Stanford Integrating non-collocatea well and geophysical data to capture lithological

SCHOOL OF EARTH, ENERGY

heterogeneity at a managed aquifer recharge and recovery site

Geophysics

lan Gottschalk®;, Thomas Hermans, ,, Jef Caers,, David Cameron,, Rosemary Knight,, Julia Regnery;, John McCray,

1. Stanford University, Stanford, CA 2. University of Liege, Liege, Belgium 3. Colorado School of Mines, Golden, CO
*Corresponding author; email: ianpg@stanford.edu

Three methods

Introduction

Aquifer recharge and recovery (ARR) is the process of enhancing natural
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2. Maximum likelihood estimation of ERT histograms
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Figure 2: Field site and ERT profiles _ N o _
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Figure 11: Field measurements of resistivity
from the ARR site (after Parsekian et al., 2014)
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The transformation from resistivity to lithology contains significant * The search template method does not conform to the sediment resistivities found at the ARR site (Figure 11) or expected values from 101 102 p (ohm-m) 103
uncertainty, which is amplified when geological data is not collocated with relationships such as Archie’s Law.

geophysical data, because of variation with spatial displacement. Few e The maximum likelihood estimation and simulated variation methods find plausible resistivity probability distributions given site data.

guidelines exist for the commonly encountered case where geological and e The maximum likelihood estimation method is the only method of the three not calibrated to borehole lithology:.

geophysical information are not collocated (for coincidental or logistical  The transformation methods described here can be applied to many different geophysical methods.

reasons).

Figure 12: Fluvial training image Figure 13: MPS lithology realization

In this study, we transform resistivity to lithology using a Bayesian

framework, according to: We are incorporating the

probabilistic results from this
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