the case of the long wall without acoustic devices. The additional mass rocks on the masonry
wall and induces out-of-plane displacements when it goes back to the vertical position. No
instability however happens.

(a) (b) (c) (d)

Figure II.31: Shake table test on simple walls - Damages at the base of the walls without
(a-c) and with (b-d) rubber

(a) (b) (c)

Figure II.32: Shake table test on simple walls - Cracks in the short wall without rubber

II.4.3.2 White noise tests

Transfer functions are derived from the Power Spectral Density (PSD) estimated with
Welch's periodogram method and using the accelerations recorded during the white noise
tests. The transfer functions corresponding to the long walls are plotted in Figure II.33,
in blue in absence of rubber and in black when present. Figure II.34 illustrates the same
results for the short wall, in red and green respectively. The dynamic identi�cation at four
stages is given, namely before (solid curve) and after the �rst shake (dashed curve), in the
middle of the test sequence (dot-dashed curve) and after the last shake (dotted curve). The
two main identi�ed peaks are sharper and higher in the case of the test performed after the
�rst shake in comparison to the one carried out before, except for the short wall including
rubber (green curve). A leftward shift is then observed for all walls as the seismic tests go
along, together with an increasing damping.
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Figure II.33: Shake table test on simple walls - Transfer functions of the long walls without
(blue) and with (black) rubber
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Figure II.34: Shake table test on simple walls - Transfer functions of the short walls without
(red) and with (green) rubber

The natural frequencies of the walls are the abscissa of the peaks identi�ed here above.
They are given in Figure II.35 for every white noise tests preceding a shake and after the
last shake. Only one point is given for the �rst peak related to the long wall without
rubber because of its �atness. For the other walls, a general tendency is visible and shows a
progressive decrease seismic test after seismic test. The mode shapes corresponding to the
�rst two natural frequencies are given in Figure II.36. Assuming that the specimen behaves
as a two-degree-of-freedom system (wall + mass), the two modes are the classical ones with
a phase coincidence and opposition respectively.
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Figure II.35: Shake table test on simple walls - Identi�ed natural frequencies of the walls
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Figure II.36: Shake table test on simple walls - Mode shapes of the long walls

II.4.3.3 Shake table tests

Three physical quantities are described with respect to the actual PGA and characterise the
seismic response of the walls. The �rst two quantities are measured at the top of the wall
and the centroid of the additional mass. The �rst one is the maximum acceleration and is
shown in Figure II.37. Graphs (a) and (b) give the results for the long wall without and with
rubber respectively. Graph (c) provides those for the short wall without any devices, while
graph (d) is focused on the short wall including soundproo�ng layers. The second quantity
is the maximum horizontal drift, represented in Figure II.38 according to the layout used in
Figure II.37. All graphs also include a grey straight line representing the perfectly elastic
behaviour. The response of the walls is �nally described by the rotations of the base of the
wall and of the additional mass, which are plotted in Figure II.39.
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Figure II.37: Shake table test on simple walls - Maximum acceleration at the top
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Figure II.38: Shake table test on simple walls - Maximum relative horizontal displacement
at the top of the wall
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Figure II.39: Shake table test on simple walls - Maximum rotation of the bottom and top of
the wall
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Another result representative of the seismic response is the force displacement curve. The
horizontal force at the top of the wall is not directly measured during the tests, but can be
estimated by the acceleration at this level. This force Ptop and the drift δtop of the centroid
of the additional mass are given by

Ptop (t) = mẍ (t) (II.11)

δtop (t) =
(x (t)− xg (t))

htop
(II.12)

where m [kg] is the magnitude of the additional mass and ẍ (t) [m/s²] is the acceleration
measured at its centroid. The horizontal displacement of the additional mass x (t) [m] and
of the shake table xg (t) [m] are obtained by integration of the corresponding acceleration.
The height htop [m] is the distance between the base of the wall and the gravity centre of
the additional mass, equals to 2.08 m. Figure II.40 plots the Ptop− δtop curves for the shakes
after the �rst repeated acceleration level. Figure II.40 follows the same layout described here
above.

The Ptop − δtop curves exhibit a plateau around 20 kN for the long walls and around 8
kN for the short walls. Regarding these latter, the plateau is over-passed during the last
shake. The test S05 also shows a slightly higher maximum force in the case of the short wall
including rubber (see Figure II.40 (d)).

Figure II.40: Shake table test on simple walls - Force-displacement curves

Last results are focused on the behaviour of the base of the walls. The time evolution
of the vertical and horizontal relative displacements is measured at three points of the base
(see Section II.4.2). The results illustrated in Figures II.41 to II.44 correspond to the test
S09 for the long walls and S06 for the short walls.

A positive vertical displacement translates an uplift of the base of the wall. The maximum
is larger than the minimum, a negative magnitude being governed by the sti�ness of the base
layer (mortar or rubber). The signals corresponding to the relative vertical displacement at
mid-length and at the far extremity are similar because the sensor at mid-length is slightly
closer to the far side. In Figure II.42, the far extremity signal seems to be bounded. This
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observation is only a consequence of an inappropriate sensor which runs its course. Regarding
the horizontal displacement, the three signals evolve similarly, but the signal corresponding
the to near extremity has a reduced magnitude, especially for the short wall without rubber.
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Figure II.41: Shake table test on simple walls - Time evolution of the z- and x-displacements
of the wall base (long wall without rubber)

0 2 4 6 8 10 12 14 16 18

D
is

pl
ac

em
en

t [
m

]

-0.01

0

0.01

Z-displacement

Near extremity
Middle
Far extremity

Time [s]
0 2 4 6 8 10 12 14 16 18

D
is

pl
ac

em
en

t [
m

]

10-3

-5

0

5

X-displacement

Near extremity
Middle
Far extremity

Figure II.42: Shake table test on simple walls - Time evolution of the z- and x-displacements
of the wall base (long wall with rubber)
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Figure II.43: Shake table test on simple walls - Time evolution of the z- and x-displacements
of the wall base (short wall without rubber)
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Figure II.44: Shake table test on simple walls - Time-evolution of the z- and x-displacements
of the wall base (short wall with rubber)
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II.4.4 Interpretation and discussion

II.4.4.1 Interaction with the steel frames

A total of three runs on the short walls have to be disregarded because of interactions with
the steel frames. It concerns the shakes S05 and S07 for the wall including rubber and the
S09 for the other wall. More precisely, contacts occur between the frames and the guides
of the additional mass, disturbing the behaviour of the wall. These impacts explain the
presence of accelerations at the top of the specimen above the straight line representing the
elastic behaviour (see Figure II.37 (c) and (d)) and, therefore, the exceedance of the plateau
in the Ptop−δtop curves (Figure II.40 (c) and (d)). The others consequences are the limitation
of the horizontal displacement of the top of the wall and of the rotation of the additional
mass (see graphs (c) and (d) in Figures II.38 and II.39).

II.4.4.2 Rocking behaviour

A general rocking behaviour is observed during seismic tests at the highest acceleration levels
and in�uences the seismic response of the walls. The main consequence is the capacity of
walls to sustain a PGA three times higher than predicted by the current standards for the
seismic design of URM which only consider the classical collapse mechanisms in bending, in
shear or by overturning. Rocking is a well known and e�cient process for the dissipation of
energy induced by earthquakes for RC structures [116] and could be therefore consider for
URM structures.

Di�erent observations made in the previous sections bear witness to this behaviour. First,
the concentration of the damages in the bottom mortar joint is a characteristic damage
pattern of the rocking. Then, the comparison of the rotations measured at the bottom and
at the top of the walls shows the transition from a cantilever-beam like behaviour to rocking
(see Figure II.39). The former involves zero-rotation (or insigni�cant) at the clamped base
and free rotation at the top, while the latter requires similar rotations at the bottom and
top. This transition is demonstrated in Figure II.45 for the short wall without rubber. The
measurement of rather important horizontal relative displacements at the wall base is also
explained by the rocking of the wall (Figure II.43). Finally, rocking causes a more than
proportional increase of the maximum horizontal drift and rotation (Figures II.38 and II.39)
at the top of the specimen with respect to the PGA. The tremors of the table activate
inertial forces at the level of the additional mass, which create a destabilizing overturning
moment. Due to the lack of tensile strength, this moment implies the uplift of the wall
when the restoring moment coming from the gravity is exceeded, leading to the rotation
of the wall with respect to its support and to an induced horizontal drift of the additional
mass. An increase of PGA has a double e�ect. On the one hand, a higher PGA means a
larger destabilizing overturning moment since the inertial force increases. On the other hand,
the restoring moment decreases given that the induced horizontal drift of the mass reduces
the distance between the centroid of this latter and the rotating point of the wall (i.e. the
bottom corner if the wall is considered as a rigid body). The combination of these two e�ects
explains why the maxima of the rotation and drift at the top of the walls increase more than
proportionally with respect to the PGA. In terms of accelerations, the points in Figure II.37
deviate increasingly under the straight line because the motion generated by rocking goes in
the opposite direction of the table motion. Contrary to the maximum horizontal drift, the
maximum top accelerations augment therefore less than proportionally with respect to the
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PGA.

Figure II.45: Shake table test on simple walls - Time evolution of the rotations of the wall
base and top (S01 and S08) - short wall without rubber

Rocking is strongly dependent on the wall length (aspect ratio) and on the presence of
the rubber. The aspect ratio is a well known parameter of the rocking motion (see Chapter
VI). A longer wall requires a higher acceleration to observe an uplift since the restoring
moment is larger. This is illustrated in Figures II.37, II.38 and II.39 given that the markers
corresponding to the long walls remain closer to the straight line for higher PGA than those
related to the short walls. Moreover, the comparison of Figures II.41 and II.43 highlights
the e�ects of the wall length: the corners of the long wall are only lifted from time to
time, while the short wall shows a clear alternating uplift of its corners. Regarding the
rubber, the presence of soundproo�ng layers completely modi�es the behaviour. There is a
transition from a classical rocking behaviour on a rigid support to a wall moving on a �exible
layer, leading to larger drift and rotation at the same PGA. The walls also exhibit signi�cant
rotation a longer time after the end of the shake when there are acoustic devices. It translates
a lower damping of the structure, as shown in Figures II.43 and II.44 for instance.

Finally, rocking provides an interesting ductility to the walls. Indeed, the plateau in the
Ptop − δtop curves appears once the inertial force is large enough to overturn the wall. It do
not correspond to the ultimate limit state as supposed by equivalent static design procedure.
The consequence of an increase of PGA is a larger horizontal drift. This can be translated
by a behaviour factor q which allow the wall to sustain larger seismic acceleration. The
assessment of the q-factor is based on equivalent push-over curves (see below).

II.4.4.3 In�uence of rubber layers

Rubber layers have consequences on the dynamic properties of the walls and, thus, on the
seismic response.

First, the natural frequencies of the studied walls are reduced when they include sound-
proo�ng devices. This can be seen in the transfer functions, with a leftward shift of the
peaks (see Figures II.33 and II.34). Table II.14 summarizes the frequencies obtained by
peak picking. The presence of acoustic layers decreases of 1/3 the fundamental frequency of
the undamaged walls. The frequency drop observed in Figure II.35 can be assessed thanks
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to Table II.14. Such phenomenon has been already discussed by Michel [81]. The identi-
�cation performed after S06 on short walls gives a relative di�erence with the undamaged
con�guration of 9.1 % and 20.0 % for situations without and with rubber respectively. The
deterioration is therefore more important for the soundproofed specimen. As concluded in
Section II.2, interaction between the masonry and the rubber can be detrimental for the
overall behaviour.

Table II.14: Shake table test on simple walls - Natural frequencies of the walls

Test N02 N03 N04 N05 N06 N07 N08 N09 N10 N11 N12

Long wall

w/o rubber

1st / / 9.33 / / / / / / / /

2nd / 25.80 27.08 26.71 26.90 26.35 26.16 25.98 25.62 25.80 26.35

Long wall

with rubber

1st / 6.04 6.40 6.40 6.40 6.40 6.59 6.22 5.67 5.31 5.12

2nd / 17.02 18.66 18.30 18.48 18.11 17.75 17.38 17.20 17.02 16.83

Short wall

w/o rubber

1st 4.02 4.02 3.84 4.02 3.84 3.66 3.66 3.66 3.48 3.29 /

2nd 15.74 15.92 15.92 15.74 15.734 15.55 15.37 15.00 15.00 14.45 /

Short wall

with rubber

1st / 2.74 2.56 2.38 2.38 2.20 2.20 2.20 2.20 / /

2nd / 11.53 11.53 10.98 10.98 10.80 10.61 10.80 10.61 / /

Then, the mode shapes present transverse deformation concentrated at the bottom and
top of the masonry walls when there are rubber layers (Figure II.36). One third of the
deformation is located in the two 1-cm thick layers approximately. The presence of rubber
also reduces the in�uence of the wall length as the mode shapes related to walls of di�erent
lengths seem to be more similar (closer to a straight line).

Finally, the seismic response is in�uenced as the rocking behaviour is modi�ed in presence
of rubber (see previous section).

II.4.4.4 Compressive length

A main characteristic of masonry wall subjected to a horizontal shear is the compressive
length. In the present campaign, this length is calculated by a linear interpolation of the
vertical relative displacement at the three points of the base of the wall. This procedure is
based on the assumption that the wall cross-section remains plane. The comparison between
real measurements, depicted by markers, and the linear interpolation at a given time however
contradicts this assumption, as illustrated in Figure II.46. The di�erence probably comes
from the opening of the vertical joints of the masonry. This also explains why the horizontal
displacements of the wall base are not perfectly the same along the time (see Figure II.43).

Figure II.47 plots the minimum compressive length of each shake with respect to the
actual PGA. As expected, the compressive length decreases faster for the short wall than
for the long one. However, the main learning of Figure II.47 is that the compressive length
under a same acceleration level is higher when there are rubber layers. This positive e�ect
has to be balanced with the higher horizontal drift observed previously.

Regarding the long walls, the last runs (from S07 for the long wall without rubber and
from S06 for the one with rubber) give a zero compressive length. These values have to
be disregarded as the measurements are irrelevant. Indeed, the progressive deterioration of
the joint at the base of the wall seems to produce pieces of mortar (see Figure II.31) which
remain under the wall and prevent this latter to come back to its initial position, as shown in
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Figure II.48 for S06 with the long wall with rubber. Meaningless results are then obtained,
as a transition from rocking around one side to another without a return to the vertical
position for instance.
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II.4.4.5 Push-over curves

Starting from the force-displacement curves, equivalent push-over curves can be derived by
plotting the minimum (maximum) force with respect to the maximum (minimum) relative
displacement for each relevant shake (see Figure II.49). The positive direction refers to the
part of the force-displacement curves with a positive drift.
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Figure II.49: Shake table test on simple walls - Push-over curves in the negative (left) and
positive (right) directions

Comparison between the blue and black curves related to the long walls (red and green
for the short walls) shows a clear decrease of sti�ness in presence of rubber. When comparing
push-over curves in negative and positive directions, it appears that the walls seem to be
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slightly sti�er in the negative direction, except for the short wall with rubber. There is no
geometrical nor mechanical reason to explain this di�erence, apart from the distribution of
the mass along the wall.

Figure II.49 also includes bilinear curves for each wall in negative and positive direction.
They are derived according to the procedure used in Section II.2.4 and characterised by
the same parameters (Table II.15). No wall completely failed during the tests; the curves
in Figure II.49 are therefore incomplete. The curves are however su�ciently developed to
estimate the main parameters, except for the ductility which could be larger.

Table II.15: Shake table test on simple walls - Parameters of the bilinear curves

Initial sti�ness kini[N/m] Yield drift dy[%] ductility µ[-]

Negative Positive Negative Positive Negative Positive

Long wall w/o rubber 6.586 · 106 5.669 · 106 0.192 0.210 2.089 2.768

Long wall with rubber 3.154 · 106 2.920 · 106 0.326 0.355 3.955 3.776

Short wall w/o rubber 1.751 · 106 1.723 · 106 0.202 0.200 4.374 4.801

Short wall with rubber 5.705 · 105 6.199 · 105 0.456 0.395 2.257 2.424

Table II.15 shows variations from -8.7 % to +13.9 % for the initial sti�ness in both
directions. The highest di�erence is observed for the long wall without rubber. The initial
sti�ness is reduced by 58 % on average when rubber layers are placed at the extremities of
the walls, while the yield drift is doubled. An interesting observation is that the yield drift is
approximately the same for both walls without rubber, regardless of their length. This leads
to the conclusion that these walls have the same behaviour. The ductility can be translated
into a q-factor provided by the rocking behaviour.
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II.5 Shake table tests on frames with T- and L-shaped

piers

II.5.1 Description of the specimens

The fourth and last campaign includes two specimens. They relate to frame-like structures
due to the presence of an opening. Their geometry di�ers with regard to the cross-section
of the piers, as illustrated in Figure II.50. The shear walls refer to the sections of the piers
oriented in the plane of the frame. The �anges correspond to the perpendicular sections. The
masonry units are clay blocks of the same type as those used in the �rst and third campaigns
(see Sections II.2 and II.4). The mechanical and material properties are thus given in Table
II.1. The horizontal elements, namely a RC lintel and a RC slab, are similar for both frames.
Additional steel parallelepipeds are �xed on the slab to simulate the structural load. The
total weight of these prisms is equal to 5 tons.

Other di�erences are de�ned in the design of the specimens. On the one hand, the T-
shaped piers are oriented such as this frame has no axis of symmetry. The specimen with
L-shaped piers shows a single axis of symmetry, perpendicular to the plane of the frame.
The main consequence is an expected global torsion when testing the T-shaped frame. The
orientation of the piers indeed in�uences the sti�ness along both directions. Concerning
the L-shaped frame, a torsion can be observed when shaking along the frame direction
due to the distance between the gravity centre of the slab and the rotation centre of the
specimen. On the other hand, the L-shaped frame presents di�erent connection methods
for the perpendicular sections of masonry piers. A classical masonwork is performed for the
left one (y-positive) and the sections of the right one (y-negative) are glued to each other
with a continuous vertical joint along the height. The di�erence is visible in Figure II.50.
The latter method is similar to the one used in the second campaign described in this thesis
(see Section II.3). This di�erence aims at studying the in�uence of the connection type on
the global behaviour. The classical masonwork is enforced for the specimen with T-shaped
piers.

The specimens are built by professional masons on HEM 160 steel beams for transporta-
tion reasons. Steel connectors are placed between the masonry frame/RC lintel and the RC
slab. Their use is required to simulate di�erent loading cases on the specimens. Thereby,
the L-shaped frame is subjected to a compression uniformly distributed on its piers (full
loaded) and another acting on the �anges only (�anges loaded). Figure II.51 gives the posi-
tions of the connectors in the case of the L-shaped frame with the slab resting on the whole
piers. The second loading con�guration is obtained by removing the two connectors located
on the shear walls. Regarding the T-shaped frames, the connectors are juxtaposed at the
intersection of the sections of the piers.

A preliminary assessment design is performed according to the rules of the EN-1996-1-1
[34] and EN-1998-1 [116]. The di�erent loading cases are considered and the assessment is
performed for an earthquake acting along the frame (y-acceleration) and perpendicular to
it (x-acceleration). The results are given in Table II.16. In Table II.16, the y-acceleration is
obtained under the assumption of a redistribution of the seismic action between piers when
one of them fails in shear, but is still able to sustain gravity loads.
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Figure II.50: Shake table tests on T- or L-shaped frames - Pictures of the specimens (left:
T-shaped ; right: L-shaped)

Figure II.51: Shake table tests on T- or L-shaped frames - Position of steel connectors
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Table II.16: Shake table tests on T- or L-shaped frames - Results of the preliminary assess-
ment design

Specimen X-acceleration [g] Y-acceleration [g]

T-shaped frame 0.046 0.763

L-shaped frame (full loaded) 0.0633 0.829

L-shaped frame (�anges loaded) 0.0814 0.654

II.5.2 Testing procedure

II.5.2.1 Instrumentation

The instrumentation of the frames comprises accelerometers, potentiometers and an Imetrum
Video-Gauge vision system. A total of 26 accelerometers are distributed on the table, the
specimen and the slab. Four are dedicated to the in-plane behaviour of this latter (x- and
y-directions) and 2 measure the x- and y-accelerations at the level of the table. The last
20 devices are placed on the masonry piers, recording the acceleration in both horizontal
directions at the bottom and the top of the shear walls and �anges, as well as the mid-
height in-plane acceleration of the sections of piers. Two of these devices are missing for the
T-shaped frame (top of the �ange on the right pier). Regarding the potentiometers, they
mainly focus on the behaviour of the base of the piers. The relative displacement of the
RC lintel with respect to the piers is also measured by 6 LVDTs. Additional sensors (6) are
located at the intersection of the shear walls and �anges to capture the behaviour of the
connection, in the case of the L-shaped frame only.

The instrumentation layout is illustrated in Figures II.52 and II.53 for the T- and L-
shaped frames respectively. In these Figures, the vision system includes 14 markers spotted
by black dots. These target the horizontal (x or y) and vertical (z) displacements of the top
of the piers and of the slab. Due to optical e�ects, their measurements are only relevant when
the table shakes in the direction of the recorded horizontal displacement. For example, VS
targets on the back side (forward view) cannot be used for shake in the x-direction because
these targets measure the y- and z-displacements.

Details on the exact position and type of devices will be available in ORBi [87].

II.5.2.2 Input signal and test sequences

The experimental data will be available in ORBi [87]. The specimens are subjected to a
horizontal acceleration in both directions separately. The input acceleration signal is the
same as the one used for tests on simple masonry walls including soundproo�ng devices
(see Section II.4). Its PGA is scaled to reach di�erent intensity levels, as shown in Table
II.17. These levels are increased step by step without any repetition. Before each run, white
noise tests are performed to characterise the dynamic properties of the specimen in the two
horizontal directions.

The test sequences are therefore an alternation between the dynamic characterisation of
the specimens in both horizontal directions and a shake carried out in one direction and with
a PGA given in Table II.17. Regarding the frame with L-shaped piers, the direction of the
input acceleration is alternated.
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Figure II.52: Shake table tests on T- or L-shaped frames - Instrumentation layout (T-shaped)

Figure II.53: Shake table tests on T- or L-shaped frames - Instrumentation layout (L-shaped)
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The actual PGA di�er from and are mostly lower than the target values. This di�erence
can be quite important, with a relative di�erence up to 22.7 %. The highest disparity is
observed for the last shake on the L-shaped walls when the slab is supported by the �anges
only (53.7%). The reason is the activation of the emergency stop during the test to avoid
damages to the table because of the specimen. This test is therefore rejected. The seismic
runs are supposed to be unidirectional, but an acceleration is measured in the perpendicular
direction. This parasitic acceleration at the table is signi�cant as it is up to 28.7 % of the
main one.

Figure II.54 to II.56 plot the acceleration and displacement spectra of the table. These
latter are normalised with respect to the target PGA in the main direction of test. The runs
performed along the frame (y-direction) are drawn in solid line. Those perpendicular to
the frame (x-direction) are in dotted-dashed line. The acceleration spectra derived from the
measurements di�er from the input one (in grey). The main di�erence is around 0.15-0.20
s. This location corresponds approximately to the �rst natural frequency of the specimens
(see Section II.5.3.2).

The di�erences in terms of target/actual PGA and spectra can be explained by the
limitation of the control system of the table, as it was for the campaign on simple walls.

Table II.17: Shake table tests on T- or L-shaped frames - Target PGA [g]

Test Dir. S01 S02 S03 S04 S05 S06 S07 S08 S09

T-shaped
full loaded

x 0.000 0.000 0.000 0.049 0.097 0.194 0.291 0.000 /
y 0.078 0.155 0.310 0.000 0.000 0.000 0.000 0.466 /

L-shaped
full loaded

x 0.000 0.049 0.000 0.097 0.000 0.146 0.000 0.194 /
y 0.078 0.000 0.155 0.000 0.233 0.000 0.310 0.000 /

L-shaped
�anges loaded

x 0.000 0.049 0.000 0.097 0.000 0.146 0.000 0.194 0.000
y 0.078 0.000 0.097 0.000 0.146 0.000 0.194 0.000 0.243

Table II.18: Shake table tests on T- or L-shaped frames - Actual PGA [g]

Test Dir. S01 S02 S03 S04 S05 S06 S07 S08 S09

T-shaped
full loaded

x 0.007 0.018 0.001 0.038 0.083 0.176 0.276 0.107 /
y 0.073 0.147 0.285 0.004 0.006 0.017 0.041 0.477 /

L-shaped
full loaded

x 0.006 0.038 0.015 0.087 0.036 0.135 0.077 0.180 /
y 0.065 0.004 0.144 0.013 0.221 0.023 0.269 0.042 /

L-shaped
�anges loaded

x 0.011 0.040 0.014 0.080 0.0260 0.125 0.039 0.110 0.058
y 0.063 0.006 0.083 0.016 0.133 0.029 0.192 0.030 0.197
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Figure II.54: Shake table tests on T- or L-shaped frames - Acceleration and displacement
spectra (T-shaped)
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Figure II.55: Shake table tests on T- or L-shaped frames - Acceleration and displacement
spectra (L-shaped, full loaded)
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Figure II.56: Shake table tests on T- or L-shaped frames - Acceleration and displacement
spectra (L-shaped, �anges only)
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II.5.3 Observations and experimental results

II.5.3.1 Observations

Rocking of the piers only occurs for the highest acceleration levels. Dependence on the shake
direction and on the position of the �anges is visible. Considering runs at similar intensity,
the rocking amplitude seems to be indeed larger when the table shakes perpendicularly to
the frame (x-direction) and when the test is performed on the T-shaped frame.

Observations of the specimen damaging �rst highlight a lack of strength in the connection
between the lintel and the piers. Early cracks are observed in the mortar joint, as shown in
Figure II.57. The lintel slides on its supports and the coupling of masonry piers is therefore
ensured by the RC slab alone. The limited contribution of the lintel to the global strength
is certainly a consequence of the poor restraint brought by the steel connectors. It can be
observed in Figure II.57 that the contact area between the slab and the frame corresponds
to the area of the steel connectors, with a rather limited part on the lintel.

Then, Figures II.58 and II.59 depict the collapse mechanisms. The left pier of the T-
shaped frame presents joint openings and sliding of blocks translating a failure in torsion.
Some blocks e�ectively seem to su�er of a counterclockwise shift (Figure II.58 (a-c)). The
�rst courses of right pier su�er vertical cracks, joint openings and damaging of the mortar
bed joint (Figure II.58 (d)). Horizontal cracks are observed all over this joint, translating
the uplift of the base of the specimen (Figure II.58 (e)). The tests on L-shaped frame also
end due to the deterioration of its left pier when the slab is supported by the �anges only.
In this case, the failure is located at the intersection of the shear wall and the �ange (Figure
II.59). The method used for this connection is an alternated masonwork. In comparison to
the connection with a continuous vertical glued joint, the likely weakness is the reduced shear
area whereby the horizontal load induced by the slab and the additional mass is transferred
between the �ange and the shear wall. This reduction is a consequence of the empty vertical
joints.

Figure II.57: Shake table tests on T- or L-shaped frames - cracks of the mortar joint between
masonry piers and RC lintel

Finally, the frames are subjected to lower PGA than expected by the preliminary as-
sessment design. The relative di�erences are 37.6 % and 69.4 %, for the T- and L-shaped
specimens respectively. The repeated runs, the uncertainties on the slab position and the
in�uence of the steel connectors are main reasons for these di�erences. Moreover, the values
given in Table II.16 consider a redistribution of strength between the piers. During the
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experimental campaign, shakes are however stopped when the �rst pier is heavily damaged.
The over-strength coming from the redistribution is 15.7 % in the case of fully loaded T-
shaped frame. It is about 70 % for the other specimen with load distributed on the �anges,
leading to an expected maximum acceleration close to the measured one. In conclusion, the
collapse of T-shaped frame happens earlier than predicted due to torsion e�ects, while the
L-shaped frame is able to sustain a slightly higher PGA.

(a) (b) (c) (d) (e)

Figure II.58: Shake table tests on T- or L-shaped frames - collapse of the T-shaped frame

Figure II.59: Shake table tests on T- or L-shaped frames - collapse of the T-shaped frame

II.5.3.2 White noise tests

Information provided by the white noise tests is expressed in terms of transfer functions,
natural frequencies and corresponding mode shapes.

The transfer functions are determined following the procedure described in II.4.3.2. Even
white noise tests characterise these dynamic properties related to the x-direction, while the
odd ones correspond to those in the y-direction. The results are plotted in Figures II.60
to II.63 for both specimens. Each graph uses the records of one of the four accelerometers
located on the slab, above the left or the right pier. They show the e�ects of the �rst and last
shakes, as well as these of the change of load case by plotting the identi�cation performed
before and after them. No identi�cation is carried out after the last run on the L-shaped
frame partially loaded. As already observed in II.4.3.2, the peak seems to shift leftwards as
the test sequence proceeds.
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Figure II.60: Shake table tests on T- or L-shaped frames - Transfer functions of the T-shaped
(x-direction)
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Figure II.61: Shake table tests on T- or L-shaped frames - Transfer functions of the T-shaped
(y-direction)
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Figure II.62: Shake table tests on T- or L-shaped frames - Transfer functions of the L-shaped
(x-direction)
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Figure II.63: Shake table tests on T- or L-shaped frames - Transfer functions of the L-shaped
(y-direction)
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Figure II.64: Shake table tests on T- or L-shaped frames - Natural frequencies of the T-
shaped frame
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Figure II.65: Shake table tests on T- or L-shaped frames - Natural frequencies of the L-
shaped frame
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The determination of the natural frequencies (Figures II.64 and II.65) is not directly
carried out by a peak picking based on the transfer functions. They are calculated as the
eigen values of the cross-PSD matrix. Three peaks are identi�ed for each specimen in the
two horizontal directions, except for the L-shaped frame in the x-direction for which there
are two or four peaks depending on the loading case. A frequency drop is globally observed.

The corresponding mode shapes are plotted in Figure II.66 for the T-shaped frame, in
Figure II.67 for the L-shaped frame fully loaded and Figure II.68 for the L-shaped frame
loaded on its �anges only. The mode shapes in the x- and y-directions are given in the left
and the right of the �gures respectively.

The �rst and third modes related to the T-shaped specimen are mainly translational
mode in the direction of excitation. A rotation however exists given the asymmetry of
the specimen. The di�erence between these modes lies in the mass behaviour: in the �rst
mode, the mass is in phase with the masonry frame, while it is in ϕ-opposition in the case
of the third mode. The second mode is a torsional one with a small translation. The
di�erent distances between the centroid of the RC slab and the rotation centres of the piers
explains the translational component. Same conclusions are obtained from the study of
the mode shapes corresponding to the L-shaped frame loaded on all sections of piers, with
two di�erences for the x-direction. First, there is no torsional mode. Second, the torsional
component in translational modes is larger due to the position of the steel connectors. These
latter are indeed located di�erently on the left and right piers, as illustrated in Figure II.51.
The transition to a frame where the load only acts on the �anges involves the emergence
of two additional modes in the x-direction. In the y-direction, the third mode is not given
because the peak identi�cation is not possible.
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Figure II.66: Shake table tests on T- or L-shaped frames - Mode shapes of the T-shaped
(left: x-direction ; right: y-direction)
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Figure II.67: Shake table tests on T- or L-shaped frames - Mode shapes of the L-shaped (full
loaded - left: x-direction ; right: y-direction)
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Figure II.68: Shake table tests on T- or L-shaped frames - Mode shapes of the L-shaped
(�anges loaded - left: x-direction ; right: y-direction)
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II.5.3.3 Shake table tests

The seismic response of the specimens can be characterised by the study of di�erent physical
quantities with respect to the actual PGA. The considered quantities are (i) the in-plane
accelerations of the RC slab, (ii) the horizontal drifts of the RC slab and its rotations around
the three axes, (iii) the rotations of the base of the piers around the x- and y-axes and (iv)
the rotations of the piers around z-axis. Another characteristic representative of the seismic
response is the force-displacement curve. Finally, attention is given to the behaviour of the
RC lintel and, in the case of the specimen with L-shaped piers, to the behaviour of the
connection of the sections of the piers.

Physical quantities with respect to the actual PGA

(i) Figure II.69 plots the maximum accelerations in both horizontal directions. Each graph
corresponds to a speci�c specimen and loading case: results for the T-shaped frame are
plotted at the top and those for the L-shaped frame at the bottom, with the slab resting on
the whole piers (left) and on the �anges only (right). The acceleration is measured at two
di�erent locations in each direction. Considering both devices recording the acceleration in
a same direction, the measured maxima di�er from one point to the other when the PGA
increases.
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Figure II.69: Shake table tests on T- or L-shaped frames - Maximum slab accelerations with
respect to the actual PGA
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Moreover, a less than proportional increase is outlined in the case of the T-shaped spec-
imen. Such a tendency is not observed for the frame with L-shaped piers. A possible reason
is that this specimen is subjected to lower PGA than the T-shaped frame. The acceleration
measured in the direction perpendicular to the shake is signi�cant. This latter is even larger
than the acceleration in the shake direction for the tests along the frame, at the highest
levels .

(ii) Regarding the horizontal drifts of the slab and its rotations, they are given in Figure
II.70. They increase more than proportional with the PGA, regardless of the tested specimen,
load con�guration or test direction. It is worth noticing that the study of the y-rotation is
not available for shakes in the y-direction because of the instrumentation layout. Considering
shakes with a same acceleration level on the T-shaped specimen, it is observed that a shake
in the x-direction involves a drift in this direction which is larger than the drift measured in
the y-direction under an y-shake. This observation is also valid for the frame with L-shaped
piers fully loaded, but not when the slab rests on the �anges only.

(iii) Figure II.71 shows the x- and y-rotations of the base of the piers and compares them
to the x- and y-rotations of the slab. In general, the rotation around the axis perpendicular
to the shake direction increases more than proportionally with respect to the PGA and
di�erences are observed between the sections of the same pier. One of these sections is
subjected to in-plane loading, while the out-of-plane behaviour of the perpendicular section
is activated, explaining the di�erences. The shake direction in�uences the ratio between the
maximum rotations at the base of the piers and at the slab. When the specimens are tested
along the y-direction (frame plane), the rotation at the base is larger than the rotation at the
level of the slab. The opposite is observed when the shake is performed in the x-direction.

(iv) Figure II.72 plots the z-rotation of the slab as well as of the base and top of the
piers. This quantity gives information on the torsional behaviour. It is derived from the
accelerations measured at the di�erent considered levels. There are two values for z-rotation
at the base of the right pier, using either the accelerometers in the x-direction or in the y-
direction. Regarding the T-shaped frame, a shake in the x-direction involves larger rotations
than a shake at the same acceleration level in the y-direction. This di�erence in terms of
load direction is not observed for the frame with L-shaped piers. The loading case however
a�ects the magnitude of the z-rotation. Indeed, larger values are observed when the slab is
only supported by the �anges, under the similar acceleration levels.
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Figure II.70: Shake table tests on T- or L-shaped frames - Maximum slab displacements and
rotations with respect to the actual PGA
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Figure II.71: Shake table tests on T- or L-shaped frames - Maximum rotations at the slab
and at the base of the piers with respect to the actual PGA
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Figure II.72: Shake table tests on T- or L-shaped frames - Maximum z-rotation with respect
to the actual PGA (T-shaped)
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Force-displacement curves

The force-displacement curves are plotted in Figure II.73. The horizontal force and the drift
being not directly measured, we de�ne

Pslab = ma (II.13)

δslab =
dslab − dtable

hslab
(II.14)

where m [kg] is sum of the mass coming from the additional mass and the RC slab and a
[m/s²] is the average acceleration measured at level of the slab. The horizontal displacements
dslab [m] and dtable [m] are obtained by integration of the acceleration measured on the slab
and the shake table respectively. Only the measurements in the direction of the shake are
considered. The height hslab [m] is the distance between the base of the specimen and the
slab. Figure II.73 includes the curves corresponding to the last three shakes for the three
specimens (left, middle and right) and for both directions of test (top and bottom). For
each direction of shake, the same type of line is used when the acceleration level is similar,
i.e. when the target PGA is the same. As already observed in Section II.4, the Pslab − δslab
curve exhibits a plateau in some cases. It is clearly located around 11 kN and 15 kN for the
T-shaped frame, for a x- and y-shake respectively. Regarding the L-shaped frame, a plateau
is initiated under the �rst loading con�guration subjected to x-shake at about -10 kN and
under the second load case between ±7.5-10 kN for y-shake.

Figure II.73: Shake table tests on T- or L-shaped frames - P − δ curves
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Behaviour of the lintel

The behaviour of the lintel is studied by its vertical and horizontal displacements with respect
to both piers.

Figure II.74 shows the relative horizontal displacements as a function of the drift of the
slab in the shake direction, for the T-shaped specimen shaken in the y-direction (S03). An
opening between the lintel and the piers can be observed, ranging from 1 to 2 mm. The
relative displacement related to one pier shows an asymmetry between the positive and
negative drift of the slab. A possible explanation is that the lintel goes against the right pier
when the drift is negative, limiting the sliding. This latter is not zero because previous runs
have certainly created a gap. This restraint is not activated for the right side when the slab
drift is positive, leading to larger slides.

Figures II.75 to II.77 give the maximum relative displacement with respect to the PGA.
The sliding can reach 10 mm in the case of the T-shaped frame (Figure II.75). It is also more
important when the specimens are tested in the y-direction, expect for the con�guration of
L-shaped frame loaded on its �anges only (Figure II.77). In this case, there is no steel
connectors on the RC lintel and this latter behaves almost independently of the masonry
frame. These results lead to the conclusion that the coupling of the piers is only e�ective
thanks to the slab.

Connection of the sections of the URM piers

The vertical relative displacement between the sections of piers is plotted in Figures II.78
and II.79. It is only studied for the L-shaped specimen. The results in these �gures show
rather limited displacement with a maximum around 0.2 mm. This value corresponds to
micro-cracks, leading to the conclusion of an e�cient connection method for both piers.
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Figure II.74: Shake table tests on T- or L-shaped frames - Slab horizontal displacement with
respect to the relative displacement of the lintel to the piers (S03 - T-shaped)
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Figure II.75: Shake table tests on T- or L-shaped frames - Maximum relative displacements
of the lintel with respect to the actual PGA (T-shaped)
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Figure II.76: Shake table tests on T- or L-shaped frames - Maximum relative displacements
of the lintel with respect to the actual PGA (L-shaped - full loaded)
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Figure II.77: Shake table tests on T- or L-shaped frames - Maximum relative displacements
of the lintel with respect to the actual PGA (L-shaped - �anges loaded)
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Figure II.78: Shake table tests on T- or L-shaped frames - Maximum relative z-displacement
at the intersection with respect to the actual PGA (L-shaped - full loaded)

PGA [m/s²]
0 0.5 1 1.5 2 2.5 3

D
is

pl
ac

em
en

t [
m

]

10-4

0

0.5

1

1.5

2

2.5
Left pier (bot - y-shake)
Left pier (bot - x-shake)
Left pier (mid - y-shake)
Left pier (mid - x-shake)
Left pier (top - y-shake)
Left pier (top - x-shake)
Right pier (bot - y-shake)
Right pier (bot - x-shake)
Right pier (mid - y-shake)
Right pier (mid - x-shake)
Right pier (top - y-shake)
Right pier (top - x-shake)

Figure II.79: Shake table tests on T- or L-shaped frames - Maximum relative z-displacement
at the intersection with respect to the actual PGA (L-shaped - �anges loaded)
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II.5.4 Interpretation and discussion

II.5.4.1 Pushover curves

Based on the force-displacement curves (Figure II.73), the methodology described in II.4.4.5
is followed to obtain equivalent push-over curves. These latter are plotted in Figure II.80.
The negative (positive) direction corresponds to combinations of the minimum (maximum)
drift and maximum (minimum) force measured during shakes with an increasing acceleration
level in one direction on the same specimen. The push-over curves are only complete for
con�gurations for which collapse happens, the behaviour of the others being not fully devel-
oped. Di�erences exist between the positive and negative directions and can be explained
by the geometry of the specimens.
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Figure II.80: Push-over curves in the negative (left) and positive (right) directions

Figure II.80 also includes bilinear curves. They are calculated for complete push-over
curves in order to have relevant conclusions given the applied procedure. It is also done for
the x-shakes on T-shaped frame in the negative direction because the plateau is well de�ned.
The parameters of the bilinear curves are given in Table II.19.

Table II.19: Parameters of the bilinear curves

Specimen Dir.
Initial sti�ness kini[N/m] Yield drift dy[%] ductility µ[-]

Negative Positive Negative Positive Negative Positive

T-shaped
y 4.036 · 104 7.877 · 106 0.472 0.231 3.367 6.443

x 4.001 · 104 / 0.288 / 4.744 /

L-shaped (�anges)
y 3.890 · 104 4.539 · 104 0.449 0.433 1.925 2.420

x / / / / / /

A relative di�erence of 48.8 % in terms of sti�ness is observed between the negative
and positive directions for y-shakes on the T-shaped frame. This quantity is higher in the
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positive direction due to the position of the �ange of the right pier. This latter is e�ectively
over-compressed when the drift is positive. Regarding the L-shaped with the �anges loaded,
the sti�ness in higher (+14.3 %) in the positive direction. The specimen being symmetric,
this di�erence either comes from the position of the steel connectors or from the connection
method. In terms of yield drifts, the in�uence of the position of the �ange is of �rst order. A
signi�cant di�erence between both directions exists for the T-shaped frame (51.1 %), while
the drift is rather similar for the L-shaped frame (3.6 %).

II.5.4.2 Rocking behaviour

Tests at the highest acceleration levels highlight a general rocking behaviour. The observa-
tions and experimental results given in the previous section bring elements that con�rm this
behaviour.

First, the presence of horizontal cracks and their concentration at the base of the piers
reveal the uplift of these latter.

Then, the more than proportional increase of the horizontal drift/rotation of the slab
with respect to the actual PGA translates a nonlinear behaviour (Figure II.70). This is
con�rmed by the less than proportional increase of the slab accelerations (Figure II.69).
These nonlinearities are supposed to be involved by a rocking behaviour because the rotations
at the base of the piers become rapidly signi�cant (Figure II.71). This is demonstrated by
the comparison between the bottom and slab rotations. On the one hand, the rotations of
the base of the piers are larger than the rotation of the slab when comparing the x-rotations
under y-shakes. In this case, the specimen can be represented as 3 blocks where two are
vertically oriented, i.e. the piers, and the third one is horizontal and supported by the �rst
two, i.e. the slab. In a �rst approximation, they are assumed as rigid. Due to the presence
of steel connectors, the specimen is not symmetric. When the piers rock, their rotations
di�er from each other and create a rotation of the slab. This latter is zero if the uplifts of
the contact points between the piers and the slab are the same. Otherwise, the slab rotates
and the magnitude increases with the di�erence of uplifts. This explains why the rotation
of the slab is lower than one or both rotations of the piers. On the other hand, the study
of the y-rotation when x-shakes are performed shows that the rotation of the slab is larger,
except for the test S08 on the L-shaped frame with the whole piers loaded. In this case,
the left and right piers are considered separately and the specimen can be modelled as two
rocking stacked blocks.

Finally, the development of plateaus with a bounded force in the Pslab− δslab curves sup-
port the conclusion of a general rocking behaviour. As explained in Section II.4, the plateau
corresponds to the force required to overturn the specimen. Once it is reached, the specimen
can rock and a higher acceleration level only leads to larger horizontal displacements.

It is also worth noticing that the rotations of the �anges are generally larger than those
of the shear wall. The restraint brought by the steel connectors is less important for these
sections of the piers.

II.5.4.3 In�uence of the loading case

The frame with L-shaped piers is subjected to shake table tests with two di�erent loading
con�gurations. In the �rst one, the slab with the additional distributed 5-ton steel mass is
placed on the whole section of the piers. The second one partially loads the L-shaped piers
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and there are steel connectors between the slab and the �anges only. An important point is
that the seismic tests are carried out on the same specimen, the second con�guration being
thenceforth predamaged. The transition between loading con�gurations is characterised by
white noise tests in both horizontal directions before (WN 17/18) and after (WN 19/20) the
change.

In terms of natural frequencies, the in�uence of the loading case is obvious in Figure
II.65. In the frame plane (y-direction), the magnitude of the natural frequencies is reduced.
In the perpendicular direction (x-direction), two additional natural frequencies appear. The
fundamental frequency located around 4 Hz seems to be split in two, a �rst one lower in
magnitude and a second one higher. The second natural frequency is reduced by 44.1 %. A
last frequency is present and is slightly higher than 10 Hz.

This analysis of the mode shapes in Figures II.67 and II.68 shows that the shapes are the
same in the y-direction. In the perpendicular direction, the �rst mode (translational mode)
of the full loaded con�guration is divided in two modes with clear di�erences. The �rst mode
corresponding to the lower frequency exhibits transverse deformation (y-direction), while the
second mode related to the higher frequency is similar to the �rst mode of the full loaded
con�guration. Due to the shakes on the previous loading case, the specimen is possibly no
more aligned with the axes of the shake table. The deformation in the y-direction is more
visible after the change of loading case because the section of the piers oriented in the y-
direction is not compressed anymore and, hence, its contribution to the transverse stability
is heavily decreased. This explains why there is one peak in the �rst loading case and two
in the second one. Regarding the frequency around 10 Hz, the mode shape clearly identi�es
a torsional mode with a translational contribution. This mode is not observed in the case
of the slab resting on the whole piers because of the position of steel connectors apparently.
There are 4 connectors which give an important restraint and avoid this deformation mode.
After the change, it remains 2 connectors only and torsion can occur. Torsion is even more
important due to di�erences between the right and left piers. The connector is indeed placed
closer to the intersection in the case of the right pier. For both loading con�gurations, the
peak with the highest frequency corresponds to a translational deformation with some torsion
and the RC slab in phase opposition.

Another in�uence of the loading case concerns the maximum measured drift and rotation
of the slab in the shake direction. For both directions, they are larger when the slab is
supported by the �anges only. Such an observation is expected when testing the specimen
in y-direction given that the loaded walls are subjected to an out-of-plane acceleration. In
the x-direction, there are two possible reasons. First, the absence of connectors on the shear
walls reduces the restraint because the support length is shorter. Second, the shear walls
being uncompressed, their contribution to the sti�ness is insigni�cant and this loss is not
balanced by the increase of the sti�ness of the �anges coming from the over-compression. In
order to assess the gain/loss of each contribution, additional investigations on the e�ects of
the compression level on the sti�ness of masonry walls under horizontal shear is required.

A last consequence of the change of load distribution is the modi�cation of seismic be-
haviour. When subjected to di�erent loading cases, the L-shaped frame displays a plateau
at di�erent levels of shear (Figure II.73). This level is higher in the x-direction for the sec-
ond load con�guration. The opposite is observed in the y-direction. It is well known that
masonry can sustain higher horizontal shear when the compression level is increased. The
observations of this campaign lead to the same conclusion.
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II.5.4.4 Torsion e�ects

Figure II.72 provides information about the rotation around the vertical axis. This rotation is
due to the torsion of the specimen. Regarding the T-shaped frame, torsion is more important
when the seismic action is perpendicular to the frame plane. Indeed, the torsion centre of
the specimen di�ers from the gravity centre of the slab. The di�erence comes from the
asymmetry of the specimen because of the orientation of the piers. The bending inertia of
the left pier is larger along the x-direction and its gravity centre is closer to the one of the
slab. Moreover, the torsion centre and the centroid of the right pier are di�erent in this
direction. Shake table tests in the frame plane also develop torsion because of the distance
between the centroid of the slab and the torsion centre of the piers, which is approximately
15 cm. Concerning the L-shaped frame, torsion is only expected in y-direction for the same
reasons than the other specimen. In the perpendicular direction, the specimen is supposed
to be symmetric, but the position of the steel connectors involve torsional e�ects.

These considerations explain the results plotted in Figure II.72. For instance, the z-
rotation of the right pier is larger than the one of the left pier when considering the T-
shaped frame subjected to a x-shake. On the contrary, the torsion is more important for
the left pier under y-shakes. The rotation is lower at the base of the pier because of the
friction between the pier and its basement. In terms of magnitude, the results related to
the di�erent specimens and loading cases can be compared by considering similar PGA. For
x-shake, maximum z-rotations are similar for the T-shaped frame (S06) and the L-shaped
frame with the slab supported by the �anges only (S08). The rotation is divided by two
when the slab rests on the whole piers of the L-shaped frame (S08). Under y-shakes, the
rotation is larger for L-shaped frame in general and the highest magnitude is observed when
the piers are partially loaded.

The rotation around the vertical axis can be either calculated with the devices measuring
the displacement/acceleration in the x- or y-direction. Di�erences are however observed
between the values obtained. Investigations on these di�erences show that the distance
between sensors oriented in the same direction is not the same from one direction to an
other. This in�uences the results because the out-of-plane deformability of walls is included
in the measurements. The longer the distance, the more important the e�ects of the out-of
plane deformability.

II.5.4.5 In�uence of the connection method

Figures II.78 and II.79 summarize the maximum vertical relative displacement between the
sections of both piers in the case of the L-shaped frame. The maximum observed being
around 0.2 mm, both methods involve a rigid connection of perpendicular walls. An impor-
tant di�erence is however observed in the view of the collapse mechanism. Indeed, the pier
with an alternated masonwork fails at its intersection. It seems that the shear wall stabs the
�ange. The other pier with the �ange glued to the shear wall does not present any damages
at the connection. A possible explanation is that the contact length between the sections of
the two piers is shorter in the case of the alternated masonwork. Due to the type of head
joints, this latter is e�ectively divided by two in comparison to the continuous vertical glued
joint. This reduced length leads to a lower capacity to transfer the shear from one section to
another. The continuous vertical glued joint is therefore a better connection method. This
conclusion is only valid for the considered testing con�guration.
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II.6 Conclusions

This chapter is focused on a set of experimental campaigns aiming at improving the un-
derstanding of the seismic behaviour of a particular type of load-bearing URM structures
including soundproo�ng rubbers layers. The studied masonry consists in clay blocks bonded
with thin bed-layered glued joints and empty head joints, using a tongue-and-groove system
for thermal and e�ciency purposes. The speci�c detailing has been developed by masonry
producers to face the increasing demand in terms of building physics performances. Such
an innovative solution adds complexity to the seismic behaviour of masonry structures. A
total of 14 specimens have been tested. The campaigns implement static-cyclic tests with
controlled horizontal displacement or shake table tests at increasing acceleration levels. In
both cases, simple walls are �rst tested as reference. They cover three di�erent lengths and
two di�erent heights. Their response are then compared to specimens of the same global
dimensions, but with speci�c details. These latter are either the presence of acoustic devices
at the bottom and top of the walls, the existence of a door opening created by a reinforced
concrete lintel or the connection to a perpendicular wall.

First, static-cyclic and dynamic tests on simple walls including rubber layers highlight
signi�cant di�erences in the behaviour when the soundproo�ng devices are present. In static
conditions, the compression level applied to the walls has to be reduced due to the interac-
tion between rubber and masonry. The lateral sti�ness of the specimens is also in�uenced
negatively by the acoustic devices. These two consequences induce larger horizontal dis-
placements and a lower strength capacity. The energy dissipation is however improved in
presence of these devices. Similar conclusions arise from the shake table tests. The fun-
damental frequency is reduced by one third and white noise tests performed between each
seismic shake show a higher frequency drop when there is rubber. The progressive damaging
of walls observed during the test sequence is therefore hastened.

Second, a door opening requires the design of a lintel with a su�cient support length
to avoid a premature and local failure. A 0.45 m long support was enough for the tested
con�guration. An opening leads to a reduction of the strength capacity, but experimental
results outline the importance of the contribution of the spandrel to the global strength.
This horizontal element allows the consideration of a frame e�ect, enhancing the behaviour
of separate piers.

Third, the compression level a�ects not only the strength capacity, but also the sti�-
ness of masonry walls. Static-cyclic tests on identical T-shaped walls subjected to di�erent
compression levels lead to the conclusion that the more compressed the wall, the sti�er and
stronger. White noise tests on the L-shaped frame carried out before and after the change
of loading con�guration gives similar conclusions.

Fourth, the contribution of a wall perpendicular to the seismic action can be signi�cant.
The only condition is the necessity to ensure a proper connection between the di�erent
sections. The bene�ts are larger when the additional wall is over-compressed, but positive
e�ects are observed in both situations.

Regarding the shake table tests, a general rocking behaviour is observed for the highest
acceleration levels. In the case of simple walls, this allows the specimens to withstand
ground motion up to three times the amplitude forecast by an equivalent static design
method. This opens clear perspectives for accounting for the favourable dynamic e�ects
in the design procedure. Soundproo�ng devices even enhance this e�ciency thanks to a
better dissipation of the seismic energy. This conclusion should however be mitigated in
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the context of the design of entire buildings because of larger associated displacements.
Moreover, it is necessary to cope with perpendicular elements for which torsional e�ects and
improper connection can be detrimental.

In the perspective of modelling the masonry structural elements with equivalent non-
linear isotropic beam elements, the sequence for static-cyclic tests gives the possibility to
determine equivalent mechanical properties. Indeed, the equivalent elastic modulus is as-
sessed thanks the compression phase of the specimens and the static-cyclic phase provides
the magnitude of the equivalent shear modulus. Such a methodology is not applicable to
the shake table tests because the identi�cation of the dynamic properties of walls does not
allow to distinguish between the shear and bending contributions to the sti�ness.
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III.1 Introduction

The determination of the mechanical properties of masonry elements is an intricate topic
since these structures combine di�erent materials which are bonded together in many di�er-
ent ways. The current standards propose procedures to calculate, for instance, the elastic
modulus (EN 1052-1). When there is no relevant data, they also recommend values depend-
ing on the compressive strength.

In the previous chapter, the seismic behaviour of load-bearing clay URM sub-structures
has been investigated in static-cyclic and dynamic conditions. The preliminary assessment
design included the characterisation of the masonry according to the rules of EN 1052-1, but
only for the compressive strength. Nevertheless, the testing procedure and the instrumenta-
tion allowed the calculation of equivalent mechanical properties in the case of static-cyclic
tests. Indeed, the compression phase provided information about the equivalent elastic mod-
ulus. The bilinearisation of the push-over curves deduced from the force-displacements curves
was then used to calibrate the equivalent shear modulus, assuming the same Young's modu-
lus in the normal and lateral directions. The elastic and shear moduli are called equivalent
because the masonry walls were modelled as a beam made of a homogeneous and isotropic
material. Regarding the shake table tests, records of the loading of the specimens with the
additional mass gave noisy signals. The compression phase is therefore unusable to estimate
the masonry equivalent elastic modulus and the procedure followed for static-cyclic tests
cannot be applied.

This chapter focuses on the determination of equivalent mechanical properties for the
masonry simple walls subjected to shake table tests. It is the �rst necessary step in the per-
spective of modelling masonry structures at the macro-scale with equivalent beam elements
or equivalent frames (see Chapter IV). The proposed methodology is based on the results
of the dynamic characterisation of the specimens between each shake. White noise tests ef-
fectively led to the estimation of the natural frequencies of the walls. The mass distribution
being known, these latter allow the assessment of the sti�ness of the walls and, hence, of
their equivalent mechanical properties since these physical quantities are connected. This
connection is achieved thanks to the study of transverse vibrations of beams.

Transverse vibrations of beams have been extensively studied for a few centuries. This
interest has led to a huge number of research works. The problem is still investigated today
given its large range of applications and for two other reasons. On the one hand, several
assumptions may be formulated to project the most general equations of the Theory of
Elasticity [120] onto beam, rod or elastica models. Among available beam theories, the well-
known model proposed by Bernoulli and Euler relies on the importance of the bending e�ect
and results in acceptable approximations for a number of engineering problems. Nevertheless,
the model is inaccurate for the higher modes and non-slender beams. Improvements were
then introduced by Lord Rayleigh (1877) [118] and the shear model, thanks to the integration
of the rotary inertia and the shear distortion e�ects of the cross-section respectively. Finally,
Timoshenko proposed a beam theory combining all these e�ects and giving a more adequate
solution to the problems of higher modes and non-slender beams [119, 121]. On the other
hand, the solution of these equations depends on the boundary conditions. The most classical
ones are the �free-free�, �clamped-clamped�, �hinged-hinged� or �clamped-free� ends, but
other possibilities exist, as for instance a partially clamped end. There are therefore as
many solutions as combinations of theories and boundary conditions.

Solving the di�erential equations of motion analytically requires the development of the
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so-called frequency equation. Han et al. detailed these developments [41] for the four
abovementioned models and for the classical boundary conditions. Other authors studied
this problem with some speci�c details and with the view of practical applications. Low
[65, 64] focused on the frequency analysis of an Euler-Bernoulli beam bearing a concentrated
mass at an arbitrary location and developed a modi�ed Dunkerley formula to approximate
the exact solution with less computational time. Because of its increasing use as robot arms,
machines or structures, Bruch & Mitchell [14], Oguamanam [88], Salarieh & Gorashi [109]
and Ansari et al. [4] investigated the free vibrations of an Euler-Bernoulli or Timoshenko
cantilever beam with a rigid tip in the perspective of studying the behaviour of a �exible
member. More recent contributions dealt with non-homogeneous or cracked beams [60, 50].
The in�uence of the support conditions was also considered, as for example Timoshenko
beams on Pasternak foundations [15] and beams on elastic end supports [61]. A particular
attention to forced vibrations of Timoshenko beams was given by Majkut [72].

Beside the study of transversally vibrating beams, a similar theoretical approach has
been used to examine the stability of beams. Several research programs have been carried
out over the past twenty years [35, 33], with some focused on shear beams [129], investigating
the consequences of variable sections [84] or of an elastically restrained base [43].

In this chapter, the Timoshenko beam theory is used and the boundary conditions are
adapted to reproduce the experimental con�gurations described in Section II.4. The choice
of the Timoshenko beam theory is involved by the geometry of the tested masonry walls given
their signi�cant shear deformability. A comparison with the Euler-Bernoulli beam theory is
however performed. Regarding the boundary conditions, two di�erent models are required
to catch the speci�cities of the specimens. The �rst model is a classical cantilever beam with
an additional mass located at the free end (Figure III.1 (b)), corresponding to walls without
soundproo�ng layers. The second model has two particularities due to the rubber devices:
(i) the base end is elastically restrained and (ii) the additional mass is not rigidly connected
at the free end (see Figure III.1 (c)). The identi�cation of equivalent mechanical properties
for the masonry structural element and rubber is carried out thanks to the establishment of
the dimensionless frequency equation of these two models. In addition to this, the in�uence
of the additional mass is investigated through di�erent parameters (mass, rotary inertia,
etc.) and the importance of the di�erent terms of the frequency equations is studied.
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Figure III.1: General sketch of a specimen (a) and model for beam with clamped base and
rigidly connected mass or (b) with partially clamped base and elastically connected mass
(c).
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III.2 Model description using Timoshenko beam theory

III.2.1 Equations of motion

The Timoshenko beam theory includes bending, shear distortion and rotary inertia e�ects.
Two space- and time-dependent �elds describe the behaviour of the beam, namely the trans-
verse displacement v (x, t) and the angle of rotation due to bending α (x, t). Two governing
di�erential equations are derived from Hamilton's variational principle

ρA
∂2v

∂t2
− k′GA

(
∂2v

∂x2
− ∂α

∂x

)
= f (x, t) (III.1)

ρ I
∂2α

∂t2
− E I ∂

2α

∂x2
− k′GA

(
∂v

∂x
− α

)
= 0 (III.2)

where ρ is the density of the beam, A and I are its cross-section area and bending inertia, k′

is a shape factor, E and G represent the elastic and shear moduli of the beam respectively
and f (x, t) is the transverse applied force per unit length. This set of equations can be
nondimensionalized by introducing

x? = hw and t? =
1

ω1

= h2w

√
ρA

E I
(III.3)

as a reference length (the length of the beam, i.e. the height of the wall in the following
application) and time (the traveling time of a wave in bending along the beam), respectively.
The space and time parameters are therefore normalized as

x∗ =
x

x?
; t∗ =

t

t?
(III.4)

while the transverse displacement of the beam is scaled as v∗ = v
x?
. Assuming no trans-

verse force per unit length and a linear elastic, isotropic and homogeneous beam with a
constant cross-section, the equations of motion III.1 and III.2 can be decoupled. With the
dimensionless coordinates, they read
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+
∂2v∗
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b

∂4v∗

∂t∗4
= 0, (III.5)
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∂4α
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with the dimensionless groups

Ω∗a =
I

Ah2w

(
1 +

E

k′G

)
; Ω∗

2

b =

(
I

Ah2w

)2
E

k′G
. (III.7)

As the forms of both di�erential equations III.5 and III.6 are the same, the topology of
the unknown �elds themselves are the same. These latter can be expressed in the frequency
domain by setting v∗(x∗, t∗) = φ(x∗)ejω

∗t∗ and α(x∗, t∗) = ψ(x∗)ejω
∗t∗ , with ω∗ = ω

ω1
the

dimensionless circular frequency and j the unit complex number. This translates the time
synchronization of the transverse displacement and of the angle of rotation due to bending
[41, 72]. Plugging this ansatz into eqs. III.5 and III.6 yields
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[
φ
′′′′

+ Ω∗aω
∗2φ

′′ − ω∗2φ+ Ω∗
2

b ω
∗4φ
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where the prime symbol indicates derivatives with respect to x∗. These 4th order homoge-
neous ODEs result in the general solution for the mode shapes φ(x∗) and ψ(x∗)

φ = K1e
z∗1x
∗

+K2e
z∗2x
∗

+K3e
z∗3x
∗

+K4e
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∗

(III.10)
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(III.11)

where
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are the roots of the characteristic polynomial. The variables a∗, b∗ and b̃∗ are the dimen-
sionless wave numbers.

Finally, Eqs. III.10 and III.11 can be turned into trigonometric or hyperbolic expressions.
Two pairs of solutions are derived from Eqs. III.10 and III.11 since z∗3 and z

∗
4 are either real

or imaginary, depending on the circular frequency ω∗ with respect to the critical frequency
ω∗c = Ω∗

−1

b . When the circular frequency is smaller than the critical frequency (ω∗Ω∗b ≤ 1),
the spatial (wave) solutions are expressed by

φ = C1 sin a∗x∗ + C2 cos a∗x∗ + C3 sinh b∗x∗ + C4 cosh b∗x∗, (III.14)

ψ = D1 sin a∗x∗ +D2 cos a∗x∗ +D3 sinh b∗x∗ +D4 cosh b∗x∗. (III.15)

On the contrary, when the circular frequency is larger than the critical frequency (ωΩb ≥ 1),
the solutions read

φ = C̃1 sin a∗x∗ + C̃2 cos a∗x∗ + C̃3 sin b̃∗x∗ + C̃4 cos b̃∗x∗, (III.16)

ψ = D̃1 sin a∗x∗ + D̃2 cos ax∗∗ + D̃3 sin b̃∗x∗ + D̃4 cos b̃∗x∗. (III.17)

The parameters C1, C2, C3, C4 and D1, D2, D3, D4 (resp. C̃1,· · · , C̃4 and D̃1,· · · , D̃4) in
Eqs. III.14 and III.15 (resp. Eqs. III.16 and III.17) are eight coe�cients to be determined
to satisfy the boundary conditions. These coe�cients can however be reduced to four as
explained in [41], observing that they are related by

D1 = −ϕ∗aC2 D2 = ϕ∗aC1

D3 = ϕ∗bC4 D4 = ϕ∗bC3
(III.18)
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and

D̃1 = −ϕ̃∗aC̃2 D̃2 = ϕ̃∗aC̃1

D̃3 = −ϕ̃∗bC̃4 D̃4 = ϕ̃∗bC̃3
(III.19)
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2
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2
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and λ = E

k′G
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k′
.

Once the boundary conditions are speci�ed, there are four relations between the four
unknown coe�cients C1,· · · , C4 (C̃1,· · · , C̃4 respectively, if ω∗Ω∗b ≥ 1) which can be written
as a matrix. The frequency equation is then obtained by setting the determinant of this
matrix to zero, avoiding the trivial solution corresponding to zero coe�cients, and revealing
therefore the natural frequencies of the considered problem.

III.2.2 Models and boundary conditions

Two models of a cantilever beam are considered and include speci�c details. The �rst model
has an additional mass rigidly connected at the free end of the beam, as shown in Figure III.1
(b). The second model is sketched in Figure III.1 (c) and di�ers from the �rst one due to a
partially clamped bottom end and to an elastic connection of the additional mass at the free
end. In the applications considered below, these di�erences are the consequences of �exible
elements located at the beam ends and they are modelled by rotational and translational
springs. In both models, the additional mass weighs m [kg] and possesses a rotary inertia
Icin [kg.m2]. Moreover, the centroid of the mass is at a distance hb [m] from the tip end of
the beam. The springs de�ning the partially clamped end are characterised by sti�nesses in
rotation Kr,b and in translation Kt,b, while Kr,t and Kt,t are the sti�nesses in rotation and in
translation of the springs representing the �exible connection of the additional mass at the
free end. These parameters are scaled in the same manner as above, leading to the following
dimensionless quantities m∗ =

mω2
1h

3
w

EI
, I∗cin =

Icinω
2
1hw

EI
, h∗b = hb

hw
, K∗r,b = Kr,b

h3m
EI
, K∗t,b = Kt,b

hm
EI
,

K∗r,t = Kr,t
h3m
EI

and K∗t,t = Kt,t
hm
EI
.

Details of the beam top with the additional mass are depicted in Figure III.2, showing
the contributions of the bending (blue) and shear (red) e�ects in terms of angle of rotations.
The usual simpli�cation for the shear deformation is given in Figure III.2 (b). Under bending
and shear e�ects, the centroid of the additional mass is subjected to a rotation α with respect
to the x-axis. The angle γ, representing the shear e�ects, only increases the variation of the
transverse displacement along the height. This observation will be useful for the formulations
of the bending moment and shear force.

αγ
     ∂v*/∂x*

dx*

v*

GC

(a)

αγ

∂v*/∂x*

dx*

v*

GC

α

(b)

Figure III.2: Details of the model free end.
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To be consistent with the Timoshenko beam theory described above, a homogeneous
beam with linear and inde�nitely elastic material is assumed and the cross-section of the
beam is doubly symmetric. The consequences of the speci�c details are practically translated
by modifying the boundary conditions of the classical cantilever beam. These latter are
here expressed in a dimensionless form for the clamped (x∗ = 0) and free (x∗ = 1) ends
respectively,

v∗ = 0 ; α = 0 at x∗ = 0 (III.20)

M∗ = −α′ = 0 ; V ∗ = k′G∗A∗
(
v∗
′ − α

)
= 0 at x∗ = 1 (III.21)

with G∗ = Gh4w/EI, A
∗ = A/h2w and M∗ (x∗, t∗) and V ∗ (x∗, t∗) representing the dimension-

less bending moment and the shear force, de�ned as

M∗ =
M

M?
and V ∗ =

V

V ?
(III.22)

where M (x, t) and V (x, t) are the bending moment and the shear force and

M? =
EI

hw
and V ? =

EI

h2w
(III.23)

First model

In the �rst model, the additional mass only in�uences the conditions at the free end (x∗ = 1),
involving non-zero bending moment and shear force

M∗ = −α′ = m∗h∗b (v̈∗ + h∗bα̈) + I∗cinα̈

V ∗ = k′G∗A∗
(
v∗
′ − α

)
= −m∗

[
v̈∗ + h∗bα̈− h∗b v̈∗

′ − h∗2b α̈′
]

+ I∗cinα̈
′ (III.24)

The magnitude m∗ and inertia I∗cin of the mass as well as the distance h∗b are identi�ed as
the three main parameters characterising the in�uence of the additional mass. The prime
and dot symbol indicate derivatives with respect to x∗ and t∗ respectively.

Second model

In addition to the mass, the presence of �exible devices in the second model a�ects the
boundary conditions at both ends. On the one hand, the beam base (x∗ = 0) cannot be
considered as clamped anymore. A rotation and a transverse displacement are allowed and
their magnitude depends on the sti�ness of the springs

v∗ =
V ∗

K∗t,b
=
k′G∗A∗

K∗t,b

(
v∗
′ − α

)
; α = −M

∗

K∗r,b
=

α′

K∗r,b
. (III.25)

On the other hand, a relative rotation 4α and a relative displacement 4v∗ are possible
between the top of the beam and the base of the additional mass due to the elastic connection.
These contributions have to be taken into account and lead to the boundary conditions at
the free end (x∗ = 1)
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M∗ = −α′

= m∗h∗b [v̈∗ +4v̈∗ + h∗b (α̈ +4α̈)] + I∗cin (α̈ +4α̈)

= m∗h∗b (v̈∗ + h∗bα̈) +m∗h∗b

[
k′G∗A∗

K∗t,t

(
v̈∗
′ − α̈

)
+
h∗bα̈

′

K∗r,t

]
+ I∗cin

(
α̈ +

α̈′

K∗r,t

)

V ∗ = k′G∗A∗
(
v∗
′ − α

)
= −m∗ [v̈∗ +4v̈∗ + h∗b (α̈ +4α̈)] +m∗h∗b

(
v̈∗
′
+4v̈∗′ + h∗bα̈

′ + h∗b4α̈′
)

+ I∗cin (α̈′ +4α̈′)

= −m∗ (v̈∗ + h∗bα̈)−m∗
[
k′G∗A∗

K∗t,t

(
v̈∗
′ − α̈

)
+
h∗bα̈

′

K∗r,t

]
+m∗h∗b

(
v̈∗
′
+ h∗bα̈

′
)

(III.26)

+m∗h∗b

[
k′G∗A∗

K∗t,t

(
v̈∗
′′ − α̈′

)
+
h∗bα̈

′′

K∗r,t

]
+ I∗cin

(
α̈′ +

α̈′′

K∗r,t

)
Equations III.24 to III.26 neglect the second order e�ects and, therefore, the in�uence of

the gravity is not considered.

III.3 Frequency equations

The frequency equation is established for the case of a circular frequency smaller than the
critical frequency (ω∗Ω∗b ≤ 1). The equation for a circular frequency greater than the critical
one can be obtained by replacing b∗ with jb̃∗.

III.3.1 Frequency equation of the �rst model

Equations III.20 and III.24 provide some relations between the four unknown coe�cients,
see Eq. III.14. These relations are written in the matrix form

Ac :=


0 1 0 1
ϕ∗a 0 ϕ∗b 0
A31 A32 A33 A34

A41 A42 A43 A44




C1

C2

C3

C4

 = 0 (III.27)

where c is the vector gathering the integration constants of the mode shapes φ(x) and ψ(x).
In matrix A, we have introduced

A31 =
(
a∗ϕ∗a + P̄

)
sin a∗ + ϕ∗aQ̄ cos a∗

A32 =
(
a∗ϕ∗a + P̄

)
cos a∗ − ϕ∗aQ̄ sin a∗

A33 = −
(
b∗ϕ∗b − P̄

)
sinh b∗ + ϕ∗bQ̄ cosh b∗ (III.28)

A34 = −
(
b∗ϕ∗b − P̄

)
cosh b∗ + ϕ∗bQ̄ sinh b∗

and
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A41 = (a∗ − ϕ∗a)
(

1 +
P̄

k′G∗A∗

)
cos a∗ −

(
ω∗

2
m∗

k′G∗A∗
+

a∗ϕ∗a
k′G∗A∗

Q̄

)
sin a∗

A42 = − (a∗ − ϕ∗a)
(

1 +
P̄

k′G∗A∗

)
sin a∗ −

(
ω∗

2
m∗

k′G∗A∗
+

a∗ϕ∗a
k′G∗A∗

Q̄

)
cos a∗

A43 = (b∗ − ϕ∗b)
(

1 +
P̄

k′G∗A∗

)
cosh b∗ −

(
ω∗

2
m∗

k′G∗A∗
− b∗ϕ∗b
k′G∗A∗

Q̄

)
sinh b∗ (III.29)

A44 = (b∗ − ϕ∗b)
(

1 +
P̄

k′G∗A∗

)
sinh b∗ −

(
ω∗

2
m∗

k′G∗A∗
− b∗ϕ∗b
k′G∗A∗

Q̄

)
cosh b∗

where

Q̄ = ω∗
2
(
m∗h∗

2

b + I∗cin

)
; P̄ = ω∗

2

m∗h∗b . (III.30)

Setting the determinant of the matrix A to zero leads to the frequency equation. This
equation needs to be solved for ω∗ which lies in a∗, b∗, Q̄ and P̄ . The complete expression is
given in Appendix B in the case ω∗Ω∗b ≤ 1

III.3.2 Frequency equation of the second model

In the second model, based on Eqs. III.25 and III.26, the frequency equation reads

Ac :=


Â11 1 Â13 1

ϕ∗a Â22 ϕ∗b Â24

Â31 Â32 Â33 Â34

Â41 Â42 Â43 Â44




C1

C2

C3

C4

 = 0 (III.31)

where

Â11 = −k
′G∗A∗

K∗t,b
(a∗ − ϕ∗a)

Â13 = −k
′G∗A∗

K∗t,b
(b∗ − ϕ∗b)

Â22 =
a∗ϕ∗a
K∗r,b

(III.32)

Â24 = −b
∗ϕ∗b
K∗r,b

and
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Â31 = A31 −
a∗ϕ∗a
K∗r,t

Q̄ sin a∗ +
k′G∗A∗

K∗t,t
(a∗ − ϕ∗a) P̄ cos a∗

Â32 = A32 −
a∗ϕ∗a
K∗r,t

Q̄ cos a∗ − k′G∗A∗

K∗t,t
(a∗ − ϕ∗a) P̄ sin a∗

Â33 = A33 +
b∗ϕ∗b
K∗r,t

Q̄ sinh b∗ +
k′G∗A∗

K∗t,t
(b∗ − ϕ∗b) P̄ cosh b∗

Â34 = A34 +
b∗ϕ∗b
K∗r,t

Q̄ cosh b∗ +
k′G∗A∗

K∗t,t
(b∗ − ϕ∗b) P̄ sinh b∗ (III.33)

Â41 = A41 −
a∗ϕ∗a

k′G∗A∗K∗r,t

[
a∗Q̄ cos a∗ − P̄ sin a∗

]
− (a∗ − ϕ∗a)

K∗t,t

[
ω∗

2

m∗ cos a∗ + a∗P̄ sin a∗
]

Â42 = A42 +
a∗ϕ∗a

k′G∗A∗K∗r,t

[
a∗Q̄ sin a∗ + P̄ cos a∗

]
+

(a∗ − ϕ∗a)
K∗t,t

[
ω∗

2

m∗ sin a∗ − a∗P̄ cos a∗
]

Â43 = A43 +
b∗ϕ∗b

k′G∗A∗K∗r,t

[
b∗Q̄ cosh b∗ − P̄ sinh b∗

]
+

(b∗ − ϕ∗b)
K∗t,t

[
ω∗

2

m∗ cosh b∗ + b∗P̄ sinh b∗
]

Â44 = A44 +
b∗ϕ∗b

k′G∗A∗K∗r,t

[
b∗Q̄ sinh b∗ − P̄ cosh b∗

]
+

(b∗ − ϕ∗b)
K∗t,t

[
ω∗

2

m∗ sinh b∗ + b∗P̄ cosh b∗
]

The frequency equation is expressed in Appendix B in the case ω∗Ω∗b ≤ 1. Notice this
second case degenerates into the �rst model as the sti�nesses K∗t,t, K

∗
r,t, K

∗
t,b, K

∗
r,b tend to

in�nity.

III.4 Parametric study of beam models and mode shapes

The coe�cients of the matrix A, leading to the expression of the frequency equation, high-
light the importance of the geometrical and mechanical properties of the beam through the
dimensionless groups Ω∗a and Ω∗b . Additional parameters also in�uence this equation due to
the presence of an additional mass at the top, such as the mass m∗ and its rotary inertia I∗cin,
as well as the distance h∗b from the beam free end to the centroid of the mass. The second
model has four extra parameters. These are the sti�nesses in rotation and in translation
of the material placed at the beam ends, namely (K∗r,b, K

∗
t,b) and (K∗r,t, K

∗
t,t) for the base

and top ends respectively. In comparison to the classical cantilever beam, those parameters
obviously add complexity in the frequency equation.

III.4.1 Comparison of the Euler-Bernoulli and Timoshenko beam

models

Equations III.5 and III.6 express the decoupled equations of motion according to the Tim-
oshenko beam theory. When Ω∗a � 1 and Ω∗b � 1, these equations regularly degenerate
into the equation of motion given by the Euler-Bernoulli (E-B) theory. This section aims at
studying the evolution of the wave numbers a∗ and b∗ (or b̃∗) as a function of the dimen-
sionless groups Ω∗a and Ω∗b . The variations of these latter are correlated in the light of the
expressions of the wave numbers given in Eqs. III.12 and III.13. Indeed, the radicand of
these equations has to be positive, leading to the condition
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Ω∗
2

b −
Ω∗

2

a

4
≤ 1

ω∗2
. (III.34)

Figure III.3 gives a mapping of the wave numbers a∗ and b∗ (or b̃∗) respectively, for a
dimensionless circular frequency ω∗ equal to unity. It shows white areas which correspond
to couples

[
Ω∗a; Ω∗

2

b

]
not complying with the condition given by Eq. III.34. Setting the

dimensionless groups Ω∗a and Ω∗b to zero provides identical and unit wave numbers (a∗ =
b∗ = 1). It corresponds to the E-B beam theory. In the Timoshenko beam theory, these
groups are however non-zero. Considering the geometry of the specimens without rubber
described in Section II.4 and the mechanical properties as recommended in the Eurocodes,
namely E = 1000 fk and G = 0.4E, we obtain

Ω∗a = 0.0489 ; Ω∗
2

b = 4.4819× 10−4 (III.35)

for the short wall and

Ω∗a = 0.4159 ; Ω∗
2

b = 0.0324 (III.36)

for the long wall. These couples of values are represented in Figure III.3 with red and green
points respectively. The wave numbers are a∗ = 0.9888 and b∗ = 0.9885 for the short wall,
while the wave numbers for the long wall are a∗ = 0.8901 and b∗ = 0.8708. Consequently,
an E-B model is su�cient to model the short wall, whereas a Timoshenko beam is required
for the long wall.

Figure III.3: In�uence of Ω∗a and Ω∗
2

b on wave numbers a∗ and b∗ (or b̃∗).

III.4.2 Parameters related to the additional upper mass

Figure III.4 plots the dimensionless frequency equation of the �rst model considering the
material and geometrical properties of the short wall given in Section II.4. The values of
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the parameters related to the mass are also derived from the quantities given this section.
The mechanical properties of the masonry are also chosen according to the Eurocodes rec-
ommendations. These choices result in Ω∗a = 0.0489 and Ω∗

2

b = 4.4819 × 10−4. Variations
around this nominal con�guration are also represented: (i) no additional mass (yellow), (ii)
an upper mass without gap h∗b between the beam end and the centroid of the mass (green),
(iii) an additional mass without rotary inertia I∗cin (red) and (iv) a combination of (ii) and
(iii) (black). Figure III.5 gives the same results in the case of the long wall, whose nominal
con�guration is characterized by Ω∗a = 0.4159 and Ω∗

2

b = 0.0324. Beside the solid curves rep-
resenting the Timoshenko model, dashed lines with similar colours represent the frequency
equations obtained by the E-B beam theory (i.e. enforcing Ω∗a = Ω∗

2

b = 0) under the same
assumptions.

Figure III.4: Frequency equations with di�erent assumptions (1st model) - short wall.

Figure III.5: Frequency equations with di�erent assumptions (1st model) - long wall.

Comparison of the di�erent curves in Figures III.4 and III.5 shows the importance of the
additional mass. This latter indeed provides more than 90 % of the total mass and involves
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a large decrease of the �rst circular frequency of the beam. The in�uence of the gap h∗b and
the rotary inertia I∗cin is more important for the short wall than for the long wall. Numerical
values are given in Table III.1. The variation is e�ectively higher for the short wall (from
5.3 % to 16.2 %), whereas it is less signi�cant for the long wall (less than 4.9 %). Therefore,
the contribution of the rotary inertia and the distance between the top of the wall and the
centroid of the mass have to be considered, especially for the short wall.

Figures III.4 and III.5 also compare the frequency equations developed when considering
E-B (dashed lines) and Timoshenko (solid lines) beam theories. The fundamental circular
frequencies for both theories are also tabulated in Table III.1. Under the assumptions (ii)
to (iv), the relative di�erence between theories is lower than 5 % regarding the short wall.
This di�erence ranges between 19 % and 30 % in the case of the long wall. These numbers
show that the E-B model can be su�cient for the short wall, but the Timoshenko model
is necessary for the long wall, as already observed from the graphical representations. The
E-B theory with assumption (i) leads to the same result for both walls. This comes from
the nondimensionalization de�ned in Section III.2.

Table III.1: Fundamental circular frequency with di�erent assumptions (1st model) - numer-
ical values.

Wall Full m∗ = 0 h∗b = 0 I∗cin = 0 h∗b = I∗cin = 0
(i) (ii) (iii) (iv)

Long (Timoshenko) 0.3560 2.1254 0.3614 0.3660 0.3735
Long (Euler-Bernoulli) 0.4383 3.5160 0.4649 0.4803 0.5215
Short (Timoshenko) 0.2513 3.1820 0.2648 0.2718 0.2918

Short (Euler-Bernoulli) 0.2579 3.5160 0.2737 0.2829 0.3075

Figure III.6: In�uence of the parameters related to the mass. (a) In�uence of the additional
mass at the top, (b) In�uence of the distance between the top of the wall and the centroid
of the mass, (c) In�uence of the rotary inertia of the mass.
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Regarding the frequency equation obtained with the Timoshenko beam theory, further
studies on the in�uence of the di�erent parameters related to the mass have been performed.
The results are given in Figure III.6. The in�uence of the magnitude of the additional
mass m∗ (top), of the gap h∗b (middle) and of the rotary inertia I∗cin (bottom) are given for
the short (in blue) and long (in red) walls. The results are in accordance with the values
tabulated in Table III.1. For example, values obtained under the assumption of no additional
mass (i) or h∗b = 0 (ii) correspond to the intersection of the curves in Figure III.6 (top and
middle) with the x-axis. Figure III.6 (bottom) provides the tabulated values with I∗cin = 0
(assumption (iii)) when the ordinate is equal to -1. Again, Figure III.6 highlights the higher
importance of the parameters in the case of the short wall and other observations can be
made. First, the �rst circular frequency is very sensitive to variations of the additional
mass. The interpretation of this results has to be carefully taken because the total mass of
the specimen varies and any increment of mass has also consequences on the rotary inertia.
Second, the rotary inertia I∗cin seems to have the lowest in�uence on the frequency equation,
especially for the long wall.

III.4.3 Parameters related to the sti�nesses of the base and of the

mass-beam connection

The in�uence and the importance of the presence of rubber layers leading to a beam with
an elastically restrained bottom end and an elastically connected additional mass at the
top, is studied by comparing the frequency equation obtained with the assumption of (i) a
cantilever beam with an additional mass rigidly connected at its free end (�rst model case),
(ii) the same beam with an elastically restrained base, (iii) the same beam with an elastically
connected mass at the top and (iv) the beam combining the e�ects of (ii) and (iii). The
material and geometrical properties are those of the short and long walls given in Section
II.4. The parameters related to the additional mass are based on the quantities given in the
same section. The couple of mechanical characteristics of the rubber (Erubber, Grubber) are
chosen in the range of usual values, but are the same for the bottom and top ends. The
frequency equations are re-normalized with the same circular frequency than the �rst model
since the beam is the same.

The results are given in Figure III.7 (short wall) and Figure III.8 (long wall) and the
comparison is summarized in Table III.2 with several observations.

Table III.2: Fundamental circular frequency with di�erent assumptions (2nd model) - nu-
merical value.

Wall Without
rubber

With rubber 1/K∗r,b = 1/K∗t,b =
0

1/K∗r,t = 1/K∗t,t =
0

Long 0.3561 0.0761 0.1311 0.0906
Short 0.2513 0.0600 0.1336 0.0652

The e�ect of the rubber layers on the natural frequency is more or less the same for both
walls, as the decrease of the fundamental circular frequency is around 75%. This conclusion
is mitigated when there is only the elastically connected mass (column 3) given that the
decrease is about 45 % for the short wall and 63% for the long wall. Both rubber layers
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in�uence the results, even if placing a rubber layer at the bottom end only (column 4) leads
to a larger decrease. Indeed, Table III.2 highlights that adding the soundproo�ng layer
between the top of the wall and the additional mass in the presence of a layer located at
the base of the wall does not involve a signi�cant drop. The decreases produced by the two
rubber layers are not additive, certainly due to interaction between the e�ects of both layers.

Figure III.7: In�uence of the base sti�ness and the mass-to-wall connection sti�ness (short
wall with rubber).

Figure III.8: In�uence of the base sti�ness and the mass-to-wall connection sti�ness (long
wall with rubber).
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III.4.4 Mode shapes

The roots of the frequency equation provide the natural frequencies of the model. They are
associated with coe�cients C1, C2, C3 and C4 (respectively C̃1,· · · , C̃4, if ω∗Ω∗b ≥ 1) and,
thereby, the mode shapes φ(x∗) and ψ(x∗).

The mode shapes related to the �rst circular frequency for each of the four tested speci-
mens are represented in terms of displacements φ(x∗) (Figure III.9 left) and rotations ψ(x∗)
(Figure III.9 right). These are normalized such that the maximum displacement (rotation)
is unity. Di�erences in terms of displacements between the walls without rubber devices are
�rst observed. The mode shape of the long wall can be well approximated by a straight
line, while the mode shape for the short wall presents a vertical tangent at the base. The
shapes in terms of rotations are similar in each case. Such results are in accordance with
previous conclusions, where the short wall could be considered as an Euler-Bernoulli beam
and the shear e�ects are more signi�cant for the long wall, requiring therefore a Timoshenko
model. A comparison is then made between walls with the same geometry, but including
or not soundproo�ng elements. The presence of these latter involves non-zero displacement
and rotation at the bottom of the wall. In particular, the rotation is mainly concentrated at
the bottom of the beam, and more or less constant along the wall. The displacement mode
shapes for the long and short walls are close to a straight line when there are rubber devices.
It is therefore important not to conclude to the need of a Timoshenko beam model when a
straight displacement mode shape is observed (e.g. short wall), as it may simply result from
the compliance of the end connections.
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Figure III.9: Modal shapes (left : displacement - right : rotation).
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III.5 Determination of equivalent mechanical properties

The expression of the frequency equation of the Timoshenko beam model depends on the
two dimensionless groups Ω∗a and Ω∗

2

b , i.e. the ratio of the gyradius of the cross-section,
the beam length and the elastic-to-shear moduli ratio. These groups are explicit in the
governing equations and implicit in the waves numbers a∗,b∗ and b̃∗. In the present chapter,
other parameters also play an important role in the model, like the mass and the geometry
of the additional mass (m∗, h∗b and I

∗
cin) or sti�nesses involved in the boundary conditions

K∗r,b, K
∗
t,b, K

∗
r,t and K

∗
t,t. The determination of some of these parameters is straightforward,

especially for the geometrical ones. Regarding URM structures, others are more di�cult to
assess because of the heterogeneity of the material (units + mortar) and the large range of
masonry types (clay or concrete units with mortar, glued or empty joints, etc.).

In the perspective of modelling the URM structural elements with equivalent homoge-
neous and isotropic beam elements at the macro-scale, the use of the frequency equation
to determine equivalent mechanical properties is relevant. Indeed, the establishment of this
equation considers a beam model and is based on similar assumptions for the material. An-
other possibility to estimate the properties is the use of empirical formulae. These latter are
however developed from experimental tests and do not �t the speci�cities of every type of
masonry.

In the following, the frequency equation is �rst used to determine the fundamental fre-
quency of URM walls without soundproo�ng devices. Due to the lack of characterisation
of the elastic and shear moduli of the masonry, recommendations of the Eurocodes are �rst
considered. Then, a parametric study is carried out in order to de�ne the couples of equiv-
alent mechanical properties leading to the frequency obtained by the experiments. Finally,
the more relevant couple (E,G) is used as an input for the frequency equation related to
walls including rubber and a parametric study is developed to identify equivalent mechanical
properties for the rubber.

III.5.1 Fundamental frequency using standards recommendations

The Eurocode 6 advises that (�3.7.2.(2)) �In absence of a value determined by tests in
accordance with EN 1052-1, the short term secant modulus of elasticity of masonry, E, for
the use in structural analysis, may be taken to be KEfk� and recommends the value of 1000
for KE. Notice that the value of KE is not divided by two to take into account cracking
because the used experimental results correspond to the undamaged con�guration. It also
de�nes the shear modulus G as 40 % of the elastic modulus E (�3.7.3.(1)). It follows,

E =3900MPa ; G = 1560MPa. (III.37)

Substituting these values in the frequency equation corresponding to the simple URM
walls provides the fundamental frequencies tabulated in Table III.3. Comparing these results
with the values obtained from the experiments (Table II.14) shows relative di�erence of
54.71 % and 20.24 % for the long and short walls respectively. The recommendations of
the Eurocodes lead therefore to an overestimation of the mechanical properties in the case
of URM walls with thin bed-layered joints and using a tongue-and-groove system for the
head joints. The discrepancy can either come from the assessment of the elastic modulus
or from the ratio between the shear and elastic moduli G/E. In the case of masonry with
empty vertical joints, the de�nition of a unique ratio for the estimation of the shear modulus
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independently from the length of the wall is quite surprising. Indeed, the number of joints
increases with the length of the wall and a higher deformability in shear could be expected.

Table III.3: Fundamental frequency of walls without rubber using the standards recommen-
dations

Long wall Short wall
Frequency [Hz] 20.82 5.04

Dimensionless frequency [-] 0.057 0.040

III.5.2 Characterization of the masonry mechanical properties

Based on the observations in the previous section, a parametric study is performed with the
aim of identifying the couples (E,G) that should be used in the frequency equation in order
to recover the eigen frequencies measured experimentally. Instead of adjusting E and G
separately, we take advantage of the fact that the ratio G/E usually lies in a speci�c range.
We will therefore identify two parameters, namely the elastic modulus E and the ratio G/E.
Figure III.10 plots the results of the study for the long and short walls without rubber. The
blue and red lines are the lieu of the pairs (E,G/E) providing, with the Timoshenko beam
model, the same fundamental frequency as that identi�ed from the experiments for the long
and short walls respectively.

Figure III.10: Characterization of the masonry mechanical properties.

Comparison of curves in Figure III.10 highlights a higher dependency on the G/E ratio of
the long wall because the curve related to this latter shows a more important increase of the
elastic modulus when the G/E ratio decreases, at least when G/E . 0.4, which is expected
anyway. For instance, a variation from 0.4 to 0.2 of the G/E ratio involves an increase of
5 % of the elastic modulus in the case of the short wall, while this increase is about 35 %
in the case of the long wall. Such a sensitivity is intuitively expected, when considering the
ratio between the bending and shear deformabilities of the walls. The shear deformability of
the short wall is about ten times lower than the bending one, while the orders of magnitude
are the same for the long wall (Table III.4). This statement is further emphasized in Figures
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III.11 and III.12. Indeed Figure III.11 illustrates the high dependence to the G/E ratio of
the results for the long wall because the curves di�er, while they are clearly similar for the
short wall (Figure III.12).

Table III.4: Bending and shear deformabilities of masonry walls.

Bending deformability [m/N] Shear deformability [m/N]
Long wall 9.3607 10-9 9.5557 10-9

Short wall 2.3226 10-7 2.7871 10-8
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Figure III.11: Dependence to the shear deformability (long wall).
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Figure III.12: Dependence to the shear deformability (short wall).
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In terms of numerical values, Figure III.10 shows that the (identi�ed) equivalent elastic
modulus of the short wall is most likely around 2500 MPa which agrees with a ratio G/E
ratio between 1 and 1/3. For the long wall, the identi�ed equivalent elastic modulus seems
to be in the range [650 MPa; 900 MPa] for the same G/E range.

The considered limits on the interval [1/3; 1] for the G/E ratio come from the classical
limitation of the Poisson's ratio. This ratio connects the elastic and shear moduli together
and can vary from -1 to 0.5 for a continuous material. However, such an assumption is
questionable in the case of masonry with empty vertical joints and the G/E ratio may
be smaller than 1/3 (Poisson's ratio virtually larger than 0.5). Assuming ν ∈ [−1; 9], we
notice G/E ∈ [0.05; +∞] which is relevant to the analysis of URM structures modelled by
equivalent frames. The use of such a model is widespread and provides relevant results with
a good computational time [57]. This type of value is also observable for other materials [59].
Furthermore, one could expect to �nd the same equivalent elastic modulus for both walls,
regardless of its length. Indeed, the presence of vertical empty joints should not in�uence
the bending behaviour and, consequently, the value of the elastic modulus. On the contrary,
the shear deformability might su�er from size e�ects, which are not accounted for in our
homogenized Timoshenko beam model, resulting therefore in an equivalent shear modulus
smaller for the long wall. According to these considerations, the relevant value of the elastic
modulus ranges from around 2400 MPa to 3900 MPa (see black arrow in Figure III.10) and
the corresponding G/E ratio is about 3.85 % to 100 % for the short wall and about 3.7 %
to 6.9 % for the long wall.

The recommended ratio of 40 % given by EC 6 [34] seems to be relevant for walls with
a few vertical joints, as for example the short wall. The corresponding equivalent elastic
modulus is about 2465 MPa, which is KE = 632 fk. For longer walls, the ratio G/E has to
be reduced (6.25 %) to take into account the extra vertical gaps between the units. A lower
limit should exist, but its determination requires more experimental investigations. These
conclusions are supported by results found in [38] or [24]. In the latter, uniaxial and diagonal
compression tests were carried out on specimens with average dimensions of 1000 mm × 1000
mm × 300 mm. The masonry bonding was similar to the one considered here. Indeed, the
characteristic compressive strength (NBN-EN 1996-1-1) fk is 5.493 MPa for units of group
2. The authors give an elastic modulus of 4424 MPa, namely 805 fk, and the ratio G/E
is equal to 17.02 %. The experimental campaign detailed in Section II.2 led to the same
conclusions. In particular, the equivalent elastic modulus found in this campaign is similar
to the values considered here.

III.5.3 Characterization of the rubber mechanical properties

The previous section deals with the characterisation of masonry equivalent mechanical prop-
erties and the comparison with current standards recommendations. It results in the deter-
mination of acceptable couples of equivalent elastic and shear moduli for the �rst model,
leading to the natural frequency measured experimentally. Among the possible combina-
tions, two will be chosen as references for the short and long walls respectively

E = 2465MPa ; G/E = 0.4 (short wall) (III.38)

E = 2465MPa ; G/E = 0.0625 (long wall). (III.39)
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As equivalent mechanical properties for the masonry are determined and the geometry is
clearly de�ned, the expression of the frequency equation of the second model has only two
unknowns left, namely the mechanical properties of the rubber layers, placed at the base of
the wall and between the wall top and the additional mass at the top. These properties are
translated via the values of the sti�nesses K∗r,b, K

∗
t,b, K

∗
r,t and K

∗
t,t present in the frequency

equation.

Figure III.13: Characterization of the mechanical properties of the rubber layers.

The results presented in Figure III.13 provide the coupled values (Erubber, νrubber) giving
the �rst natural frequency experimentally measured. The mechanical properties of the rubber
layer are the same for the top and bottom as the same material is used. Contrary to the
masonry wall, the rubber layers can be considered as a homogeneous and continuous body.
There is therefore a relation between the elastic and shear moduli thanks to the Poisson
ratio

Grubber =
Erubber

2(1 + νrubber)
. (III.40)

For rubber elements, the Poisson ratio is close to the incompressibility limit ν = 0.5 and
leads to a Grubber/Erubber ratio of 1/3. The corresponding elastic modulus is 11.1 MPa for
the short wall and 7.5 MPa for the long one. Figure III.13 also exhibits a greater dependence
to the Poisson ratio for the long wall in comparison to the short wall.

These results are in accordance with the experimental measurements and the producer's
prescriptions (see Annex A). The di�erence between the identi�ed values, 11.1 MPa and
7.5 MPa, has several origins. On the one hand, the rubber layer works under di�erent
compression stresses for the short and long walls. It is well known that the rubber exhibits
a lower deformability under a larger stress, hence the rubber placed at the extremities of
the short wall has a larger elastic modulus. On the other hand, the mechanical properties
of the rubber devices show some signi�cant variability due to their manufacturing process,
i.e. they are made of recycled rubber, involving a possible scatter in the properties.
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III.6 Conclusions

This chapter is dedicated to the development of the frequency equation of a modi�ed can-
tilever beam, using the Timoshenko beam theory. Two models are studied to consider the
modi�cations of the classic cantilever beam. The �rst model consists in a classical cantilever
beam with an additional mass rigidly connected at the free end. The second one includes
an elastically restrained base and a �exible connection between the free end and the addi-
tional mass. These modi�cations are taken into account through a proper modi�cation of
the boundary conditions. First, the deduced frequency equations highlight the importance
of the dimensionless groups Ω∗a and Ω∗

2

b which include the geometrical and mechanical pa-
rameters of the beam, as well as the sti�nesses of the base and mass-to-beam connection.
Then, the frequency equations are used to characterise equivalent mechanical properties of
load-bearing clay URM walls including soundproo�ng devices. For the �rst model, the char-
acterisation leads to the de�nition of combined values for equivalent elastic and shear moduli
of the masonry walls, E and G, expressed by the combination of an equivalent elastic mod-
ulus E and the G/E ratio. The second model is focused on the mechanical properties of the
soundproo�ng devices. Finally, a comparison of the results in terms of mechanical properties
with current standards recommendations for masonry structures shows an overestimation of
the recommended values for the considered type of masonry. This chapter however proves
that the modelling of masonry walls thanks to equivalent beams using the Timoshenko beam
theory is possible.
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IV.1 Introduction

Masonry is a heterogeneous material composed of units and mortar. The numerical analysis
of URM structures can be performed following three modelling strategies with di�erent
levels of detail. These are discussed by P. Roca et al. [106] for historical constructions. In
general, the micro-modelling o�ers the highest level of accuracy. It consists in the detailed
representation of masonry components, i.e. the units, the mortar and unit-mortar interface,
using the �nite element method. It is however time-consuming which makes di�cult the
study of complete or large URM structures.

Just the opposite, the macro-scale approach considers the masonry as a homogeneous
material with equivalent properties combining those of the mortar and the units. The deter-
mination of these equivalent properties based on experimental data is the topic of the Chapter
III. The structure is divided into piers and spandrels modelled by single elements, which are
vertically and horizontally oriented respectively. A review of the di�erent types of macro-
elements has been carried out in [74, 110, 92]. These can be sorted into one-dimensional
and two-dimensional elements. Shear springs are the simplest example of the �rst group,
but the most widespread for the analysis of URM structures is the equivalent frame model
[13, 68, 46, 57] where the piers and spandrels are represented by beams connected together
with rigid nodes. The interest in this approach is due to the similarities with steel and RC
structures and the possibility to apply conventional methods of structural mechanics. It
also provides results for entire buildings with a good accuracy and a computational e�ort
suitable for current engineering practice. Besides, this method is speci�cally recommended
in national and international codes. Referring to the Eurocode [116], the design of 3D build-
ings characterised by a regularity in plan and in elevation can be performed by the separate
analysis of 2D structures oriented in the two main directions of the buildings. The elements
of the second group have been introduced to improve the modelling of buildings with an
irregular arrangement of openings for which the use of one-dimensional macro-elements can
lead to geometrical inconsistencies. For instance, Caliò et al. [16] developed an articulated
quadrilateral with rigid edges in which two diagonal springs govern the shear behaviour.
Springs are also distributed in the sides for the �exural and sliding shear behaviour as well
as the interaction with adjacent elements.

The third strategy is the meso-scale model which is located between the approaches at
the micro- and macro-scales. The meso-scale description was initially proposed by Page
[90] and modi�ed Lourenço [62]. In this latter, the units are considered as elastic elements,
while the mortar and the unit-mortar interface are modelled by interface elements with non-
linear behaviour, including shear, tensile and compression failures. The meso-scale was used
by several authors [96, 31, 6], assuming rigid elements for the units or implementing a 3D
cyclic �nite element able to model the in-plane and out-of-plane behaviour of masonry under
monotonic and cyclic loadings for instance. Nevertheless, the computation demand for large
structures remains a main drawback and other authors suggested a multi-scale approach
[76, 80] or coupled a 3D meso-scale model with a domain partitioning [67].

In the perspective of extending the outcomes of Chapter II to complete buildings, this
chapter aims at reproducing numerically the experimental results using macro-elements.
Other strategies are disregarded because they are time-consuming. In the following, the
TREMURI program [57] is used. An overview of the program is �rst described. Then, the
parameters required for the analysis are given. The model and its results are commented for
the specimens tested in static-cyclic and dynamic conditions. Conclusions are �nally drawn.
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IV.2 Modelling of masonry at the macro-scale

The TREMURI program is speci�cally oriented to the seismic analysis of masonry structures
and simulates the non-linear behaviour of complete 3D buildings in static and dynamic con-
ditions. To this purpose, it implements an equivalent frame model using non-linear beams
for the piers and the spandrels which are connected together by rigid nodes, as explained
in [57]. This procedure requires a limited computational e�ort. Under the assumption of a
proper connection between the elements, local failures are prevented and the overall response
of buildings is governed by the in-plane behaviour of the structural elements. The contribu-
tion to the strength of walls perpendicular to the seismic action is therefore neglected, but
their presence in�uences the strength capacity through the distribution of the compression
force between the elements. The �rst step of the analysis is the identi�cation of the main
structural components (piers and spandrels) which can be challenging in presence of open-
ings, regarding the determination of the height of the piers especially. An example is given
in Figure IV.1 with the height of the piers limited to the height of the opening. Di�erent
criteria are also available for the veri�cation of the shear strength and the choice is based
on the comparison of the di�erent criteria limiting the strength domain.

Figure IV.1: TREMURI program - de�nition of the piers, spandrels and rigid nodes

In comparison to the content of the reference paper [57], the version of the program used in
the following has been improved. In particular, the behaviour of masonry panels is assumed
multi-linear, instead of bilinear elastic perfectly plastic, as depicted in Figure IV.2. The new
material law includes an elasto-plastic phase and di�erent levels of damage (DL0 to DL5). Its
parameters are given in Annex C. The units are those of the International System. Another
improvement is the possibility to run cyclic analysis with displacement/force controlled or
dynamic analysis in addition to the classical pushover.

Figure IV.2: TREMURI program - material law of the used version
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IV.3 Numerical analysis of modern URM sub-structures

The URM sub-structures to be analysed in this section are those tested in the experimental
campaigns described in Chapter II. The adopted methodology is the following. First, the
geometry of the models representing the specimens is de�ned. Most of these specimens are
simple walls including speci�c details and are studied by means of vertical beams. Others
have to be modelled as frames due to the presence of an opening. The de�nition of the piers
and spandrels is not unique and di�erent possibilities are compared (see IV.3.1.3). Then,
the material law to be a�ected to the beam elements is determined. Two types of masonry
units have been used in the experimental campaigns, thus requiring two sets of parameters
for the material law. These latter are calibrated with the walls A1 and C1 respectively,
chosen as references. These laws are assumed to be valid for all specimens implementing
the same type of units. As the spandrels behave di�erently to the piers [8], a particular
material law is used for the corresponding elements. Finally, a static or dynamic analysis is
performed and the experimental response is compared to the numerical predictions through
the force-displacement curve.

The determination of the parameters of the material law is crucial. Some of them (E,
G, ρ, fm, fv0, fvm and µ) can be assessed based on the data and outcomes of Chapters II
and III. A �rst guess is made for some others (ksec/kel, k0, αT , βT , γT , αPF , βPF , γPF , δPF ,
βE,T3, βE,T4, βE,PF , MixSN and MixDX), using an example (see Annex C). These values
have to be validated for the current masonry by a sensitivity study. The drift capacities
(δ3,T , δ3,PF , δ4,T and δ4,PF ) depend on the studied masonry and are calibrated thanks to the
measurements related to wall A1 or wall C1, except for the ultimate drift (δ5,T and δ5,PF )
which values are recommended in the Eurocodes [116]. A last parameter governs the choice
of the criterion for the veri�cation of the shear resistance. Di�erent criteria are available and
de�ne a strength domain (see [19]) which depends on the geometry, the compression level
and the properties of the masonry. The criterion producing the minimum strength has to
be chosen.

IV.3.1 Static cyclic tests on simple walls including speci�c details

IV.3.1.1 Simple wall without any speci�c details

The geometry of specimen A1 is illustrated in Figure II.1 and is chosen as the �rst reference
specimen. The numerical model is a simple beam of 2.800 m high de�ned by two 2D-nodes.
The cross-section of the beam is 3.000 m × 0.138 m. A cyclic analysis with displacement
controlled is performed. The values of the displacement are obtained by peak picking on
the experimental signal corresponding to the time-history of the horizontal displacement
measured at the top of the wall with respect to its base. The results of the numerical
simulations are compared to the experimental force-displacement curve in Figure IV.3, after
the calibration of the material law (see below).

These curves are in good agreement, showing a relevant reproduction of the overall re-
sponse of the wall by TREMURI. The graph showing the initial response in Figure IV.3
highlights that the used parameters lead to a correct estimation of the initial sti�ness of the
wall. In particular, the increase of damage level is well caught, as identi�ed by the circles
in Figure IV.3 (full response). The failure mode is also in accordance with the experimental
observations, namely a mix between shear and bending failures. The maximum shear capac-
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ity is however slightly underestimated. The relative di�erence is about +1.2 % and -7.5 %
for negative and positive drifts respectively. This di�erence is certainly a consequence of the
distribution of the vertical compression. The compression is introduced in the model thanks
to a concentrated load applied to the node located at the top of the beam, assuming there-
fore an uniform distribution. On the contrary, the compression was distributed along the
length of the wall during the experimental tests and the measurements show a non-uniform
distribution.

Figure IV.3: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Wall A1)

Table IV.1: TREMURI - Parameters of the material law related to specimen A1

Param. Value Param. Value Param. Value Param. Value
E 1.33 · 109 δ3,PF 0.00260 αPF 0.8 βE,3 0.825

G 3.03 · 108 µ 0.4 βPF 0.8 βE,4 0.500

ρ 850 ksec/kel 1.850 γPF 0.5 βE,PF 0.850

fm 3.90 · 106 k0 0.700 δPF 0.6 MixSN 0.950

fv0 3.00 · 105 elem. type 0 δ4,T 0.00135 MixDX 1.250

fvm 5.85 · 105 αT 0.8 δ4,PF 0.00320

verif. crit. 2 βT 0.8 δ5,T 0.00400

δ3,T 0.00110 γT 0.0 δ5,PF 0.00800

Concerning the material law, the calibrated parameters are tabulated in Table IV.1. The
parameters E et G correspond to the elastic and shear moduli derived from the experimental
tests and divided by the ratio ksec/kel. The �rst guess of this latter is 2, but it is set to 1.85
for the studied type of masonry. The in�uence of this ratio is shown in Figure IV.4. The
main di�erence is in terms of drifts and slope of the curve when the displacement increases.
The parameters governing the residual resistances have also to be changed. The �rst guess
values indeed underestimate them, as illustrated in Figure IV.5. The parameter γPF related
to the hysteric response in bending is modi�ed to improve the numerical predictions with
respect to the unloading phase (see Figure IV.6). The other parameters in�uencing the



112 CHAPTER IV. NUMERICAL MODELLING

elasto-plastic phase, the hysteric response and the interaction zone (k0, αT , βT , γT , αPF ,
βPF , MixSN and MixDX) follow the values given in the example. The density of the
masonry ρ and the compressive and shear strengths (fm, fv0, fvm and µ) are taken from the
experimental campaign (see Table II.1). The values for the drift capacities (δ3,T , δ3,PF , δ4,T
and δ4,PF ) and the modi�ed parameters described here above result from a calibration by
trial and error.

In terms of drift capacity and residual resistance, the comparison of the considered type
of masonry with the traditional type studied in [19] leads to the conclusions that the studied
masonry exhibits a higher sti�ness and strength, but has a more brittle behaviour.

Figure IV.4: TREMURI - In�uence on the numerical response of the ksec/kel ratio

Figure IV.5: TREMURI - In�uence on the numerical response of the parameters βE,T3, βE,T4
and βE,PF
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Figure IV.6: TREMURI - In�uence on the numerical response of the parameter γPF

Additional investigations on the in�uence of the parameters of the material law derived
from the experiments have been carried out. To this purpose, a numerical analysis is per-
formed by considering the values given in Table IV.1 and by changing one parameter at a
time (± 20 %). First, the elastic and shear moduli mainly a�ect the elasto-plastic phase
with the slope of the curve. The higher the moduli, the higher is the slope (Figure IV.7). A
reduction of 20 % of both moduli also leads to a slight decrease of the maximum horizontal
shear (from - 1.4 % to 2.6 %). Then, the model response is highly sensitive to the parameters
governing the shear and bending resistances (fm, fv0 , fvm and µ). Indeed, a variation of ±
20 % involves signi�cant changes in the numerical results: for instance, a larger compressive
strength makes the drift capacity of the model more dependent on the shear response, in-
volving lower drift limits and reducing the strength in this case (see Figures IV.8). Finally,
the drift limits only in�uence the length of the plateau and the damage level.

Figure IV.7: TREMURI - In�uence on the numerical response of the E and G moduli
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Figure IV.8: TREMURI - In�uence on the numerical response of the parameters fm

IV.3.1.2 Walls with acoustic layers

The walls including soundproo�ng rubber devices (walls A2/B2, see Figure IV.9 (a)) can be
modelled according to two di�erent philosophies. The �rst one is to represent explicitly the
di�erent components of the specimen, namely the rubber layers and the masonry wall. In
this case, there are three beams elements (3-element model, Figure IV.9 (b)). The middle
element is the masonry wall and its behaviour is characterised by the material law de�ned
in Table IV.1, since it is the same panel as specimen A1. The beams at the bottom and top
of this element correspond to the rubber layers. Their elastic and shear moduli are obtained
from the experimental results and the drift limits are de�ned such as these elements remain
in the elastic phase. The second possibility is to consider the di�erent components as a whole
modelled by a single beam element with equivalent properties (equivalent element model,
Figure IV.9 (c)). In this case, the parameters are given in Table IV.2 and result from a
calibration by trial and error. The main di�erences concern the moduli and the drift limits.
It is also worth noticing that the compressive strength is halved in both approaches because
of the interactions between the masonry and the rubber.

The numerical results are compared to the experimental measurements in Figure IV.10
to Figure IV.13, for the specimens A2 and B2 respectively.

Figure IV.9: TREMURI - Models for the specimens with rubber
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Table IV.2: TREMURI - Material law for walls A2 and B2 (equivalent element)

Param. Value Param. Value Param. Value Param. Value
E 3.32 · 108 δ3,PF 0.007500 αPF 0.800 βE,T3 0.825
G 1.11 · 108 µ 0.4 βPF 0.800 βE,T4 0.500
ρ 850 ksec/kel 1.850 γPF 0.500 βE,PF 0.850
fm 1.95 · 106 k0 0.480 δPF 0.600 Mix SN 0.950
fv0 3.00 · 105 elem. type 0 δ4,T 0.002500 Mix DX 1.250
fvm 5.85 · 105 αT 0.800 δ4,PF 0.007750

verif. crit. 2 βT 0.800 δ5,T 0.004000
δ3,T 0.002000 γT 0.00 δ5,PF 0.008000

Figure IV.10: TREMURI - Comparison between the numerical and experimental results

Figure IV.11: TREMURI - Comparison between the numerical and experimental results
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Figure IV.12: TREMURI - Comparison between the numerical and experimental results

Figure IV.13: TREMURI - Comparison between the numerical and experimental results

Both models correctly predict the initial response of the specimens. In terms of maximum
horizontal shear, the relative di�erence is limited to 5.5 %. Nevertheless, the sti�ness of the
model seems to decrease slower than that observed experimentally in the case of wall A2.
The explanation lies in the vertical crack initiated during the compression phase of the
experimental test (see Section II.2.3). Such a damaging cannot be taken into account with
the macro-modelling approach, but has anyway to be avoided in practice. The wall B2 does
not present this problem and the deterioration of the sti�ness is well captured. Another issue
is observed for the wall A2 when the drift is larger than 0.45 %, in the case of the 3-element
model. There is a sudden jump from DL2 to DL5, meaning the collapse of the wall. Further
investigations have revealed implementation �aws in the cyclic analysis for this speci�c case.

This is con�rmed by performing a monotonic analysis with the 3-element model. The
results of the monotonic analysis are in accordance with the experimental measurements
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and the predictions of the equivalent element model (see Figure IV.14). Thus, the observed
problem is not due to the model, but is linked to the type of analysis.

Figure IV.14: TREMURI - Numerical predictions for wall A2

IV.3.1.3 Walls with an opening

Two walls (A3 and B3) with an opening have been tested, but only the specimen B3 is
modelled in TREMURI. The other has been rejected because of the local crushing of a
masonry block directly supporting the RC lintel (see Section II.2.3). This type of failure is
e�ectively impossible to consider with a modelling at the macro-scale. Discussions focus on
the material law for the spandrel element and on the geometry of the piers.

On the one hand, the material law determined with the reference specimen A1 is a�ected
to both piers. Only the parameters E (1.98 · 109) and G (5.49 · 108) are modi�ed to be in
accordance with the experimental results. Regarding the spandrel, additional modi�cations
are required as this part of the masonry panels usually exhibits larger drift limits. Recom-
mended values are given in [2]. No di�erence between the shear and bending behaviours
is considered in terms of drifts. The modi�ed values are tabulated in IV.3. Figure IV.15
compares the numerical results obtained by considering, for the spandrel element, the same
material law as the law associated to the piers (in green) and those by using the values given
in [2] (in red). The geometry of the specimen is automatically generated by TREMURI (see
under). In the case of identical laws for piers and spandrels, a loss of resistance is observed,
highlighted with a zoom-in. Furthermore, the model predicts heavy damage to the spandrel
(DL4) which is inconsistent with the experimental observations. The modi�cations of the
drift limits �x the problem related to the damage level and better target the maximum shear.

It is worth noticing that the experimental and numerical curves have clear di�erences,
especially for negative drift. These di�erences are explained by experimental issues: a hori-
zontal displacement has been measured during the compression phase. Then, the cyclic-test
was performed with a displacement varying around this initial de�ection. In the numerical
modelling, the horizontal displacement resulting from the compression is not considered.
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Table IV.3: TREMURI - Modi�ed parameters of the material law related to the spandrel
element (specimen B3)

Param. Value Param. Value Param. Value Param. Value
δ3,T 0.012000 δ4,T 0.020000 δ5,T 0.026000 βE,T3 1.00
δ3,PF 0.012000 δ4,PF 0.020000 δ5,PF 0.026000 βE,T4/βE,PF 0.800

Figure IV.15: TREMURI - In�uence of the drift limits and residual resistances for the
spandrel (Wall B3)

On the other hand, di�erent options for the height of the piers are worth being considered.
Three variants are studied in the following, corresponding to the well known simpli�ed models
�Strong Spandrels - Weak Piers� (SSWP, see [122]) and �Weak Spandrel - Strong Piers�
(WSSP) and to the geometry automatically de�ned by the TREMURI program. These
variants are illustrated for a whole facade in Figure IV.16, taken from [57].

Figure IV.16: TREMURI - Studied variants for the geometry
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A comparison of these 3 options is given in Figure IV.17. In terms of maximum shear,
the limitation of the height of the pier to the height of the opening (SSWP model) provides
the best results, as shown in Table IV.4. The presence of the RC lintel and its support length
justify the assumption of a strong spandrel. Concerning the damage state, the piers remain
in DL 3, while test observations suppose a higher damage level. Further investigations are
required and a possible explanation is that the same mechanical properties are de�ned for
both piers, whereas their length is di�erent. Consequently, the shear modulus should be
di�erent, as concluded in Chapters II and III. Even though, the analysis of the overall
response of a wall with an opening thanks to an equivalent frame model leads to relevant
results.

Figure IV.17: TREMURI - In�uence of geometry of the piers (Wall B3)

Table IV.4: TREMURI - Relative di�erence [%] in terms of maximum shear (wall B3)

Geometry Automatic. WSSP SSWP
Negative drift -4.14 % -13.93 % -1.33 %
Positive drift -4.84 % -13.51 % +0.56 %

IV.3.2 Shake table tests on simple walls

A dynamic analysis is performed in TREMURI, using the acceleration signals recorded at
the level of the table during the shakes. The simple URM walls are represented by a single
non-linear beam element and the additional mass is considered as punctual and acting on the
node located at the top of the element. The model neglects therefore the distance between
the top of the URM wall and the centroid of the additional mass as well as the rotary inertia
of this latter. The parameters of the material law are de�ned in Table IV.1, except for the
elastic and shear moduli for which values of the Timoshenko beam identi�cation are used
(see Chapter III).

Figures IV.18 and IV.19 compare the results of the analysis with the experimental force-
displacement curve, for the long and short walls respectively. In both cases, the test corre-
sponding to the highest in-plane acceleration is considered. The model predicts a plateau
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for the horizontal shear at 25.8 kN for the long wall and at 8.2 kN for the short wall, close
to the experimental observations. Regarding the drift values, di�erences appear between the
numerical analysis and the experiments. The maximum drift is underestimated for the short
wall, while the increasing damage level of the long wall leads to a larger maximum drift and
to its failure (DL5). These observations can be explained by the modelling of the mass and
by di�erences in terms of global behaviour. Indeed, a pure rocking behaviour was observed
during the experimental shakes, especially for the short wall, whereas the model assumes an
interaction between rocking-bending and shear behaviours.

Figure IV.18: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Long wall without rubber)

Figure IV.19: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Short wall without rubber)
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IV.3.3 Static cyclic tests on T-shaped walls

The model for specimens with a non-rectangular cross-section is drawn in Figure IV.20. The
section of the specimen subjected to in-plane loading is the shear wall and is modelled by a
non-linear beam element. This element is de�ned between two 2D nodes and is identi�ed as
pier 1. The beam element for pier 2 uses 3D nodes and corresponds to the perpendicular
section, i.e. the �ange. Both piers are connected together by an elastic beam between
the nodes at their top. A large elastic modulus is chosen for the elastic beam in order to
model the rigid connection between the shear wall and the �ange. A displacement controlled
analysis is performed.

Figure IV.20: TREMURI - Models for the specimens with a non-rectangular cross-section

The same material law is de�ned for all the specimens (C1-3) and its parameters results
from a calibration by trial and error based on the wall C1. The values of the parameters are
given in Table IV.5. The elastic modulus is taken as the mean value of the three experimental
results (see Table II.9). The shear modulus is also derived from the experiments and varies
from one specimen to another due to its dependence on the compression level. It has also
to be modi�ed to target the right initial sti�ness, as illustrated in Figure IV.21. This latter
modi�cation seems to be required because of the neglection of the �ange. Indeed, TREMURI
only considers the in-plane behaviour of the walls and the �ange is perpendicular to the
imposed displacement. The parameters related to the material and mechanical properties
are given in Table II.6. Those de�ning the elasto-plastic phase, the hysteretic response, the
residual resistance and the interaction area are set to the same values as the parameters of
the material law for the wall A1. Both walls A1 and C1 e�ectively implement the same
masonry bonding. The values for the drift limits δ3,T , δ3,PF , δ4,T and δ4,PF are calibrated,
while δ5,T and δ5,PF are recommended in the Eurocode 8 [116].

The sensitivity of the model response to the parameters of the material law has been stud-
ied. Only those which have a signi�cant in�uence are discussed. First, an increase/decrease
of 20 % of the elastic and shear moduli (E, G) modi�es the slope of the envelope, without
any change for the maximum shear. Then, the maximum shear is in�uenced by the shear
strength fvm, but not by the compressive strength fm. This translates a larger dependence of
the model on the shear failure. The plateau indeed slightly increases with the shear strength
(+4.59 % when fvm is 20 % higher). Similar conclusions are observed for the drift limits:
for instance, a variation of 20 % of δ3,T a�ects the length of the plateau, while this latter
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is not shortened nor lengthened when δ3,PF increases or decreases of the same percentage.
Finally, the parameter for residual resistance βE3 has consequences on the magnitude of the
jump observed for the largest positive drift (see below). The others parameters governing the
residual resistance have no in�uence as the damage level predicted by the model is limited
to DL3 in shear.

Table IV.5: TREMURI - Parameters of the material law related to specimen C1

Param. Value Param. Value Param. Value Param. Value
E 1.93 · 109 verif. crit. 2 βT 0.800 δ5,T 0.004000

G (C1) 6.45 · 108 δ3,T 0.002600 γT 0.000 δ5,PF 0.008000
G (C2) 8.58 · 108 δ3,PF 0.003500 αPF 0.800 βE3 0.825
G (C3) 1.38 · 109 µ 0.4 βPF 0.800 βE4 0.500

ρ 850 ksec/kel 1.850 γPF 0.500 βPF 0.850
fm 4.40 · 106 k0 0.700 δPF 0.600 Mix SN 0.950
fv0 3.00 · 105 elem. type 0 δ4,T 0.003000 Mix DX 1.250
fvm 6.75 · 105 αT 0.800 δ4,PF 0.006500

Figure IV.21: TREMURI - Comparison of the numerical predictions and experiment mea-
surements (Initial sti�ness - Wall C1)

Figures IV.22, IV.23 and IV.24 provide the results of the numerical analysis and compare
them to the experimental force-displacement curves for the specimens C1, C2 and C3 re-
spectively. The global response is well predicted by the numerical model at the macro-scale.
Two main discrepancies are however pointed out.

First, the maximum shear is underestimated, as observed in Table IV.6. The under-
estimation depends on the compression level and the load direction. The contribution of
the �ange to the shear strength is neglected in TREMURI, explaining (i) why the numerical
results are lower and (ii) why the relative di�erence increases with the compression level for
negative drifts, while it remains approximately the same for positive drifts:

(i) The cross-section of a T-shaped wall is asymmetric due to the presence of the �ange
and, under the same shear load, the compressive length di�ers with the load direction. The
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compressive length is longer when the �ange is decompressed (negative drifts) because the
distance between the centroid and the most compressed side is longer than the half length.
In comparison to a rectangular wall of the same geometry as considered in TREMURI, the
shear capacity is thus increased. More details are given in Chapter V. When the �ange is
over-compressed, the centroid is closer to the most compressed side, but the �ange takes part
to the shear resistance. This contribution overcomes the e�ects of a reduction compressive
length.

(ii) The relative di�erence between the numerical and experimental results increases with
the compression load since the part of the �ange in�uenced by the compression depends on
the compression level (see Section II.3). This has consequences on the position of the centroid
and, therefore, on the shear capacity.

Table IV.6: TREMURI - Relative di�erence [%] in terms of maximum shear (T-shaped walls)

Specimen C1 C2 C3
Negative drifts -16.49 % -24.54 % -22.89 %
Positive drifts -15.64 % -15.97 % -13.08 %

Second, the damage level forecast by the model is DL3 for the wall C1 and to DL2 for the
walls C2 and C3. However, a shear collapse was observed during the experimental campaign
and corresponds to a damage level closer to DL4, in the light of the resistance loss in Figure
IV.23 (circle) for instance. A possible explanation is the absence of cyclic deterioration of the
walls in the material law. Indeed, the model behaves on the same force-displacement curve
when several cycles are imposed with identical displacement level, whereas a progressive
damaging was observed during the experiments. Another explanation is the dependence on
the compression level of the drift capacity. The higher the compression, the smaller the
drift capacity. The same drift limits are however used in the material law de�ned for all
specimens.

Figure IV.22: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Wall C1)



124 CHAPTER IV. NUMERICAL MODELLING

Figure IV.23: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Wall C2)

Figure IV.24: TREMURI - Comparison of numerical predictions and experimental measure-
ment (Wall C3)

Note that the results of the analysis in TREMURI of walls including rubber devices and
the frames with T- and L-shaped piers tested on the shake table are not presented because
their interpretation requires more time.

IV.4 Conclusions

The numerical analysis of URM sub-structures by means of the equivalent frame approach
implemented in TREMURI highlights that the use of a model with macro-elements provides
relevant predictions of the overall response. A �rst advantage of this modelling strategy is
the low computational demand. For instance, the numerical simulations in static conditions
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last between two and thirty seconds, the bounds corresponding to the cyclic analysis of the
simple wall and of the specimen with an opening respectively. The dynamic analysis on the
short wall without rubber has a duration of about ninety seconds. Another advantage is the
easy de�nition of the input parameters. These latter are the material law and the geometry.

The de�nition of the parameters of the material law is the main challenging task when
modelling a new type of masonry. First, several parameters should be provided by the
producers or determined by the recommendations of the Eurocode 8, like the density ρ and
the compressive and shear strengths, fm, fv0 and fvm and the coe�cient of friction µ. Then,
the parameters corresponding to the elasto-plastic phase (1), the hysteretic response (2), the
residual resistance (3) and the interaction zone (4) can be set to the values recommended
in Table IV.7, for the studied type of masonry bonding. This bonding consists in thin-
layered glue-mortar joints and a tongue-and-groove system for the head joints, assembling
clay masonry units. Finally, equivalent mechanical properties have to be used for the elastic
and shear moduli and a calibration is necessary for the drift limits. For the considered
masonry bonding, the equivalent elastic modulus E can be de�ned with respect to the
compressive strength, namely E = KEfm as expressed in the Eurocode, with KE = 600 to
800. In particular, the equivalent shear modulus G can be taken as a percentage of E and
depends on the compression level. Suggestions for the value of the percentage require more
investigations. The calibration of the drift limits has been performed for two types of units
and is only relevant for these units. Additional investigations should validate the obtained
values.

Table IV.7: TREMURI - Recommended parameters for the studied type of masonry

(1) (2) (2) (3) (4)
Param. Value Param Value Param. Value Param. Value Param. Value
ksec/kel 1.850 αT 0.800 αPF 0.800 βE3 0.825 Mix SN 0.950
k0 0.700 βT 0.800 βPF 0.800 βE4 0.500 Mix DX 1.250

γT 0.000 γPF 0.500 βPF 0.850
δPF 0.600

Regarding the geometry of the specimens, the automatic meshing of TREMURI provides
a suitable modelling. In the case of walls with an opening, the height of the piers could be
reduced if the masonry spandrel is connected to RC elements (slab and lintel) with a e�cient
connection.

From the outcomes of the modelling of masonry structures presented in this chapter,
the contribution of the walls perpendicular to the seismic action is found to be signi�cant.
The assessment of the maximum shear for single T-shaped walls in TREMURI could be im-
proved with a due consideration for the perpendicular sections. This consideration should be
accompanied by additional requirements, regarding the connections between perpendicular
walls (vertical shear, etc.) especially. The importance of these sections could be mitigated
in the context of a complete building.
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V.1 Introduction

The EN 1996-1-1 [26] provides recommendations for URM walls subjected to shear loading,
for both the structural analysis and the veri�cation at the ultimate limit state (ULS). On the
one hand, speci�c rules are given for the masonry shear walls (�5.5.3) regarding the sti�ness.
This one has to be taken as the elastic sti�ness of these walls, including any �anges. A
�ange de�nes an intersecting wall, or a portion of it, provided the connection between the
shear wall and the �ange is able to sustain the shear action and provided its buckling is
prevented. Additional recommendations specify how to calculate the length of the �ange,
how to consider the presence of openings and how to distribute the compression and shear
loading between the walls depending on the support conditions and the sti�ness of the �oors.
On the other hand, the ULS veri�cation is

VEd ≤ VRd (V.1)

where VEd [N] is the shear load applied to the masonry wall and VRd [N] is the design value
of the shear resistance of this wall. The design value of the shear resistance is given by:

VRd = fvd t lc (V.2)

where fvd [N.mm-2] is the design value of the shear strength of masonry, equal to fvk0/γM +
0.4σd with fvk0 [N.mm-2], the characteristic initial shear strength under zero compression; σd
[N.mm-2], the design compressive stress perpendicular to the shear and γM [-], a partial factor
of security. The parameter t [m] is the thickness of the shear wall and lc [m] is the length of
the compressed part of the wall. According to EN 1996-1-1, this compressive length should be
calculated assuming a linear distribution of the compressive stresses and taking into account
any openings, chases or recesses. There is no clear reference to the consideration of possible
�anges in the calculation of the compressive length, even if a paragraph expresses that the
connections between shear walls and �anges shall be veri�ed for the vertical shear. The ULS
veri�cation also requires that the compressive length should remain positive (overturning)
and that the vertical loading acting on the compressed part of the wall should be less than
or equal to the compressive resistance (crushing).

The contribution to the shear resistance of any intersecting walls connected to the shear
wall is not mentioned by the EN 1996-1-1. Therefore, the calculation of the compressive
length is usually performed neglecting �anges. This conservative approach however leads
to signi�cant di�erences between standards predictions and experimental measurements (see
Chapter II). Thus, this chapter is an attempt to improve the predictions given by the current
European Standards for URM structures. To this purpose, the expression of the compressive
length is developed with due consideration for any �anges. The rigorous formulation is
based on simple mechanical principles and on the resistance of materials. Simpli�cations are
then proposed and allow the determination of the compressive length by hand calculations.
Finally, these developments are integrated to the design procedure in order to assess the
shear resistance of the specimens described in Sections II.3 and II.5 and to compare it with
the experimental measurements.
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V.2 Compressive length for non-rectangular cross-section

V.2.1 Expression of the compressive length

A wall with a non-rectangular cross-section is considered in Figure V.1. The wall is subjected
to an uniform vertical compression NEd [N] and a horizontal shear VEd is applied at its top.
The shear wall corresponds to the section of the wall along the direction of the horizontal
shear (y-direction) and has a length lshW [m] and a thickness tshW [m]. A part of the section
perpendicular to the shear wall acts as a �ange.

Figure V.1: Geometry of the wall with a non-rectangular cross-section

The e�ective length of the �ange is determined according to the EN 1996-1-1. It is given
by

lfl,eff = min


hw/5
ls/2
h/2
6 tfl

(V.3)

where hw [m] is the overall height of the wall, ls [m] is the distance between shear walls
connected to the perpendicular section (in�nite in the considered case), h [m] is the clear
height and tfl [m] is the thickness of the perpendicular section. The e�ective length lfl,eff
[m] is, at most, equal to the length of the perpendicular section lfl [m]. The position of
the �ange is characterised by the parameter dσmax [m] which measures the distance from
the point where the maximum vertical compressive stress is located (reference point) to the
closest side of the �ange. The position of the neutral axis of the wall in the y-direction with
respect to the reference point is
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yGC =
lshW tshW

lshW
2

+ lfl,eff ttl

(
dσmax +

tfl
2

)
lshW tshW + lfl,eff ttl

. (V.4)

The compressive length lc is obtained by solving the equilibrium equations. Indeed, the
horizontal shear VEd acting on the wall induces a bending moment MEd [Nm]. This latter is
de�ned, in the case of a single wall, by

MEd = VEd hw (V.5)

and is usually expressed as a function of the vertical compression load NEd:

MEd = NEd e. (V.6)

This is equivalent to an eccentric vertical compression NEd applied at a distance e [m] from
the neutral axis of the wall. An uniform vertical compression of the wall is assumed here,
but other distributions can be studied by increasing or decreasing the eccentricity e.

Masonry being considered as a material with no tensile strength, the Navier's equations
are not valid and the eccentric vertical load NEd has to be balanced with a vertical force
applied at a certain distance of the neutral axis of the wall. There are two contributions to
this force: one coming from the shear wall, NshW [N], and the other from the �ange, Nfl

[N]. They are located at a distance eshW [m] and efl [m] from the neutral axis, respectively.
These quantities are expressed by

NshW =
1

2
(σ1 + σ4) min (lc ; lshW ) tshW (V.7)

eshW = yGC −
2σ4 + σ1
σ4 + σ1

1

3
min (lc ; lshW ) (V.8)

Nfl =
1

2
(σ2 + σ3) min (max (lc − dσmax ; 0) ; tfl) lfl,eff (V.9)

efl = (yGC − dσmax)−
2σ3 + σ2
σ3 + σ2

1

3
min (max (lc − dσmax ; 0) ; tfl) (V.10)

where σi (i = 1, . . . , 4) is the compressive stress at four di�erent locations, namely the
extremities of the shear wall and at the intersections with the �ange (see Figure V.1 (right)).
It is positive in compression and cannot be lower than zero due to the lack of tensile strength.
It is calculated as a function of the maximum compressive stress σmax [N/m²] by

σi =



σmax (i = 1)

max
(
lc−dσmax

lc
; 0
)
σmax (i = 2)

max
(
lc−dσmax−tfl

lc
; 0
)
σmax (i = 3)

max
(
lc−lshW

lc
; 0
)
σmax (i = 4)

. (V.11)

The assumption of a linear distribution of the vertical compressive stresses is made in accor-
dance with the EN 1996-1-1 recommendation. The compressive length lc and the maximum
compressive stress σmax are unknowns.
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Introducing Eqs. V.7 to V.11 in the equilibrium equations, it follows

NEd = NshW +Nfl =
1

2

σmax
lc

[
R̄ + T̄

]
(V.12)

and

MEd = NshW eshW +Nfl efl =
1

2

σmax
lc

[
yGC R̄− Ḡ+ (yGC − dσmax) T̄ − H̄

]
(V.13)

with the groups

R̄ = [max (2lc − lshW ; lc)] [min (lc ; lshW )] tshW

Ḡ =
1

3
[max (3lc − 2lshW ; lc)] [min (lc ; lshW )]2 tshW (V.14)

T̄ = [max (2lc − 2dσmax − tfl ; lc − dσmax ; 0)] [min (max (lc − dσmax ; 0) ; tfl)] lfl,eff

H̄ =
1

3
[max (3lc − 3dσmax − 2tfl ; lc − dσmax ; 0)] [min (max (lc − dσmax ; 0) ; tfl)]

2 lfl,eff .

Eqs. V.12 and V.13 are two equations with two unknowns. The elimination of maximum
compressive stress σmax leads to

e =
MEd

NEd

= yGC −
Ḡ+ dσmaxT̄ + H̄

R̄ + T̄
. (V.15)

Eq. V.15 provides therefore the implicit expression of the compressive length lc. It
depends on the eccentricity e and on the geometry of the wall. It may be noted that the
expression given by Eq. V.15 degenerates into the well known expression of the compressive
length for a simple rectangular wall. Indeed, assuming no �ange (lfl,eff = 0 for instance), it
comes

e = yGC −
Ḡ

R̄

= yGC −
1

3

max (3lc − 2lshW ; lc) min (lc ; lshW )2 tshW
max (2lc − lshW ; lc) min (lc ; lshW ) tshW

. (V.16)

The compressive length being limited to the length of the shear wall lshW , the maximum and
minimum functions are thus always equal to the compressive length. The position of the
gravity centre of the rectangular wall with respect to the reference point is equal to lshW/2.
It follows

lc = 3

(
lshW

2
− e
)

(V.17)

where the factor 3 is a consequence of the assumption of a linear distribution of compressive
stresses.
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V.2.2 Linearisation of the expression

The relation between the compressive length lc and the eccentricity e given by Eq. V.15 is
non-linear due to the presence of the �ange. Considering a wall with a rectangular cross-
section, the relation e�ectively becomes Eq. V.17 in which these two quantities are simply
proportional. Solving this non-linear equation (Eq. V.15) requires the use of numerical
methods. In the following, a linearisation of this equation is proposed in the perspective of
determining the compressive length by hand calculations with a good approximation.

In the case of a simple rectangular wall with a length l, there are two discontinuities in
the line representing lc in function of e. On the one hand, lc remains equal to l as long as e
is smaller than l/6 (full contact). On the other hand, it becomes zero as soon as e is larger
than l/2 (overturning).

The proposed linearisation is based on these observations. It is indeed possible to deter-
mine the eccentricities for which a discontinuity occurs, i.e. the compressive length remains
in full contact or the �ange and a part of the shear wall are uplifted for instance. For the
con�guration drawn in Figure V.1, there are four discontinuities at most. Some of them can
overlap, depending on the position of the �ange. First, the absence of uplift means that
lc = lshW . Introducing this in Eq. V.15 leads to

R̄ = l2shW tshW

Ḡ =
1

3
l3shW tshW (V.18)

T̄ = (2lshW − 2dσmax − tfl) tfllfl,eff

H̄ =
1

3
(3lshW − 3dσmax − 2tfl) t

2
fllfl,eff .

The simpli�cations for R̄ and Ḡ are obvious, while those for T̄ and H̄ rely on the condition
that

dσmax + tfl ≤ lshW (V.19)

for geometrical reasons. Therefore, the minimum eccentricity involving an uplift of the wall
is

em = yGC (V.20)

− l
3
shW tshW + [3dσmax (2lshW − 2dσmax − tfl) + (3lshW − 3dσmax − 2tfl) tfl] tfl lfl,eff

3 [l2shW tshW + (2lshW − 2dσmax − tfl) tfl lfl,eff ]
.

Second, an uplift of the �ange implies that lc ≤ dσmax + tfl. At the transition and with the
condition given by Eq. V.19, it comes

R̄ = (dσmax + tfl)
2 tshW

Ḡ =
1

3
(dσmax + tfl)

3 tshW (V.21)

T̄ = t2fllfl,eff

H̄ =
1

3
t3fllfl,eff
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and the eccentricity is

et,1 = yGC −
1

3

(dσmax + tfl)
3 tshW + 3dσmax t

2
fl lfl,eff + t3fllfl,eff

(dσmax + tfl)
2 tshW + t2fllfl,eff

. (V.22)

Third, there is another transition when the �ange is fully uplifted (lc ≤ dσmax). In this case,
the groups T̄ and H̄ disappear and the eccentricity is

et,2 = yGC −
1

3
dσmax. (V.23)

Finally, the eccentricity leading to a zero compressive length is given by Eq. V.24 as the
groups R̄, Ḡ, T̄ and H̄ are null:

eM = yGC (V.24)

Eqs. V.20, V.22, V.23 and V.24 provide the abscissae of points whose ordinates are
lshW , dσmax + tfl, dσmax and 0 respectively. Between these points, a linear interpolation is
performed to calculate the compressive length corresponding to a given eccentricity. The
exact equation and the linearised relation are illustrated in Figure V.2, assuming dσmax =
lshW−tfl

2
and lfl,eff = 6tfl.

Figure V.2: Exact relation between lc and e and linearised expression

V.2.3 Parametric study of the position and the length of the �ange

Six parameters in�uence the compressive length lc. The main one is the ratio e between the
bending moment MEd and the vertical compression NEd acting on the wall. The others are
geometrical parameters, with the dimensions of the shear wall and �ange and the position
of this latter.

Considering two di�erent lengths for the shear wall and the same widespread thickness of
load-bearing walls in countries like Belgium (14 cm) for both sections of the wall, this section
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studies the importance on the relation between lc and e of the last two parameters, namely
dσmax and lfl,eff . The ratio between the e�ective length of the �ange and the length of the
shear wall is de�ned by the parameter r (Eq. V.25). Figure V.3 shows the cross-section of a
non-rectangular wall assuming dσmax = 0 and r = 0 (no �ange), r = 6 tfl or r = 12 tfl. The
last two values for r correspond to the bounds given by Eq. V.3, considering a one-side and
a two-side �ange respectively and disregarding the in�uence of the height.

r =
lfl,eff
lshW

(V.25)

Figure V.3: Parametric study - Examples of geometry

For the parameter study, Eq. V.15 is nondimensionalized by dividing each term by the
length of the shear wall lshW . It reads

e∗ = y∗GC −
Ḡ∗ + dσ∗maxT̄

∗ + H̄∗

R̄∗ + T̄ ∗
(V.26)

with e∗ = e/lshW , y∗GC = yGC/lshW , dσ∗max = dσmax/lshW and R̄∗ = R̄/l3shW , T̄ ∗ = T̄ /l3shW ,
Ḡ∗ = Ḡ/l4shW and H̄∗ = H̄/l4shW in which l∗c = lc/lshW .

Figures V.4 and V.5 show the relation l∗c − e∗ for two chosen lengths of shear wall (700
mm and 2800 mm). Three di�erent positions of the �ange are investigated, namely a �ange
at the left extremity (dσ∗max =

lshW−tfl
lshW

), at mid-length (dσ∗max =
lshW−tfl
2 lshW

) and at the right
extremity (dσ∗max = 0) of the shear wall. For each graph, the di�erent curves are related to
a given ratio r. The solid curves correspond to the exact equation and the dashed curves
are related to the linearised relation.

Figures V.4 and V.5 show that the presence of a �ange modi�es the abscissa of the
discontinuities (e∗M , e∗t,1, e

∗
t,2 and e

∗
m). The longer the �ange, the larger the di�erence with a

simple rectangular wall. The abscissae e∗i (i = m; t, 1; t, 2; M) depend also on the position
of the �ange given by dσ∗max. The in�uence of these two parameters (r and dσ∗max) on e∗i
can be observed in Figure V.6. The eccentricities e∗m and e∗t,1 present a maximum for some
positions of the �ange, when the �ange is at the right extremity of 2.8 m long shear wall for
instance.
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Figure V.4: Parametric study - evolution of the compressive length with respect to the
eccentricity (0.7 m long shear wall)
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Figure V.5: Parametric study - evolution of the compressive length with respect to the
eccentricity ( 2.8 m long shear wall)
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Figure V.6 also proves that e∗m and e∗t,1 (e∗M and e∗t,2) are equal if dσ∗max =
lshW−tfl
lshW

(dσ∗max = 0). The variation of e∗i with respect to the ratio r also depends on the length of
the shear wall. Another e�ect of this latter is the reduction of the di�erence between the
eccentricities e∗t,1 and e

∗
t,2 when it increases.

The comparison between the exact and the linearised equations (Figures V.4 and V.5)
highlights that the curves merge once the eccentricity e∗ is larger than e∗t,2. When e∗ > e∗t,2,
the slope of both exact and linearised curves are the same and corresponds to the slope of
the wall without any �ange since only a part of the shear wall remains compressed. In the
case e∗ < e∗t,2, di�erences are observed between the equations, the exact expression being
non-linear. The non-linearity is increased with the length of the �ange. This observation is
supported by Figure V.7 which highlights larger errors for longer �anges.

Finally, Figure V.7 leads to the conclusion that the simpli�ed expression of the com-
pressive length gives the same results (error < 2%) as the exact expression in the case of
dσ∗max =

lshW−tfl
lshW

for both considered length of the shear wall. For dσ∗max = 1
2

lshW−tfl
lshW

, a good
approximation ( error . 10 %) is obtained in the case of lshW = 700 mm and only if r < 6 tfl
in the case of lshW = 2800 mm. For dσ∗max = 0, the simpli�cations are acceptable (error .
20 %) if r < 6 tfl in the case of lshW = 700 mm and if r < 0.1 in the case of lshW = 2800
mm.

Figure V.6: Parametric study - eccentricities in function of the ratio r (top : 0.7 m long
shear wall ; bottom : 2.8 m long shear wall)
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Figure V.7: Parametric study - relative error of the linearisation (0.7 m long shear wall)
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Figure V.8: Parametric study - relative error of the linearisation (2.8 m long shear wall)
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V.3 Design procedure and comparison with experimental

results

The design procedure follows the recommendations of the EN 1996-1-1 for URM walls sub-
jected to a horizontal shear. First, the internal forces NEd, VEd and MEd acting on the
studied wall have to be determined. These forces can be obtained by a numerical analysis of
a model at the macro-scale, using an equivalent frame with beam elements for the piers and
spandrels, as illustrated in Figure V.9. The beams representing the walls and the spandrel
are located at their neutral axis and rigid arms connect the beam elements. The loads acting
on the structure are de�ned according to the relevant sections of the Eurocodes.

Figure V.9: Equivalent frame model

Then, the veri�cation is carried out and �rst consists in the calculation of the compressive
length corresponding to the ratio e = MEd/NEd given by the analysis (Eq. V.15). The
proposed methodology implements the expressions developed in the previous section (see
Section V.2). Once the compressive length calculated, three limit states have to be veri�ed :

- the shear resistance:

VEd ≤ VRd

≤ fvdAc (V.27)

- the compression resistance:

NEd ≤ NRd

≤ fdAc (V.28)

- the overturning:

lc ≥ 0 (V.29)
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where Ac [m²] is the area of the wall under compression and fd [N.mm-2] is the design
compressive strength. Finally, the horizontal shear acting on the structure is increased until
one of these three limit states is reached.

It is important to observe the di�erence between the criterion for the shear resistance
given in Eq. V.1 and taken from the Eurocode 6 and the criterion of the proposed method-
ology (Eq. V.27). Indeed, the parameter Ac substitutes the product of t and lc. This
parameter is more general and clearly implies the consideration of the �anges, both in the
calculation of the compressive length and the shear resistance.

The specimens described in Sections II.3 and II.5 are considered in the following. The
experimental results highlighted large di�erences in terms of maximum horizontal shear
when comparing the measurements with the results of a preliminary assessment performed
according the rules of the Eurocodes and neglecting the presence of �anges. Table V.1
shows these di�erences for the T-shaped specimens tested in static-cyclic conditions. The
positive direction corresponds to the over-compression of the perpendicular wall. As it
can be observed, the prediction underestimates the shear resistance, from 12.5 % to 23.3
% depending on the load direction and the compression level. The absence of di�erences
between the load directions is a main issue as the specimens are asymmetric.

Specimen
C1

Pred. Exp.
C2

Pred. Exp.
C3

Pred. Exp.
Neg. direction [kN] 104.5 119.4 128.2 161.4 148.4 182.6
Pos. direction [kN] 104.5 134.2 128.2 167.2 148.4 188.1

Table V.1: Summary of the preliminary assessment and the experimental results for cyclic
tests on non-rectangular walls

The results of the proposed procedure are presented in Figure V.10 and Table V.2 for
the walls subjected to static-cyclic tests and in Figure V.11 for the specimens tested on the
shake table. The Figures V.10 and V.11 plot the experimental force-displacement curves
and compare them to the results of the assessments performed with (solid line) and without
(dashed line) due consideration for the contribution of the �anges. In particular, the predic-
tions obtained with TREMURI are also given (dotted line) for the static-cyclic tests. The
detailed calculations for the specimen C1 are reported in Annex D.

Regarding the static-cyclic tests, the consideration of the �ange results in a shear resis-
tance close to the experimental results. A relative di�erence ranging from 2.4 to 6.5 % is
observed with the exact formulation (see Table V.2). The use of the linearised expression
leads to a relative di�erence from 2.2 % to 7.7 %. The largest di�erence between both
formulations is equal to 2.9 % (wall C3, �ange over-compressed). In terms of compressive
length, this corresponds to a relative error of 7.6 %.

It is worth noticing that, during the experiments, the vertical compression was supposed
to be applied on the shear wall only. Nevertheless, a part of the �ange sustains this compres-
sion as the �ange and the shear wall are glued together. The larger the compression load,
the longer the part of the �ange. The determination of the involved length of the �anges
requires further studies. In the present case, this length is taken as the length minimizing
the relative di�erence between the maximum shear given by the assessment and the experi-
ments, in both directions. The involved length is found to be equal to 91 mm, 210 mm and
259 mm for the wall C1, C2 and C3 respectively (see Annex D).
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Figure V.10: Comparison of the proposed procedure with experimental results - static-cyclic
tests

Specimen C1 C2 C3

Neg. direction [kN] 116.6 151.0 177.8
Pos. direction [kN] 131.0 156.4 183.0

Table V.2: Summary of the preliminary assessment and the experimental results for cyclic
tests on non-rectangular walls

Concerning the shake tables tests, the frame with T-shaped piers failed under an accel-
eration in the y-direction. In the perpendicular direction, the specimen presented in clear
rocking behaviour. The collapse of the L-shaped frame occurred for a y-shake when the slab
was supported by the �anges only. These three con�gurations are drawn in blue in Figure
V.11 because they exhibit well-de�ned plateaus. The application of the proposed procedure
seems to provide the shear force for which these plateaus develop. For the other con�gura-
tions, the experimental curve is in red and the assessed maximum shear over-estimates the
experimental values, except for the x-shake on the frame with L-shaped piers fully loaded.
In this case, a plateau is initiated and is also well approximated by the assessment. As a
conclusion, the shear capacity of URM structures including non-rectangular walls and sub-
jected to the seismic action can be predict by an equivalent static approach implementing
the calculation of the shear resistance with due consideration for any �anges.



V.4. CONCLUSIONS 143

Figure V.11: Comparison of the proposed procedure with experimental results - shake table
tests

V.4 Conclusions

This chapter is dedicated to the assessment of the shear resistance of URM walls with non-
rectangular cross-section. The recommendations of the current European Standards on the
contribution of �anges to the shear resistance are not explicit, leading to their neglection
usually. Such an approach is conservative and underestimates the shear resistance of the
walls.

In the perspective of improving the assessment of the shear resistance, the expression
of the compressive length is developed and includes the contribution of the perpendicular
sections. The eccentricity, i.e. ratio between the bending moment and the compressive force
acting on the wall, is a main parameter of the equation, as well as the geometry of the
wall. Simpli�cations of this expression are then suggested, based on the determination of
the eccentricities corresponding to speci�c values of the compressive length and on the linear
interpolation between these points. Finally, a design procedure including the developments
is performed and the results are compared to the measurements from experimental tests on
URM specimens. The comparisons show that the assessed shear resistance is in accordance
with the experimental results corresponding to static-cyclic tests. For the specimens sub-
jected to shake table tests, the assessment provides a good approximation of the plateau
observed in the force-displacement curves.

The proposed methodology improves therefore the assessment of the shear resistance of
URM walls with non-rectangular cross-section.
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VI.1 Introduction

The general rocking behaviour observed during the experimental campaigns on the shake
table (see Chapter II, Section II.4), especially for the short walls, has triggered some interest
in modelling this behaviour. Rocking has been originally studied by Housner in 1963 [45]
with the aim of explaining the survival of tall slender structures during earthquakes. A single
rectangular block resting on a horizontal base, both supposed rigid, has been considered and
the equations describing the rocking motion (RM) have been developed under the assump-
tions of neither sliding between the block and its support nor bouncing. Numerous scienti�c
contributions resulted from and extended this �inverted pendulum� model.

Some authors deeper investigated the simple model of Housner. Yim et al. [128] proposed
a numerical procedure to solve the non-linear equations governing the RM, considering hor-
izontal and vertical ground accelerations. They highlighted an important sensitivity to the
geometry of the block and to the details of the ground motion. The rocking response under
sinusoidal acceleration was characterised by Spanos and Koh [114], while Zhang and Makris
[130] considered cycloidal pulses. More recently, Kounadis [54] determined the minimum
acceleration leading to overturning instability. Alternatives to the model of Housner were
also studied. Prieto and Lourenço [100] uni�ed the piecewise equations for the RM with
a new formulation and Prieto et al. [101] developed a tool based on the Discrete Element
method for the numerical modelling of the rigid block.

Extensions of the simple model focused on the di�erent assumptions made by Housner.
First, a �exible support was introduced. Psycharis and Jennings [104] compared the Winckler
model and a simpli�ed unilateral two-spring model in order to consider an elastic foundation.
It was concluded that both solutions were equivalent, allowing the use of the simple one.
This type of foundation was also studied by Koh [52] and Palmeri and Markis or Ma and
Butterworth [91, 66], using the Winckler model or the simpli�ed model respectively. Vassilou
and Makris [73] examined, numerically, the RM of rigid blocks on linear visco-elastic and
single/double concave spherical sliding bearings, while an experimental campaign was carried
out by ElGawady et al. [32] and showed the signi�cant in�uence on the RM of the material
(concrete, timber, steel or rubber) at the base of the rigid block. Second, the assumptions
of neither sliding nor bouncing were discussed. Shenton III and Jones [113] identi�ed �ve
modes of response (rest, slide, rock, slide-rock and free �ight) and provided criteria for their
initiation with corresponding equations of motion. Third, the deformability of the block
has been taken into account. Psycharis [103] carried out a parametric analysis on a SDOF
oscillator with a harmonic excitation and outlined the importance of the ratio of the natural
period of the structure to the period of excitation. Oliveto et al. [89] enhanced previous
models with a novel set of coordinates and transition conditions and Acikgos and DeJong
[3] were focused on the interaction between elasticity and rocking. Finally, an interest in
asymmetric blocks and tilted foundations was given by Plaut et al. [97]. Borosheck and
Romo [11] modi�ed the overturning criteria to consider the asymmetry, whereas Contento
and Di Egidio [21] investigated the base isolation of these bodies.

Besides these extensions, the theory developed by Housner was compared to an equivalent
SDOF oscillator with damping in the perspective of translating the research work into design
procedures (see Priestley et al. [99]). Nevertheless, Makris and Konstantinidis [73] showed
that this analogy is oversimpli�ed and the related design approach should be abandoned. A
new tentative of design procedure was presented by Kelly [49] in order to substitute for the
special study required by the last version of the code in New-Zealand.
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This literature review outlines a great interest in the rocking behaviour, but this was
mainly limited to single block. Few research focused on the dynamic behaviour of stacked
blocks. The analytical expression of the equations translating the RM of 2-stacked blocks
was established by Psycharis [102], considering no sliding. Spanos et al. [115] improved this
formulation by adding di�erent contributions to the transition criteria between the di�erent
geometrical con�gurations and proposed an alternative method for the linearisation of the
piecewise equations. Kounadis et al. [55] continued the work of assessing the minimum
amplitude of the ground excitation leading to the overturning instability. Only one experi-
mental campaign on rocking multi-block structures lying on a rigid support has been found.
It was performed at the National Laboratory of Civil Engineering (LNEC) [94]. Regard-
ing the design procedures, DeJong and Dimitrakopoulos proposed a methodology to derive
approximate equivalence between rocking blocks and SDOF structures [28].

This chapter aims at reproducing the rocking behaviour of the 0.72-m long walls, ob-
served during the third experimental campaign described in Chapter II and, in particular, in
Section II.4. On the one hand, the specimen without soundproo�ng devices is �rst assumed
to be represented by the simple model of Housner. The original theory however requires
several adjustments, in order to take into account the additional steel mass for instance. A
comparison is then made with a bi-block model used to consider properly the upper mass, a
priori likely to rock with respect to the underlying wall. On the other hand, a new rocking
model is derived for the specimen with rubber devices. It aims at modelling 2-stacked-block
structures with viscous and �exible interfaces between the blocks as well as between the
bottom block and the foundation. The properties of these interfaces are deduced from ex-
perimental data and highly in�uence the model response. Solving the equations related to
the di�erent models adopts a numerical scheme resorting to an event-driven strategy whose
principles are detailed in [29].

VI.2 Rocking behaviour of specimens without rubber

VI.2.1 Modi�ed Housner's theory

The theory developed by Housner considers a single block whose geometry is given in Figure
VI.1 (a). A review of this theory is given in the following. The single block is assumed
rigid and resting on a rigid base. It is subjected to a horizontal ground acceleration üg(t)
[m.s-2] and cannot slide nor bounce. Three di�erent con�gurations are thus possible and are
characterised by the time-dependent angle θ(t) [rad], representing the rotation of the block:
the block can be quiescent (θ = 0), rotate clockwise around its corner O (θ > 0) or exhibit a
counterclockwise rotation around its corner O' (θ < 0). The equations of motion related to
RM of these patterns are obtained by the Lagrange's method, using D'Alembert principle,
namely

IOθ̈ +mGr sin (θcr − θ) = −mügr cos (θcr − θ) (VI.1)

IO′ θ̈ −mGr sin (θcr + θ) = −mügr cos (θcr + θ) (VI.2)

if θ > 0 and if θ < 0 respectively. In Eqs. VI.1 and VI.2, IO (IO′ ) [kg.m2] is the moment
of inertia with respect to the point O (O'), G [m.s-2] is the gravitational acceleration and
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m = ρ(2b)(2h)t [kg] is the speci�c mass of the system, where ρ [kg.m-3] is the density of the
block, t [m] is its thickness and b [m] and h [m] are its half-length and half-height respectively.
Considering θ > 0 , the parameter r =

√
b2 + h2 [m] gives the distance between the centroid

of the block and the rotating point O. The angle θcr = arctan (b/h) [-] is the angle between
the line r and the vertical. The dot symbol indicates derivatives with respect to time.

(a) (b) (c)

Figure VI.1: Rocking behaviour - single rigid block

The transition between the di�erent con�gurations is governed by criteria. The initiation
of motion of the block requires that the overturning moment induced by the horizontal ground
acceleration üg exceeds the restoring moment due to the gravity G, leading to the conditions

∓cos (θcr)

sin (θcr)

üg(t)

G
−1 > 0 (VI.3)

depending on whether the block starts to rock around O or O'. The transition between the
RM around one corner to another is translated by a change in sign of the angle θ. This
happens when the block passes through the vertical position and, thus, hits its support. The
impact of the block against the support is accompanied with a dissipation of energy. At the
moment of impact, the block has kinetic energy only. The energy dissipation is therefore
translated by a reduction of the angular velocity θ̇ [rad.s-1]. Under the assumption of an
inelastic impact (no bouncing), the angular momentum with respect to O' is conserved.
Thanks to this conservation, the angular velocity immediately after the impact, θ̇a, can be
expressed as a function of the angular velocity immediately before it, θ̇b:

Io′ θ̇a = Ioθ̇b − 2mr2 sin2 (θcr) θ̇b (VI.4)

It follows

e = θ̇a
θ̇b

= 1− 2mr2

Io′
sin2 (θcr) < 1 (VI.5)
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with e, the coe�cient of restitution. The block comes back to rest when, at the moment of
an impact, the sign of the angular velocity θ̇a is opposite to the sign of the angle θa (the
angle immediately after the impact).

The comparison between the model of Housner and the specimen without rubber tested
experimentally on a shake table (see Section II.4) highlights di�erences, due to the additional
steel mass at the top of the URM wall in particular. In a �rst approximation, the wall can be
assumed as rigid and the additional mass is considered as punctual, as illustrated in Figure
VI.1 (b). The presence of this latter involves the translation of the position of the centroid
of the system (block + additional mass), in�uencing the parameters m, r, θcr and IO (IO′)
in Eqs. VI.1 to VI.5. Indeed,

m = ρ(2b)(2h)t+madd ' madd (VI.6)

as the speci�c mass of the walls (159 kg) can be neglected in comparison to the additional
mass (5000 kg), leading to

r =

√
b2 + (2h)2 ; θcr = arctan

(
b
2h

)
; IO = mr2. (VI.7)

Provided Eqs. VI.6 and VI.7 are used for the calculation of the parameters m, r, θcr and IO
(IO′), the equations of motion Eqs. VI.1 and VI.2 remain valid for the RM of the modi�ed
system, as well as the criteria for the transition between con�gurations (Eq. VI.3). The
coe�cient of restitution becomes

e = 1− 2 sin2 (θcr) . (VI.8)

The adopted numerical scheme consists in the time-integration of the linearised equations
of motion describing the current con�guration of the system. Assuming that the angle θ is
small, the linearised equations are given by:

IOθ̈ −mGr cos (θcr) θ = −mügr cos (θcr)−mGr sin (θcr) if θ > 0 (VI.9)

IOθ̈ −mGr cos (θcr) θ = −mügr cos (θcr) +mGr sin (θcr) if θ < 0. (VI.10)

As soon as the con�guration of the system changes, the integration is stopped and an event-
driven strategy [29] is activated for the handling of the transition. An event localization
function is �rst applied in the perspective of detecting accurately the moment of the tran-
sition. The update of the system variables is then operated. The equations of motion
corresponding to the new con�guration are chosen and the integration restarts. The tran-
sition is detected thanks to gap functions. These functions are de�ned by the criteria for
the transition between con�gurations. Therefore, there are as many gap functions as there
are criteria, namely three for the studied model. There is a change when one gap function
presents a root.
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VI.2.2 Application of the modi�ed Housner's theory

The inputs of the model described in the previous section are the geometry of the masonry
wall (b and h), the magnitude of the additional mass m and the horizontal ground acceler-
ation üg(t). The short wall without rubber is considered in the following and is initially at
rest. Figure VI.2 shows the results given by the model in comparison to the experimental
measurements related to the seismic test S08. According to the model, the system remains
quiescent under the applied ground acceleration. This is con�rmed by Figure VI.3 which
represents the time evolution of gap functions. The curves representing Eq. VI.3 never cross
the x-axis, translating no initiation of motion.

Figure VI.2: Rocking behaviour - Comparisons of the model predictions (rigid) with exper-
imental measurements - S08

Figure VI.3: Rocking behaviour - Gap functions of seismic test S08
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The absence of motion makes questionable the modelling of the URM wall with an
additional mass by a single rigid block. A possible reason is the assumption on the position
of the points O and O'. These points are the corners of the block since it is supposed
rigid. Considering studied URM walls, block is not perfectly rigid due to the open vertical
joints and, therefore, the contact with the support is not punctual. The contact length
can be assessed by the compressive length lc [m] (see Chapter V) and the rotating point in
contact is the point of zero strain. The criteria for the initiation of motion and the modi�ed
parameters θcr and r are thus expressed by

∓ r cos(θcr)
r sin(θcr)−lc

üg(t)

G
− 1 > 0

θcr = arctan

(
|b− lc|

2h

)
; r =

√
(|b− lc|)2 + (2h)2 (VI.11)

A similar approach has been proposed by Costa et al. [22]. These modi�cations are drawn
in Figure VI.1 (c) and lead to the results presented in Figure VI.4. The model predicts the
initiation of the RM after 7 seconds, slightly postponed in comparison to the experimental
measurements (around 6.5 seconds). Three rocking phases can be observed experimentally,
approximately between t = 7 s and t = 9 s, between t = 12 s and t = 14 s and between
t = 15 s and t = 18 s respectively. The model provides similar predictions, but is not able to
capture the magnitude nor the frequency of the RM. Moreover, the experimental behaviour
is more damped when looking at the last rocking phase.

Consequently, the modelling of the specimens without rubber by a single rigid block is
not suitable. There are two main issues. On the one hand, the consideration of the additional
mass should be improved. Indeed, this latter has been taken into account by its magnitude
and by translating the centroid of the system. Its geometry and moment of inertia have
however been neglected, as well as the possibility for it to rock on the URM wall. On the
other hand, the position of the rotating point is questionable. This should also a�ect the
expression of the coe�cient of restitution e given that the contact between the block and its
support is not punctual.

Figure VI.4: Rocking behaviour - Comparisons of the model predictions (modi�ed) with
experimental measurements - S08
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VI.2.3 2-stacked-block model

In the perspective of improving the modelling of the wall without rubber tested experimen-
tally, the 2-stacked-block model developed by Spanos et al. [115] is implemented. The lower
block represents the URM wall and the upper block models the additional mass. Both blocks
are assumed rigid and are characterised by their geometry (half-length bi [m] and half-height
hi [m], with i = 1, 2 for the lower and upper blocks respectively), mass mi [kg] and moment
of inertia with respect to the rotating point IOi

[kg.m2] (or IO′i). The system has 9 di�erent
con�gurations. It can be at rest or exhibit one of the con�gurations illustrated in Figure
VI.5. There are two coordinates, namely the angles θ1 and θ2, which measure the rotation
of the lower and upper blocks respectively. They are positive clockwise.

Figure VI.5: Rocking behaviour - Con�gurations of the 2-stacked blocks model

The equations governing the RM, obtained by the Lagrange's method, are detailed in
[115] for all con�gurations. Those related to the con�guration 2 (a) are given in Eqs. VI.12
and VI.13, under horizontal and vertical ground accelerations üg(t) [m.s-2] and ẅg(t) [m.s-2].
They are

(IO1 +m2l
′2) θ̈ +m2l

′r2 cos (γ2) θ̈2 +m2l
′r2 cos (γ2) θ̇

2
2

−m1Gr1 sin (θ1 − θcr,1)−m2Gl
′ sin (θ1 − β′)

= − [m1r1 cos (θ1 − θcr,1) +m2l
′ cos (θ1 − β′)] üg

+ [m1r1 sin (θ1 − θcr,1) +m2l
′ sin (θ1 − β′)] ẅg

(VI.12)

m2l
′r2 cos (γ2) θ̈1 + IO2 θ̈2 −m2l

′r2 cos (γ2) θ̇
2
1 −m2Gr2 sin (θ2 − θcr,2)

= m2r2 [cos (θ2 − θcr,2) üg + sin (θ2 − θcr,2) ẅg]
(VI.13)

with γ2 = θ1−θ2 +θcr,2 +β′. The parameters of these equations are shown in Figure VI.6. In
addition to the mass mi and the moment of inertia, IOi

or IO′i , with respect to the rotating
point of each block, ri [m] is the distance between the centroid and the point around which
the block rotates (see Eq. VI.14), θcr,i [-] is the angle between the line ri and the vertical, l′

[m] is the distance between the rotating points of each block (i.e. O1 and O'
2 in this case)

and β′ [-] is the angle between the line l′ and the vertical.

r1 =
√
b21 + h21 ; r2 =

√
min (b1, b2)

2 + h22 (VI.14)

The transitions between the di�erent con�gurations of the system are illustrated in Fig-
ure VI.7. They are handled by the gap functions given in Eq. VI.15. The event-driven
strategy deals with one transition at a time, i.e. a system at rest cannot directly reach the
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con�guration 1 (a), but requires to pass by the con�guration 3 or 4 (a) �rst for instance.
Just after an impact, the angular velocity of both blocks has to be calculated. These two
unknowns are determined thanks to two equations, obtained by the application of the prin-
ciple of conservation of the angular momentum around the rotating point of each block. The
coe�cients of restitution ei for each block are derived from these equations.

Figure VI.6: Rocking behaviour - Parameters of the 2-stacked blocks model (Con�g. 2 (a))

Figure VI.7: Rocking behaviour - Transitions between the con�gurations of the system
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g(1) = θ1

g(2) = θ2 − θ1
g(3) = −hgüg − b1 (g + ẅg)

g(4) = +hgüg − b1 (g + ẅg)

g(5) = −h2üg − b (g + ẅg)

g(6) = +h2üg − b (g + ẅg)

g(7) = − cos (θcr,2 − θ1) üg − sin (θcr,2 − θ1) (G+ ẅg)

−d cos (θcr,2 + ω) θ̇21 −
[
d sin (θcr,2 + ω) +

Ig2
m2r2

]
θ̈1

g(8) = + cos (θcr,2 + θ1) üg − sin (θcr,2 + θ1) (G+ ẅg)

+d cos (−θcr,2 + ω) θ̇21 +

[
d sin (−θcr,2 + ω) +

Ig2
m2r2

]
θ̈1

g(9) = + cos (θcr,2 + θ1) üg − sin (θcr,2 + θ1) (G+ ẅg)

−d cos (θcr,2 + ω) θ̇21 +

[
d sin (θcr,2 + ω) +

Ig2
m2r2

]
θ̈1

g(10) = − cos (θcr,2 − θ1) üg − sin (θcr,2 − θ1) (G+ ẅg)

+d cos (−θcr,2 + ω) θ̇21 −
[
d sin (−θcr,2 + ω) +

Ig2
m2r2

]
θ̈1 (VI.15)

g(11) = − (m1 + 2m2)h1üg − (m1b1 +m2ξ) (G+ ẅg)

−m2r2 [2h1 sin (θcr,2 − θ2)− ξ cos (θcr,2 − θ2)] θ̇22
−m2r2 [ξ sin (θcr,2 − θ2) + 2h1 cos (θcr,2 − θ2)] θ̈2

g(12) = + (m1 + 2m2)h1üg − (m1b1 +m2ξ
′) (G+ ẅg)

+m2r2 [2h1 sin (θcr,2 − θ2) + ξ′ cos (θcr,2 − θ2)] θ̇22
−m2r2 [ξ′ sin (θcr,2 − θ2)− 2h1 cos (θcr,2 − θ2)] θ̈2

g(13) = + (m1 + 2m2)h1üg − (m1b1 +m2ξ) (G+ ẅg)

−m2r2 [2h1 sin (θcr,2 + θ2)− ξ cos (θcr,2 + θ2)] θ̇
2
2

+m2r2 [ξ sin (θcr,2 + θ2) + 2h1 cos (θcr,2 + θ2)] θ̈2

g(14) = − (m1 + 2m2)h1üg − (m1b1 +m2ξ
′) (G+ ẅg)

+m2r2 [2h1 sin (θcr,2 + θ2) + ξ′ cos (θcr,2 + θ2)] θ̇
2
2

+m2r2 [ξ′ sin (θcr,2 + θ2)− 2h1 cos (θcr,2 + θ2)] θ̈2

with b = min (b1, b2) and where

hg = m1h1+m2(2h1+h2)
m1+m2

d =

√
(2h1 + h2)

2 + b21 ω = arctan

(
2h1 + h2

b1

)
(VI.16)

ξ = b1 − b ξ′ = 2b1 − ξ
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The predictions of the bi-block model are shown in Figure VI.8 (left) under the assump-
tion of rigid blocks, involving the rotation of the blocks around the corners at their base
(points O1, O1

', O2 or O2
' in Figure VI.6). The system is set in motion (con�guration 3

(a)) around t = 7.5 s, but the rotations are insigni�cant (θ1 = θ2 < 10−4). Figure VI.8
(right) presents the results for the model including modi�cations for the position of the ro-
tating points. The modi�cations are similar to those implemented for the modi�ed Housner's
theory. The initiation of the rocking motion is relatively well approximated by the model.
Nevertheless, the time evolution of the angle characterising the motion of the blocks is not
in accordance with the experimental measurements.

As a conclusion, the modelling of the specimens without rubber thanks to a 2-stacked-
block model is not appropriate. Contrary to the conclusions of the previous section, the
problem is not due to the lack of a proper modelling of the additional steel mass placed
on the URM walls. The main issue concerns the use of a rigid block to model the URM
wall. Indeed, the contact between the wall and its support cannot be considered as punctual.
Moreover, this modi�cation makes irrelevant the use of the principle of conservation of the
angular momentum for the calculation of the coe�cient of restitution.

Figure VI.8: Rocking behaviour - Comparisons of the predictions of the 2-stack blocks model
(left : rigid ; right : modi�ed) with experimental measurements - short wall without rubber
-S08)
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VI.3 Rocking behaviour of specimens including rubber

layers

VI.3.1 2-stacked blocks with �exible and viscous interfaces model

The URM wall including rubber soundproo�ng devices is modelled by 2-stacked blocks in-
cluding �exible and viscous interfaces, illustrated in Figure VI.9 (left). The blocks are
supposed rigid and characterised by a length 2bi [m], a height 2hi [m], a thickness ti [m],
a mass mi [kg] and a moment of inertia IGCi

[kg.m2], GCi being the centroid of the block
and with i = 1, 2 for the lower and the upper block respectively. The interface between the
support and lower block (between the lower and upper block) has a height eb [m] (et [m])
and the same thickness ti as the block they support. It is supposed to behave linearly and
elastically. An interface is made of springs with a sti�ness per unit length kb [kg.m-1.s-2] (kt
[kg.m-1.s-2]) and dampers with a viscosity per unit length cb [kg.m-1.s-1] (ct [kg.m-1.s-1]). The
parameters kb, kt, cb and ct are de�ned by

kb = Er
t1
eb

; cb = 2
√
kb2b1 (m1 +m2)

ξr
2b1

kt = Er
t2
et

; ct = 2
√
kt2bm2

ξr
2b

(VI.17)

where b = min (b1, b2) and Er [N.m-2] and ξr [-] are the elastic modulus and the damping
ratio of the interfaces, to be calibrated. Unilateral springs are considered, involving an uplift
when the upward vertical displacement at any point is larger than the de�ection due to
gravity load.

Figure VI.9: Rocking behaviour - 2-stacked blocks with �exible and viscous interfaces
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Equations of motion

The model describes the RM with four variables: the rotation θi [-] of the blocks with
respect to the vertical and the vertical displacement zbi [m] of the interfaces (i = 1, 2). They
are denoted in Figure VI.9 (right) in which ∆ = zb1 − (2h1 + et) (1− cos θ1) + zb2 cos θ1. The
model assumes that there is no bouncing, nor sliding. Four di�erent con�gurations can be
observed, namely (i) no uplift, (ii) uplift of the lower block, (iii) uplift of the upper block or
(iv) uplift of both blocks.

The equations of motion for the di�erent con�gurations are obtained by the Lagrange's
method. The exact expression of these equations is developed for the con�guration without
uplift (i). The kinetic energy of the system is

T = T1 + T2

=
1

2
IGC1 θ̇

2
1 +

1

2
m1

(
ẋ2GC1

+ ż2GG1

)
(VI.18)

+
1

2
IGC2 θ̇

2
2 +

1

2
m2

(
ẋ2GC2

+ ż2GC2

)
where ẋGCi

and żGCi
are the horizontal and vertical velocities of the centroid of the blocks:

ẋGC1 = h1 cos (θ1) θ̇1

żGC1 = żb1 − h1 sin (θ1) θ̇1 (VI.19)
ẋGC2 = (2h1 + et + zb2) cos (θ1) θ̇1 + żb2 sin (θ1) + h2 cos (θ2) θ̇2

żGC2 = żb1 − (2h1 + et + zb2) sin (θ1) θ̇1 + żb2 cos (θ1)− h2 sin (θ2) θ̇2.

The dot symbol indicates derivatives with respect to time.
The potential energy is

V = V1 + V2 = m1GhGC1 +m2GhGC2 (VI.20)

with

hGC1 = zb1 + h1 cos (θ1)

hGC2 = zb1 + (2h1 + et + zb2) cos (θ1) + h2 cos (θ2) (VI.21)

The generalized forces Qu(j) (j = 1, 2, 3, 4) result from the horizontal and vertical ground
accelerations üg(t) [m.s-2] and ẅg(t) [m.s-2] applied to the system. Other contributions come
from the energy Es,b or Es,t stored in the springs and the energy Ed,b or Ed,t dissipated in
the dampers of both interfaces, so that

Qu(j) =
∑
i

(
∂xCGi

∂u(j)
Fx,GCi

+
∂zCGi

∂u(j)
Fz,GCi

)
+
∂Es,b
∂u(j)

+
∂Es,t
∂u(j)

+
∂Ed,t
∂u̇(j)

+
∂Ed,b
∂u̇(j)

(VI.22)
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where u is the vector gathering the variables of the system. The parameters(xGCi
; zGCi

) give
the coordinates of the point where act the forces Fx,GCi

= −miüg and Fz,GCi
= −miẅg due

to the ground accelerations. The energy stored in the springs and dissipated in the dampers
of the interfaces are expressed by

Es,b =
1

2
kb

b1ˆ

−b1

[zb1 − x sin (θ2 − θ1)]2 dx =
1

3
kbb

3
1 sin2 θ1 + kbb1z

2
b1

Es,t =
1

2
kt

bˆ

−b

[zb2 − x sin θ1]
2 dx =

1

3
ktb

3 sin2 (θ2 − θ1) + ktbz
2
b1

Ed,b =
1

2
cb

b1ˆ

−b1

[
żb1 − x cos (θ1) θ̇1

]2
dx =

1

3
cbb

3
1 cos2 (θ1) θ̇

2
1 + cbb1ż

2
b1

(VI.23)

Ed,t =
1

2
ct

b1ˆ

−b1

[
żb1 − x cos (θ2 − θ1)

(
θ̇2 − θ̇1

)]2
dx

=
1

3
ctb

3 cos2 (θ2 − θ1)
(
θ̇2 − θ̇1

)2
+ ctbż

2
b2

The equations of motion are therefore (Eqs. VI.24 to VI.27):

[
IGC1 +m1h

2
1 +m2 (2h1 + et + zb2)

]
θ̈1 +m2h2 (2h1 + et + zb2) cos (θ2 − θ1) θ̈2

+m2 (2h1 + et + 2zb2) żb2 θ̇1 +m2h2 (2h1 + et + zb2) sin (θ2 − θ1) θ̇22
− [m1h1 +m2 (2h1 + et + zb2)] sin (θ1) z̈b1 −G [m1h1 +m2 (2h1 + et + zb2)] sin (θ1)

= −2

3
kbb

3
1 sin θ1 cos θ1 +

2

3
ktb

3 sin (θ2 − θ1) cos (θ2 − θ1)

− 2

3
cbb

3
1 cos2 (θ1) θ̇1 +

2

3
ctb

3 cos2 (θ2 − θ1)
(
θ̇2 − θ̇1

)
− üg [m1h1 cos θ1 +m2 (2h1 + et + zb2) cos θ1]

+ ẅg [m1h1 sin θ1 +m2 (2h1 + et + zb2) sin θ1] (VI.24)

m2h2 (2h1 + et + zb2) cos (θ2 − θ1) θ̈1 +
[
IGC2 +m2h

2
2

]
θ̈2

+ 2m2h2 cos (θ2 − θ1) żb2 θ̇1 +m2h2 (2h1 + et + zb2) sin (θ2 − θ1) θ̇21
−m2h2 sin (θ2) z̈b1 +m2h2 sin (θ2 − θ1) z̈b2 −m2Gh2 sin (θ2)

= −2

3
ktb

3 sin (θ2 − θ1) cos (θ2 − θ1)

− 2

3
ctb

3 cos2 (θ2 − θ1)
(
θ̇2 − θ̇1

)
− üg [m2h2 cos θ2] + ẅg [m2h2 sin θ2] (VI.25)
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−[m1h1 sin θ1 +m2 (2h1 + et + zb2) sin θ1] θ̈1−m2h2 sin (θ2) θ̈2+(m1 +m2) z̈b1+m2 cos (θ2) z̈b2

−2m2 sin (θ1) żb2 θ̇1−cos (θ1) [m1h1 +m2 (2h1 + et + zb2)] θ̇
2
1−m2h2 cos (θ2) θ̇

2
2 +G (m1 +m2)

= −2kbb1zb1 − 2cbb1żb1 − ẅg (m1 +m2) (VI.26)

−m2h2 sin (θ2 − θ1) θ̈2 +m1 cos (θ1) z̈b1 +m2z̈b2

−m2 (2h1 + et + zb2) θ̇
2
1 −m2h2 cos (θ2 − θ1) θ̇22 +Gm2 cos (θ1)

= −2ktbzb2 − 2ctbżb2 − ügm2 sin (θ1)− ẅgm2 cos (θ1) (VI.27)

Transition between con�gurations

The con�guration in which the system behaves is de�ned by two parameters gb and gt. Their
values depend on the gap functions, given in Eq. VI.28:

g(1) = b1 [sign (θ1)] θ1 + zb1
g(2) = b [sign (θ2 − θ1)] (θ2 − θ1) + zb2 (VI.28)

respectively. For instance, gb is equal to 0 if g(1) is positive, translating the uplift of the
lower block, and to 1 if g(1) is negative.

Implementation in the numerical scheme with event-driven strategy

The equations of motion have to be linearised for the use in the adopted numerical scheme
with the event-driven strategy. They are presented in a matrix form in Eq. VI.29:

Mü + Cu̇ + Ku = f (VI.29)

with

M =


IGC1 +m1h

2
1 +m2 (2h1 + et)

2 m2h2 (2h1 + et) 0 0
m2h2 (2h1 + et) IGC2 +m2h

2
2 0 0

0 0 m1 +m2 m2

0 0 m2 m2

 (VI.30)

C =


ϕ1cbb

3
1 + ϕ

′
1ctb

3 −ϕ′1ctb3 −ϕ2cbb
2
1 ϕ

′
2ctb

2

−ϕ′1ctb3 ϕ
′
1ctb

3 0 −ϕ′2ctb2
−ϕ2cbb

2
1 0 3ϕ1cbb1 0

ϕ
′
2ctb

2 −ϕ′2ctb2 0 3ϕ
′
1ctb

 (VI.31)

K =


K1,1 −ϕ′1ktb3 −ϕ

′
2kbb

2
1 ϕ

′
2ktb

2

−ϕ′1ktb3 K2,2 0 −ϕ′2ktb2
−ϕ′2kbb21 0 3ϕ1kbb1 0
ϕ
′
2ktb

2 −ϕ′2ktb2 0 3ϕ
′
1ktb

 (VI.32)
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f =


− [m1h1 +m2 (2h1 + et)] üg

−m2h2üg
− (m1 +m2) (ẅg +G)
−m2 (ẅg +G)

 . (VI.33)

with ϕ1 = 1+gb
3
, ϕ2 = 1−gb

2
, ϕ

′
1 = 1+gt

3
, ϕ

′
2 = 1−gt

2
, and

K1,1 = −m1Gh1 −m2G (2h1 + et) + ϕ1kbb
3
1 + ϕ

′

1ktb
3

K2,2 = −m2Gh2 + ϕ
′

1ktb
3. (VI.34)

The energy dissipation in this model is a continuous process. The viscous and �exible
interfaces indeed dissipate energy through damping in the dash-pots.

VI.3.2 Application of the 2-stacked blocks with �exible and viscous

interfaces model

The model developed in the previous section is used to reproduce the experimental measure-
ments of the seismic test S06 on the short wall with rubber (see Section II.4). In addition
to the geometry of the specimen, it is necessary to de�ne an elastic modulus and a damping
ratio as input for the interfaces. A �rst guess for the elastic modulus of the rubber interfaces
is given in Chapter III, but has to be reduced because of the e�ects of repeated shakes.

Figure VI.10 shows the time evolution of the rotations of both blocks obtained with the
current model and compares them with the experimental measurements. The inputs for the
interfaces are 4.45 MPa for the elastic modulus and 72 % for the damping ratio. The former
value is included in the range given by the producer (see Annex A). The predictions of the
model are in good agreement with the experimental data. Both the initiation of the rocking
motion and the maximum rocking angle are well captured. In comparison to the models used
for the specimen without rubber, the assumption of a rigid block for the modelling of the
URM wall seems to be relevant. This can be explained by the presence of the rubber layers.
Indeed, the sti�ness of these interfaces is much lower than the sti�ness of the URM wall and
the assumption on this latter is found to be more realistic. Some slight discrepancies are
however observed, especially for the amplitude of the rotation just before the initiation of
the motion and for the damping at the end of the simulation, when the specimen is in free
rocking.
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Figure VI.10: Rocking behaviour - Comparisons of the predictions of the 2-stacked blocks
with �exible and viscous interfaces model with experimental measurements (short wall with
rubber - S06)
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VI.4 Conclusions

This chapter focuses on the rocking behaviour of 0.72 m long URM walls including sound-
proo�ng rubber devices. These walls are built in clay masonry with glued horizontal joints
and empty head joints (tongue-and-groove system). This interest is motivated by observa-
tions of the shake table tests on these specimens (see Section II.4) during which a signi�cant
RM was experienced for the shakes at the highest acceleration levels.

Considering the specimen without any acoustic layer, the experimental measurements
are �rst compared to the predictions of a model, based on the simple theory of Housner
and modi�ed to consider the additional mass placed at the top of the wall. It is found
that a proper modelling of the additional mass is required and that the assumption of a
rigid block for the URM wall is questionable. A second model is therefore implemented
with the developments of Spanos et al. [115]. Despite an appropriate consideration of the
additional mass, the predictions of the model did not provide relevant results. Thus, the
studied URM wall cannot be assumed as rigid and the modelling of its rocking behaviour
requires additional investigations. Existing models seem inadequate for the studied type of
masonry because they supposed that the base of the block is rigid. The energy dissipation
at the impacts is a main issue since the blocks do not rotate around their corners and, thus,
the use of the principle of conservation of the angular momentum is not valid.

Regarding the specimen with soundproo�ng devices, a new 2-stacked-block model is
developed. This model includes �exible and viscous interfaces between the lower block and
the foundation, as well as between the lower and upper blocks which represents the main
innovation. The numerical results are in good agreement with the experimental data. In
this case, the presence of the rubber interfaces makes relevant the use of rigid blocks for the
modelling of URM wall. The amplitude just after the initiation of the rocking motion and
the behaviour in free rocking could be improved by, for instance, de�ning another type of
material law for the interfaces.
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VII.1 Conclusions

This thesis focuses on URM sub-structures implementing a particular masonry bonding for
constructional e�ciency purposes. Hollow clay blocks of relatively limited thickness (max.
15 cm) and high compressive strength, up to 15 MPa, are assembled by glue-mortar with
thin-bed layered joints and a tongue-and-groove system for the head joints. Speci�c details
can be included, namely 1-cm thick rubber layers at their bottom and top, for soundproo�ng
reasons. The structures can also display an opening or a non-rectangular horizontal cross-
section. The main objective of this thesis is to contribute to the improvement of the design
of these URM structures in low-to-moderate seismic areas, like Belgium, thanks to a better
understanding of their actual behaviour. In these regions, URM is traditionally used as
load-bearing solution for private dwellings (low- and mid-rise buildings), but it recently
found applications in multi-storey structures, like apartment buildings up to 5-6 levels.

In this perspective, experimental campaigns have been performed and aimed at devel-
oping a better understanding of the seismic in-plane behaviour of URM sub-structures and
at investigating the in�uence of soundproo�ng devices, openings and perpendicular walls.
These campaigns included static-cyclic tests with displacement controlled and shake table
tests with increasing acceleration level. A total of 14 specimens have been tested. The main
conclusions are the following:

� the soundproo�ng rubber devices a�ect the response of the URM walls under both ver-
tical compression and horizontal shear loads. They indeed increase the deformability
of the walls. Due to the interaction between the rubber and the masonry, the compres-
sion resistance is reduced in comparison to classical con�gurations without rubber (1
MPa). In a presented campaign (see Section II.2), the level was halved for specimen
with acoustic layers. Moreover, the sti�ness is reduced due to the presence of rubber,
inducing larger vertical and, most importantly, horizontal displacements. The lateral
sti�ness is roughly divided by 3 when rubber layers are added. A positive e�ect of the
rubber is the observation of a better dissipation of the seismic energy thanks to these
acoustic devices.

� in the presence of an opening, the masonry spandrel has to be associated with RC
elements, namely a lintel and a slab. A particular attention should be given to the
support length of the lintel in order to allow assuming an e�ective coupling between
the piers.

� a wall perpendicular to the seismic action could improve the shear resistance of the
wall composed of two perpendicular sections, provided that the connection between
the perpendicular sections does not fail in shear.

Based on experimental research, the non-linear response of URM walls subjected to in-plane
shear loading can be characterised. Figure VII.1 shows the general shape of the force-
displacement curve related to these walls. In design procedure, this curve is simpli�ed and
a bilinear curve is considered. Three parameters de�ne this latter and their calibration is a
main outcome of the di�erent chapters of this thesis. Chapters II and III provide information
on the sti�ness kini of the curve through the characterisation of equivalent elastic and shear
moduli, assuming that the URM specimens can be modelled by homogeneous and isotropic
beams. Such an approach involves a dependence of the shear modulus on the compression
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level. Chapter IV deals with the de�nition of a material law valid for the studied type of
masonry, independently of the geometry of the walls. It compares the force-displacement
curve obtained by the experimental measurements with the results of a numerical model.
The main conclusion is that the maximum horizontal shear Vmax can be predicted by an
equivalent frame model with a good approximation. In chapter V, the determination of the
maximum horizontal shear Vmax of walls with a non-rectangular cross-section is improved
with due consideration for the contribution of sections of walls perpendicular to the seismic
action. Simpli�cations are proposed to allow the calculation by hand. These improvements
could be easily implemented in current existing numerical tools. Finally, the maximum drift
δmax is assessed in Chapter II for some con�gurations and calibrated for the material law
in Chapter IV. This maximum drift corresponds to a shear failure, the wall being still able
to withstand the gravity loads. Additional investigations are however required to clarify the
in�uence of several parameters (compression level, failure mode, etc.) on the drift values.
For instance, the possibility for walls to rock does not modify the internal forces to which
the walls are submitted, but increases the maximum acceleration they can sustain. Indeed,
the horizontal shear is limited and presents a plateau, but the drift capacity of the walls is
signi�cantly increased.

In general, it is found that the studied type of masonry exhibits a larger strength, but
its behaviour is more brittle than historical masonry.

Figure VII.1: Force-displacement curve for URM wall under in-plane shear loading

The experimental campaign also raises interest in the rocking behaviour of blocks. Chap-
ter VI is dedicated to the comparison of di�erent existing rocking models and introduces a
new rocking model. It is concluded that the studied type of masonry can be assumed as
rigid in presence of rubber layers only. In their absence, such an assumption is not suitable
and a main issue is the handling of the transition between con�gurations of motion with an
impact.

VII.2 Perspectives for future works

The design of load-bearing URM structures in low-to-moderate seismic regions is an essential
challenge in the �eld of civil engineering in view of the large number of buildings implement-
ing this structural solution. A better understanding of the seismic response is therefore
required to represent properly this speci�c action and to ensure a su�cient safety level.
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Further research are still necessary, especially for new types of masonry bonding. Moreover,
technical solutions have been developed by the industry to face the more and more demand-
ing standards in terms of individual comfort. These solutions modify the seismic response
and also need to be investigated. According to the author, future works could be focused
on:

� the characterisation of an equivalent shear modulus: the assessment of equivalent me-
chanical properties highlighted a dependence on the compression level and on the length
of the wall for the shear modulus. It is well known that the strength capacity of URM
walls is in�uenced by the compression level and their sti�ness seems to be a�ected
as well. Regarding the length of the wall, this can be explained by the use of empty
vertical joints. Indeed, the number of head joints varies with the length of the wall and
it can be expected that a larger number of joints involves a larger lateral deformability.
Theses e�ects have to be studied by testing, in cyclic conditions for example, identi-
cal walls subjected to di�erent compression levels and/or walls with various lengths
under the same compression level. An alternative is to characterise the fundamental
frequency of these specimens and to derive equivalent mechanical properties thanks to
a frequency equation established with appropriate boundary conditions.

� the contribution to the shear resistance of perpendicular walls: taking into account
the walls perpendicular to the seismic action should improve the seismic design of
URM structures, especially for buildings whose �oors are one-way spanning. Di�erent
points have to be investigated. First, the length of the perpendicular walls which
contributes to the resistance has to be de�ned. Then, criteria for the e�ciency of the
connection have to be established. Finally, attention should be paid to the in�uence
of the compression level and to the e�ects of a possible torsion. Additional tests could
also help to the validation of the proposed modi�cations for the estimation of the
compressive length by hand calculations.

� the integration of a material law including progressive damaging: the modelling at
the macro-scale of the tested specimens with equivalent frames shows that the beam
response does not change when the magnitude of the controlled displacement is kept
at a same level. On the contrary, experiments evidence a progressive damaging and
the failure can occur after few cycles at the same amplitude. In order to model this
con�guration, an update of the material law will be useful.

� the extension to entire building: the modelling of the tested specimens and the cali-
bration of a material law for the studied type of masonry are the necessary �rst step.
This material law can be used for the analysis of entire buildings and the assessment
of their seismic performance.

Besides the aspects related to URM structures, the modelling of the rocking motion
should receive interest for the formulation of the energy dissipation at the impacts. Di�erent
models have been developed for blocks on a rigid support and all assume that, at least,
the base of the block is rigid. The main consequence is that the blocks can only rotate
around the corners of their base. The transition from one rotation point to the other is then
accompanied by a sudden decrease of the angular velocity (impact). The importance of the
jump is determined thanks to the principle of conservation of the angular momentum, but
experimental tests showed that this procedure is irrelevant and alternatives should be found.
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Figure A.1: Characteristics of the soundproo�ng rubber layers
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B.1 Frequency equation - �rst model

The frequency equation of the �rst model is given by

(
1 +

P̄

k′G∗A∗

)
(M1 +M2 +M3)

+
(
ω∗

2

m∗ − P̄ Q̄
)
M4

− 1
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B.2 Frequency equation - second model

The frequency equation of the second model is given by

L̄N1 +
(1 + λ2)

λ2
J̄

(a∗2 − b∗2)
N2 +

1

λ2
F̄
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with



190 APPENDIX B. FREQUENCY EQUATIONS
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Table C.1: TREMURI program - parameters of the material law

Parameter Value
E - Elastic modulus (secant value)
G - Shear modulus (secant value)
ρ - Density
fm - Compressive strength of the masonry
fv0 - Initial shear strength of the masonry
fvm - Shear strength of the masonry

veri�cation criterion - user choice between
Turnsek and Cacovic

Mohr-Coulomb
Mann and Müller

δ3,T -
limit drift for DL 3

(shear failure)

δ3,PF -
limit drift for DL 3
(bending failure)

µ - Friction coe�cient
ksec/kel 2.000 Ratio of between secant and elastic sti�nesses
k0 0.700 Limit of the initial elastic phase

element type -
0 if pier

1 if spandrel
αT 0.800

βT 0.800
Hysteretic response - sti�ness degradation

(shear failure)

γT 0.000
Hysteretic response - slope of recharge

(shear failure)

αPF 0.800
Hysteretic response - slope of discharge

(bending failure)

βPF 0.800
Hysteretic response - sti�ness degradation

(bending failure)

γPF 0.700
Hysteretic response - slope of recharge

(bending failure)

δPF 0.600
Hysteretic response - dissipation

(bending failure)

δ4,T -
limit drift for DL 4

(shear failure)

δ4,PF -
limit drift for DL 4
(bending failure)

δ5,T -
limit drift for DL 5

(shear failure)

δ5,PF -
limit drift for DL 5
(bending failure)

βE,3 0.700 Residual resistance - DL 3 (shear failure)
βE,4 0.400 Residual resistance - DL 4 (shear failure)
βE,PF 0.500 Residual resistance (bending failure)
Mix SN 0.950 Boundaries of the domain

where a mix failure is consideredMix DX 1.250
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An example of the design procedure for a URM wall with non-rectangular cross-section
subjected to a shear loading is given in this annex. The expressions of the compressive length
developed in Chapter V are implemented in this procedure.

A wall with a T-shaped horizontal cross-section is considered. Its geometry is given in
Figure D.1 . There are two �anges, one on each side of the shear wall. The e�ective length
of both �anges is lfl,eff = min (hshW/5 ; hshW/2 ; 6tfl) = 0.560 m, hw being equal to 2.800
m. The gravity centre of the wall is therefore located at a distance yG [m] with respect to
the side where the maximum vertical compression stress is located (reference point):

yGC =

l2shW
2
tshW + 2lfl,eff

(
dσmax +

tfl
2

)
lshW tshW + 2lfl,eff tfl

with dσmax equals to lshW when the horizontal shear VEd > 0 and 0 when VEd < 0, leading
to yGC = 1.741 m and yGC = 0.954 m respectively.

The wall is characterised by a compressive strength fk = 4.36 MPa, a shear strength
under no compression fvk,0 = 0.3 MPa

Figure D.1: Geometry of the example

The design methodology �rst consists in the determination of the internal forces acting
on the wall. The wall is subjected to its own weight Npp and to a vertical compression NEd,
simulating the structural load. Regarding the experimental tests, this latter mainly acts on
the shear wall, but also on a part of both �anges as the �anges are connected to the shear
wall. The length lfl,c[m] of this part has to be estimated and depends on the compression
level. The vertical compression NEd is thus applied at a distance

yNEd
=

l2shW
2
tshW + 2lfl,c

(
dσmax +

tfl
2

)
lshW tshW + 2lfl,ctfl

(D.1)
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from the reference point. The expression of the bending moment MEd induced by the
horizontal shear VEd and the compression load NEd is given by

MEd = VEdhw +NEd (yGC − yNEd
)

and the eccentricity is

e =
MEd

NEd +Npp

with Npp, the compression due to the weight of the wall. This latter acts at the centroid of
the wall and, hence, does not involve a bending moment.

Then, the compressive length lc [m] can be calculated with the exact (Eq. V.15) and
simpli�ed expressions given in Chapter V. The use of the exact expression requires the
use of a numerical tool to calculate the value of the compressive length with respect to the
eccentricity.

Once the compressive length determined, three limit states have to be veri�ed (Eqs. V.27,
V.28 and V.29):

- the shear resistance

VEd ≤ VRd

≤ fvdAc (D.2)

with fvd = fvk0/γM + 0.4σd .
- the compression resistance

NEd ≤ NRd

≤ fdAc (D.3)

with fd = fk/γM .
- the overturning

lc ≥ 0 (D.4)

The parameterAc [m2] is the area of the wall under compression and σd = (Npp +NEd) /Ac
and γM is taken as equal to unity in this example.

A �rst guess of the horizontal shear VEd is made and the methodology is applied. The
value of VEd is then increased until one of the three limit states is not veri�ed. If the initial
value of VEd does not verify all the limit states, it has to be reduced. This iterative procedure
leads to the shear resistance of the studied wall. Table D.1 tabulates the values of the main
parameters when the exact expression of the compressive length is used.
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Table D.1: Results of the methodology for the detailed example

VEd > 0 VEd < 0
Parameter Value Units Value Units

lfl,c 0.091 m 0.091 m
yNEd

1.414 m 1.246 m
NEd 298 125 N 298 125 N
Npp 14009 N 14009 N
VEd 116 581 N 131019 N
MEd 4.236 · 105 Nm 2.801 · 105 Nm
e 1.357 m 0.897 mm
lc 1.151 m 0.174 m
Ac 0.173 m2 0194 m2

fvk 0.675 MPa 0.675 MPa
NRd 753 651 N 846 988 N
VRd 116 582 N 131020 N

The results show that the wall fails in shear under a load of 116 581 N when the �ange
is decompressed (VEd > 0 ) and of 131 019 N when this latter is over-compressed (VEd < 0 ).
The use of the simpli�ed expression for the calculation of the compressive length gives similar
results, namely 116 681 N and 131 185 N. The compressive length is slightly overestimated by
the simpli�ed relation when the �ange is over-compressed (+ 0.9 %). When the contribution
of �anges is neglected, the application of the procedure results in the same value for both
directions of loading, namely 104 460 N. The relative di�erence is therefore about 10 % and
20 %, for VEd > 0 and VEd < 0 respectively.

In this example, it is found that lfl,c = 0.091 m provides the lowest di�erence with the
experimental results, in both directions of shear loading.
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