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ABSTRACT

The finite element method (FEM) is widely used in mechanical engineering, in par-
ticular for structure design. However, it is not often exploited for the thermal analysis of
space structures for which the use of the lumped parameter method is still commonplace.
To alleviate the computational burden of the FEM for thermal analyses involving con-
duction and radiation, an innovative global conductive-radiative reduction scheme based
on the clustering of the finite element mesh is presented. The proposed method leads to a
significant reduction of the number of radiative exchange factors (REFs) to compute and
size of the corresponding matrix. It further keeps accurate conduction information by
introducing the concept of physically meaningful super nodes associated to the clusters
from which are derived the reduced conductive couplings.

To complement the reduction of the number of faces, an improved Monte Carlo ray
tracing algorithm is developed. It provides better accuracy and convergence rate than the
classic Monte Carlo method. The algorithm is adapted to the partitioned FE mesh and
includes quadrics fitting for accurate normal representation.

The resulting conductive-radiative reduced model is solved using standard iterative
techniques and the detailed mesh temperatures, recovered from the super nodes temper-
atures, can be directly exploited for thermo-mechanical analysis. The proposed global
reduction method is validated on several space structures and is benchmarked against
ESATAN-TMS, the standard thermal analysis software used in the European aerospace
industry.

Keywords: [ Space, Thermal, Finite Element, Reduction, Monte Carlo ray tracing|
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INTRODUCTION

Starting with the first supersonic flight in October 1947 followed ten years later by
the first artificial satellite, engineers were challenged to design structures exposed to in-
creasingly severe thermal environments [1]. The difficulty in predicting the temperatures
further complicated the tasks as confirmed by the comparison between the predicted and
measured temperatures of Explorer-1, the first US satellite [2]. From then on, thermally
induced deformations, stresses and vibrations were the subject of many books [3-8] and
of a NATO report [9]. One celebrated example is the pointing error of the Hubble Space
Telescope generated by the thermally-induced vibrations of the solar arrays [10-12].

Fortunately, the advent of computers stimulated the development of mathematical
tools and computational techniques for solving partial differential equations to meet the
needs of engineers. The two major techniques were the well-known and older finite differ-
ence method introduced in 1928 [13, 14], also called lumped parameter method (LPM) in
the frame of space thermal analysis, and the newer finite element method (FEM) intro-
duced in the mid-1950s in the structural engineering field [15, 16] and in the mid-1960s
for thermal analysis [17]. Already in the early 1980s and although Emery et al. [18|
concluded that no method was really superior to the other in the frame of heat transfer,
the FEM was soon expected to replace the LPM for thermal analysis to have a common
model for thermal and structural analyses [19].

As of today, scientific requirements continuously demand for more accurate space
instruments [20-24| and engineers are facing evermore complex opto-thermo-mechanical
challenges [25, 26] while ensuring the robustness and reliability of the design. Aerospace
is not the only field where structures are exposed to a harsh thermal environment. High
temperature applications involving radiation are also more and more often encountered
in the rapidly evolving energy sector. In this respect, solar tower power plant receivers
constitute perfect examples with temperature exceeding 400 °C on the receiver tubes [27,
28|. A similar trend is observed in which the quest for efficiency and power leads to ever
higher temperatures, larger receivers involving more thermo-mechanical challenges.

Despite Thornton’s expectations in the 1980s [19], the FEM is widely used in mech-
anical engineering but not yet often for thermal engineering of space structures where
the LPM is still dominant [29-33]. Using two different methods for thermal and struc-
tural analyses calls for building two separate models with different meshes. Temperatures
computed with the LPM then need to be extrapolated to the structural mesh to per-
form coupled analyses. Achieving today’s thermo-mechanical requirements with such an
inefficient workflow therefore becomes more and more challenging.

The main reason preventing the use of the FEM for thermal analyses is the presence
of radiative heat transfer involving huge non sparse matrices containing the radiative
exchange factors (REFs). Temperature fields being usually smoother than mechanical
stress fields, space structure thermal models are hundreds or thousands times smaller than
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mechanical models in terms of number of nodes. The number of REFs being proportional
to the square of the number of elements, this translates into a reduction of 10 to 10° in
terms of number of REFs to compute. Able to deal with realistic surface properties, the
most general and efficient method to compute REFs is Monte Carlo ray tracing (MCRT)
[34-36]. Even though, achieving meaningful REFs results with such a large number of
elements would require too many rays to be fired.

The lack of accuracy of industrial FE mesh surface constitutes a second disadvantage
of the FEM in the presence of specular reflections. The difficulty to implement user logic
such as thermostats, controller, heat pipes with the FEM also favours the use of the
LPM [31]. While they provide primitive shells for accurate ray tracing, currently-used
thermal analysis software too frequently involve awkwardness and error-prone manual
input because of the lack of interaction with CAD and FE models and quite deficient pre-
and post-processing user interfaces [33, 37-41]. Table 1 summarises the advantages and
drawbacks of the FEM versus the LPM.

FEM LPM
Number of nodes 10* — 10° 10t — 10*
Radiative links computation X Prohibitive v Affordable
Conductive links computation v/ Automatic X Manual, error-prone
Surface accuracy for ray-tracing X FE facets v Primitives
User-defined components X Difficult v Easy
Thermo-mechanical analysis v/ Same mesh X Extrapolation

Table 1 — Comparison between the FEM and the LPM.

There were several attempts in introducing the FEM for space thermal analysis. They
are however still based on a different mesh than the structural model [32, 42| and thus
require a dedicated thermal model due to the low number of elements used in practice to
limit the number of REFs. For instance in [43], structural-thermal-optics-performance-
gravity analyses of the LISA (Laser Interferometer Space Antenna) mission were per-
formed using the FEM but the number of radiative couplings proved to be the bottleneck
and filtering was required. Discarding REFs smaller than a given threshold or aggregating
them to a special node is often employed, but the error increases too rapidly if a suffi-
ciently high number of REFs are dropped to significantly reduce the computation time, as
shown in [44]. This approach obviously also requires the computation of the REFs before
discarding them and only reduces the size of the thermal model to solve.

The original idea of grouping the finite elements into radiation super elements and
primitives was introduced ten years ago in some FE codes [45]. In that method, radiative
links and orbital heat fluxes are redistributed onto the fine mesh with some weighting
scheme and the detailed model is solved. This feature limits the use of structural meshes
since even if the radiation super element REFs computation time is reduced, their redis-
tribution onto the detailed mesh generates again too many inter-element REFs.
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CONTRIBUTIONS OF THE THESIS

Table 1 highlighted the differences between the FEM and the LPM but it also revealed
the complementarity of both methods. The overall goal of this doctoral thesis is thus to
re-unify LPM with FEM through a global reduction scheme taking the advantages and
addressing the drawbacks of both methods.

The first hurdle to tackle is the radiative couplings computation by MCRT. Two
general approaches can be considered to alleviate this problem:

e cither reduce the number of rays fired from each face for a given accuracy and

confidence level;

e or decrease the number of faces by grouping the FE external facets into clusters.

The first approach requires to improve the accuracy and convergence rate of MCRT.
One possible way is to consider quasi-Monte Carlo methods [46-48]. Unlike the classical
Monte Carlo method which relies on a sequence of pseudo-random numbers, the quasi-
Monte Carlo method exploits for instance low-discrepancy sequences. Sobol and Halton
sequences were exploited in MCRT problems [49, 50| to generate more uniform sampling
directions. Another quasi-Monte Carlo approach for generating more uniform samples
over the integration domain is to use stratified sampling [46, 48, 51|. Stratified sampling
consists in dividing the integration domain into strata which are randomly sampled inde-
pendently to avoid aliasing.

In this context, the first contribution of the research is to improve the direction
sampling of MCRT through the recently-developed isocell disc sampling method [52].
Specifically, more uniformly-shaped strata than in the hemisphere method presented in
[53] are sought. In addition, the spatial sampling of the emitting face [54] and its inter-
action with direction sampling will be studied in detail, something which has been rarely
carried out in the literature. The ultimate goal of this first part is to provide a com-
bined direction and surface sampling strategy that is general, robust and exhibit better
accuracy and convergence rate for the REFs computation. From this perspective, the
proposed coupled 4-dimensional Halton sampling strategy proves to offer the best results.
This sampling strategy is then adapted to the computation of orbital heat fluxes, namely
solar, planetary albedo and infrared heat fluxes.

As introduced above, the temperature field is usually much smoother than the deform-
ation field and a thermal model therefore requires a much coarser mesh than a mechanical
model. Hence, the second main contribution consists in finite element mesh clustering to
reduce the number of REFs to compute to an affordable amount and to decrease the size
of the associated non-sparse matrix. The idea behind the clustering process is to use
the mesh of the structural finite element model. Using the same mesh for structural and
thermal analyses rather than building a separate model first reduces the thermal model
pre-processing time but also smoothes the thermo-structural analysis process [55|, being of
paramount importance for space structure design. This scheme avoids the awkward extra-
polation of the temperature coming from a coarser mesh [56]. The proposed method relies
on the detailed mesh clustering to reduce the radiative terms and introduces the concept
of super-node associated to the clusters for the conductive reduction. This addresses the
second row of Table 1 by generating accurate conductive links. Prior to the clustering
step, specific critical surfaces can be fitted with quadrics to increase the accuracy of the
REFs, in particular when specular surfaces impinged by collimated environmental heat
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fluxes such as sunlight need to be computed. MCRT with FE mesh and quadrics solves
the third drawback mentioned in Table 1. After the generation of the reduced radiative
and conductive links between the super nodes, user-defined logic involving the super nodes
can be added to the reduced model in the exact same way as with the LPM, preserving
the advantage of LPM given in the fourth row of Table 1. The coupled reduced model is
solved with standard techniques to obtain the super nodes temperature. The temperat-
ures of the underlying detailed structural finite element mesh are then recovered from the
super node temperatures through the inverse reduction procedure and ready to be used
for the thermo-structural analysis. This final step solves the last issue encountered with
LPM and mentioned in the last row of Table 1.

OUTLINE OF THE MANUSCRIPT

Chapter 1 first recalls the basics of radiative and conductive heat transfer and presents
the current practices in space structure thermal analysis. It highlights the strengths and
weaknesses of LP and FE methods pointed out above.

Chapter 2 addresses the MCRT improvement techniques. Several direction and sur-
face sampling schemes are studied along with the interaction between each other. In
particular, the isocell and Halton samplings strategies are discussed and a robust coupled
direction-surface sampling is derived and validated. The proposed sampling scheme is
also applied to optimise orbital heat fluxes computation. Some general ray-tracing accel-
eration techniques that are also implemented in our algorithm such as space partitioning
and efficient ray-intersection computation are finally described at the end of the chapter.

Chapter 3 then presents several full-scale benchmarking cases. In particular, two space
structures currently developed at the Centre Spatial de Liége are studied.

The second approach to reduce the REFs computation time is presented in Chapter 4.
The detailed FE mesh clustering scheme is discussed and the super node concept is defined.
The detailed mesh matrix reduction is developed to derive the super-nodes conductive
links.

Chapter 5 focuses on accurate surface ray tracing. The quadrics fitting step is presen-
ted followed by the adaptation of the ray tracing algorithm presented in Chapter 2 to the
partitioned mesh.

Chapter 6 finally combines the developments presented in the preceding chapters to
form the overall reduction process. The procedure is applied to two full-scale space struc-
tures also developed at the Centre Spatial de Liége namely one entrance baffle of the
Extreme-UV imager on-board the Solar Orbiter mission and the structure of the Back
Telescope Assembly on-board Meteosat Third Generation.

Conclusions are eventually drawn and the different contributions of this thesis are
discussed. Some perspectives and research directions for future developments are also
proposed.



BACKGROUND ON SPACE
STRUCTURE THERMAL
MODELLING

Abstract

This first chapter lays the foundations of space structure thermal ana-
lysis. It recalls the basics of radiative and conductive heat transfer in
the context of space thermal modelling. In particular, the Monte Carlo
ray tracing, lumped parameter and finite element methods are intro-
duced. The weaknesses of current space thermal modelling practices are
presented and the need for alternative techniques is highlighted.
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1.1 INTRODUCTION

The purpose of the thermal control system is to ensure that all components of the
instrument or spacecraft remain within their allowable temperature limits for all operating
modes and at any time of the mission including ground test campaigns. To this aim, the
thermal engineer is required to construct several thermal models to iteratively assess and
refine the thermal design. The overall objective of the thermal engineer developing a
thermal model is to achieve a given accuracy for the minimum cost. Costs are related to
time and can be divided in two classes: development and use of the model [33, 57]. From
a global perspective, the objective of this dissertation is twofold: increasing the accuracy
and reducing the model development costs while maintaining reasonable computation
times.

1.1.1 The thermal analysis workflow

In the frame of spacecraft and space instrument design, the thermal analysis workflow,
i.e. the development and use of the model, typically consists of the key steps [31, 33, 58]
represented in Figure 1.1. The first step starts with the construction of the Geometrical
Mathematical Model (GMM), that is needed for the LPM radiative analysis. Building the
GMM requires as input the geometry, thermo-optical properties of the exposed surfaces
and the orbital and attitude parameters. It further needs the nodal breakdown solely
determined by the engineer. A radiative solver processes the GMM to generate the radi-
ative couplings between the nodes (commonly referred to as GR’s) and the planetary and
solar heat fluxes if any. The GMM outputs serve as input to the Thermal Mathematical
Model (TMM). In addition, the TMM requires the material bulk properties to derive the
nodal capacitances and conductive couplings (commonly referred to as GL’s) from the
same nodal breakdown. The boundary conditions, internal heat dissipation (e.g. elec-
trical dissipation) and user logic (e.g. thermostats, control loops,...) are also integrated
in the TMM. There is no direct link between the GMM and the TMM. The TMM is a
pure mathematical representation of the system under study and the GMM is not man-
datory. For simple systems, radiative couplings can be computed by hand to be directly
integrated in the TMM. A dedicated LPM solver computes not only the temperatures but
also heat flows between the nodes and group of nodes. It is worth mentioning here that
thermal engineers usually tend to care more about heat flows than really accurate temper-
atures [31]. If thermo-mechanical analyses are necessary, the temperatures are mapped
to a structural finite element mesh. This mapping step is not straightforward since the
two models are based on dissimilar meshes and some TMM nodes are not necessarily
related to a geometrical component in the GMM. As stated in [59], their is no standard
tool and many individual aerospace companies have spent time and money over the years
to develop their own internal tools to solve this issue. Even though the European Space
Agency developed SINAS [56, 60| to translate ESATAN LPM temperature to MSC Nas-
tran, it is not automatic and space companies like OHB System AG, Thales Alenia Space
and many others keep developing their own custom tools [61-64].

To cover the numerous operational modes and environments the spacecraft or instru-
ment thermal design has to cope with, a worst case approach is adopted. A hot and a cold
case are traditionally defined to obtain temperature lower and upper bounds [33, 58, 65].
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Geometry

Nodalization

Thermo-optical properties GMM
Orbit & attitude i

Radiative solver: NEVADA, ESARAD, ...

|

Radiative couplings & environmental heat fluxes

Material bulk properties i
Nodalization

Conductive couplings

Boundary conditions
Internal heat disspation

User logic i

Thermal solver: ESATAN, SINDA, ...

|

Temperatures & heat flows

|

Mapping tool LPM — FEM

|

FE thermo-elastic analysis

Figure 1.1 — Typical LPM thermal model construction flow.

This means that two separate models are built: the hot case model typically considering
end-of-life (EOL) thermo-optical properties (absorption usually tends to increase as sur-
face properties degrade over time in orbit), maximum dissipation and orbital heat fluxes
and the cold case model conversely considering beginning-of-life (BOL) thermo-optical
properties, minimum dissipation and orbital heat fluxes. In addition, models are marred
by uncertainties coming from various sources that can be divided into three categories:
physical parameters (material and surface properties, dissipation, contact conductances,
dimensions, control logic set-points,... ), environmental parameters (solar, planetary and
aero-thermal heat fluxes, orbital and attitude parameters, test facility parameters,...)
and modelling parameters (isothermal elements, radiative and conductive coupling er-
rors, solver accuracy,...) [33, 58, 66, 67]. These uncertainties are added to the nominal
computed temperatures in the hot and cold cases to derive the predicted temperature
range. The modelling philosophy thus demands at least two models that are run many
times to assess the uncertainties. Since the design is an iterative process interacting with
other subsystems, the whole thermal analysis process is repeated many times in the course
of the instrument or spacecraft development. Hence, the cost of generating and running
the model is largely augmented by the number of times it has to be repeated. Decreasing
the cost of one or more steps can lead to a significant global time reduction.

Figure 1.2 summarises the uncertainty and margin philosophy. It shows that on top
of the predicted temperature range, test acceptance or qualification margins are added
to demonstrate the robustness of the design. Decreasing the modelling uncertainties can
ultimately decrease the acceptance and qualification temperature range and increase the
design robustness.
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Acceptance margin

Qualification margin

Uncertainties
Predicted Calculated ‘ Design Acceptance Qualification
temperature temperature temperature temperature temperature
range range ‘ range range range

i |
|
|

Design Testing

Figure 1.2 — Typical temperature margin philosophy with hot case temperatures in the upper
part and cold case temperatures in the lower part of the diagram.

1.1.2 A brief history of space thermal analysers

The first large-scale aerospace thermal analysis computer code was originally developed
by J. D. Gaski [68] in 1966 under the name CINDA (Chrysler Improved Numerical Differ-
encing Analyzer) which soon became SINDA (Systems Improved Numerical Differencing
Analyzer) [69] when further improved by TRW Inc. under a NASA contract. SINDA and
its descendants remain today’s most widely used thermal solver in the western aerospace
industry [33, 70]. Before the advent of the first radiative solvers in the mid 1960s, thermal
engineers used analytical formulae to compute the radiative couplings, only available for
some simple configurations. For more complex geometries, form factometers (or view
factor meters, that are gridded parabolic mirrors) were used on reduced or full scale
models [71, 72] to derive the view factors. To help with the computation of radiative
couplings and environmental heat fluxes, TRASYS (Thermal Radiation Analysis System)
was developed in the 1960s by Martin Marietta Corp. in support of NASA Johnson Space
Center [73]. It inherited from the development of several other computer programs such as
LOHARP (Lockheed Orbital Heat Rate Program), MTRAP (Martin Marietta Thermal
Radiation Analyzer Program) or MRI program (Midwest Research Institute program)
that were already used for various space programs. For instance, the Phase A thermal
analysis in 1966 of the Large Space Telescope (which eventually became the Hubble Space
Telescope) was performed with LOHARP [74] and the external radiation absorbed by the
Apollo spacecraft was computed with MRI [73]. TRASYS already included mixed diffuse-
specular effect. At the same time, the European Space Agency Technical Center (ESTEC)
revised LOHARP and distributed it under the name VWHEAT.

Monte Carlo methods were introduced in nuclear engineering during the 1940s and
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were first used for solving thermal radiation problems in the early 1960s by Fleck [75] and
Howell [76, 77]. In the aerospace industry, Monte Carlo ray tracing was introduced in the
1970s with the NEVADA code (Net Energy Verification And Determination Analyzer,
developed by Turner Associates Consultants) [33, 78]. The Monte Carlo method rapidly
convinced of its superiority and versatility as mentioned in [79] where it is compared to
experimental data performed on the Space Shuttle heat rejection system and to traditional
methods. In TRASYS, some MCRT capabilities were implemented in the 1980s 80, 81].
MCRT is now integrated in most of space thermal analysis tools.

In parallel, between 1965 and 1970, NASA led the development of its structural ana-
lysis FEM based computer code called NASTRAN (NASA STRuctural ANalysis pro-
gram), further conducted by MacNeal-Schwendler Corporation (MSC) [82]. Under the
initiative of the Structural-Thermal-Optical Program (STOP) by NASA Goddard Space
Flight Center in 1969, thermal analysis capabilities were added to NASTRAN (NAS-
TRAN thermal analyzer) with the aim of integrating thermal, structural and optical
analyses [83-87|.

When the Spacelab project started around 1977, the European Space Agency (ESA)
distributed SINDA and LOHARP to the European space industry. At the same period,
ESTEC (European Space Research and Technology Centre, technical heart of ESA) de-
cided to start the development of its own thermal analyser that would rely on the layout of
SINDA with data blocks and operation blocks. Up to then, most analysers considered the
input data as a single monolithic model. Integrating different models together therefore
required very strict agreements between parties on model data such as node numbers or
variable names. Hence, the main new feature would be the ease of model combination into
a tree-like structure without requiring any modification of the constituent separate models.
The second major feature would be to follow the structured programming technique in-
troduced by E. W. Dijkstra [88, 89], i.e. structured FORTRAN. Structured programming
avoids the 6o T0 loops and enforces declaring all variables to enhance the maintainabil-
ity of the software. The first release of the ESATAN (European Space Agency Thermal
Analysis Network) tool for TMM processing became available in the early 1980s [90-93].
ESARAD followed a few years later [94-98|. The development of ESATAN and ESARAD
was left to the Mechanical Engineering Laboratory (MEL) of the British General Elec-
tric Company (GEC) in Leicester. For internal usage, the MEL had already developed
MELTAN, yet another SINDA derivative, before being entrusted with the development
of ESATAN and ESARAD.

Actually, ESATAN and ESARAD were just the first steps of the more ambitious
MANTIP project driven by C. Stroom of ESA to create a combined software integrating
thermal and radiative analysis in one tool [72, 99]. Similar to MANIP, Polytan was another
feasibility study to try to combine both mathematical and physical model developments
in one tool [100]. ESATAN and ESARAD are now integrated into a single software suite
renamed ESATAN-TMS and developed by I'TP Engines UK Ltd., the descendent of the
MEL [101].

In Europe, the two major space companies developed their own thermal analysis tools:
Thermica' developed by Airbus Defence and Space [102] in the same period as ESARAD
and which is now also integrated in the MSC software suite [103], Coratherm (renamed
E-Therm) developed by Thales Alenia Space (Alcatel Space) [63, 104, 105]. ALTAN
(ALenia Themal ANalyzer) was developed by Alenia Spazio [106] but is no longer main-
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tained since Alenia Spazio merged with Alcatel Space which are now part of the Thales
Alenia Space group. Outside Europe, other thermal analysis software suites include: TSS
(Thermal Synthesis System, now Thermal Software System) developed by Spacedesign
Corp. [107]|, Thermal Desktop, an AutoCAD based software developed by Cullimore
and Ring Technologies, Inc. (C&R Tech.®) integrating the radiation engine RadCAD
and thermal solver SINDA [108, 109], -DEAS""TMG (Thermal Model Generator) de-
veloped by MAYA HTT Ltd., now also embedded into the Siemens PLM software suite
as NX'space system thermal and ITAS (Integrated Thermal Analysis System) once
developed by Analytix Corp. [110]. Besides the aerospace industry, the energy sector
also needed thermal solvers including radiative heat transfer capabilities. For instance
COYOTE, developed by D. Gartling from Sandia National Laboratories [111, 112| in the
late 1970s, includes a radiation solver limited to diffuse grey surfaces and is based on
the CHAPARRAL Library for view factor computation [113]. We restrict ourselves to
non-participating media and we do not mention more specific techniques and software
involving radiative heat transfer in participating media that are for instance needed in
combustion problems.

As mentioned in the introduction, from its early developments the FEM was expected
to replace the LPM for thermal analysis [19]. A comprehensive survey of computer pro-
grams for heat transfer available in the early 1980s, including SAMCEF (Systéme pour
I’Analyse des Milieuz Continus par Eléments Finis) developed at the University of Liege,
is available in [114, 115] and [116]. Tt points out that FEM and LPM were equally applied
to solve heat transfer problems but that only few of them had radiative exchange factor
computing capabilities and even less if temperature mapping to structural analysis was
required.

Bringing together the advantages of FEM and LPM is not a new idea. In 1993, a
hybrid solution combining MITAS (Martin Marietta’s version of SINDA) with [-DEAS
or PATRAN for conductive link generation and TRASYS for orbital heat fluxes and
radiative exchange factors computation was proposed [117] where the finite element nodes
correspond to the LPM nodes. Another example of such a combination is provided in [32,
118]: FEMAP pre- and post-processing capabilities were combined to Thermal Desktop
radiative solver. Finite elements were also introduced in TSS in 1997 [119]. Some finite
elements functionalities were also added to ESATAN-TMS r3 in 2010 [120-122] but are not
yet mature since complex geometries cannot be handled and automatic mesh generation
is not yet provided.

In [42, 123], a p-version of the FEM was developed to handle radiative heat exchanges.
Instead of refining the model mesh, p-FEM increases the degree of the shape functions.
Then, the traditional assumption that surfaces are isothermal to compute the radiative
exchange factors which is inconsistent with the FEM is eliminated. Again, this approach
is not compatible with sharing the same mesh for structural and thermal analysis.

Due to the numerous different thermal analysis tools, exchanging thermal models and
data is still not straightforward despite the many attempts in developing post-processing
tools like ESATAP [124] or GAETAN (General and Automated Environment for Thermal
Analysis Network) [125], or standard format like the well-known STEP-TAS developed by
ESA in the late 90s [126-128] and other specific import-export routines between ESARAD
and TMG or TSS [129], SINDA and ESATAN.

This review did not cover the specialised tools developed for studying thermal pro-
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tection systems during re-entry or aero-breaking manoeuvres and ablation modelling is
still an active research area [130-132]. Multiphase fluid loop analysis tools such as FHT'S
(Fluid Heat Transport System) [133] for ESATAN or FLUINT (Fluid Integrator) [134]
for SINDA were also not covered.

1.1.3 Chapter outline

After this brief introduction setting up the background of space thermal analysis, the
related computer codes and the different tentative of merging FEM with LPM, Section 1.2
reviews some fundamentals of radiative heat transfer to define the various concepts of view
factors, radiative exchange factors, thermo-optical properties used later in this manuscript.
The Monte Carlo method applied to ray tracing to derive the radiative exchange factors
is introduced in Section 1.3. As the GMM precedes the TMM in the traditional workflow,
the lumped parameter and finite element methods for heat transfer analysis are then
presented in Section 1.4 with a focus on conductive links computation. The inadequacy
of generic FEM reduction methods is highlighted in Section 1.5. Finally, the conclusions
of the present chapter are drawn in Section 1.6.

1.2 REVIEW OF RADIATIVE HEAT TRANSFER

1.2.1 Thermal radiation quantities

Thermal radiation relies on three mechanisms: emission, absorption and scattering.
Every medium continuously emits and absorbs electromagnetic radiation. It emits in all
directions at a rate depending on the local temperature and properties of the material.
The source of the radiated energy results from electronic, molecular and lattice vibration
as well as transitions in the emitting medium. Each wave or photon carries an amount of
energy, €, defined as

€ = hv

where h = 6.626 x 10734 Js is Planck’s constant, v = ¢/ the photon frequency, ¢ the
speed of light and A the wavelength. ¢ = ¢q/n is the speed of light in the considered
medium with n the refractive index of that medium. While conduction and convection
both require the presence of a medium for the transfer of energy, radiation does not.
Absorption arises when the emitted wave interacts with another medium. It partially
loses energy to generate electronic, molecular or lattice oscillations or transitions. The
third radiation phenomenon consists in scattering. It describes the way the wave can be
redirected without being converted to thermal energy. Scattering encompasses reflection,
diffraction, refraction and re-scattering of energy.

Thermal radiation does not only depend on the wavelength but also on the direction
in space. Four distinct types of physical radiation quantities are defined:

o Directional spectral quantities describe the directional and wavelength distribution
of the radiative energy in details but they are very difficult to determine experiment-
ally. This explains why radiation quantities that only include one effect - either the
dependence on the wavelength or the direction - are usually used.
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o Hemispherical spectral quantities average the radiation into all directions of the
hemisphere over a surface element. They are only dependent on the wavelength.

o Directional total quantities average the radiation over the whole electro-magnetic
spectrum and keeping the dependence on the directions within the hemisphere.

o Hemispherical total quantities average the radiation over all wavelengths and all
directions. They are the most often used quantities in radiative heat transfer. Con-
sidering a constant value over the spectrum leads to the grey approximation. In
spacecraft thermal analysis, the spectrum is divided in two bands and two values
are derived. This is called the semi-grey approximation that is detailed in Sec-
tion 1.2.4.

Regarding directionality, the concept of solid angle must be defined. It is the ratio of
the area dA,, on the sphere to the sphere’s radius squared.

dA,

r2

dQ) =

If 6 is the zenith (polar) angle measured outwards from the surface normal and ¢ is
the circumferential (azimuthal) angle, the dimension of dA,, is rdf x rsinfd¢ and the
solid angle can be rewritten as shown in Figure 1.3:

dQ) = sin 0dfd¢

L 7

dA,, = rsin 0dordl

0 : azimuthal angle

¢ : polar angle
Q : solid angle

/ 7 sin Gdf
xr

Figure 1.3 — Solid angle and projected area definition.

The radiative heat power emitted from a surface dA; in the 6, ¢ direction (through
dA, = dAjcosf) at the wavelength A, per unit area of the emitting surface normal to
this direction, per unit solid angle about this direction and per unit wavelength interval
dX\ about A is called the spectral intensity of radiation (often called spectral radiance in
other domains):

dQ)

e(To A, 0,9) = Zm s 1.1
el TA0:0) = e Sy, [V m s (1.1)
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The quantity

d
W =iy (W]

is the rate at which radiation of wavelength ) is emitted from dA; and passes through dA,,.
The subscript e means an emission property, A a spectral quantity and the superscript ’
a directional quantity. The cosf term that appears in Equation 1.1 is a particularity of
the definition of L) (T, A, 0, ¢): the spectral intensity is not relative to the size dA; of the
surface element like in the emissive power E(7T) that will be later defined, but instead to its
projection dA, = cosfdA, perpendicular to the radiation direction. It complies with the
geometric fact that the emission of radiation for # = 7/2 is zero and is usually maximum
in the direction of the normal to the surface # = 0. An area that appears equally ’bright’
from all directions is characterized by the simple condition that L’A,E(T, A, 0, ¢) does not
depend on ¢ and ¢. This type of surface with L) (T, ), 0,¢) = Ly (T, A) is known as a
diffuse radiating surface as defined in Section 1.2.3.

Dividing d@ by the unit area and integrating over the hemisphere defines the spectral
(hemispherical) emissive power Ex(T,\) [Wm™2m™!] associated with dA;:

dch 2 pw/2
E\(T,\) = / T / / L\ (T, X, 0, ¢) cos § sin 0dfdp (1.2)
Q aA; o Jo

The (total hemispherical) emissive power E(T) [Wm™2] is

EUUEAmeRMM (13)

It is also useful to define the spectral and total directional emissive power:

E\(T, X, 0,¢) = L) (T, \,0,6)cos [Wm™?m™ " sr'] (1.4)
EUﬂ@QE/‘EKR&&@M[Wmﬂ$4} (1.5)

0
The quantities related to emitted radiation being defined, similar concepts can
be introduced regarding incident radiation. Integrating the spectral directional irra-

diance L) ;(X,0,¢) [Wm™m™'sr™'] over the hemisphere gives the spectral irradiance
Ga(A) [Wm™2m™1:

2r /2
GL\(\) = /0 /o L (X, 0, ) cos 0 sin 0dfd¢ (1.6)

and the (total hemispherical) irradiance G [Wm™?] is

G—/WGAMM (1.7)

Figure 1.4 summarises the relations between the different directional, total, spectral and
hemispherical quantities.

The radiant power coming from a surface A has two components: the part effectively
emitted by the surface (emissive power) and the part coming from surrounding surfaces
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LY (T, X, 0,9)
spectral intensity

also called spectral radiance

(Wm=2m!sr!]

E\(T,\) = / LA (T, A, 0, 6) cos < L(T,0,6) = /0 L) (T, 0, ¢)dA
Q

) . . total intensity
spectral (hemispherical) emissive power .
also called (total) radiance

[(Wm™2m™!] [Wm2sr]

E(T)

/ Ex(T, \)d\
:]L’e(T,Q,qb) cos 0dS)
Q

(total hemispherical) emissive power
[Wm=]

Figure 1.4 — From spectral directional quantities to total hemispherical quantities. The incident
radiation Ll)\,i()" 0, ¢) can be treated similarly.

and reflected by A. The radiosity J [Wm™2] takes into account all radiant power leaving
the surface and therefore includes the reflected portion of the irradiance in addition to
the inherent emissive power.

J— /OO Jr(A)dA (1.8)

with
2 pw/2
JIA(A) = / / L) . (T, X\, 0, ¢) cos 0 sin §dfd¢ (1.9)
o Jo

1.2.2 Black body radiation

A black body is an opaque surface that does not reflect any radiation and therefore ab-
sorbs the maximum possible amount of radiative energy, independently of the wavelength
and direction of the incident radiation. Through an energy balance at thermodynamic
equilibrium, Gustav Kirchhoff [135] demonstrated that a black surface is also a perfect
emitter.

Combining experimental data together with thermodynamic arguments, Wilhelm
Wien proposed in 1896 [136] a spectral distribution for the black body emissive power
that was very accurate over large parts of the spectrum. But it is in 1901 with his work on
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quantum statistics that Max Planck [137] found the spectral black body emissive power
distribution, now commonly known as Planck’s law, for a black surface bounded by a
transparent medium with refractive index n:

2rhy3n?
c%(el% - 1)
where k = 1.3806488 x 1072 JK~! is Boltzmann’s constant. While frequency v appears
to be the most logical spectral variable (since it does not change when light travels from

one medium into another), the wavelength \ is also commonly employed. If the refractive
index n is independent of frequency:

Ey (T, v) = (1.10)

2
BTN = — 2% _ < (1.11)
n2A3(enxkt — 1) n2Ad(emr — 1)
with the custom abbreviations C = 27Thcg and Cy = hcy/k. Figure 1.5 shows the black
body emissive power distribution and the narrow visible part of the spectrum compared to
the much wider infrared and ultraviolet ranges. It also illustrates the similarity between
the solar extraterrestrial spectral irradiance and a black body at 5777 K.

—_
o
@

ASTM E490 |

104 T

102 |

100 11y

Black body emissive power Ey\[[W/m?2um]

Wavelength A [pm)]

Figure 1.5 — Planck’s Law - black body emissive power with the Sun’s effective temperature of
5777 K compared to the ASTM-E490 AMO [138] extraterrestrial solar reference emissive power
(in orange).

After integration over A, the total emissive power of a black body becomes only de-
pendent on the fourth power of the temperature:
Ey(T) = n*cT* (1.12)
where

TC B 2o k4

7T 1501 T 153

= 5.6704 x 107®* W /m?/K*
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is Stefan-Boltzmann’s constant [139, 140]. This work is restricted to non-participating
media and the refractive index n appearing in Equation 1.12 will be omitted for the rest
of the manuscript since it is equal to 1 in vacuum.

1.2.3 The case of diffuse emitter/absorber

A surface may not be a black body but it may still exhibit properties independent of
the incident /emitting direction. A perfectly diffuse emitter is such that its spectral (or
total) intensity L’ is independent of the angles 6, ¢.

Lye(T,\) = L) (T, A\, 0, ¢) (1.13)

From Equation 1.2, the spectral emissive power of a diffuse surface becomes

2m  pmw/2
E\(T,\) = L)\ (T, \, 0, ¢)/ / cosOsinf dfde = wLy (T, \) (1.14)
o Jo

since fo% fow/ ?cosfsinf dfde = 2r[—1 cos? 0]7/* = x. Similarly, from Equation 1.5, the
spectral directional emissive power of a perfectly diffuse surface is

E\(T,\,0,0) = Ly (T, \) cos = E) ,(T) cos 0 (1.15)

where E} | is the spectral directional emissive power in the direction of the normal to the
surface. This concept was introduced by Johann Heinrich Lambert in 1760 and is known

as the Lambert’s cosine law [141]. Figure 1.6 schematically shows the relation between
Lye(T,N), Exn(T) and EL(T, X, 0, ¢).

Le(T)

Figure 1.6 — Relation between directional emissive power and intensity for a Lambertian (diffuse)
surface.

1.2.4 Surface properties

The way electromagnetic waves interact with the surface through absorption or scat-
tering is characterised by the following quantities (referred to as thermo-optical properties
in radiative heat transfer engineering):
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reflected part of incoming radiation
total incoming radiation

o reflectance! p =

absorbed part of i incoming radiation
total incoming radiation

« absorptance a =

transmitted part of incoming radiation
total incoming radiation

transmittance ™ =

energy emitted from a surface
energy emitted by an ideal black surface at the same temperature

e emittance € =

The same spectral/total directional /hemispherical distinctions is performed for the
thermo-optical properties: p\ (T, A, 0, ¢), cA\(T,\,0,6), 5(T, X\, 0,0), e\(T,\,0,¢). The
directional spectral emittance is thus defined as

ES\ (TJ A7 07 ¢)
By (T, )

while the spectral hemispherical emittance is the ratio of the spectral emissive power to
that of a black-body:

EX(T,\) / / e\ Ly cos 0 sin 8d0d¢
Eb/\ T )\ 7TLb A

2
/ / g\ cos 0 sin §dfd¢p (1.17)

ex(Th ) =

Similarly, the total hemispherical emittance is the black body emissive power weighted
average of the spectral hemispherical emittance:

B(T) ) /0 E\(T, N\)dA B
Eb<T) Eb<T) g T4
By conservation of energy, the radiant energy incident to a surface must either be ab-

sorbed, reflected or transmitted. This gives the following relation between the reflectance,
absorptance and transmittance (spectral/total and directional /hemispherical):

e(T) =

/Oo ex(T, N)Ep A (T, N\)dA (1.18)

AT, A, 0,0) + pA(T. ), 0,6) + T4(T. 2,0, 6) = 1 (1.19)

For an opaque surface, this simplifies into

(TN, 0,0) + ph(T, A, 0,¢) = 1 (1.20)

Distinguishing the incident and reflected angle, it is also useful to define the spectral
(or total) bidirectional reflectance distribution function (BRDF) p{(T, A, 6;, ¢, 0,, ¢,) 2
Similarly, one also defines the bidirectional transmittance distribution function (BTDF).

!The U.S. National Institute for Standards and Technology (NIST) has recommended to reserve the
ending "-ivity" for radiative properties of ideal surfaces and ending "-ance" for real surface properties

2Unlike the other thermo-optical properties pi (T, A, 0, ¢), oA (T, \, 0,¢), T(T,\,0,¢), e\(T,\,0,0),
the BRDF pY (T, A, 0;, ¢;,0,, ) can be greater than 1.
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The BTDF or BRDF concepts are critical features of calibration mechanisms diffusers
such as the ones developed at the Centre Spatial de Liége (CSL) for the UVN instrument
described in Section 3.4. Measuring the BRDF or BTDF of large diffusers is a complex
process that is usually performed on motorised optical benches such as the one developed
at CSL.

Again, Kirchhoff showed [135] that the directional-spectral emittance is always equal
to the directional-spectral absorptance of a surface:

(TN, 0,0) = \(T, A, 0, 6) (1.21)

Nevertheless, due to the wide wavelength range separating the solar spectral irradi-
ance and the infrared emission of media at near-ambient temperature (temperature below
500 K), it is common in the spacecraft thermal design community to split up the spectrum
into two parts, namely the visible and infrared parts. Even though Kirchhoff’s law states
that absorptance and emittance are equal for a given wavelength, spacecraft thermal en-
gineers use the following (quite confusing) convention, called the semi-grey approximation.
They redefine [142, 143]:

« the absorptance as the absorptance in the visible part of the spectrum. The total
hemispherical absorptance is the weighted average with the solar spectral irradiance

2800nm
/ ax (NG s(\)dA
o = =200 (1.22)

2800nm
/ G,s(A)dA
2

50nm

with Gy s(A) [Wm™2nm™!] the extraterrestrial solar spectral irradiance given by
the ASTM E-490 standard.

« the emittance as the emittance in the infrared part of the spectrum, the total emit-
tance being usually weighted with the spectral emissive power of a black body 300 K
(or any similar temperature) as defined in Equation 1.18.

This convention will be used throughout this manuscript. In spacecraft thermal model-
ling, it is common practice to further simplify and split the reflectance and transmittance
into a diffuse component and a specular component for both infrared and visible ranges.
Table 1.1 summarises the two sets of thermo-optical properties commonly used in space-
craft design.

Name visible (250 — 2800 nm) infrared (3 — 40 pm?)
Hemispherical emittance (absorptance) a €

Diffuse reflectance Pdvis Pd,r
Specular reflectance Ps,vis Ps,ir

Diffuse transmittance Td,vis Td, iR
Specular transmittance T vis Ts,R

Table 1.1 — Definition of common thermo-optical properties used in spacecraft thermal modelling.

!The spectral range used in Equation 1.18 is obviously function of the expected temperature of the
surface.
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1.2.5 Exchange factors

Radiative heat exchanges involve long range interaction since, in non-participating
media, the photons travel from surface to surface unimpeded. All surfaces that can
exchange energy (either directly or by any type of reflection and/or transmission) must
therefore be considered simultaneously, making the calculations quite complex.

The way two surfaces exchange energy can be described through an exchange factor
between those two surfaces. It obviously depends on the distance, orientation and size of
both surfaces. This geometric configuration leads to the definition of the view factor (also
referred to as configuration factor, angle factor or shape factor). If surfaces are not black,
multiple reflections and/or transmissions arise, specularly and/or diffusely. The concept
of view factor between two surfaces must be extended to take this effect into account.
In particular, surfaces that did not have a direct line of sight (view factor equals 0) can
now “see” each other through reflections/transmissions with other surfaces. This leads to
the definition of the radiative exchange factor. The definition of the view and radiative
exchange factors is summarised below:

o View factor F;; = fraction of the diffuse energy leaving surface ¢ that is directly

intercepted by surface j.

. Radiative exchange factor (REF) (or radiation interchange factor) F;; = frac-
tion of the total energy emitted by surface ¢ that is absorbed by surface j either
directly or after any number or type of reflections and/or transmission.

The infinitesimal view factor between the two differential surfaces dA; and dA; is
defined as

_dQy;

sz

where d@); is the diffuse thermal energy leaving the infinitesimal surface dA; per unit
time and d@);; is the diffuse thermal energy leaving dA; that is directly intercepted by the
infinitesimal surface dA; per unit time. Equation 1.14 leads to:

Faaiaa; =

dQ; = 7TLe+r(T)dAi

0;dA,;
d@ij = LeJrT(T)dAi COS GldQ”Xw = Le+r( )dA COS 9 LXU

TU
where y;; is the line-of-sight factor (1 if the two surfaces are mutually visible and 0
otherwise), df2;; is the solid angle subtended by dA; and r;; the distance between dA;
and dA;. The expressions of the infinitesimal, point wise and finite to finite surface view
factors are therefore:

cos 0; cos 0;
FdAi,dAj —XszA (123)

Ty

cos 0; cos 0;
FdA Aj —/ —ijdA (124)

cos@ COSQ
_ 1 / / ViydAsdA; (1.25)
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For clarity, the view factor between A; and A; will be denoted Fj;. It is important to
stress that while the view factors only depend on the geometry, the REFs depend on the
surface thermo-optical properties which can be temperature dependent.

The law of reciprocity is straightforward for infinitesimal view factors and is given by
Equation 1.23. The reciprocity law for the finite view factor expressed by Equation 1.26 is
subject to the constraint that the radiation leaving the surfaces must not only be diffuse
but also uniform over both surfaces (as it is usually the case in thermal modelling when
considering many small faces of uniform properties and temperatures).

AjFji = AiFy; (1.26)

Again, assuming uniform thermo-optical properties over the surfaces, the reciprocity rule
can be applied to the REFs:

81'AZ'EJ' = 5jAj-Fji (127)

Following directly from the definition of the view factor, the summation (or closure)
rule states that the sum of all view factors between the N surfaces of an enclosure must
add up to unity:

N

Y Fy=1 (1.28)
j=1

The sum includes the i*" surface since Fj; is not necessarily zero (Fj; > 0 for a concave
surface). Similarly, the F;;’s also obey the summation rule:

N

Zﬂj =1 (1.29)

Jj=1

Different methods exist for computing view factors and /or radiative exchange factors.
They can be divided into two categories: analytical and numerical methods. Analytical
formulas exist to derive the view factor in some particular geometric configurations, but
they are very limited and their expressions can be quite complex. The numerical methods
are much more versatile, in particular the Monte Carlo method that will be detailed in the
following sections. A comprehensive review of the numerical methods is available in [53].
Originally, there were three equivalent methods for computing radiant heat exchanges
from the view factors [144]: Hottel’s method [145], Eckert’s method [146] and Gebhart’s
method [147, 148] to which can be added the electrical network analogy developed by
Oppenheim [149], similar to Eckert’s radiosity method. They are all similar, give the
same results and all rely on the same common set of assumptions:

« Faces must be opaque.

o Faces must be isothermal. In practice, if non-uniform temperatures are expected,
the faces are subdivided to approximate more closely the isothermality.

« Faces must be grey, meaning that they absorb or emit energy at different wavelengths
in the same manner. Again, very few material exhibit this property over the whole
spectral range. The range can be split into several bands and the calculation carried
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out separately. The most common assumption is the semi-grey, splitting the range
into the visible and infrared part of the spectrum, as presented in Section 1.2.4.

o Thermal radiation emission and reflection must be diffuse. The distinction between
the emitted and reflected radiant fluxes cannot be made and therefore can be com-
bined.

o Faces must radiate uniformly and be uniformly irradiated. The first part of the
sentence implies that the surface properties must be uniform. The second part is
more restrictive as demonstrated hereafter.

Following Gebhart’s approach, the energy balance at location s is the difference
between the incoming and outgoing radiation and provides the relation [36]:

@ (s) = (s)oT(s) — /A 5(s’)aT4(s’)%%dA’ (1.30)

where A is the total area of the enclosure and Fy4/_,44 is the differential radiative exchange
factor from surface element dA’ to dA defined above. If the enclosure is divided into n
nodal surfaces A;, the net radiative heat flow rate Q,; of the j™ surface becomes

n
4 § 4
Qr,j = AjéjO'j} — EiAiO'CTZ- fAi_>A].
=1

where £; and 7} are the average emittance and temperature of the j™ surface: @Tf =

1/A; [, €T*dA . The reciprocity and closure rules described in Equations 1.27 and 1.29
J

eventually give the well known fourth power temperature difference equation:

Qrj = Ajejo ¥ Faoa, (T} = T}) (1.31)
i=1
As a by-product of the method, it is possible to derive the radiative exchange factors
Fi;j’s from the view factors Fj;’s under the same assumptions. This method is often
referred to as the matriz method:

N
Fij = Fye;+ Y Fa(l — ) Fig (1.32)
k=1
Rearranging the above equation and using matrix notation allows to write

F=(I-Fp) 'Fe (1.33)

where € and p are diagonal matrices with the surface emittance and reflectance, respect-
ively. This leads to the famous relation describing the radiative heat exchange between
two diffuse grey surfaces

Q12 = GRyp0 (T} — T3) (1.34)

where GR15 [m?] is the radiative link between surface 1 and 2 given by:
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This method is very convenient since REFs between perfectly diffuse grey surfaces
can be obtained from the geometric view factors through a simple matrix inversion. The
underlying assumptions however become rapidly restrictive as explained in [150]. Even
with perfectly diffuse surfaces, analytical solutions are very limited. For example, in the
particular case of two surfaces relatively close to each other such as two rectangles of width
wi and ws in perpendicular planes and sharing a common edge of length [, the matrix
method can lead to non-negligible errors. The exact, analytical view factor is expressed
by [35]:

GR1y = GRyy = A1e1F12 =

1 1 1 1
Flo = v (W1 arctan W1 + Wy arctan W2 — W arctan W
) 2 1.35
L TR W) TWEL - W) iz w) " (1.85)
4 1+ W?2 (1+WHw? (1+WHw?

with Wy = wy /I, Wy = wo /I, W = /W2 + W3 . In the case of two perpendicular squares,
Wi, = Wy = 1 and the view factor is Fjs = F5 = 0.200044. The radiative exchange
factors can be derived using the matrix method described above. They are compared to
the results obtained with the MCRT method implemented in ESARAD, the ray tracing
engine of ESATAN-TMS. Figure 1.7 shows that the relative error on Fi; is over 25% and
the one on Fj5 approaches 5% as the emittance (total, hemispherical) decreases. Fio and
Fi11 are underestimated by the analytical method because the radiation is not uniform:
it is higher close to the common edge. It therefore violates one of Gebhart’s approach
assumptions. The limitations of the analytical methods will be taken into account in the
benchmarking processes, and the reference solution of the test cases will be obtained with
ESARAD by tracing a sufficiently high number of rays.
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Figure 1.7 — Benchmarking Gebhart’s matrix method.
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1.3 MONTE CARLO RAY TRACING

As introduced in the previous section, computing the view factor is not an easy task
since Equation 1.25 involves double integration taking into account shadowing effects. It
becomes even more difficult for the radiative exchange factors where surfaces properties
and multi-reflection /transmission come into play. A comprehensive review of the available
methods is available in [53, 116] among which we find the hemicube method developed in
[151] and implemented in I-deas TMG or NASTRAN;, the hierarchical method developed
by Hanrahan et al. [152] or the classical Gauss point double integration, for instance
implemented in SAMCEF. These numerical methods however become quite computa-
tionally expensive as the problem grows in complexity. Conversely, the computational
costs of Monte Carlo methods increase linearly with the size and complexity of the prob-
lem where the computational effort of conventional methods is usually increasing much
more rapidly [36, 116], as schematically illustrated in Figure 1.8. Monte Carlo methods
are therefore well suited to solve thermal radiation problems. As mentioned in the intro-
duction of this chapter, Monte Carlo techniques were introduced in the 1940s in nuclear
engineering to assess the diffusion of neutrons in fissile material by Metropolis, Ulam,
von Neumann and Fermi [153-155] although Lord Kelvin already employed some Monte
Carlo technique more than forty years earlier [155, 156|. It is only in the early 1960s that
Monte Carlo method was applied to radiative heat transfer problems by Fleck and Howell
[75-77].

>

Monte Carlo
---------- Conventional

Formulation complexity
& computational effort

...... )

Problem size & complexity

Figure 1.8 — Evolution of computational effort in function of the size and complexity of the
problem for Monte Carlo and conventional techniques [36].

In the context of REFs (or view factors) computation, the Monte Carlo method is
applied to ray tracing and consists in tracking the history of statistically meaningful
samples of photons (or photon bundles) from their point of emission to their final absorp-
tion. MCRT can be applicable to the computation of the view factors but it also offers
the advantage to enable the direct computation of the REFs, taking into account multiple
reflections and/or transmissions with more realistic surface properties, without adding
much complexity. MCRT avoids branching along the ray tracing process: the energy is not
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reflected partially specularly, partially diffusely and/or transmitted partially specularly
and partially diffusely at the same time. Instead, it is either reflected specularly or dif-
fusely or transmitted specularly or diffusely and one ray is traced until extinction without
generating children rays. The choice between specular/diffuse transmission/reflection is
determined by comparing a random number £ to ratios of thermo-optical properties:

Ps,Ir
1—¢’

if Ps,Ir <e< Psir + Ts1r
1—¢

if § <

the ray is specularly reflected,

, the ray is specularly transmitted,

. + 7 + 7o + T
£ Ps,Ir IR €< Ps,1r s,IR d,IR

. 1 , the ray is diffusely transmitted,
—€ —¢

else the ray is diffusely reflected (m < §>.

1—-¢

Similar ratios are used for computations in the visible part of the spectrum.

The cornerstone of Monte Carlo ray tracing is that if n,; rays (or photon bundles)
are emitted from the surface A; among which n, ;; rays are absorbed by surface A; either
directly or after any type/number of reflections/transmissions, according to the Law of
Large Numbers first proved by Bernoulli in 1713 [157] the REF between the surfaces i
and 7 can be written:

Fy = lim oo Iril (1.36)
Ny ;=00 nm- nm- npi>>1

The view factor is obtained similarly by considering only direct absorption without
any reflection or transmission. The basic concept behind MCRT is that the number of
rays must be large enough to be statistically meaningful so that the REFs tend towards
the correct solution. As any stochastic method, the results vary randomly around the
correct answer and the amplitude of the fluctuation decreases as the number of samples
increases. Typical Monte Carlo convergence process is shown in Figure 1.9.

The random samples determining the ray are generated with pseudo-random gener-
ators, whose sequences are usually initialized with a seed. One given seed generates a
determined sequence of pseudo-random numbers.

Even though it does not depend on the dimension of the problem, the inconvenient
of crude Monte Carlo techniques is their relatively low rate of convergence. The error
is inversely proportional to the square root of the number of rays [48, 150, 158, 159].
Increasing the accuracy by one order of magnitude means multiplying the number of rays
by two orders of magnitude.

eITor o =n, 0? (1.37)

To compute the exchange factors between one surface and the surrounding surfaces,
the rays originating from the first surface must be distributed over the surface area and
over the directions, in the same way that the view factor between two finite surfaces
involves the double integration shown by Equation 1.25. Two separate samplings need to
be performed:
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Figure 1.9 — Typical MCRT process convergence.

« direction sampling of the unit hemisphere,

« surface sampling of the emitting surface.

Direction sampling of the unit hemisphere leads to the point wise view factor which
is then to be integrated over the emitting surface with surface sampling. It is interesting
to note that the starting coordinates (spatial sampling) describe the near field properties
of the radiation source, and that the direction sampling represents its far field properties.

1.3.1 Random samples generation

The ray direction cosines and starting coordinates are generated with pseudo-random
numbers. As most pseudo random number generators give uniformly distributed samples
& over [0,1], the unit square [0,1]? (or cube, hypercube) is easily sampled by sampling
each direction independently. The desired space to be sampled is however usually not
the unit square and a transformation needs to be applied to map the random samples
(&1,,&2,) to the desired space with the desired density. In case of ray direction sampling,
the desired space is the unit hemisphere with the polar angle 6 and azimuthal angle ¢
varying in [0, 7/2] and [0, 27], respectively. The naive transformation

T
9i - 5591

does cover the whole hemisphere but does not cover it uniformly. An area-preserving
transformation is therefore sought along with a way to apply the desired density. The
probability density function (PDF) p describes the probability that a continuous random
variable x takes a value in some interval [a, b] through the following integral

Probability(z € [, b]) = / ' p(2)dz (1.38)
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One technique, called the inversion technique, to generate random samples x; following
a PDF p(x) from a set of random numbers &; uniformly distributed in [0, 1] is to use the
cumulative probability distribution function P(x) which gives the probability that the
random variable z; is less or equal to x:

Probability(z; < z) = P(z) = /w p(z)dz (1.39)

—00

Knowing P(x), the z; can be derived from the ; by inverting P(z):

x; = P& (1.40)

In the case of a multivariate problem of dimension k£ with a probability density function
p(z1,xa, ..., ), the sample vectors (zq,xs, ..., Tx); can be generated successively by the
nested conditioning approach [46, 160]. The marginal cumulative distribution P, (x) is
inverted to generate x;, from &,

le(x):/ / / p(z1, g, ..., T )dTg...dxedr;

T9, is then generated conditionally to z1, from the conditional distribution function

Y * p(x1,, Toy ey Tie
Px2|x1i<x|$1i) :/ / / pp((xll ;2 xi)dxk...dxgdl’g
—0oQ —0o0 — 00 Tl ) AR

where p,, (21, z9, ..., ¥)) is the marginal PDF of z:

pxl(xl,mg,...,xk):/ / / p(x1, Ta, ..., Tg ) dxg...dx3dTy

1.3.2 The cosine distribution law

For practical cases, most surfaces can be considered as Lambertian/diffuse emitting
surface. In that case, the PDF is the cosine law [160, 161]:

1
Po.s(0, ¢) = ;Cosesine (1.41)

and the cumulative distribution function over the hemisphere is expressed by

9 b 0 o / .9
P, ) = /U /0 p(0,¢)d0'dd = /O /0 Cofrg sin0/'d0'de’ = ¢S2”; ¢

The random polar angle sample 6; is determined by taking the inverse of the marginal
cumulative distribution function Py(f) = sin®:

6; = arcsin /&y, (1.42)

Once the polar angle sample is determined, the azimuthal angle sample ¢; is derived

from the conditional marginal cumulative distribution function Pyg(¢|6;) involving the

marginal probability distribution function py(6) = 0% (0, ¢)dep = 2 cosb:




1.3 Monte Carlo ray tracing 27

P N — / — o / = —
610 (]0;) /0 Wpe(gi)dgb /0 27 COS Hid¢ 2

and

¢; = 2mEs, (1.43)

In this case, the two random variables ¢; and 6; are independent from each other. This
is a consequence of the separability of the PDF p(6, ¢) of a diffuse emitter. From two
given sets of pseudo-random numbers (&, &y, ), the polar and azimuthal sample angles are
derived and the components of the i*" sample ray r; in Cartesian coordinates is given by:

ri(&o,, Es) = [sin 0; cos ¢; sinf;sin¢; cos (97;} (1.44)
= [ 591‘ COS<27T£¢1') 591 Sin(2ﬂ-§¢i> V 1- gez] (145>

1.3.3 Accuracy control

The MCRT technique offers the possibility to integrate accuracy control to balance
the non-deterministic behaviour of the method. The number of rays required to achieved
a given accuracy 0 with a given confidence level C can be calculated from Equation 1.46

implemented in ESARAD (150, 162, 163] and THERMICA [164]:

ny = 2 (erf_lwf))Q 1=F (1.46)

) F

If an estimate of the view factor F' is computed with an initial number of rays, Equa-
tion 1.46 gives the number of rays required to achieve the target accuracy and given
confidence interval. This formula results from the central limit theorem and explains the
crude Monte Carlo convergence rate of 0.5 given in Equation 1.37. Equation 1.46 is plot-
ted in Figure 1.10 for different accuracies (6 =1, 5 and 20%) and confidence intervals (90
t0 99.7%). As the view factor decreases, the number of rays rapidly increases to achieve
the required accuracy. It also shows that the number of rays is less affected by the confid-
ence interval that appears through the inverse error function, than by the accuracy that
is squared in Equation 1.46.

This accuracy control scheme is implemented in several ray tracing software but in
a slightly modified version. The error is measured through the line sum error (LSE)
which is derived from the closure rule. The closure is inherently obeyed since all rays are
eventually absorbed. Some variance reduction method however breaks it by enforcing the
reciprocity. More details on REFs smoothing and variance reduction techniques will be
given in Section 2.5.1. The LSE of node ¢ is simply given by inverting Equation 1.29:

nf+1
LSE; =1- ) F; (1.47)

j=1
with ny the number of faces in the model. The additional face in the summation corres-
ponds to the cavity or deep space node. This is the metric implemented in ESARAD: the
user gives a target LSE value to achieve within a target confidence interval and an initial
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Figure 1.10 — Crude Monte Carlo accuracy control behaviour in function of the view factor.

number of rays to be traced. Based on the LSE obtained with the initial number of rays,
the number of rays required to achieve the target LSE is computed with Equation 1.46.

1.4 LUMPED PARAMETER METHOD AND FINITE ELE-
MENT METHOD FOR HEAT TRANSFER

As the GMM involving more the radiative heat exchanges precedes the TMM, this
section presents the two major thermal modelling techniques, the FEM and LPM, in
which the REFs and orbital heat fluxes are included as surface boundary conditions.

1.4.1 Enmnergy conservation

The problem of heat transfer in a three-dimensional anisotropic medium bounded
by the surface I' is governed by the differential heat transfer equation derived from the
conservation of energy [165]:

or
where k [Wm™ K™!| is the thermal conductivity tensor of the medium, T [K] its tem-
perature, ¢ [Jkg™' K] its specific heat, p [kgm™3] its density, Q@ [Wm™3] is the rate
of energy generation per unit volume and ¢ is the time. Solving Equation 1.48 requires
the temperature (Dirichlet or essential condition) or the heat flux (Neumann or natural

condition) to be defined on all the boundaries of the region under study:

T = f(s,t) on I'p (1.49)

—(k-VT) -n=q(s,t) - n=q.(s,t)+qf(s,t) + qus,t) on [, (1.50)

where s contains the coordinates along the total boundary of the heat transfer region
I' =T',Ul'r, nis the outward unit normal to the boundary surface I' and ¢, ¢,, g, are the

convective, radiative and applied heat fluxes on the boundary, respectively. The radiative
heat flux ¢, is derived from Equation 1.30.
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1.4.2 Lumped parameter method

For complex geometries and problems involving radiation, very few analytical solutions
of Equation 1.48 exist [166, 167] and numerical techniques must therefore be employed.
The basis of the lumped parameter (or resistor-capacitor R-C) method is a Taylor series
expansion of Equation 1.48 as derived in [168, 169] to solve partial differential equa-
tions on analogue computer. In the LPM, the medium is divided into subvolumes called
nodes to which are associated the total capacitance of the subvolume and its capacitance-
averaged temperature. Since the temperature and capacitance are lumped to a single
point (traditionally the centre of the node) the temperature through the subvolume can
be linearly interpolated between the nodes [33, 57]. The discretised formula expresses the
conservation of energy for each thermal node ¢ [57, 69:

N N
Ci% =Qi+ Y GL;(Tj-T)+0 Y GRy; (T} —T}) (1.51)
Jj=1 J=1

where C; [JK™!] is the capacitance of node i, @; [W] is the applied heat rate (e.g. in-
ternal dissipation or environmental heat flux) integrated over node i, GL;; [WK™!] and
GR;; [m?] are the conductive (linear conductance) and radiative links between nodes i
and j, respectively. o is Stefan-Boltzmann’s constant introduced in Section 1.2.2. There
exist three types of nodes: the diffusion node (finite capacitance), arithmetic node (zero
capacitance, usually used to model surfaces adjacent to a diffusion node) and boundary
node (infinite capacitance). Typically, the conductive link can be expressed as a thermal
conductivity multiplying a shape factor. In one dimension, the shape factor becomes the
cross section area to length ratio and gives the classical formula thoroughly used by the
thermal engineer and derived from Fourier’s law [170]:

S
GL;; = kz

where S is the cross section area and L is the length separating the two nodes ¢ and j.

The problem with LPM arises when conductive links in complex 3D geometries need
to be computed with relatively large nodes to avoid too many REFs [171]|. Lately, sev-
eral specific methods were developed to generate the conductive links. In the REBECA
(REliable Boundary Element Conductive Analyzer) software, an iterative method based
on the boundary elements method was developed in the late 1990s for Alcatel Space
[172, 173]. In parallel, developed by Aerospatiale Cannes (later becoming Alcatel Space
then Thales Alenia Space), the CORATHERM thermal software discretised the nodes
by an extremely fine orthogonal TLP mesh whose conductances are given by standard
expressions and then reduce it by defining average nodes [31, 62, 174, 175]. This software
was also used to provide thermo-elastic input [63] to FE tools.

Now integrated into ESATAN-TMS, the Far-Field Method (FFM) [176-178| relies on
a fine FE submesh of the two nodes to be linked together. The FFM consists in three
steps: first, for each LP node, identify the far-field edge by imposing a temperature on
the common edge (surface for 3D nodes) with a uniform heat flux on the node surface
(volume). The far-field edge (or surface) is defined as the zone whose temperature is close
the the maximum temperature (with a given threshold). Second, the two FE meshed LP
nodes are considered together and a given positive () and equally negative —() heat flow
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rates are imposed on the far-field edge (surface) of the first and second node, respectively.
The problem is solved and the temperature distribution is computed over the two LP
nodes. Third, the average temperature of the two LP nodes 7} ,, and T5 4, are computed
and the conductive link GL15 is deduced from Equation 1.51 simplified to linear steady-
sate:

Q = GLlZ(Tl,av - TQ,a'U)

This method computes the conductive link between two nodes discarding all other
surrounding nodes. This ensures that no negative link is generated as recommended by
[14] since they could be considered as absurd from physical point of view (yet not from
a mathematical point of view). Thermica determines the conductive links based on the
Reduced Conductive Network (RCN) [102, 179]. This method also relies on a reduction
of a submesh of the LP nodes. It introduces edge nodes and generates links inside a LP
node between the average surface (volume) node and the edge (surface) node.

1.4.3 Finite element method

This section does not intend to give a thorough view of the FEM but rather gives the
nuts and bolts necessary for spacecraft thermal analysis. More details about the FEM
applied in heat transfer is given in [165]. If the LPM can be classified as a discrete method,
the FEM could be considered as semi-discrete. With the FEM, the temperature within
cach element T (z, v, 2, t) is interpolated from the nodal temperatures of the element T(¢)
through shape functions ¥(9). The FE nodes correspond to vertices and control points
of the element. Adjacent elements therefore share the nodes located on their common
boundary. Temperature continuity is enforced across element boundaries by a careful
choice of the shape functions.

T (z,y, z,t) = (\Il(e))T T (1.52)

where W) and T are a (ngf) x 1) vectors containing the element shape functions and
the nodal temperatures, respectively and n,(f) is the number of nodes of the element.
Galerkin’s method of weighted residuals consists in multiplying Equation 1.48 by the
shape function and integrating it over the element domain V(¢ [165]. Gauss’s theorem
that introduces surface integrals of the heat fluxes across element boundary I'® and

Equation 1.50 successively give:

e aT e € -
/(wm_wz/(wVﬂmvﬂﬁ%[ﬂwWWz:mwm
Ve ot Vie) (e)

— [ 0O O-91) mar - [ vl (O vr)av e [ wqav
(e

V(e Ve

:—/)wﬁqgwqmr—/ VﬂaiwdvﬂdV+/)WPQMf
T v V(e

The element matrices are then derived introducing Equation 1.52:
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T
(e) i K<Le)T<e) = QW (1.53)
ot
(e) (e)

with C(©), K(Le) being the nodal capacitance and conduction (ny’ X n,’) matrices, re-

spectively and Q© a (ngf) x 1) vector containing the nodal heat flow rates coming from

the heat generation integrated over the volume and the boundary conditions heat fluxes
integrated over the boundary surface. All matrices can be temperature dependent if e.g.
the material properties vary with the temperature.

C

c — / peT® () gy
V(e

K — / BOKE (BO) qv
v (e)

Q= [ wOQav -~ [ WO(gt g+ q)ds
V e

T(e)

where the (ngf) x 3) matrix B(®) is the gradient of the shape functions:

ow©  gple Hwe
ox dy 0z
Element matrices are usually computed by Gauss integration with the introduction of

the element Jacobian matrix. After all element matrices are evaluated, they are assembled
to form the global system of equations:

B = yylo — [

T
Caﬁ_t +K,T=Q (1.54)

If the convective heat flux ¢, is written in the form g. = h (7" — Ty) where T is the
fluid temperature and h. the convective heat transfer coefficient, the convective term of
Q© can be developed into

U ds = COh (T — Ty)ds
r(e) (e

- < / heW© (W) ds) T — / he® )Ty ds
(e r(e)

— K(CC)T(B) - (C’E)

Even though isothermal surface assumption is inconsistent with finite-element formu-
lation since the temperature over the element varies according to its shape functions,
determining the radiation heat transfer flux ¢, traditionally assumes that surfaces are
small enough to be considered as isothermal and that the incident radiant heat fluxes on
them are uniform. In enclosure radiation, ¢, can be expressed as a matrix multiplying
the difference of the fourth power of the temperature through the net radiation method
[35] or the Gebhart’s method [147, 148| presented in Section 1.2.5. Equation 1.31 can be
rewritten under matrix form to give



1.4 Lumped parameter method and finite element method for heat transfer 32

Q. =KpT'=Aec(I-F)oT!

where the diagonal matrices A and € contain the nodal area and emittance, respectively
and the REFs matrix F is defined by Equation 1.33. For clarity, the notation T* expresses
the element-wise fourth power of the nodal temperatures. The element Kz ; ; of the square
matrix Kz is the radiative link between node ¢ and node j. Kpg is symmetric and the
diagonal terms are the sum of all other elements on the same row/column such that the
row /column sum is zero.

Finally, the surface heat fluxes are integrated in Equation 1.54 and the finite element
formulation can be summarised in the form

oT
CE+(KL+KC)T+KRT4 =Q,+Q.—Q, (1.55)

where Q,, Q. and Q, are the volume, convective and applied nodal heat flow rates. Con-
vective heat exchanges are not considered in this work and Ko and Q. will be discarded.

Some FEM based thermal analysis software include MAYA TMG and Thermal
Desktop. FEM is used for the conductive link generation and the FE mesh serves as
GMM |[31]. The size of the mesh is again limited by the number of REFs, preventing the
use of the structural analysis mesh.

1.4.4 Comparison

The problem of the ESATAN far-field or Thermica RCN methods is that it restricts
the heat flow paths: they do not consider the effect of the adjacent nodes. The case of
the rectangle divided into four nodes described in Figure 1.11 gives a good example of
the problem. The far-field method as implemented in ESTAN-TMS gives the following
conductive links:

1

GL12 = GL13 = GL24 == GL34 = 1 1 == 0916
T6o T 2
GL ! 1
23— 17 . 1 —
i

The global conductive heat transfer between nodes 1 and 4 is 0.916 W K~! instead of
1 W K~!. It is underestimated by 8.4% because the FFM neglects the effect of the presence
of node 3 when computing the conductive ling between 1 and 2, and vice-versa.

Another striking example is the T-shape configuration. Taking for instance three unit
squares sharing a common edge in the form of a 7T as illustrated in Figure 1.12. All
three squares will be connected to each other with the same conductive link computed
independently by the far-field method: GL15 = GL13 = GlLy3 = 1. This incorrectly implies
that the heat can flow from node 1 to node 3 through node 2 in addition to the direct
path 1 — 3. In this case, this results in a 50% error. Adding a fourth square to form a
cross shape will further increase the error to 100% since the heat can flow from node 1 to
node 3 either directly or through node 2 or 4, thus incorrectly doubling the conductive
link. This type of error can be easily corrected by considering only the link to the shared
edge and the famous star-delta (Y-A) transformation used in electrical circuits invented
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Figure 1.11 — Simple geometry consisting of a 2m x 3m rectangle divided into 4 LP nodes.
Nodes 1 and 4 are 2m wide x 1 m long and nodes 2 and 3 are 1 m x 1m squares. The thickness
is unitary as well as the thermal conductivity.

by Kennely in 1899 [180]. The RCN method implemented in Thermica does not generate
this type of error because it inherently uses edges nodes. These two simple examples show
the limitation of LP conductive link generation methods considering node pairs separately.
It highlights the need for a global approach considering the nodes altogether.

1 3

Figure 1.12 — T-shape configuration of three LP nodes sharing a common edge (side view). All
three nodes are unit squares with unit thickness and unit thermal conductivity.

As mentioned in [31], another non-intuitive behaviour can occur with the LPM and
the far-field conductive links computation method. Considering the L-shape configur-
ation sketched in Figure 1.13 and imposing a 10 K temperature gradient between both
extremities, the global heat flow rate is computed. The problem is analysed with both
the LPM and FEM and two cases are studied: a regular mesh made of square elements
or nodes and a trapezoidal mesh, as depicted in Figure 1.13. The reference solution was
computed with SAMCEF and 270000 quadratic square elements (812401 nodes) and led
to a heat flow rate of 3.908 544 W. The conductive links of the LP trapezoidal nodes are
generated by the far-field method of ESATAN-TMS. Figures 1.13(a) and (c) show that
with the FEM, the mesh geometry does not affect significantly the results. Comparing
Figures 1.13(a) and (b) also shows that LPM and FEM gives similar results when the
LP mesh is regular. However, the temperature profile obtained with trapezoidal nodes as
given in Figure 1.13(d) clearly diverges from the other three results.

The convergence of the results when refining the FE or LP meshes is analysed in
Figure 1.14.

The relative heat flow rate error with respect to the reference solution is plotted
against the number of nodes (either LP nodes or FE nodes, not elements). The regular
and trapezoidal FE meshes give the best results, better than the regular LPM mesh. The
awkward behaviour is the one of the trapezoidal LPM mesh which does not converge.
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Figure 1.13 — L-shape modelling with square FE (a), square LP nodes (b), trapezoidal FE (c),
trapezoidal LP nodes (d). A 10K temperature gradient is imposed between the bottom right
and top left edges.
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Figure 1.14 — Convergence of the heat flow rate error as a function of the mesh refinement for
the problem described in Figure 1.13.
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The trapezoidal LP mesh nevertheless gives better results with very few number of nodes.
This is a consequence of the far field method that already relies on a fine FE mesh to
generate the conductive link.

1.5 THERMAL MODEL REDUCTION

The previous sections highlighted the fact that the FE structural mesh is not suit-
able for thermal analysis because it implies too many radiative links. Model reduction
techniques may come to mind to overcome the problem. Over the years, in spite of the
advances in computational techniques and numerical analysis, the increasing complexity
of scientific and engineering problems gave rise to many reduction techniques to over-
come the curse of dimensionality. One of the most influential model reduction technique
initially developed for structural analysis is the sub-structuring or Component Mode Syn-
thesis (CMS) technique introduced by Hurty [181, 182] in the 1960s. Most famous versions
of CMS are that of Guyan [183] that includes only static response, Craig-Bampton [184]
which consists in the extension of Guyan’s method by including internal vibration modes
with fixed interfaces or MacNeal [185] that is similar to Craig-Bampton’s but uses free-
vibration modes. These methods are still widely used today for linear systems. In [186],
CMS is applied to the linear transient thermal analysis of a turbine disc and their method
was improved in [187]| and [188] to compute on-line thermal stresses taking into account
non-linear effects caused by convection. They however relied on the off-line computation
of the step response using the full model. In [189, 190|, the linear reduced basis is en-
riched with, e.g., modal derivatives, but several iterations are required to converge to an
adequate basis. There exist other modal bases including nodal temperature derivatives
[191] or trajectory piecewise linearisation [192].

The Modal Identification Method (MIM) introduced in linear heat conduction [193,
194] relies on an optimisation problem to match the parameters of the reduced model
to the full model, the reduced model being expressed following the same structure of
equation as the full model written in its modal base. This modal superposition technique
was applied to several problem in heat transfer [195, 196]. This technique was also applied
to non-linear heat conduction in [197] and to heat conduction with radiative heat transfer
boundary conditions in [198] but also requires the computation of the full model in the
optimisation step.

Alternative projection methods were proposed in the literature. The Proper Ortho-
gonal Decomposition (POD also known as the Karhunen-Loéve decomposition (KLD)
[199]) relies on the separation of the physical space and exploits snapshots of the detailed
solution to derive an optimal basis corresponding to a specific load case. The POD was
applied in numerous cases [200-206] including thermo-mechanical reduction with radiative
boundary conditions [207]. POD was also applied to Monte Carlo simulation of radiation
in [208] but only considers small variation of the input. In [209], the MIM and POD
methods are compared on a non-linear diffusive system and give similar performances. In
[210], POD is combined to the CMS method by replacing the component modes are by
the proper orthogonal modes to generate a reduced model of a microelectromechanical
system. This method however proved inaccurate when the input differs from the one used
for the snapshot generation. To increase the accuracy of the reduced model response to
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different inputs of a transient non-linear heat conduction model, Binion and Chen [211]
use Krylov subspaces to enhance the POD.

Recently, Branch Eigenmodes Reduction Method (BERM) which relies on particular
modes called branch modes [212-214| was developed. The particularity of the branch
modes is that they do not depend on the boundary conditions. In [215], BERM is
combined with CMS to overcome the difficulty of obtaining the branch basis with large
models. While POD can be considered as an a posteriori model reduction technique,
the Proper Generalized Decomposition (PGD) is viewed as an a priori model reduction
technique[216-219| avoiding any knowledge on the detailed solution in contrast to the vast
majority of POD based model reduction techniques. PGD was introduced in computa-
tional solid mechanics by Ladevéze et al in the mid 1980s [220-222] and also relies on the
separated representation of the problem, like POD. In [223|, PGD is applied to thermal
model reduction in the frequency domain for real-time thermal process monitoring.

Other approaches were proposed such as Latin Hypercube sampling with Gaussian
process regression of the detailed model [224] or the grey-box reduction method for non-
linear systems [225].

All these techniques, either rely on the computation of the detailed solution or at least
on the availability of the detailed model matrices, in particular the radiation matrix which
is exactly what we want to reduce.

In the context of space instrument thermal design, thermal models are often exchanged
to be integrated into higher level thermal models. Integrating detailed models would imply
too large system models. Therefore, engineers build separate reduced models, manually
fitting the reduced model to the detailed one with empiric parameter adjustments. Auto-
matic LPM thermal model reduction is thus a key subject of research [226, 227]. Tools
like TMRT (Themal Model Reduction Tool) were developed under supervision of ESA
[228-232|. Again, these techniques are not suited to the present problem since they rely
on the correlation with the detailed model.

1.6 CONCLUDING REMARKS

After a brief introduction on space thermal modelling and radiative heat transfer, this
chapter introduced the Monte Carlo ray tracing method. The main strengths of MCRT
are its versatility and scalability. However, it requires a lot of rays to provide statistically
meaningful REFs due to its low convergence rate. Increasing the accuracy by an order of
magnitude implies multiplying the number of rays by two order of magnitudes. Chapter 2
proposes modifications to MCRT to improve the convergence rate and decrease the error.

Next, the basic concepts of the finite element and lumped parameter methods were
reviewed in the context of space thermal analysis. LPM allows for a higher level of ab-
straction than FEM since it does not necessarily require an associated geometry (GMM).
It is therefore well suited for system level preliminary and trade-off studies. However, the
main weakness of the LPM lies in the computation of accurate conductive links which is
exactly the strength of the finite element method thanks to its automatic meshing schemes
and derivation of conduction matrices. LPM becomes less convenient for detailed design
of subsystems that involve stringent requirements combined with complicated geometries
calling for more detailed models and thermo-mechcanical analyses. A FEM reduction
method associating the strengths of both methods is developed in Chapter 4.



QUASI MONTE CARLO RAY
TRACING FOR RADIATIVE HEAT
TRANSFER

Abstract

This chapter focuses on the development of a new sampling strategy to
speed up the computation of radiative heat exchanges factors with ray
tracing. Several quasi-Monte Carlo techniques are presented for direction
sampling, namely isocell and hemisphere stratified sampling and Halton
low discrepancy sequences. The combination with surface sampling is
studied to achieve a global, robust 4-dimensional (surface + direction)
sampling. The method is then applied to orbital heat fluxes computa-
tion. In particular, the planet focused sampling strategy is developed for
planetary heat fluxes computation. This method avoids wasting rays by
only tracing rays towards the useful part of the Earth.

37
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2.1 INTRODUCTION

As described in Chapter 1, the backbone of MCRT is pseudo-random sampling of the
unit hemisphere to derive ray directions and of the unit square to derive ray origins on the
emitting surface. Chapter 1 also highlighted the low convergence rate x of crude Monte
Carlo. Even though it is independent of the dimensionality of the problem, the stochastic
error is inversely proportional to the square root of the number of rays i.e. error § o< n, "
with the convergence rate k = 0.5 [150, 158, 159, 162].

Two types of techniques were introduced to overcome this drawback: variance reduc-
tion and quasi Monte-Carlo. For a comprehensive review of these techniques, we refer
to the books of Niederreiter [47], Fishman [233] and Lemieux [46]. The main type of
variance reduction method relies on auxiliary information in order to improve the naive
Monte Carlo estimator. In the context of REFs computation, the closure rule is inherently
obeyed (all rays are eventually absorbed) but the reciprocity rule is not. Since both F;;
and Fj; are computed independently, a-posteriori enforcing reciprocity with Equation 1.27
may help to reduce the error resulting from the crude Monte Carlo method. This REFs
smoothing technique is detailed in Section 2.5.1.

The second major type of variance reduction technique, called stratified sampling, par-
titions the domain into strata, each stratum being sampled independently. This technique
was introduced by Cochran in 1953 [234] and is largely used in the computer graphics
community [48, 235]. Taking one sample per stratum is known as jittering in the com-
puter graphics community [236-238]. To reduce clumping (when two or more samples
are close to each other), half jittering was implemented in [239] as a simpler version of
Cook’s algorithm [236] and consists in sampling the point uniformly from the stratum
but in half the stratum. In [240], adaptative stratified sampling is performed to gener-
ate more samples where the integrand exhibits more fluctuations. The generalisation of
stratified sampling to higher dimensions is called Latin hypercube sampling, invented by
McKay et al. [241]. Instead of dividing the unit hypercube [0,1)? into n subvolumes
with each dimension divided into n!/?, Latin hypercube sampling provides simultaneous
stratification in all dimensions, i.e. each dimension is divided into n strata. In thermal
radiative heat transfer, Vueghs applied stratified sampling to the hemisphere to generate
more uniform ray directions [53|. Each stratum in the method corresponds to the same
view factor share of the hemisphere, but the strata do not exhibit the same shape, which
can deteriorate the performances in particular configurations as it will be demonstrated
in Section 2.2.5.

Besides variance reduction methods, quasi Monte-Carlo methods rely on samples more
uniformly spread over the integration domain and generated from the so-called low-
discrepancy sequences. Quasi Monte-Carlo is almost as old as Monte Carlo itself and
the first article in which the expression quasi-Monte Carlo method appeared dates back
to 1951 [242]. Compared to exactly uniformly spread samples (periodic lattice), low
discrepancy sequences are less likely to produce unwanted aliasing artefacts. The most
famous include Sobol [243| and Halton [244| sequences. Sobol is for instance used in the
optical design software Zemax [245] or Synopsys’ LightTools. In the frame of radiative
heat transfer, low discrepancy sequences were scarcely used. Halton sequence was used
for directional sampling in [50| and for the computation of the view factor between two

1Synopsys is also the developer of the famous optical design software Code V.
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squares (same as in Section 1.2.5) in [246]. Sobol sequence was also applied to directional
sampling in reverse Monte Carlo [49]. In relatively low dimension problems such as the
REF computation, Halton and Sobol sequences give similar results but Halton is usually
preferred to Sobol due to its easier implementation [247].

The afore-mentioned methods focused more on the stochastic behaviour of MCRT,
independently of the ray tracing technique. From the ray tracing perspective, many ac-
celeration techniques were introduced in the other fields applying MCRT such as computer
graphics. This includes hardware acceleration using, e.g., graphics processing units. In
[248], a broad classification of software-oriented acceleration techniques is given, namely

« computing faster ray-face intersections by either

« reducing the number of intersections to compute or

« improving the intersection algorithm,

« firing fewer rays (stochastic behaviour of Monte Carlo method already presented
above),

« firing generalized rays.

As mentioned in 53], generalized rays have a finite cross section and are not suited for
the computation of radiative exchanges factors since their cross section becomes rapidly
complex as they partially intersect surfaces. The two major techniques to reduce the
number of intersections to compute are space subdivision and bounding volumes hierarchy.
They both consist in creating a data structure and assigning each face of the model to a
volume [161]. Propagating the rays from volume to volume avoids checking for intersection
with all faces of the model by only considering the faces in the current volume.

This chapter focusses first on variance reduction and is organised as follows. In Sec-
tion 2.2, the stratified and low-discrepancy methods are applied to the ray-direction
sampling. In particular, the isocell stratification and Halton sequence are presented.
At the end of the section, the methods are compared to classic random sampling and
to Vueghs’ stratified hemisphere method in the context of differential (point-wise) view
factor computation. Extending the sampling to finite to finite exchange factors compu-
tation is tackled in Section 2.3. The combination of surface sampling with the direction
sampling strategies is analysed. Orbital heat fluxes computation and planet sampling
strategies are discussed in Section 2.4. Finally, Section 2.5 discusses the implemented ray
tracing acceleration techniques: the ray-face intersection algorithm is presented as well as
space subdivision. Conclusions of the present chapter are eventually drawn in Section 2.6.

2.2 DIRECTION SAMPLING STRATEGIES

As the view factor involves the integration over the unit hemisphere and over the
emitting surface, this section first focuses on the stratified and low-discrepancy sampling
of the unit hemisphere. Generating random! directions from a set of random points
was introduced in Section 1.3.2 and the ray directions were given by directly sampling
the polar and azimuthal angles as in Equation 1.45. An indirect but equivalent way

IFrom this point on, we imply by random numbers computer generated pseudo-random numbers.
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to sample the unit hemisphere is based on sampling the underlying unit disc. It relies
on Nusselt’s analogy combined to Malley’s method. The stratified and low-discrepancy
sequence sampling strategies presented hereafter are based on this method.

2.2.1 Nusselt’s analogy and Malley’s method

Nusselt’s analogy [249] states that the point-wise view factor between a point p on
surface 7 and a surface j is equal to the area of its orthographic projection! divided by
7 (ratio of the projected area to the area of the unit disc). Based on Nusselt’s analogy,
Malley [161, 250] proposed a method to generate the ray directions by sampling the unit
disc with uniformly distributed random numbers. After sampling the unit disc with uni-
formly distributed pseudo-random numbers, each point on the unit disc defines a direction
by projecting it back to the unit hemisphere. Figure 2.1 depicts Nusselt’s analogy and
Malley’s method.

(a) (b)

Figure 2.1 — Nusselt’s analogy with the orange surface being the orthographic projection of the
blue surface (a) and Malley’s method generating ray directions from the unit disc sample points

(b).

2.2.2 Hemisphere stratified sampling

As introduced above, stratified sampling consists in dividing the integration domain
into strata that are randomly sampled independently. Instead of generating strata directly
over the unit hemisphere, the technique is applied to the unit disc thanks to Nusselt’s
analogy. The stratified hemisphere method developed in [53, 251] divides the hemisphere
along its parallels and meridians by dividing the unit disc into concentric annuli of equal
area then divided in equal sectors. Jittering is applied to avoid aliasing by picking one
sample in each stratum.

The i*® annulus is defined by its inner and outer radii /(i — 1)/nyqq and \/i/npaq

respectively and the i*" sector defined by its minimum and maximum longitudes

IThe orthographic projection is composed of a projection on the unit sphere centered on point p and
an orthogonal projection onto the plane of tangent to the surface ¢ and point p
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(1 — 1)27 /ncire and 27 /Neire. Npaa and N are the number of radial and circumferen-
tial divisions, respectively and the total number of rays is equal to n,.qqncire.
The naive positioning of the sample within the stratum

V(i —=1)/Nraa +EAT (2.1)

with Ar = \/ i/Myad — \/ (i — 1)/Nyqq and the uniformly distributed random number ¢ is
not correct since the radial position has to follow the cosine law also inside the stratum.
The correct position of the i sample in the unit disc, corresponding to the ;' annulus
and k'™ sector is given by

(ri cos¢; r;sin gzﬁ,) (2.2)
with
_ J— 57“1-

r, =

Nrad

2m(k — &g,

¢i: M; J=1 . Npag andk:]—w-'vncirc

Neire

and the uniformly distributed random variables &, and &. The ' ray direction is then
deduced by projecting the point back onto the hemisphere:

ri(&,,6p;) = [ri cosp; rising; /1 — rﬂ (2.3)
_ [ /jnf»s;i cos (%Effs%)) /];5: sin (%(:fsm)) 1_ jr:s;,.} (2.4)

Equations 2.4 and 1.45 are equivalent. Figure 2.2(a) illustrates the stratified hemisphere
direction sampling process from the unit disc. Similarly to [53], the disc is divided equally
along radial and circumferential directions and n,.q = Neire-

This technique leads to a better convergence rate k of the view factor (no multiple
reflection) computation than crude MCRT: 0.75 instead of 0.5 [53]. However, Masset et
al. showed in [252] that because the cells of the unit disc in the stratified hemisphere
method have very different shapes and aspect ratios (although they have the same area),
the method behaves poorly in some particular configurations as it will be presented in
Section 2.2.5. This is the origin for the development of the isocell method to generate
strata with more uniform shapes and aspect ratios.

Another minor drawback of the method is that the number of samples can not be
chosen freely since n,.q and n.;.. are integers. If n,,q = nere, the actual number of rays
n, might differ from the desired number of rays n, g:

n, = [ |’ (25)

2.2.3 Isocell stratified sampling

The need for a division of the unit disc into cells having both similar area and shape
(aspect ratio) led to the development of the isocell method [52]. The method and prop-
erties of the cells are described in details in [252] and recalled here. As opposed to the
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Figure 2.2 — The stratified direction sampling generates one random sample in each cell that is
projected back onto the unit hemisphere to determine the ray direction. Stratified hemisphere
direction sampling strategy is shown in (a) with parallel and meridians divisions. The isocell
method is illustrated in (b) with equally spaced annuli and increasing number of cells as the
annulus radius increases.

stratified hemisphere where each annuli had the same area and was further divided in the
same number of cells, the isocell method relies on equally spaced ring but the number of
circumferential division increases linearly with the ring radius:

n, =ny 2(22 — 1) =nyn?, (2.6)
i=1

where n,.q is the number of annuli and n; the number of cells dividing the initial central
annulus (actually a disc). Again, due to the discreteness of Equation 2.6, the required
number of cells can not necessarily be achieved exactly. Provided a target number of rays
n,s, the actual number of rays is given by injecting the actual number of annuli obtained
by inverting Equation 2.6:

Nrad = [ %w (2.7)

ni

Figure 2.3 shows the oscillations of the relative error between the target number of
rays and the actual one. Above 10* rays, the difference is always lower than 3%.

Like the stratified hemisphere method, one random sample is taken from each cell
(jittering) and projected back to the unit hemisphere. The i*" sample, corresponding to
the 7' annulus and k™ sector (now depending on j) is again given by Equation 2.2 where
r; and ¢; are now defined by

1 - . ‘
ri=——/&,(2) = 1) + (j — 1)?
Nrad
2r(k — &) ,
g= TS0 i g and k=1, ny(2 —

and the uniformly distributed random variables &, and &;. The ray direction is then



2.2 Direction sampling strategies 43

| N

107
102 104 108

Target number of cells

—_
o
o

—_
o
N

Relative error [%]

Figure 2.3 — Relative error between the actual number of rays and the target one with the isocell
stratified sampling method.

deduced by projecting the point back onto the hemisphere with Equation 2.3 exactly as
in the stratified hemisphere method.

It was shown that the cell shape factor 5 defined as the ratio between the square of the
cell perimeter and its area was minimum for ny = 3 [252] (8,,=3 = 16.01 while it is equal
to 16 for a square and 4x for a disc). Figure 2.2 compares the two stratified sampling
schemes with their respective unit disc partitioning.

2.2.4 Low-discrepancy sequence

Besides stratified sampling, replacing random numbers used in Equation 1.45 by low-
discrepancy sequences also offers an improvement in the accuracy and convergence rate.
The discrepancy measures the non-uniformity of a sequence of points distributed in the
unit hypercube. A low-discrepancy sequence is such that the fraction of points lying in
any subset of the unit hypercube is as close as possible to the volume of this subset.
Halton sequence [244] is a natural generalization of the one-dimensional van der Corput
sequence [253| developed in 1935, well before the advent of Monte Carlo techniques.
Halton proposed to take the j™ prime number as base for the j* coordinate. The ¢*®
point p; of the Halton sequence of dimension d is then given by:

. . . T
P = [wbl (Z)a ¢b2(l)> s ,¢bj(l)> B awbd@)] ) b >1
where 1y, (i) is the 7' radical inverse function which defines the van der Corput sequence
in base b;:
S i)
wbj (Z) = Z b]g+71

k=0 J

The ay(7,i) coefficients come from the expansion of the integer 7 in base b;:

1(5)



2.2 Direction sampling strategies 44

with (j) = | logy, (1)

In very high dimensions, the Halton sequence requires large bases and leads to poor
uniformity. To solve this problem, instead of using different bases for each dimension,
Sobol [243] proposed to use the same base for all dimensions and apply a linear trans-
formation (different for each coordinate) to the ay(j,) coefficients before they are input
into the radical-inverse function ¢;, (7). In this context, the number of dimensions is lim-
ited to two for direction sampling and the faster Halton option is preferred. The Halton
sequence generation algorithm is derived from [254, 255|. As suggested in [247, 255], a
different portion of the sequence is extracted by discarding the first ngipped points in the
sequence that exhibit correlation among different dimensions. Leaping over and omitting
Nieap POINts for every point selected also improve the quality of the point set. To generate
multiple sequences and reduce their deterministic behaviour, ngkipped and nieap are changed
randomly for each run (or face).

If d is the dimension of the problem, low-discrepancy sequences offer a convergence in
O((log n,y)?/ nr) which is asymptotically better than the (9(1 v ) convergence of Monte
Carlo method. As mentioned in [50], in practical applications, the convergence rate of
quasi Monte Carlo methods generally lies between 0.5 and 1.

2.2.5 Comparison and application to point-wise view factors

Based on Nusselt’s analogy, Figure 2.4 qualitatively compares the different sampling
schemes of the unit disc. Stratified hemisphere and isocell and low discrepancy sequences
visually give better results than crude random sampling. Clumping is observed in the
stratified sampling based on meridians and parallels, i.e. it shows some concentration of
the points near the centre of the unit disc. The stratified hemisphere also contains more
samples than the specified target (n, = 300).

(d)
Figure 2.4 — Unit disc sampling. (a) Random (n, = 300); (b) Halton sequence (n, = 300); (c)
stratified hemisphere (n, = 324), and (d) isocell (n, = 300).

As mentioned in Section 2.2.2, the samples from the two stratified sampling methods
presented above also have to follow the cosine law within each strata. To check that the
samples follow the expected PDF and obtain more intuitive results, the change of variable
r = sin @ is performed to express the cosine law given by Equation 1.41 as a function of
the radial position r of the samples within the unit disc:
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20 o0 T .
Dro(T,®) = pop(arcsinr, ¢) g@ gﬁﬁ = — cos(arcsin r) sin(arcsin ) 2; gﬁ = —
or 94 T o 96 7
The marginal radial PDF becomes
27 27 r
pr(r) = / Pro(r, ¢')d¢ = / —d¢/ =2r (2.8)
0 0

and represents the density of the sample along the radius of the unit disc. Equation 2.8
shows that the marginal radial PDF exhibits the expected linear behaviour since a uniform
sampling of the disc is sought and the differential area of a disc increases with the radius.
Figures 2.5(a) shows the obtained marginal radial PDF with the naive sampling given
by Equation 2.1 and Figure 2.5(b) shows the one obtained with the correct distribution
in each cell. The naive stratified distributions exhibit a staircase behaviour, each step
corresponding to the constant distribution within each cell. In Figure 2.5(b), all curves
superimpose and follow the marginal radial PDF defined in Equation 2.8. The width
of the steps in Figure 2.5(a) highlights the equally-spaced annuli of the isocell method
compared to the decreasing width of the rings in the stratified hemisphere.
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Figure 2.5 — Unit disc samples radial probability density function with n,js = n,gn = 1000: (a)
without correction and (b) with correction. Randomness is smoothed by averaging over 10% runs.

A more quantitative assessment of the uniformity of the different sampling strategies
is obtained by computing the Voronoi tessellation corresponding to the sample points
on the unit disc. Based on a set of n points p;, the Voronoi tessellation consists in the
partitioning of the plane into n regions or cells such that every point in region ¢ is closer
to p; than any other point py, [256|. The area of each Voronoi cell inside the unit disc is
computed to assess the uniformity of the samples. The Voronoi cell area is normalized
by dividing it by the theoretical cell area (unit disc area, 7, divided by the number of
samples). Figure 2.6(a) illustrates the Voronoi tessellation in the unit disc sampling and
Figure 2.6(b) shows the distribution of normalized Voronoi cell areas. 10* disc sample
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Figure 2.6 — (a) Unit disc Voronoi cells for 100 random samples. (b) Voronoi normalized cell
area distribution for 1000 samples and 10* runs.

points were generated and results averaged over 100 runs to smooth out the randomness
of the process.

Random sampling leads to a standard deviation of the relative Voronoi cell area of
0.53 which is twice as much as those of isocell (0.25) and Halton (0.25) distributions.
The stratified hemisphere lies in between with a standard deviation of 0.33. The results
further attest of the better uniformity of the isocell and Halton schemes.

Computing the differential (point-wise) view factor between the infinitesimal surface
dA; and the finite surface A; is probably the more representative way to assess the dir-
ection sampling schemes. Since there is no surface sampling, all rays are traced from
the same emitting point corresponding to dA;. The unit hemisphere and unit disc are
simply centred on dA; whose normal is aligned with the zenith axis of the hemisphere.
Equation 1.36 gives the estimate of the view factor as the ratio between the number of
rays intercepting A; and the total number of rays traced (covering the whole hemisphere).

The first example considers A; as a rectangle parallel to dA; with the following co-
ordinates of its four vertices p;, i =1...4

pl" T2 3 5]
p2|  |-3 3 5
Ps -3 —4 5
P4 2 —4 5

The analytical value of the differential view factor is obtained by adding the contribu-
tions of each quadrant given separately by [36]:

F 1 <,/—X t y Y tan — - >
o= — | —Z arctan :  arctan
dA;,A; o 1+X2 \/1+X2 \/1+Y2 1+Y2

where X and Y are the ratio of the width and length of the rectangle to its normal
distance from the differential area, respectively. In this case, Fya, 4, = 0.295578.
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Figure 2.7 shows the convergence of the error with the number of rays where each data
point corresponds to the average of 1000 runs with the associated standard deviation. In
practice and as introduced in Section 2.2.4, to reduce the deterministic behaviour of the
low-discrepancy sequence, a different portion of the sequence is extracted by discarding
the first ngippea points of the sequence and then picking only one point every 7., points,
Nskipped aNd Nyeqp being changed randomly for each run (or face).

As expected, the convergence rate k of crude Monte Carlo method tends to 0.5. All
three alternative methods namely stratified hemisphere, isocell and Halton techniques
present almost identical results. They all give lower mean error with similar standard
deviations and a convergence rate approaching 0.75. A convergence rate of 0.75 means
that each time the number of rays is multiplied by 2, the mean error is divided by 1.7 as
opposed to 1.4 for k = 0.5.
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Figure 2.7 — Convergence of the relative error on the point-wise view factor computed with the
rectangle depicted in (a). The rectangle is parallel to the differential surface dA;, located abovec.
Results are averaged over 1000 runs. Error bars show the RMS value and standard deviation.

Even if all three methods exhibit a similar behaviour in this particular case, Figure 2.8
illustrates the weakness of the stratified hemisphere method developed in [53] and already
identified in [252]. The far from exceptional geometrical configuration is described in
Figure 2.8(a) where a small rectangle is located close to zenith. The coordinates of the
rectangle vertices are

pl" [o5 06 5]
po| |01 06 5
ps| — 01 —06 5
Ps 0.5 —0.6 5

and the analytical view factor is Fyya, 4, = 0.006004. Figure 2.8(b) plots the average error
and its standard deviation over 1000 runs as function of the number of traced rays. For the
same number of rays, it is higher than in Figure 2.7(b) since the view factor is smaller,
as predicted by Equation 1.46. Halton and isocell schemes again give almost identical
results but even though its convergence rate is similar, the stratified hemisphere exhibits
a higher error. This behaviour is explained by the large aspect ratio of the central strata,
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providing good angular but poor radial stratification. A similar behaviour is observed
when the surface is located far away from zenith because external strata are involved
with poor angular and good radial stratification.
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Figure 2.8 — Convergence of the relative error on the point-wise view factor computed with a
small eccentric rectangle parallel to the differential surface dA; depicted in (a). Results are
averaged over 1000 runs. Error bars show the RMS value and standard deviation.

The radial stratification of both stratified hemisphere and isocell methods also leads to
unexpected behaviour in some particular configurations. Figure 2.9(a) describes the case
of a disc A; of radius r = 1 centred above the differential area dA; at an altitude z = 1.5.
Figure 2.9(b) presents the convergence results and Halton now proves to be superior to
stratified strategies.
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Figure 2.9 — Convergence of the relative error on the point-wise view factor computed with a
disc located right above the differential surface dA; as depicted in (a). Results are averaged over
1000 runs. Error bars show the RMS value and standard deviation.

The poorer performance of the stratified schemes is explained by the radial stratifica-
tion. Since A; is circular, only one ring of the stratified unit disc affects the error. All rays
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originating from rings with a lower radius automatically hit A; and all rays originating
from rings with a larger radius fall outside A;. Inside the only effective radial stratum, the
samples follow the same random distribution as the crude Monte Carlo therefore leading
to poorer results. The irregular convergence behaviour is explained by the fact that some
number of radial strata are more adequate than other, in particular if they match the
solid angle subtended by A;.

To assess the latter effect, Figure 2.10 finally presents the effect of the solid angle
subtended by the disc. Halton low discrepancy sampling clearly gives better results except
for very low apex angle for which the isocell exhibits a slightly lower error thanks to its
first three pie-shaped strata ensuring at least three rays in the very small polar angle
directions.
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Figure 2.10 — Relative error on the point-wise view factor computed with a disc located above
to the emission point as depicted in Figure 2.9(a). The radius of the disc is varied and expressed
as the half apex angle of the solid angle subtended by the disc. Results are obtained with 10°
rays and are averaged over 1000 runs. Error bars show the RMS value and standard deviation.

2.2.6 Conclusions

Different hemisphere sampling strategies were investigated to generate more uniformly
distributed ray directions. Relying on Nusselt’s analogy, two stratification techniques were
applied to the unit disc, namely the stratified hemisphere developed in [53] and the isocell
method introduced in [52]. A third alternative involving Halton low-discrepancy sequence
was considered to replace directly the pseudo-random numbers of the crude MCRT. The
performances of all three techniques were assessed through the computation of differen-
tial (point-wise) view factor with various geometries. The techniques presented similar
performances in general cases but stratification schemes exhibited reduced performances
in some particular geometrical configurations. Halton sequence proved to be the most
robust strategy and gave higher accuracy and convergence rate than crude MCRT in all
cases considered.
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2.3 SURFACE SAMPLING STRATEGIES

Section 2.2 focused on the hemisphere sampling and analysed three alternatives to
crude Monte Carlo approach namely the stratified hemisphere, isocell and Halton low
discrepancy sampling strategies. Halton sampling proved to be the most robust and
effective technique and will be considered from this point on. In order to compute REFs
between finite surfaces, the integration over the emitting surface needs to be carried out.
Once again the integration is performed by sampling the emitting surface. At this stage,
we face two options to couple the direction sampling to the surface sampling:

« either fire multiple rays with different directions per emission point (called origins),

« or assign each direction to a different surface sample and therefore have as many
directions as origins.

The first approach offers in its turn two possibilities: either perform a different direc-
tion sampling for each origin, referred to as local direction sampling, or perform a global
direction sampling to be distributed among the surface emission points. In this approach,
another choice is needed to select the number of origins n, from which is deduced the
number of rays per origin for a given total number of rays n, to be traced from the sur-
face. The second approach is implemented in ESARAD where each ray has a random
direction and a random emission point, leading to crude Monte Carlo.

Different surface sampling schemes are considered in this section namely

« random (Monte Carlo),

« Halton low-discrepancy sequence,

uniform (lattice),

Gauss-Legendre quadrature.

They all share the common property that they usually generate samples either in [0, 1]
or [—1,1]. Like the hemisphere sampling, surface sampling thus requires a mapping step
to project the samples from the square [0, 1]? or [—1, 1]? to the global cartesian coordinates
of the model.

2.3.1 Random sampling and area preserving mapping

Natural coordinates usually range from 0 to 1 or from -1 to 1. The natural coordinates
have the particularity to each take their extreme values (-1 or 0 and 1) at one vertex of the
face and they vary linearly in between. Their range is particularly adapted to standard
random number generation algorithms and quadrature rules were specifically derived in
these ranges. Through a given set of interpolation functions 1;, two-dimensional natural
coordinates ((,n) express the position of any point p in terms of the Cartesian coordinates
of the vertices p; (i =1...n,) of the considered surface:

p= Z (¢, n)pi (2.9)
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Triangle

Choosing the correct set of interpolation functions to generate appropriate samples in
triangles and quadrangles is not straightforward. For instance, Equation 2.10 defines a
particular set of coordinates traditionally exploited to compute the ray-triangle intersec-
tion. For sample generation, this set is not suitable because they do not map the triangle
from the unit square with two independent variables. Approximately half of the generated
samples would need to be discarded to satisfy the condition ( +7n < 1 and getting exactly
n, samples would require several iterations. This trial and error scheme is however the
one used in ESARAD [159].

p=(1-C—np1+{p2+1P3 (2.10)

The simple idea of folding the discarded samples back into the triangle can alleviate
this problem but may produce clumping and undesirable effects thwarting the stratified
or low discrepancy sampling objectives [161].

Instead, Arvo [257, 258| describes a general method to generate area-preserving map-
ping from the unit square [0, 1]*> to any two-dimensional manifold. Area-preserving map-
ping is such that uniformly distributed samples over the unit square are uniformly dis-
tributed over the 2D-manifold and ensure that stratification (if any) is also preserved.
A parametrisation mapping the surface from the unit square to the global Cartesian co-
ordinate system 1;(¢,n) : [0,1]* — R? is first selected, here in the case of a triangle:

1-¢
P(¢,n) = |¢(1—n) (2.11)
(n

An area-preserving parametrization ¥;(¢’,n’) is then derived following Arvo’s method
by performing the change of coordinate:

Vi) = (), 97 () (2.12)

where f and ¢ are the cumulative distribution functions:

? ; wjj -
/JCU (2.14)

/JCU

with J the pseudo-jacobian of the transformation from (¢, n) € R? to R3:

=[5 <zl

(2.15)

(2.16)
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By definition, integrating J over the surface gives the area of that surface:

/ 1 / J(Cmdcdn = A (2.17)

In the case of the triangle with the interpolation functions of Equation 2.11, J({,n) =
2CA with A the area of the triangle. The inverse of the cumulative distribution functions
f(¢) = ¢? and ¢(¢,n) = n have a closed-form expression and lead to the area-preserving
parametrization:

- T
() = [VT(L—1) (2.18)
VT
Figure 2.11 shows that this new set of interpolation functions allows the generation
of uniformly distributed pseudo-random samples in the triangle through the uniform in-
dependent pseudo-random variables (¢’,7’) in [0,1]?. The initial interpolation functions
(Equation 2.11) lead to a denser distribution where the magnitude of J is lower.

Wy

1.5

0.5

(a) (b) (c)

Figure 2.11 — (a) Magnitude of J/A. (b) Distribution of 1000 random samples in a triangle using
the initial interpolation functions of Equation 2.11 and (c) using the area-preserving interpolation
functions of Equation 2.18.

Quadrangle

In the case of a general quadrangle, the following interpolation functions are used



2.3 Surface sampling strategies 53

{1-00 )

F1+00 - )

B = | (219)
L1+ Q1 +1)

11-00+n)

with the coordinates ((,n) varying from -1 to +1 and equal to zero at the quadrangle
barycenter. This particular variation range (instead of 0 to 1) was chosen historically to
facilitate the use of the standard Gauss integration formulas. The expression of J becomes
more complex:

1
J(¢,n) = 3 P31 X Paz + C(Paz X P21) + 1(P32 X Pa1)|| (2.20)

where p;; = p; — p;. There is no closed-form expression of the inverse of the cumulative
distribution functions f and g as defined in Equations 2.13 and 2.14. There is thus no
simple area-preserving interpolation functions to directly generate uniformly distributed
random samples over a general quadrangle. The alternative is to integrate J({,n) in a
weighting function wy for each ray emitted from the i*® origin. Since fjl fjl Jd¢dn = A/4
with A the area of the quadrangle, the weights of the " origin is defined as

ws(Giymi) = %J(Q,m) (2.21)

so that the average of the weighting function is 1:

] &
- si7i:1
ng;w(c )

Figure 2.12 shows the magnitude of the weighting function in a typical quadrangle: it is
linear in the natural coordinates but non-linear in the Cartesian coordinates. Similar to
the triangle, the samples are more densely populated in the regions where .J is small and
inversely. This time, the non area-preserving mapping is balanced by weighting the rays
with the value of J corresponding to their emission point, as performed in THERMICA
[102].

In the case of a parallelogram J((, n) simplifies to A/4 since both py3 X p21 and p3s X pay
are equal to zero. The mapping defined by Equation 2.19 becomes area preserving: f({) =
¢ and ¢(¢,n) = n and the weighting coefficients wy((;, ;) become all equal to 1.

ESARAD generates random samples inside quadrangles as it does for triangles:
sampling is performed on the parallelogram enclosing the quadrangle and the points fall-
ing outside the quadrangle are removed. New points are added iteratively until the desired
number is achieved [159].

To avoid weighting to correct the sampling non-uniformity, quadrangles can also be
considered as two triangles and sampled separately with a number of samples proportional
to their area. This final alternative is the one preferred.
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Figure 2.12 — (a) Magnitude of the weighting function wy defined in Equation 2.21 in Cartesian
coordinates, (b) in natural coordinates, (c) distribution of 1000 random samples.

2.3.2 Coupled and segregated low-discrepancy sequence

In the exact same manner as it was realised for direction sampling, quasi-random
numbers like the Halton sequence can conveniently replace pseudo-random numbers to
sample the surface. The first alternative consists in naively generating the surface samples
independently from the directions and two separate two-dimensional samplings are carried
out. The second alternative considers the four-dimensional integration involved in the
view factor equation as a whole. The hemisphere and emitting surface are therefore
sampled concurrently by a four-dimensional Halton sequence, two of which are used for
the direction and the other two for the origin.

2.3.3 Uniform sampling

For random and Halton surface sampling, any number of origins can be used since both
coordinates are sampled concurrently with the same, desired number of origins. Uniform
spatial sampling relies on a grid and each direction needs to be divided into an integer
number of samples. The aspect ratio of the face is taken into account so that the number
of samples in each direction is proportional to its length. The aspect ratio a, of the face
is defined here as the ratio between its medians. The definition of the aspect ratio usually
involves the ratio between its longer and shorter edges, but the medians are preferred in
this case to avoid too much disparity in the density of samples. It is given by:

. P2 — p1| + P4 — P3|

IP3 — P2| + |P1 — P4l
if the points p; are ordered circularly. The actual total number of origins n, is given by the
product of the number of origins in each direction n,; = {\/W W and 19 = [No1/a, |
with n,; is the target number of origins. This explains why the actual number of origins
Mo = Mo,1M0,2 May be larger than the target number of origins n, ;.

T
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2.3.4 Gauss sampling

Gauss method for quadrature states that the integral of the function f weighted by w
can be approximated by the weighted sum of the function value evaluated at n suitably
chosen nodes z;:

/ w(@) f()de = 3 wif )

It even gives the exact solution if f(z) is a (2n — 1) order polynomial. The optimal
abscissae of the n-point Gaussian quadrature formula are the roots of the orthogonal
polynomial for the same interval and weighting function. If the weight function w(x)
is 1 and the interval is [—1,1] then the z; are the roots of the Legendre polynomials
P, (z). They were first introduced in 1782 in the computation of the attraction of solids of
revolution [259] and present n distinct roots between -1 and +1, arranged symmetrically
about x = 0. In his original paper published in 1814 [260] and republished in [261],
Gauss gave the weights and abscissae up to the seventh order with 16 decimals in the
[0,1] interval. This was adapted to the [—1, 1] range in [262] and [263] with errors for
n = 4 [264, 265]. Gauss-Legendre integration points are given in natural coordinates
conventionally varying from —1 to 1 for quadrilaterals and from 0 to 1 for triangles.
Gaussian quadrature rules are extensively used in FEM to derive the element matrices
presented in Section 1.4.3.

For quadrangles, a grid is formed in the unit square with Gauss-Legendre integration
points and weights that are applied to each dimension. Like the uniform sampling, the
grid is obtained by dividing each direction into a different number of points according to
the quadrangle aspect ratio. Linear shape functions described in Equation 2.19 are then
used to map the Gauss points from the natural coordinates to the model coordinates.
Since the mapping from [0,1]? to 3D is non area-preserving, the sample points further
need to be weighted by the Jacobian associated to the mapping defined in Equation 2.20.
For triangles, many specific quadrature rules were developed [266-268] and expressed in
the natural coordinates (area or barycentric coordinates) of the triangle to respect its
symmetry:

&1
P(&1,6,83) = | & (2.22)
€3

with & + &, 4+ &5 = 1. The integration points in these coordinates and associated weights
are based on the extensive compilation of quadrature rules made by Cools et al. [269, 270|
as a continuation of the work of Stroud [271].

2.3.5 Comparison and application to surface-to-surface exchange
factors

Figure 2.13 gives a visual representation of the four surface sampling strategies. Fig-
ures 2.13(a~d) and Figures 2.13(e-h) depict the quadrangle and triangle, respectively. For
Gauss and uniform sampling strategies applied to the quadrangle, Figures 2.13(a) and (b)
show the concentration occurring close to the bottom edge of the quadrangle, where the
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mapping squeezes the samples together while it stretches the samples in the upper part.
This effect is balanced by the Jacobian weighting of the samples. The number of samples
in each direction is different through the effect of the aspect ratio. Halton and random
sampling do not need this compensation since the quadrangle is split in two triangle to
apply the area-preserving mapping defined by Equation 2.18. Uniform triangle sampling,
Figure 2.13(f), clearly reveals the underlying sampling of the quadrangle from which the
points falling outside the triangle are discarded.

(e) (f)

Figure 2.13 — Top: different sampling strategies for the quadrangle: Gauss (a), uniform (b),
random (c) and Halton (d). Bottom: the same sampling strategies are applied to a triangle:
Gauss (e), uniform (f), random (g) and Halton (h).

Now the coupling between the surface sampling and the direction sampling is analysed.
To this aim, the computation of the REF between two quadrangles is considered. They
are defined by their four vertices:

p]” [t 0 0] por]” J0 0 05]
pi2| |6 =1 0 p22| |0 4 05
piz| |6 55 0 and pe3| |0 5 45
P14 I 50 P24 0 —1 45

and are represented in Figure 2.14. The emittance of both faces is set to 0.8 with a
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diffuse reflectance of 0.2 (no specular component). The reference solution, obtained with
ESARAD by tracing 10° rays gives Fo = 0.0868.

P24

Figure 2.14 — Geometrical configuration of the two quadrangles.

Table 2.1 summarises the different combinations between direction and surface
sampling strategies that are investigated. For random and Halton surface sampling, three
alternatives are studied: two for which the number of origins is lower that the number
of rays, the directions being generated locally for each origin or globally and distributed
among the origins. The third alternative consists in assigning one direction to each origin
(n, = n,). For uniform and Gauss surface sampling strategies, only the first two altern-
atives are studied because it becomes impractical to generate very high number of origins

to match the number of rays.

. ?
Surface sampling n, =n,

Direction sampling Figure

ne # n, local 2.15(a)

Random ne # n, global 2.15(b)
n, =N, n.a. 2.16

ne # n, local 2.17(a)

n, #n, global 2.17(b)

Halton n, =mn, segregated 2.18(a)

ne =n, coupled 2.18(b)

: ne # n, local 2.19(a)

Uniform ne # n, global 2.19(b)

ne # n, local 2.20(a)

Gauss ne # n, global 2.20(b)

Table 2.1 — Surface and direction sampling schemes combinations.

Figure 2.15(a) gives the convergence results for the random surface sampling strategy
combined with a local direction sampling. The number of origins plays a crucial role.
There is a threshold below which the number of surface samples is too small to achieve a
given accuracy. As the number of origins increases, the error saturation level decreases.
From 103 to 10° rays, sampling the surface with 5 origins always produces higher error than
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crude MCRT like ESARAD. For 1000 origins, the saturation level is about 0.7%. Com-
pared to Figure 2.15(b) where the directions are sampled globally before being distributed
among the origins, the results are almost identical and lead to the same conclusions.
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Figure 2.15 — Convergence of the relative error on the REF as a function of the number of rays for
random surface sampling combined with local (a) and global (b) direction samplings. Results are
averaged over 1000 runs and error bars give the RMS error and associated standard deviation.

As increasing the number of origins decreases the error saturation level, extending the
philosophy to have one ray fired per origin leads to the results presented in Figure 2.16.
The convergence curve is this time parallel to the one obtained with crude MCRT and
almost a factor two below. This implies that to achieve a given accuracy, three times as
less rays need to be traced.
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Figure 2.16 — Convergence of the relative error on the REF as a function of the number of rays
for random surface sampling with one ray per origin. Results are averaged over 1000 runs and
error bars give the RMS error and associated standard deviation.

Replacing the pseudo-random generator by a Halton low-discrepancy sequence to
sample the surface gives the results given in Figures 2.17(a) and (b). The same saturation
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behaviour is observed but for the same number of origins, the error saturation levels are
lower. With 1000 origins and local direction sampling, the results are always better than
crude MCRT, giving almost one order of magnitude improvement to achieve 0.2%. For a
large number of origins, the convergence curve is no longer parallel to crude MCRT and
the expected improved convergence rate becomes visible. The global sampling procedure
generates unexpected non-smooth convergence behaviour with 1000 origins. This beha-
viour can be explained by the potential interaction between the two Halton sequences
generated separately for direction and surface sampling. Scrambling each sequence could
probably mitigate this effect for a slight increase of the generation time which remains
negligible in whole the ray tracing process.
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Figure 2.17 — Convergence of the relative error on the REF as a function of the number of rays for
Halton surface sampling combined with local (a) and global (b) direction samplings. Results are
averaged over 1000 runs and error bars give the RMS error and associated standard deviation.

Instead, the same philosophy associating one ray per origin is applied. First the
two Halton sequences are generated independently, constituting the segregated method.
The other alternative consists in generating the direction and surface samples through
a unique 4-dimensional Halton sequence. This second approach is called the coupled
Halton sampling. The resulting convergence curves are plotted in Figures 2.18(a) and
(b), respectively. The segregated method gives results almost identical to those obtained
with random sampling. Conversely, the coupled approach presents not only a lower error
but also a better convergence rate as observed for the direction sampling alone. Achieving
1% accuracy requires 10 times as less rays as it does with crude MCRT. This gain further
increases with the required accuracy because of the higher convergence rate.

In Figures 2.19(a) and (b), the quasi-random sampling of the surface is substituted by a
uniform grid of equally spaced samples. Again, the same saturation behaviour is observed.
Nevertheless, from random then Halton and this time uniform sampling, the saturation
levels are progressively lowered with the local direction sampling scheme. Similar to
Halton sampling, increasing the number of origins reveals the higher convergence rate
observed in the direction sampling. With the global direction sampling approach, the
convergence curves tend to superimpose for small number of rays and become parallel
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Figure 2.18 — Convergence of the relative error on the REF as a function of the number of rays
for Halton surface sampling with one rays per origin. Results are averaged over 1000 runs and
error bars give the RMS error and associated standard deviation.

to crude MCRT without any gain in the convergence rate when the number of origins
increases.
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Figure 2.19 — Convergence of the relative error on the REF as a function of the number of rays for

uniform surface sampling combined with local (a) and global (b) direction samplings. Results are
averaged over 1000 runs and error bars give the RMS error and associated standard deviation.

Gauss surface sampling is the last option studied and the corresponding results are
given in Figures 2.20(a) and (b). The saturation effect disappears almost completely
except for very low number of origins (n, = 5). With 10 origins, the method provides
outstanding results: the required number of rays to achieve 0.2% accuracy (accuracy ob-
tained with crude MCRT and 10° rays) is reduced by almost a factor 30. The drawback
of this method is that increasing the number of surface samples generally shifts the con-
vergence curves up since for a given number of rays, the number of directions decreases
as the number of origins increases. Again, the global direction sampling approach gives
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poorer results with all curves tending to superimpose and become slightly lower than and
parallel to the crude MCRT convergence curve.
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Figure 2.20 — Convergence of the relative error on the REF as a function of the number of rays for
Gauss surface sampling combined with local (a) and global (b) direction samplings. Results are
averaged over 1000 runs and error bars give the RMS error and associated standard deviation.

2.3.6 Influence of thermo-optical properties

In the previous example, the effects of multiple reflections are not investigated. To
this aim, another geometrical configuration is considered to better highlight those ef-
fects. A third face is added to enable a non-zero REF between the first two quadrangles.
Figure 2.21 presents the considered geometry with the following vertices:

P11 ! 5 —b 1.8 ! P21 ! 4 0 0 T P3.1 ! 4 —4 2 T
p172 . 4 —1 0 pg,z . 5 5 0 p3,2 . -1 -3 2
P13 =1 -1 0 and P23 -1 4 0 and P33 ) 3 2
P14 0 -5 1.8 P24 000 P3.4 5 4 2

In view of the previous results, only the coupled Halton and Gauss surface sampling
(with n, = 10 and n, = 50) schemes are considered for the comparison. All quadrangles
have the same thermo-optical properties with the infrared reflectance varying from 0.1 to
0.9, either diffuse or specular. In total, six cases are studied and compared in Figure 2.22.
On the left, Figures 2.22(a), (¢) and (e) show the convergence curves obtained with 0.9,
0.5 and 0.1 diffuse reflectance, respectively. The reference solution Fi5 is maximum for
0.5 reflectance (Fio = 0.0228) and smaller for 0.1 (Fi2 = 0.0108) and 0.9 (Fi5 = 0.0132).
A higher reflectance increases the number of multiple reflections. Because MCRT avoids
branching and generates only one ray after a reflection or transmission, the direction of
the diffusely reflected (or transmitted) ray is chosen randomly from Lambert’s cosine law.

The benefit of the Halton direction sampling is thus weakened as it affects only emis-
sion. This phenomenon is observed as the Gauss and coupled Halton convergence curves
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(a) (b)

Figure 2.21 — Geometrical configuration considered to assess the effect the thermo-optical prop-
erties. Three quadrangles are considered: two at the bottom and one on top to achieve a REF
between the first two quadrangles through reflection on the third one. 3D view (a) and top view

(b).

are almost parallel and closer to crude MCRT in Figures 2.22(a) and (c) than in Fig-
ure 2.22(e). Nevertheless, the coupled Halton strategy presents better results in all cases.
The saturation effect of the Gauss surface sampling for small number of origins is only
slightly visible below an error of 0.3% and with 10 origins in the 0.1 reflectance case
shown in Figure 2.22(e). Figures 2.22(b), (d) and (f) located on the right present the
results obtained in the specular case. Coupled Halton and Gauss sampling strategies are
much more efficient in the specular case. The saturation of the convergence is however
more present, again with 10 origins but this time more at high reflectance than low re-
flectance. While 50 origins give good results at lower error, sampling the surface with
10 origins offers better performances to achieve low to modest accuracy levels. In all
six cases, the four-dimensional Halton sampling scheme exhibits better and more robust
performances than the two-dimensional Halton direction sampling combined with Gauss
surface sampling.

2.3.7 Conclusions

The effects of combining the Halton direction sampling to four different surface
sampling strategies namely random, Halton, uniform and Gauss were investigated. In
addition, three ways of distributing the directions among the surface sample points were
analysed: local direction sampling for each origin with n,./n, directions per origin, global
direction sampling with n, directions distributed randomly among the n, origins and
finally the global strategy extended to one direction per origin with n, = n,. Their per-
formances were compared to crude MCRT (random directions and origins) by computing
the REF between two quadrangles. Two strategies emerged from this benchmark: Gauss
spatial with local direction sampling and coupled directional-surface sampling with a 4-
dimensional Halton sequence. While the former may present better performances for a
suitably chosen number of origins, the latter brings robustness and better performances
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Figure 2.22 — The plots on the left (a,c,e) shows the convergence curves with 0.9, 0.5 and 0,1
diffuse reflectance, respectively. The plots on the right (b,d,f) shows the convergence curves with
0.9, 0.5 and 0,1 specular reflectance, respectively.
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than crude MCRT in all cases. It was demonstrated that the number of origins is a strong
driver of the achievable accuracy. It is configuration dependent as a low number of ori-
gins means a better sampling of the hemisphere which is more important for computing
the REF between distant faces. For faces close to each other, spatial sampling is more
important and having more origins is necessary to avoid saturation.

The effect of thermo-optical properties considering both diffuse and specular behaviour
was also assessed and further demonstrated the robustness of the coupled Halton strategy.

2.4 SAMPLING STRATEGIES FOR ORBITAL HEAT FLUXES

2.4.1 Introduction

Ray tracing cannot only be applied to the computation the REFs but may also be
useful to compute the orbital heat fluxes: the solar irradiation, the longwave radiation
(mostly infrared) coming from the orbited body and the shortwave radiation coming from
solar fluxes reflected onto the body (albedo). Figure 2.23 depicts the three orbital heat
fluxes. Other planetary heat fluxes may need to be evaluated and specific algorithms
were also implemented in the TSS! ray tracing engine to compute the infrared and albedo
radiation coming from Saturn’s rings for Cassini mission [272].

Figure 2.23 — Classical orbital heat fluxes comprising the direct solar heat flux (yellow rays), the
planetary albedo (yellow rays) and IR (blue rays) heat fluxes.

To compute the solar heat flux, shadow rays are first traced from the considered face
in the direction of the Sun. The rays are either parallel or uniformly distributed over the
solar disc (about 32 arcmin angular diameter at 1 astronomical unit). If a ray hits another
face in the model, its emission point is in the shadow of the hit face. Hence, the ray does
not contribute to the illumination of the current face. If the ray does not intersect any
other surface in the model, the emission point is irradiated with an energy

dQs = Cg cosOdA

!Thermal Software System developed by Spacedesign Corp.
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with 6 the angle between the face normal and the Sun direction and C';, the solar constant
and dA the surface sample point area which is equal to A/n, if origins are uniformly dis-
tributed over the face. The American Society for Testing and Materials (ASTM) developed
in 2000 the ASTM-E490 standard to define the solar constant and spectral irradiance at
1 astronomical unit based on data from satellites, high-altitude aircraft, rocket sounding
and ground-based telescopes [138|. The corresponding spectral irradiance was presented
in Figure 1.5. The ASTM-E490 standard solar constant is C, = 1366.1 Wm~2 and var-
ies from 1412.5 W m™2 at perihelion (occurring during northern hemisphere winter) to
1321.7W m~2 at aphelion (occurring during northern hemisphere summer).

If the irradiated face absorptance is not equal to one, the shadow ray is reverted and
considered as coming from the Sun towards its initial surface sample point. It is then reflec-
ted or transmitted and propagated through the model to undergo absorptions, reflections
and transmissions until extinction (based on a user-input relative energy threshold).

Computing planetary heat fluxes is much more complex for various reasons:

« the source solid angle is much wider,

large variations of infrared and albedo may appear over the surface of the planet,

emitted and reflected radiation may be anisotropic,

longwave (infrared) and shortwave (albedo) radiation spectra may differ from the
black-body and solar spectra, respectively.

Each planetary body exhibits different characteristics in its way it emits longwave ra-
diation or reflects sunlight according to its surface and atmospheric properties, its distance
to the Sun and its spinning rate. From the S/C point of view the albedo value mainly de-
pends on the sunlit part of the body seen by the S/C. A common approximation assumes
the albedo spectrum to be equal to Sun spectrum.

The reflectance of the Earth is known to be anisotropic. However, Knocke et al. [273]
reason that since the Earth reflection is essentially diffuse at small solar zenith angles and
more anisotropic at larger solar zenith angles as shown in [274], and since Earth elements
at large solar zenith angles do not contribute much to the radiation pressure, Earth
radiation pressure may be calculated to acceptable accuracy using a diffuse reflection
model. European Space Standards [275] give values for the Earth: the average albedo
coefficient ag (surface reflectance) is 0.3 but can strongly vary between 0.05 over the
ocean (without clouds) and 0.6 over high clouds and icecaps. The infrared radiation
usually varies less over the surface of the body than the albedo. The diurnal variations
of rapidly rotating bodies are often neglected and the body is sometimes assumed to be
uniform in temperature and properties. The Earth is for instance often modelled as a
black body at 288[K] [275]. Albedo and infrared do not only affect the thermal behaviour
of the S/C but also affect the orbit of the spacecraft. Infrared and albedo models taking
into account the latitude and seasonal dependence were thus developed for high-accuracy
orbit predictions [273, 275|. In their model, solar reflectance (albedo coefficient ag) and
infrared emittance of the Earth’s surface are approximated by

ag = ag + a1 Pi(sin @) + az P(sin ¢)
£e = €9 + e1 P1(sin @) + ex Py(sin @)
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Unit box

/ 51 W I Planct
1 | | projection

Figure 2.24 — Unit box surrounding the S/C used for albedo and infrared flux computation in
ESARAD and Thermica. At each orbital position, the planet is projected onto the unit box
and the intercepted elements are submeshed to compute the individual contribution of each
submeshed area.

where ap = 0.34, as = 0.29, a1 = ¢4 + Ca1 08 (w(Jp — tg)) + caosin (w(Jp — o)) with
the date to, the orbital pulsation w = 27/365.25, the equatorial latitude ¢, the epoch
Julian date Jp, the i*" Legendre polynomial P, and the constants Cap = Co2 = 0 and
cqoq = 0.1. The parameters for the emittance are similar: ey = 0.68, e; = —0.18 and
€1 = Ce + Ceq cos (w(Jp —tg)) + ceosin (w(Jp — o)) with c.o = ceo =0, c.q = —0.07.

In ESARAD (159, 276] and Thermica [102], the procedure to compute planetary heat
fluxes is totally different from the one used to compute the solar heat fluxes described
above. The method implemented in ESARAD and Thermica requires to compute the
REFs in the visible part of the spectrum and introduces an artificial unit box surrounding
the model and located at infinity. The box is regularly meshed and the visible and IR
REFs are computed not only between the faces of the model but also with the faces of
the unit box. Since the box is located at infinity, the S/C can be considered as a point
and the direction of the ray exiting the S/C envelope is sufficient to determine which face
of the unit box the rays fall into. Then, for each orbital position, the unit box element
receives an albedo and infrared heat flux originating from a certain part of the planet
that can be transferred to the appropriate model faces through the corresponding REFs.
Figure 2.24 illustrates the method and shows the box surrounding the S/C that is meshed
and onto which the planet is projected. Further details about the method are available
in [159].

For the albedo, this method requires to compute and store the REFs in the visible
spectrum but may take advantage of the already computed infrared REFs for infrared
planetary fluxes. If the planet temperature is too far from the expected S/C temperature
(very hot or very cold planets), the grey assumption may not be valid anymore as the
infrared absorptance used in IR REFs may differ from the one corresponding to the planet
temperature spectral range. If this is the case, REFs in the correct spectral range need to
be re-computed anyway. If there is no articulated component onboard the S/C, the visible
(and potentially IR) REFs need only to be computed once. If there is a relative movement
between parts of the model, REFs anyway need also to be computed and stored for each
orbital position. The drawback of the method is that many rays are wasted because
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REFs computation involves sampling the whole hemisphere while planetary heat fluxes
rays originate only from specific directions within the planet field of view.

Instead, we propose to apply the method used for solar heat fluxes. To this aim, the
equations involved in the computation of planetary heat fluxes are recalled. They will
serve to define the amount of energy carried by each ray as a function of its origin on the
planet surface. The link between the origin on the directional sampling unit disc and the
origin on the planet surface will be derived.

Even for a spatially-uniform, diffuse-grey model, very few closed-form solutions for
the incident albedo and infrared heat fluxes incident to an arbitrary oriented satellite
surface exist. In his papers from 1960s [277, 278], Levin considers a symmetric model
corresponding to the case where the satellite’s orbital plane contains the Sun vector. An-
other limitation in that model is that only the radiation reflected specularly is considered
without any diffusely reflected radiation. Some closed-form solutions for the albedo heat
flux but for a spherical satellite whose field of view does not intersect the terminator are
available in [279] and [280].

Considering one face of the satellite instead of a spherical S/C complicates even further
the analytical developments. The geometry of the problem is depicted in Figure 2.25. The
chosen reference frame is such that the z axis points towards the centre of the satellite
face under study, the y axis is defined as the cross product between the z axis and the
surface normal and x axis completes the right handed coordinate system. Hence, the face
normal n lies in the zz plane. The angle between the face normal and the nadir axis (-z)
is defined as <y (which also lies in zz plane). The Sun orientation is given by the vector
rey_o defined with the angles 6, and ¢, which also define the terminator!. The portion
of the planetary body seen by the spacecraft is a function of the altitude of the spacecraft
and is defined by a cone of apex angle 0,, ,ax centred on the satellite and directed towards
the planet centre. Its limit is represented by the black small circle in Figure 2.25. From
the plant point of view, this cone is defined by the angle 8, ax. The intersection between
the plane containing the face of the satellite and the planet is represented by the red small
circle. In the reference frame, the two intersections between the footprint of the S/C field
of view and face plane, if any, are located symmetrically on each side of the xz plane.

For infrared, the terminator equation is not needed and the problem consists in integ-
rating over the portion of the Earth visible by the face, i.e. inside the black small circle
and above the red one. For albedo, the terminator must further be taken into account to
get the limits of integration. In [281, 282|, the integral equations describing the albedo
and infrared heat fluxes assume a planar surface but are solved numerically. In [283],
the problem is simplified and the face normal is assumed to be coplanar with the Earth-
Sun vector. In [284] the acceleration due to albedo and infrared radiation impinging the
satellite is also computed numerically considering planar faces with non-uniform albedo
and infrared heat fluxes that are expanded in spherical harmonics. More recently, numer-
ical models integrating satellites measurement data were developed for CubeSats attitude
determination with miniaturised sun sensors [285].

IThe terminator or twilight zone is the line separating the sunlit area of a planet from its night side.
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Tsurf—S/C

Figure 2.25 — Geometrical framework for the computation of albedo and infrared orbital heat
fluxes. The yellow vector and great circle define the position of the Sun and terminator, re-
spectively. The red small circle represents the intersection between the plane of the face and
the Earth. The black small circle represents the limit of the portion of the Earth seen by the
satellite.

2.4.2 Orbital heat fluxes key equations

Using the notation introduced in Figure 2.25, the solar power dQg [W] incident to the
differential Earth surface dS is given by the extraterrestrial solar constant Cs multiplied
by dS and by the cosine of the angle between the Sun direction vector ryy¢ .. and the
local vertical at dS location rg_gu-

dQe} = IA'69—>su1rf ’ f'surf—>®61®dS
where  =r/ ||r||. If To_qur - Tsufse is negative, dS is on the dark side of the Earth and
dQs = 0. dQg is then reflected by the Earth according to the albedo parameter agq at
the location of dS. As mentioned above, it is assumed here that the sunlight is reflected
diffusely over 27 sr. Some portion goes into the S/C direction ry,ss/c and the heat flux
incident to S/C surface defined by its normal n and coming from dS is given by:

dq, = agdQg

Tosurf * TsurfS/C .
2 (Il ’ rS/C—)surf)

™ ||rsurf—>S/CH

The total albedo heat flux g, [W/m?] is obtained by integrating over the domain S,

corresponding to the sunlit Earth area within the field of view of the surface A:

r surf * IA‘sur ~

Qo = / G@C@ (f'@—>surf . f'surf—>® 2
Sa ™ ||rsurf—>S/C ||

The infrared heat flux g. [W/m?] is obtained by replacing the diffusely reflected part
e Cole sswf - Tsuwrfse Dy the planet infrared emissive power oeg T, é:
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G = / O'gEBTé e ssurf I‘surf—>52/C (1’1 ) f'S/Cﬁsurf) ds (224)
e ™ HrsuerS/CH
Equations 2.23 and 2.24 integration domains S, and S, are defined as the intersection
of the following subdomains:
« the spacecraft field of view &; limited by the S/C FoV footprint C; (black small
circle in Figure 2.25),

o the surface of the planet Sy located above the face plane footprint Cs (red small
circle in Figure 2.25),

« the sunlit side of the planet S3 limited by the terminator C3 (yellow great circle in
Figure 2.25).

S, =85 N8&NSs (2.25)
Se=851N8 (2.26)
S, and S, both involve the integration limits C;, Co and C3 that are developed in Ap-
pendix A, hence making the computation of ¢, and ¢, quite complex.
All vectors appearing in Equations 2.23 and 2.24 can be expressed through the angles
0o € [0,7] and ¢o € [0,2n[ defining the Sun position, 0, € [0, 0, max] and ¢, € [0, 27[
defining the position of dS from the planet point of view (zenith direction), 6,, € [0, 6;, max]
and ¢, € [0,2nx[ from the S/C point of view (nadir direction), and the angle v € [0, 7]
defining the face normal orientation away from the nadir direction. Expressed in function
of the angles, the vector become

n= [Sinv 0 — cosﬂ
Tsufoso & To e = [cos Posinbs  sin ¢ sinfg  cos 9@}
To ssurf = [cos ¢.sinf, sing,sinf, cos HZ]

TowfsS/C = To [— cos ¢, sinfl, —sin¢,sinf, h, — cos 02}

with h, the ratio between the S/C distance to planet centre rg + h, h being the S/C
altitude, and rq the planet radius:

hr:1+h/7'@

Hence, the scalar products appearing in Equations 2.23 and 2.24 become

T st * Psufso = SN B sin 6, cos(¢, — ¢g) + cos b cos b,
h,cosf, — 1
\/1 + h2 — 2h, cosl,
cosy(h, — cos@,) + sinysin b, cos ¢,
\/1 + h2 — 2h, cosf,

e ssurf * Tsurf—S/C =

n-rg/Ccosut =
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Using the differential planet surface area definition

dsS = ré sin6,df.d¢., (2.27)
Equations 2.23 and 2.24 are recast in terms of the angles:
agC,
G =/ @ﬂ 2dqu (0., 0.) (2.28)
€@Té
e = 0 T dge<027 sz) (229)

where the planet parameters ag, €0 and Ty may also vary over the planet surface and
where the integrands are:

da(0-. 6-) = cos O cos 8, + sin O sin 0, cos(¢, — dg) (hy cos6, — 1)
Qe (1+h2—2hrcosﬁz)2 ' :

( Cos 7y (hr — cos «9z) + siny sin 6, cos gbZ) sinf,df,d¢, (2.30)

(hr cosf, — 1) <cos 7(h,, — COS Qz) + siny sin 6, cos qbz> sin @,
(1 + h? — 2h, cos 92)2

dge(0, ¢-) = df.do, (2.31)

With constant properties, and assuming the face plane does not intersect the Earth
field of view (7 < 0, max) and all the visible portion of the planet is illuminated (6, <
/2 — 0, max), the limits of integration are simply from 0 to 0, max for 6, and from 0 to 27
for ¢.. In that case, it becomes possible to integrate analytically Equations 2.30 and 2.31
to obtain simple closed-form expressions:

. aeCo
Qa,full = 16}1?

(202 cos y cos O (4 + 2h,.c; — cicy log(cg/cl))—i—
sin~y cos ¢ sin b, (4 + 2h, — 6h — c3 log(cz/cl))) (2.32)
with ¢; = h, — 1, ¢co = h, + 1 and ¢3 = 1 + 2h? — 3h%. The infrared heat flux reduces
to the even more simple expression

oeg T2 cosy
e full = — ;52 (2.33)

If the spacecraft is located above the subsolar point (6, = 0 and ¢ = 0) and the face
normal is pointing nadir (7 = 0), the albedo heat flux expression further reduces to:

agCoe
(a,full,sub,nad = @8h§ 2 (4 + 2hrcl - C§C2 1Og<02/01)) (234>
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2.4.3 Planet-focused sampling and derivation of ray energy

Like the finite-to-finite REF, 4-dimensional integration needs to be performed. Integ-
ration over the hemisphere generates ray directions originating from different regions of
the planet, each direction corresponding to a different irradiance magnitude given by the
integrand of Equations 2.23 and 2.24. Sampling the irradiated surface A attributes an
origin to each direction associated with a differential area dA. Each ray thus carries an
amount of energy equal to

e ssurf * Ysurf—S/C (

an = (J,@C@ (f@ﬁsurf : Iﬁsurfﬁ@) n- IA'S/C—>su1rf) dSdA (235>

2
T Hrsurf—>S/C H

for an albedo ray and

0, UE@Té I'gysurf I“surf—>82/c (n ) f'S/c—>surf) dSdA (2.36)
™ Hrsurf—>S/CH
for an infrared ray. Both equations involve the planet differential surface dS defined in
Equation 2.27 and involving the angle 6,. Direction sampling is however performed from
the S/C to the planet with the angle #,,. The angle 6, must be expressed in function of
0,, which itself depends on the random (or quasi-random) variable &y, . The angles ¢, and
¢, are equal. Equation 2.27 is recast:
de, de, do,
dS = ré sin de—en iy, dé&, déiz
To avoid wasting rays falling outside the planet field of view, direction sampling is
performed on the useful portion of the unit hemisphere centred on the S/C and directed
towards the planet. Figure 2.26 shows in red the portion of the hemisphere corresponding
to the solid angle subtended by the planet with an half apex angle 0,, max.
Equation 1.42 describing how to obtain the polar angle samples from its corresponding
uniformly distributed random variable is thus slightly modified to take into account the
fact that the only part of the hemisphere is sampled, up to 0, max.

d&y, (2.37)

0, = arcsin (\/fgn sin 9n7max) = arcsin ( VS, ) (2.38)

hy.

since sin 0y, max = €08 0, max = 1/h,.. The derivatives % and ZZZ are derived from Equa-
tions 2.38 and 1.43, respectively
0 _ 2 and = (2.39)
dSs. €, 21/, (h2 = &,)

To derive ggz and sinf, in terms of #,, the intersection between the ray and the

Earth’s surface is computed. The local coordinate system z, 2’ corresponding to the x — z
plane rotated by the angle ¢, around 2z and containing the vectors rg_5/c and g gy iS
defined. In this coordinate system, the origin of the ray coming from the surface of the
Earth zg.s, . . is determined by equating equations of the ray and the Earth surface:

/
surf
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Figure 2.26 — To sample planetary heat fluxes ray directions, the hemisphere is limited to the
red spherical cap. The point (zgurt, ZL,,¢) defines the origin the ray rq, s sc and is expressed in
the plane containing both rg_,5,c and g_ssuf Which corresponds to the zz plane rotated by ¢,
around z.

(2.40)

/
T = tan b, (rohy — Zsut)

2 22 .2
{ Zsurf + Lourf = TEB

/
sur:

Solving Equations 2.40 for x} ., and zg,s gives

hr — Cy
Lo = T tan<9n) 1 +
T C:
2 2 ©t3
Rsurf = TEB - Lsurf 1 + ¢

with ¢; = tan?6,, and ¢y = \/1 +ci(1—h2) and c3 = \/(1 +¢1)2 —ci(hy — c3)? from
which sin(6,) and dz,i are finally expressed in function of 6,.

d
/
h, —
sin(f,) = Lourt _ pan 0, 2
Ta 1+
do.  hy(14c¢)(hecl 4 c) — 3
den N CoC3

In view of the performances exhibited by the coupled Halton strategy presented in
Section 2.3, the same method is applied here the combination of both methods leads to the
planet-focused Halton sampling strategy (PFHS). Since the four quasi-random variables
used for the direction sampling and for surface sampling are uniformly distributed over
the unit hypersquare, it leads to dp, dés.dA = A/n,.
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The term cos 6, present in HrsurHS /C H2 and in Tg_eurt - Tsurfs/c can also be replaced since
cos 0, = zgut/Te. Introducing the results obtained above in the ray energy Equations 2.35
and 2.36 finally gives

A . R
an = aéBC@n_f (rEB%surf ' rsurf%@) (Il : I'S/C—>surf) (241>

r

for albedo and

A .
dQ, = ag@Tgn— f (0 s /0 out) (2.42)

with the dimensionless factor f depending only on &, and h, and defined as

(c1 = 1)(1 =28, + (28, — h?)) (2 — 1)

f - ClCQhT»<1 + h% - 262)3/2

(2.43)

since tan 0, = \/&, /(h? — &,) and by redefining the constants ¢; and cy:
N O et <
s Vs,

o= \/h,%(l —&0,) =&, (1- 20, -2/ - &)W~ &,))

Figure 2.27 presents how the factor f evolves with the altitude of the S/C and angular
sampling variable & . As h, increases, f tends towards zero and if £, = 0 (the surface is
pointing nadir), f reduces to 1/h? and logically tends to 1 as the S/C gets closer to the
surface. f increases with 6, to represent the growth of dS.

and
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Figure 2.27 — Evolution of planetary heat fluxes sampling factor f with orbit altitude h and
quasi-random variable &g, .

Sampling the red portion of hemisphere shown in Figure 2.26 may still waste a lot of
rays if the S/C face under study intersects the Earth field of view. Figure 2.28 shows how
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/H/I.Illd\

Figure 2.28 — The S/C face further limits the useful portion of the unit hemisphere to be sampled.
On the left, the direction samples are projected onto the unit disc and only the black samples
above the orange curve are useful.

the S/C face limits the useful portion of the unit hemisphere to be sampled. Only the
black samples shown on the unit disc are useful.

To define the useful portion of the unit disc, the intersection between the unit hemi-
sphere and the face plane is computed and forms a great circle. The equation of the great
circle is found by equating the unit sphere and the plane equation. The unit hemisphere
coordinate system (xp,yp, z,) is defined as a rotation of 180° around x of the coordinate
system defined in Figure 2.25 to have z;, pointing nadir: (zp,y, zn) = (z, —y, —z). In this
coordinate system, the face normal becomes

n:[sin'y 0 cosﬂ

and the great circle equation is defined by:

sin 7y cos ¢, sin #,, + cosy cos 6, = 0
from which the angle 6, is extracted
-1
tanf, = —
cos ¢, tan vy

The useful portion of the unit disc to be sampled is bounded externally by the radius
Tmax = SiN 0, max and internally by the projection of the great circle onto the unit disc
defined in polar coordinates r;(¢y,).

ri(¢,) = sinf, = sin (arctan _—1>

coS ¢, tan vy

The minimum radius r,;, occurs when ¢,, = 0 and is equal to cosy and the maximum
angle ¢, max 1s given by
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-1
tan vy tan 6, max

®n.max = arccos

To sample the useful portion of the unit disc with n samples, the subtended annulus
sector is over-sampled by a factor f, and samples not falling in the useful area are then
discarded. The over-sampling factor f, is equal to the ratio between the useful area to
the annulus sector area.

f _ ¢n,max(rr2nax B r?nin)
o Au

where A, is the useful sampling disc surface area:

qbn,max Tmax
A, = 2/ / rdrddy = GnmaxTmax — €08y arctan (cos ¥ tan G, max)

Sampling the annulus sector avoids over-sampling the whole disc of radius 7.« by a
factor f; = % that is much larger than f,. Figure 2.29 gives the evolution of f, and
f¢ in function of v for an altitude of 800km. The configuration being symmetric with
respect to yz plane, v is varied between 90° and 0, max. For v = 90°, f, = 1 since the face
plane cuts the hemisphere in two equal parts and exactly half the annulus is sampled and

0 = 2. As v increases, the useful sampling area decreases and f, reaches a maximum
before tending towards 1.5 for any 6, max-
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Figure 2.29 — In blue, the ratio between the limited unit disc area 7r2,,, and its useful area A,
in function of the S/C face angle . In orange, the ratio between the sampled annulus sector
and A,. The altitude is fixed to 800 km which corresponds to 6, max = 62.7°.

The above strategy did not take into account the presence of the terminator which
further reduces the useful sampling area. For albedo computation, the samples in A, are
further tested for illumination and discarded if the condition T _,guf - Tsutse > 0 is not
verified.
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2.4.4 Application to albedo heat flux over a flat plate

First, all parameters being equal (Earth equatorial radius rg = 6378.136 km defined
in the EGM2008 [286, 287], solar constant Cp, = 1366.1 W m~2, uniform diffuse albedo
coefficient ag = 0.3, altitude and attitude) the method implemented in ESARAD leads to
a systematic bias with respect to the analytical solution. Considering for instance a unit
square at 800 km altitude whose normal is pointing nadir right above subsolar point, the
closed form solution given by Equation 2.34 leads to an albedo heat flux of 319.9 W m~2
while ESARAD converges to the value of 319.6 Wm~2. This 0.1% error remains however
negligible compared to the variations due to Earth surface inhomogeneity that are also
usually neglected.

Only albedo is computed in this example since the method to compute infrared is very
similar. The orbit considered for this analysis is a 800 km circular equatorial orbit. The
epoch corresponds to the vernal equinox and is such that the subsolar point lies exactly on
the equator. Eclipse entry and exit points are computed following the method described
in [288] and the Sun position from [289]. The attitude of the unit square is constant with
respect to the Sun. It is such that the normal to the flat plate, 7.e. the z axis, is constantly
oriented 130 degrees away from the Sun direction and such that the angle with the orbital
plane is 50 degrees. At subsolar point, the angle v between the face normal and the nadir
axis is thus 50 degrees. The orbit and attitude are represented in Figures 2.30(a) and (b).

(a) (b)
Figure 2.30 — Equatorial 800 km circular orbit with 3D view (a) and top view (b). The Sun
direction is given by the blue ® vector and the Earth shadow is represented by the grey cylinder
with eclipse entry and exit points. The attitude is displayed by plotting the local coordinate
system axes (z,y, z) at several true anomalies with red, green and blue arrows, respectively.

Because there are multiple positions along the orbit, multiple faces in the model and
since the computation is repeated several times with different seeds to assess the statistical
variations of the results, the global error indicator ¢ is defined as the rms error over the
faces, orbital positions and computational runs:

|
1 Nfaces 'torbit pos. Nruns

0= Z Z (Qaijk — Qao,ij)? (2.44)
k=1

Norbit pos.Trunsfaces i—1 j=1 _
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with normit pos. the number of orbital positions, 7,uns the number of times the computation
is carried out, ngces the number of faces in the model and @), ;,; the analytical solution
of the i*" face and j*™ orbital position.

Figure 2.31(a) shows the reference solution obtained by integrating Equation 2.23. For
both faces, it is symmetrical with respect to the Sun direction, with a maximum above the
subsolar point corresponding to a true anomaly of 0. Because the face is inclined, both
sides are illuminated above the subsolar point, each side is exposed to a different part of
the Earth. Both sides still receive energy after crossing the terminator (90 degrees true
anomaly) with a higher value for the back (Sun) side. The new planetary sampling scheme
is compared to the planetary heat flux computation algorithm implemented in ESATAN-
TMS r2016 sp2. Figure 2.31(b) presents the convergence of the error indicator § with the
number of rays. With 100 rays, the error is about 7.5 W while it is only 1.0 W with the
new method. Halton low discrepancy sequences also provide a higher convergence rate.
Combined with the Earth focused sampling, 2 to 3 orders of magnitude improvement over
ESARAD (ESATAN-TMS ray tracing engine) is achieved.
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Figure 2.31 — Analytical solution of albedo heat flux incident to both sides of a unit square in
the zy plane and orbiting the Earth as described in Figure 2.30. Convergence of the total RMS
error ¢ on the albedo heat flux, averaged over the orbit and over 100 runs (b).

A second orbital case is considered to verify the method. This time, the orbit is no
longer equatorial but is inclined by 98 degrees and the right ascension of the ascending
node is set to 60 degrees. The attitude is now such that the normal to the face is always
pointing away from the Sun and the x axis is in the orbital plane. Figure 2.32 shows the
second orbit and the attitude.

Figure 2.33(a) shows the reference solution obtained through the integration of Equa-
tion 2.23 over the correct field of view. The evolution of the albedo heat flux is no longer
symmetric with respect to the direction of the Sun. The maximum heat flux of the +z
and —z faces are 81 Wm™2 and 21 Wm™2, respectively. The back face is again exposed
for a longer period than the front face. Figure 2.33(b) gives the convergence of the er-
ror indicator 0. Even though the orbit is largely different from the first case, the same
conclusions are drawn: more than 100 times as less rays than ESARAD are required to
achieve 0.1 W accuracy.
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(a) (b)
Figure 2.32 — Equatorial 800km circular orbit with 3D view (a) and top view (b). The Sun
direction is given by the blue ® vector and the Earth shadow is represented by the grey cylinder
with eclipse entry and exit points. The attitude is displayed by plotting the local coordinate
system axes (z,vy, z) at several true anomalies in red, green and blue, respectively.
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Figure 2.33 — Analytical solution of albedo heat flux incident to both sides of a unit square in

the xy plane and orbiting the Earth as described in Figure 2.32. Convergence of the total RMS
error 0 on the albedo heat flux, averaged over the orbit and over 100 runs (b).



2.5 Additional variance reduction and MCRT acceleration techniques 79

2.5 ADDITIONAL VARIANCE REDUCTION AND MCRT
ACCELERATION TECHNIQUES

As mentioned in the introduction of this chapter, two complementary approaches may
reduce the REFs computation: either reduce the number of rays to be traced or reduce
the ray-face intersection computation time itself. Previous sections focused on the first
approach and presented how more uniform direction and surface sampling strategies could
improve the accuracy of MCRT. Within this framework, stratified sampling and low dis-
crepancy sequences can be considered as a prior: variance reduction techniques. This
section first presents a posteriori variance reduction techniques relying on the enforce-
ment of reciprocity and closure rules. In particular, the one already implemented in our
algorithm and in ESARAD is discussed.

Besides variance reduction methods that are inherently related to the stochastic be-
haviour of the Monte Carlo process, this section also describes classical ray tracing accel-
eration techniques implemented to reduce either the number of ray-face intersections to
compute or their computation time with efficient intersection algorithms. Reducing the
number of intersections to compute is achieved by space partitioning.

2.5.1 Reciprocity and closure enforcement

While the closure rule expressed by Equation 1.29 presented in Section 1.2.5 is in-
herently enforced, the raw REFs computed by ray tracing do not necessarily obey the
reciprocity expressed by Equation 1.27. The reciprocity rule may then be exploited as an
a posteriori variance reduction method. Reciprocity also allows a factor 2 reduction of the
REF matrix to be stored. However, the naive enforcement of reciprocity generally results
in a violation of closure. Different smoothing schemes were proposed in the literature and
can be classified in two main categories:

« simple procedures that do not limit the size of the corrections to be applied to the
initial set of REFs (and therefore do not guarantee that the corrected set is more
accurate than the initial REFs) [200-293];

« and more elaborated algorithms that find the smallest corrections to be added to
satisfy both reciprocity and closure and ensure non-negativity (constrained least-
squares minimization [294-296] or constrained maximum likelihood [297] tech-
niques).

Taylor et al. [298] reviewed and compared the different REFs smoothing schemes and
concluded that least-squares smoothing presented the best results, as well as maximum
likelihood applied in [297].

The least squares and maximum likelihood algorithms were developed for closed mod-
els (enclosures), having a square REF matrix. It is usually not the case in space applic-
ations. In particular when analysing the exterior of a spacecraft or any model having
exchange factors with deep space. The REF matrix is therefore a n x n 4+ 1 matrix with
the n + 1™ node representing the deep space node and these algorithms cannot directly
be applied. To generate a square matrix, an additional surface surrounding the model
and representing the environment is required. A large number of additional rays would



2.5 Additional variance reduction and MCRT acceleration techniques 80

be required to compute the exchange factor from the surrounding box to the faces of the
model.

Nevertheless, it was shown in [53, 299, 300] that enforcing reciprocity is more important
than closure, especially to the accuracy of the final results than the accuracy of the
radiative exchange factors themselves. In ESARAD and Thermica, only the reciprocity
is enforced by linear averaging [102, 159] following the empirical technique demonstrated
in [301]. After reciprocity enforcement, the closure is left broken. The method takes
advantage of the fact that both the REF from face 7 to j and from j to ¢ are computed.
The corrected JF;; is obtained through the suitable weighting of the ray tracing raw output
./—t;j and ./T::”

Ai‘fiﬂj = U)Ai&“i./—:;'j + (1 — w)Ajgj‘T:'ji (245)
where the weight w is defined as
1
w = 5(1 + sign(X) | X]|") (2.46)

As already mentioned in [116] and later demonstrated in [300], every effort should be
made to compute the larger of the two REFs between the two surfaces. The uncertainty
on F;; is lower than on Fj; if €;4;/n,; is smaller than €;A;/n, ;. The X factor appearing
in the expression of the weight w includes this conclusion and is such that w is higher for
larger REFs obtained with a larger number of rays:

Aj5j Aigi
X _ nr,j nr,i
AjEj Aigi
- < _|_ -
nr,j nr,i

where n,;, n,; are the number of rays fired from the faces ¢ and j, respectively. The best
value of the exponent n is empirically found to be 0.4 [159]. This technique was already
applied to the results presented in the previous sections to allow a fair comparison with
ESARAD.

Another linear averaging technique discussed in [53] and [300] is the fractional variance.

In their work, the weights w appearing in Equation 2.45 are based on the variance o2

Fii
of the REFs:

w = =
2 2
TF TR
with the variance approximated by:
Fii(l = Fi
O'2~__ — (Aigi)Q ZJ( Z])
i o

since the F;; follow a binomial distribution [300].

Figure 2.34 compares the error convergence resulting from the computation of the
REF between the two quadrangles presented in Figure 2.14 for the different methods
described above. Crude Monte Carlo results with linear averaging smoothing correspond
to ESARAD output and served as reference in previous sections. ESARAD raw unenforced
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results are also given. They are compared with the Halton coupled sampling strategy
combined with the two smoothing techniques described above. The red curve is identical
to the one already presented in Figure 2.18. There is a significant improvement between
raw and smoothed data: the two curves are parallel and the linear averaging technique
reduces the error of the crude Monte Carlo from 10.8 +£6.4 % to 7.1 £ 4.3 % for n, = 103.
The effect when it is applied to Halton coupled sampling is almost identical. Compared to
the linear averaging technique, the fractional variance technique gives very similar results.
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Figure 2.34 — Relative error on the REF between the two quadrangles of Figure 2.14 for different

reciprocity enforcement strategies.

For open models (n x n + 1 REFs matrix), once reciprocity is enforced for the n x n
REFs, the REF with the environment node (n + 1™ column) is adapted to meet the
closure requirement. Before adapting the REFs to environment value, the line sum error
(LSE) is calculated with Equation 1.47, representing the error on the closure rule due to
reciprocity enforcement. The LSE can then be viewed as an error indicator and used with
accuracy control methods such as the one presented in Section 1.3.3.

Since the convergence rate x of the coupled Halton sampling is above 0.5 but depends
on the thermo-optical properties present in the model, the classic Monte Carlo accuracy
control strategy may overestimate the number of rays required for a target accuracy and
confidence level since k = 0.5 is assumed. Instead it is proposed to perform two ray tracing
runs with two different but small number of rays to assess the actual convergence rate
based on the LSE obtained for each run. The required number of rays for a target LSE is
then computed by linear extrapolation (in log log scale) from the two previous runs. The
model should however be sufficiently large such that the i*® node LSE encompasses REFs
with several other faces to smooth the statistical variations in the convergence.

2.5.2 Space partitioning

As the size of the model and the number of faces increases, checking for each ray the
intersection with all faces becomes rapidly prohibitive. More popular than the bounding
volumes techniques, space subdivision techniques were developed to reduce the compu-
tational effort associated with ray/face intersection checks [248, 300]. The main idea
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behind this type of techniques is to divide the volume containing the model into sub-
volumes called voxels. Each voxel is then associated with the faces it contains (totally or
partially). The rays are then propagated from one voxel to the adjacent voxel and so on,
checking intersection only with the faces contained in the current voxel.

Different space subdivision techniques were proposed and studied since the 1980s. The
two main techniques are the uniform space subdivision (USD) [302, 303] and non-uniform
space subdivision (NUSD) such as the octree or k-d tree subdivision [304]. In USD, the
bounding volume is uniformly divided and all voxels have the same size. The octree and
k-d-tree methods divide the bounding volume in such a way that there are more voxels
in regions more densely populated with faces and inversely. Both the USD [159, 305|
and NUSD [37] methods were implemented in radiative heat transfer ray tracing codes
because they store the geometry information more efficiently. When the model is not too
empty, USD is usually preferred over NUSD algorithms because moving from one voxel
to the next one with NUSD is more computationally expensive [305]. Figure 2.35 gives
an example of the ray propagation across uniformly-spaced voxels.
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Figure 2.35 — Ray propagation across uniformly distributed voxels. The ray origin is represented
by the red dot and only the intercepted voxels are shown.

Choosing the right number of voxels is not straightforward. Yet, the computation of
the next voxel is cheaper than the computation of an intersection and the optimal number
of voxel therefore favours fewer surfaces per voxel over fewer empty voxels. This empirical
result will be confirmed in Section 3.5 where complex structures involving many faces are
studied.

To achieve a target number of faces per voxel, the space subdivision is done iteratively
by increasing the number of voxels until the number of shells per voxel is below the target.

As a face may be part of different voxels, the same intersection may be computed
repeatedly [304]. To alleviate this problem, mailboxing is an additional acceleration tech-
nique mentioned in [300, 303, 306] and introduced by Arnaldi et al. [307|. The technique
consists in attaching a mailbox to each face, storing the results of the intersection check
with a ray counter that is incremented each time a ray is reflected or a new ray is emit-
ted. When an intersection must be computed, it first checks the ray counter: if it is the
same as the current ray, the computation is skipped and the value in the mailbox is used.
Though interesting, Zeeb [300] showed that this technique was not effective for simple
surface intersections as it is the case here, and because the number of faces spanning
several voxels is inherently kept low due to USD.
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2.5.3 Intersections computation

Besides ray propagation across voxels, most of the ray tracing process time is spent for
computing intersections. For each voxel crossed by a given ray, all shells belonging to that
voxel must be checked. This step is optimized to reduce the number of operations to be
performed by observing several rules of thumb applied in image rendering and described
in [308]:

« perform simple operations and comparisons early on that might trivially accept or
reject the intersection,

« postpone expensive calculations until they are needed,

o try to reduce the dimension of the problem,

« take advantage of potential off-line pre-computed values,

« if an intersection is expensive, envisage a first level of quick rejection using a simpler
shape,

« take care of floating-point operation errors.

In our case, the plane containing each shell is first computed during the pre-processing
phase. Each plane is defined through its parameters a, b, ¢ and d appearing in Equa-
tion 2.47.

ar+by+cz+d=0 (2.47)

with the plane unit normal n = [a,b,c|. Given three distinct non-collinear points p; =
[xi, yi, z:],1 = 1..3, the plane coefficients are obtained from the relations:

a/

T Mt = — )z = 2) — (2 - 2) (s - v)
b )
b: m Wlth b/: (22 —21)(:U3—£C1) — (.I'Q—xl)(z?)—zl)

C/

m Wlth C/ = ([[,‘2 - .xl)(yg — y1> — (y2 — yl)(l’:’, — 'rl)

d=—axy — by —cz

The intersection check is carried out by progressing through the following successive
steps:

1. Starting from the ray equation:

I'(t) = Ppo + trg (248)

with po the ray origin, ry the ray direction and ¢ a positive variable describing the
position along the ray from the origin, the distance ¢; to the intersection with the
plane containing the i*" shell is computed with Equation 2.49.
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_pO'ni+di
g -1,

t; = (2.49)

The denominator and numerator in Equation 2.49 are computed sequentially.

2. If the denominator is 0 the ray is parallel to the plane and no further calculation
for this shell is needed.

3. If not, the numerator and t¢; are computed. If ¢; is negative, the plane is behind the
ray origin and no further calculation is needed.

4. Floating-point errors can lead to incorrect self-intersections (since flat surfaces are
considered here) when rays are traced starting from a previously computed ray-
surface intersection point. To avoid this problem, there is a threshold below which
the intersection is considered as a self-intersection.

5. The minimum valid intersection distance encountered so far in the current voxel is
denoted t;,. If ¢; > tnin, it means that the current shell is farther than the shell
corresponding to t.,;,. In that case, no further calculation is needed.

6. If t; < tmm, the intersection point p; = po + t;rg is computed. If it is outside the
current voxel, no further calculation is required.

7. During the pre-processing phase, the square of the maximum distance d; j,ax between
the shell barycenter peog; and all its vertices is pre-computed. If the squared distance
d; between p; and Peog,; is larger than d; max, then the intersection is automatically
ruled out without detailed check if the intersection is inside the face.

8. If the intersection is closer to the barycenter than d; max, then the detailed intersec-
tion check is carried out and the triangles and quadrangles are treated separately.

Triangle
Based on the triangle coordinates introduced in Equation 2.10, any point pp
can be expressed by means of the three triangle vertices pa, pp and p¢:

pr(¢,n) = (1 —=C—n)pa +{pB +7Pc

The conditions for a point to lie inside the triangle are expressed by

¢ >0
n =0 (2.50)
C+n < 1

Different methods to compute efficiently the barycentric coordinates were de-
veloped in the past decades. A review of ray triangle intersection computa-
tion techniques is available in [309] and include results from [310-313]. The
intersection-in-face check is carried out using Wald’s method [310] because of
its simplicity of implementation and efficiency. Wald’s method is simply based
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on solving the barycentric coordinates equations and grouping as much coef-
ficients that can be precomputed as possible. Since only two equations of the
barycentric coordinates are linearly independent, the computation can be done
in 2 dimensions. To avoid any shape degeneration, the triangle and point to be
tested are projected on one of the Cartesian plane by discarding the coordinate
corresponding to the largest component of the triangle normal. The remaining
two coordinates are denoted x’ and 3’. The barycentric coordinates equations
can be rewritten in matrix form:

|:5C£4P} _ [JC'AB JC,AC] {CP} (2.51)

yf4P y;XB y;xc np

where zj; = 2 — x; and similarly for y’. Inverting the relation gives the
intersection coordinates:

{CP} _ 1 [?JIAC _x/AC} [qup]
/ / /
np TypYac — Thc¥ap L =YaB  TaB Yap

which is further simplified by grouping the coefficients that can be precom-
puted:

Tocq 1 +yYncrs + ¢
Cp — |Tpe yf) ¢2TE3 (2.52)
np TpCy1 + YpCp2 + Cn3

where the coefficients c.; and ¢, ;, i = 1..3 are precomputed for each triangle.

/ /
Cci = CGlYyc Cn1 = —CYap

/ /
C2 = —Clyc Cn2 = C4Typ
ces = ca(Uadyo — Z4Vhe) cns = cal(@yYhp — Vatsap)
¢,3 4\YaT a0 AYac 7,3 4\ TaYap — YaZlap

with
1
Cqy =

TapYac — TacYan
The computation of the ( and n each requires 2 multiplications and 2 additions.

(p and np are computed sequentially to avoid computing np if (p does not meet
the condition given by Equation 2.50.

Quadrangle
Any point pp in a quadrangle can be expressed in terms of the quadrangle
natural coordinates ¢, n (which differs from the one presented in Equation 2.19
that varies between -1 and 1 for Gauss-Legendre integration):

pp = (1 —Cp)(1 —np)Pa + C(p(1 —np)PB + CpPc + np(1 — (p)PD

that can be rewritten

Pr —Pa =Cp(Ps — Pa) +1p(Pp — Pa) + Cpnp(Pa — P+ Pc — Pp) (2.53)
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The intersection computation is again performed in two dimensions. As op-
posed to the triangle, the computation of (p and np now requires to solve
a second degree equation (due to the term (pnp present in Equation 2.53)
involving more mathematical operations including one square root:

{ thp = CpTyp +npThp + CPNTYpep (2.54)
Yap = CPYap T 1mPYap + P aBcep

Equation 2.54 can be solved analytically to find the value of (p and np:

—(co +¢3) £ \/(cg +c3)2 — 4y
2¢1 (2.55)

p =
yf4P - CnyélB
Yap + CPYancD

np =

with the constants

/ / / / _ / ! / /
C1 = TapYapcp — Tapcp YaB — TepYap — TapYcp
C2

/ / / !
TABYAD — TaAD YAB

/ ! / /
C3 TAaBeD Yap — TarPYAaBcD

_ ! / ! /
Ca = TupYap —Tar¥Yap

c1 and ¢y can be pre-computed and stored while ¢35 and ¢4 must be computed
on the fly. This method is very similar to the one presented in [314].

Another way to carry out the intersection-in-quadrangle check is to divide the
quadrangle into two triangles and perform twice the method presented above.
Both approaches were compared and conclusions similar to the ones found in
[314] are drawn: the direct quadrangle check does not give better results than
the two triangles approach which is preferred here.

Another acceleration strategy implemented proposes to skip all faces that only see the
deep space node. During the pre-processing phase, the relative position of all faces is
computed. Faces that have no shell in the half hemisphere in front of them are labelled
to be skipped during ray tracing and a unit view factor (or REF) to the environment
is assigned to these faces. This check is relatively inexpensive since only flat faces are
considered.

2.6 CONCLUDING REMARKS

This chapter focused on reducing the time required to compute the REFs by ray tra-
cing through more uniform sampling of the unit hemisphere and emitting surface. Sev-
eral direction sampling strategies were studied. Stratified hemisphere, isocell and Halton
low-discrepancy sequences exhibited similar performances in general cases. However, the



2.6 Concluding remarks 87

Halton strategy proved to be more robust against variations in the geometrical configura-
tion of the REF to compute than the other two sampling schemes. It was kept as baseline
to be combined with surface sampling.

Several surface sampling alternatives were studied namely random, quasi-random
(Halton), uniform and Gauss integration points. Stratified sampling of the surface was
not studied. For the quadrangle, stratification of the unit square would have required to
take into account the aspect ratio of the face in a similar way to the uniform and Gauss
surface sampling schemes and origins would have needed to be weighted by the Jacobian
of the mapping.

Local direction sampling performed at each origin was also compared to a priori global
sampling distributed among the origins. The best performances were obtained with the
local direction sampling coupled with Gauss integration points. The performance was
however highly dependent on the selected number of origins and geometrical configuration.
Giving almost identical performances but providing more robustness, the 4-dimensional
Halton sequence sampling both ray directions and origins at the same time was thus
preferred. This technique outperforms classical MCRT by almost one order of magnitude.
The gain depends on the required accuracy since the convergence rate is higher: the higher
the required accuracy, the higher the gain.

An alternative sampling scheme was also proposed to compute the planetary heat
fluxes. By sampling only the useful field of view between the S/C face and the planet
and exploiting again the 4-dimensional Halton sampling scheme, the PFHS method offers
two orders of magnitude improvement. Compared to ESARAD, this method requires a
ray tracing step at each orbital position, step anyway required if a moving geometry is
involved, but does not require to store solar REFs.

Finally, a posteriori variance reduction strategies were reviewed along with ray tracing
acceleration techniques. Already implemented in ESARAD, USD and linear averaging
REFs smoothing schemes were selected. Efficient ray-intersection algorithms were also
presented.
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Abstract

This chapter applies the REFs and OHFs computation strategies de-
veloped in Chapter 2 to more complex geometries. Three cases are con-
sidered among which two are actual space structures. The performances
observed with two or three faces are validated. As the REFs are only in-
termediate results, the convergence of the temperatures is also assessed.
Finally, the ray tracing acceleration provided by the USD technique is
discussed.
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3.1 INTRODUCTION

The purpose of this chapter is to apply the developments and confirm the results
presented in the previous chapter. So far, models containing only two or three faces
with limited multiple reflection possibilities were considered. This chapter assesses the
performances of the method with more complicated geometries and multiple reflections.

The concept of face and shell is now distinguished. We define a shell as a two-sided
surface while a face refers to one of its sides. As opposed to mechanical analyses, the
two sides of one shell may have different thermo-optical properties and one side of a shell
may even be inactive if for instance it represents the skin of an opaque volume. In that
case, no ray is emitted from that side. Different thermo-optical properties on each side
is very common in thermal analysis as S/C and instrument panels may have a different
surface finish. In some cases, the mechanical engineer may model thick walls with shells
while the thermal analyst may require different nodes on each side to represent thermal
gradient across the thickness of the shell. In that case, the mechanical mesh may need to
be slightly adapted for the thermal analysis and/or the thermal engineer involved in the
creation of the structural mesh. One specific example is the multi-layer insulation (MLI)
that is usually not modelled in the mechanical mesh and modelled as one shell with two
faces in the thermal model. The two faces of the MLI are coupled through the thickness
of the shell conductively and radiatively.

This chapter is organised as follows. Section 3.2 focusses on the more academic case of
two perpendicular cylinders. Next, two actual space structures developed at the Centre
Spatial de Liége are studied namely one reflective entrance baffle of the Extreme UV
imager on board Solar Orbiter mission and the sun baffle of the CAA mechanism on board
the Sentinel-4 UVN mission. Conclusions of the benchmarking are eventually drawn in
Section 3.6.

3.2 PERPENDICULAR CYLINDERS

The first structure to be analysed consists of two 500 mm long identical cylinders with
a diameter of 100 mm and perpendicular to each other. Both are composed of 240 identical
shells and the internal side of each cylinder is set inactive. Figure 3.1(a) represents the
perpendicular cylinders mesh and the shell numbering. The infrared emittance and solar
absorptance are set to 50% with 50% specular reflectance in both visible and infrared
bands.

3.2.1 Radiative exchanges factors

The REFs are computed with ESARAD and compared to the coupled Halton sampling
strategy. Figure 3.1(b) gives the convergence of the RMS LSE in function of the number
of rays. The RMS LSE takes into account all faces in the model and is defined as

LSE?

1 Nfaces

LSErms =

Nfaces i—1
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The gain is less significant than in the previous chapter since most of the faces have
a unit REF with the environment and only few of them see the other cylinder and can
contribute to the improvement. A factor 3 reduction is achieved if the target LSE is 0.1%
and increases to ten if the target is 0.01%.
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Figure 3.1 — Perpendicular cylinders mesh and shell numbering (a). Convergence of the LSE (b).

3.2.2 Orbital heat fluxes

To assess the performances of the PFHS method for OHFs computation, the two
cylinders are placed in orbit around the Earth at an altitude of 400 km with an inclination
of 51.6 degrees, similar to the one of the International Space Station. Figure 3.2(a) shows
the circular orbit and its orientation with respect to the Sun and the Earth with the right
ascension of the ascending node fixed at 60 degrees. The attitude is such that the x axis
depicted by the red arrows always points towards the Sun and that the z axis depicted by
the blue arrows lies within the orbital plane. Figure 3.2(b) represents the distribution of
the average albedo heat flux absorbed by the cylinders all over the orbit. The top cylinder
shows a circular distribution with a maximum around 34 W m~2 and casts a shadow over
the second one. Figure 3.3(a) gives the evolution of the total absorbed albedo heat rate
of each cylinder. Starting from around 5 W at the ascending node for both front and back
cylinders, it drops to zero in eclipse before rising again to 8.5 W and 6.5 W for the —x and
+z cylinder, respectively.

Figure 3.3(b) shows the convergence of the error on albedo heat fluxes. It is measured
as the RMS error over the faces and orbital positions as defined in Equation 2.44. The
PFHS method exhibits a large performance increase and requires more than 10 times

fewer rays for the same accuracy even though the convergence rate is only slightly higher
than the one obtained with ESARAD.

3.2.3 Radiative equilibrium temperatures

The REFs and OHFs are usually not the ultimate variables of interest and are only
auxiliary data used to derive the temperatures. To assess the end-to-end performances of
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Albedo heat flux [W/m?]
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(b)
Figure 3.2 — 400 km high, 51.6 degrees inclination circular orbit with the z axis (in red) Sun

pointing and the z axis (in blue) in the orbital plane (a). Average albedo heat flux absorbed by
the cylinders. The internal faces are greyed since they are inactive (b).
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Figure 3.3 — Evolution of the total albedo heat rate absorbed by each cylinder over the orbit

(a). Convergence of the error on the albedo heat fluxes with the number of rays. The planet

focused Halton sampling (PFHS) method gives more than one order of magnitude improvement
over ESARAD (b).
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the method, the temperatures are computed based on a pure steady state radiative equi-
librium. The system then becomes linear in terms of the fourth power of the temperature
or emissive power. To compute the nodal temperatures, the REFs and OHFs computed
between faces are evenly distributed on the nodes as described in [31]. The model is thus
composed of 504 nodes in addition to the 3 K deep space node. The linear system is solved
by splitting the system into the known and unknown variables E; and E, respectively.

|:KRUU KRUB:| |:EU:| _ |:QU:|
KTRUB KRBB EB QB
The unknown nodal emissive powers Ey, = ¢T¢ are obtained with

EU - K_l (QU - KRUBEB)

Ruu

Figure 3.4(a) presents the reference temperature solution corresponding to the albedo
heat fluxes at the initial true anomaly. Radiative equilibrium temperatures vary between
66 K and 229 K and the back side of the +x cylinder presents lower temperatures as it
is directly facing deep space. As expected, the +x cylinder influences the -z cylinder by
radiatively heating its back side. Figure 3.4(b) gives the convergence of the RMS temper-
ature error as a function of the number of rays traced for REFs and OHFs computations.
To achieve 1K error, the PFHS method requires ten times fewer rays than ESARAD. Be-
cause the convergence rate is higher the gain further increases with the required accuracy
level.
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Figure 3.4 — Temperature distribution of the reference solution. The +z (red axis) cylinder is
colder than the other cylinder (a). Convergence of the temperature results with the number of
rays traced for the computation of the REFs and OHFs (b).

3.3 SOLAR ORBITER EUI ENTRANCE BAFFLE

The previous example did not involve many internal exchanges between the surfaces of
the model but had many surfaces exposed to albedo with shadowing effects. One entrance
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baffle of the EUI (Extreme UV Imager) instrument was chosen as second benchmarking
geometry because of its more complex shape generating more internal heat exchanges.

3.3.1 EUI and the Solar Orbiter Mission

EUI is a remote sensing space instrument currently in its development phase D at the
Centre Spatial de Liege (CSL) [24, 315, 316]. It was selected to fly on board the Solar
Orbiter Mission, the first European Space Agency medium-class mission (from ESA’s Cos-
mic Vision 2015-2025 Programme), dedicated to study the solar and heliospheric physics.
The S/C will be launched in 2019 in a 0.28 A.U. perihelion Sun-centred orbit. The space-
craft will be in Venus resonant orbit to increase its inclination and providing a unique
out-of-ecliptic co-rotating vantage point at perihelion.

The solar heat flux increasing quadratically as the distance decreases, it will reach 13
solar constants, i.e. 17.4kW m~2 at perihelion. The thermal design of the instrument is
highly critical and its temperature ranges from —70 °C to 200 °C. Figure 3.5 gives a picture
of the qualification model of the instrument in CSL ISO 5! cleanroom. EUI comprises
three telescopes: two high resolution imagers (HRI), one observing at the Lyman-« line
(121.6nm) and one in the extreme-UV (EUV) at the 17.4nm line, achieving both a
resolution of 100 km per pixel and one full-Sun imager presenting a resolution of 900 km per
pixel and observing alternatively at 17.4 nm and 30.4 nm. Highly critical filters are located
close to each pupil of the instrument to reject the unwanted visible and infrared part of
the solar spectrum. The extreme-UV entrance filter is particularly sensitive because it is
made of a 150 nm thick Aluminium foil. Each filter is protected by reclosable doors on
top of which are mounted entrance baffles. To avoid overheating, the heat absorbed by
the entrance filter, door and baffle assemblies is evacuated through heat pipes towards a
thermal interface with the S/C. An Aluminium coating developed at CSL is deposited on
the internal side of the HRI entrance baffles to provide low solar absorptance and higher
specular reflectance. Their conical shape is designed to reflect the unwanted solar flux
and to protect the entrance filters.

Figure 3.5 — EUI instrument qualification model in CSL ISO 5 cleanroom, with doors and entrance
baffles in the foreground.

SO 5 standard cleanroom is equivalent to previously named class 100. The class number corresponds
to the maximum number of particles of size 0.5 pm or larger allowed per cubic foot of air.
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3.3.2 Radiative exchanges factors

Figure 3.6(a) presents a preliminary GMM mesh of the HRI EUV entrance baffle where
the back of the baffle is artificially closed for the purpose of this study. It is composed
of 363 vertices, 360 shells (720 faces). The average face area is 62.8 mm? (ranging from
19mm? to 151 mm?). For the purpose of this validation, both sides are assumed to have
the same thermo-optical properties: 0.1 IR emittance with 0.9 IR specular reflectance
and 0.2 solar absorptance (end-of-life property which include potential degradation of the
coating) with 0.8 specular reflectance.

Figure 3.6(b) gives the convergence of the RMS LSE as a function of the number of
rays and compares the coupled Halton sampling to ESARAD. This time, the performance
gain is slight higher than for the two cylinders case with a factor 5 improvement for a
target LSE of 0.1% and still gives a factor 10 improvement for 0.01%.

RMS LSE []

—%— crude MCRT
—-A—— coupled Halton

10° 10* 10° 10°
Number of rays
(a) (b)
Figure 3.6 — Early EUI entrance baffle GMM (a). Convergence of the RMS LSE with the number
of rays (b).

Figure 3.7(a) and (b) show the distribution of the LSE over the model obtained with
ESARAD and coupled Halton sampling, respectively. Both methods show qualitatively
similar results with high LSE appearing only for a few faces inside the baffle. For a same
number of rays, the level of the LSE is however three times lower with the coupled Halton
sampling.

3.3.3 Orbital heat fluxes

Except during Earth and Venus fly-bys, Solar Orbiter is not exposed to planetary heat
fluxes. This benchmark thus focuses on the solar heat fluxes computed at perihelion. The
baffle is tilted by 10 degrees from the Sun axis to simulate off-pointing!. Figure 3.8(a)
shows the resulting absorbed solar heat fluxes. Due to the reflection on the side of the
baffle, the flux is concentrated at the back of the baffle. Even though the absorptance

n reality, feedthrough inside the 400 mm thick S/C heat-shield block any sunlight from entering the
aperture of the instrument at such high off-pointing angle. This simulation case is thus purely academic.
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(b)

Figure 3.7 — EUI entrance baffle LSE obtained with the crude MCRT from ESARAD (a) and
coupled Halton sampling (b) and 1000 rays. The mesh is made transparent to better view
internal faces. Both methods produce similar results in terms of distribution with only a few
faces exhibiting high values.

is 0.2 and leads to an absorbed heat flux of 3485 Wm™2 for a normal incidence, it is
concentrated up to 10.4 kW m~2.

The convergence of the RMS error on the solar absorbed heat fluxes is presented in
Figure 3.8(b). Solar rays are considered parallel so that the only difference consists in
the surface sampling that is performed with the Halton low-discrepancy sequence. The
new strategy offers two orders of magnitude improvement with an RMS error already ten
times lower with 1000 rays. As described in Section 2.3.6 where the effect of thermo-
optical properties was assessed, specular reflections tend to produce better results than
diffuse reflections since the uniformity of the sampling is not modified after being reflected.
Diffuse reflections are expected to reduce the performances of the method. This reduction
is assessed with the next study case.

3.3.4 Radiative equilibrium temperatures

Again, temperatures resulting from a pure radiative equilibrium are computed. The
mechanical interface of the baffle, located at the back along the circumference, is main-
tained at 20°C and the radiative environment is fixed at 50°C. The converged temper-
ature distribution is presented in Figure 3.9(a). The off-pointing and the concentration
at the end of the baffle give rise to an asymmetrical temperature profile and very high
temperatures are observed because conduction is neglected in this analysis. The front of
the baffle also exhibits very high temperatures because the sunlight is almost normal to
the surface. Figure 3.9(b) shows the convergence of the error in function of the number
of rays traced to compute the REFs and the OHFs. The performances are similar to the
one observed in the cylinder case: the Halton sampling requires ten times as less rays as
ESARAD to achieve the same accuracy on the temperature.
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Figure 3.8 — EUI entrance baffle absorbed solar heat fluxes (a). Convergence of the solar heat
fluxes computed with ESARAD and Halton method (b).
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Figure 3.9 — Temperature distribution resulting from the application of heat fluxes presented in
Figure 3.8(a) with a boundary condition applied at the back of the baffle (a). Convergence of
the error in function of the number of traced rays (b).
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3.4 SENTINEL 4 UVN BAFFLE LPM MODEL

3.4.1 The Sentinel 4 mission, UVN instrument and CAA mech-
anism

SENTINEL 4 is an imaging UVN (Ultraviolet 305-400nm/Visible 400-500nm/Near-
infrared 750-775nm) spectrometer, developed by Airbus Defence and Space under an ESA
contract in the frame of the joint European Union/ESA COPERNICUS program [317].
The mission objective is the monitoring of air quality through trace gas concentrations
[318]. Sentinel-4 will share the Meteosat Third Generation (MTG) platform with the IRS
(infrared sounder) instrument as depicted in Figure 3.10(a). It will fly on a geostationary
orbit to provide air quality measurements over Europe at spatial and temporal frequen-
cies corresponding to typical tropospheric pollutants variability (temporal frequency less
than 1h and spatial scales less than 10km). The UVN instrument features a calibration
assembly (CAA) mechanism currently under development at the Centre Spatial de Liege.
Its qualification model is shown in Figure 3.10(b). This mechanism provides two means
of calibration: one with a white light source and one with diffused sunlight entering the
mechanism through a Sun baffle located on the left of Figure 3.10(b). The CAA is located
outside the S/C and the Sun baffle is thus painted in white to avoid too high temper-
ature when exposed to the Sun. To limit straylight coming from the Earth entering the
instrument, the Sun baffle is also equipped with vanes and is black anodized to absorb
unwanted light. The name Sun baffle is therefore misleading since the baffle is designed
to let only the Sun rays in and to trap photons coming from the Earth.

(a) (b)

Figure 3.10 — MTG platform with the IRS instrument on the bottom right, the UVN instrument
above it and the CAA encircled in orange (a). UVN CAA qualification model with the Sun baffle
mounted in front of the wheel mechanism in CSL ISO 5 cleanroom (b).

3.4.2 Radiative exchanges factors

The thermo-optical properties of the CAA Sun baffle are summarised in Table 3.1.
End-of-life properties are assumed. In particular, the solar absorptance of the MAP
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PCBE white paint is high due to the space environment degradation (UV exposure,
contamination). In both parts of the spectrum, the reflectance is diffuse. Figure 3.11(a)
shows the location of the thermo-optical properties on the GMM. This GMM is the actual
one used in ESATAN for all thermal analyses in the project. The irregular geometry of
the Sun baffle required to model it as flat faces since no ESATAN-TMS primitive shape
was able to match the CAD model.

‘ € Pd,r o Pd,vis
MAP PCBE 0.88 0.12 0.50 0.50
Black anodization | 0.90 0.10 0.93 0.07

Table 3.1 — CAA Sun baffle thermo-optical properties.

The coupled Halton sampling method was applied to compute the REFs. Fig-
ure 3.11(b) gives the convergence of the error with only diffuse reflections compared to
specular reflections occurring in the EUI entrance baffle. With 1000 rays, the gain in
terms of number of rays is slightly reduced from 5 to 3 compared to Figure 3.6(b). Be-
cause of the higher convergence rate, the gain increases to almost 10 to achieve 3 10~*
RMS LSE.
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Figure 3.11 — Sun Baffle GMM with thermo-optical properties location (a). Convergence of the
RMS line sum error with the number of rays (b).
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3.4.3 Orbital heat fluxes

Being on a geostationary orbit, infrared and albedo planetary heat fluxes are neglected
and only solar heat fluxes are computed. The CAA Sun baffle is oriented such that the
vector [-1 1 —1] is pointing to the Sun. The axes are represented in Figure 3.12(a)
along with the absorbed heat fluxes. Because it is black anodized, the front face and
internal sides of the baffle absorb more sunlight than the external lateral sides with a
maximum occurring on the internal vanes.
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Figure 3.12(b) presents the convergence of the solar heat fluxes computation. Because
of the diffuse reflectance, the performances are reduced compared to a specular case.
Nevertheless, for the same RMS error, the Halton sampling requires at least 50 times as
less rays as the crude Monte Carlo method implemented in ESARAD.
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Figure 3.12 — Solar heat fluxes absorbed when the vector [-1 1 — 1] is pointing to the Sun. The

x, y and z axes are represented by the red, green and blue arrows, respectively (a). Convergence
solar heat flux RMS error in function of the number of rays (b).
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3.4.4 Radiative equilibrium temperatures

For the computation of the temperatures, the Sun baffle is left free to reach its radiative
equilibrium with the deep space environment. Again, conduction is neglected and only
one position is analysed.
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Figure 3.13 — Temperature distribution of the UVN CAA Sun baffle submitted to the solar heat
flux depicted in Figure 3.12(a), in radiative equilibrium with the deep space node at 3 K without
conduction (a). Convergence of the RMS temperature error (b).
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The resulting temperature profile is given in Figure 3.13. Temperatures vary between
150 K and 366 K with the maximum temperature located along the internal vane edges.
The minimum temperature is located in the shaded region at end of the baffle. For the
convergence, results similar to the ones obtained with EUI entrance baffle are observed.
A factor 5 reduction is achieved with 1000 rays. The small saturation effect visible in the
ESARAD convergence curve is explained by numeric inaccuracies in the large quadrangle
intersection computation. Control parameters implemented in our ray tracing algorithm
might not be the same than the one implemented in ESARAD.

3.5 SPACE SUBDIVISION

In all previous study cases, the USD technique described in Section 2.5.2 was employed
as a means of ray tracing acceleration. Table 3.2 summarises the key geometrical figures
of the three configurations. A wide range of active faces density is covered to validate the
philosophy. The faces density is the number of active faces divided by the total volume
of the box surrounding the model. The EUI entrance baffle is more compact and the
number of faces per unit volume is higher than for the other two geometries.

# of active Surrounding box n; density Face area [m?|
faces ny volume [m?| [m 3] Min Mean Max
Cylinders 480 7.7 1072 6.2 10° 6.5107% 6.5107* 6.5 1074
EUI baffle 720 5.6 10~* 1.3 10° 1.910° 6.310° 1.510°*
UVN baffle 648 5.9 1072 1.1 10 561077 1.6107% 1.3 1072

Table 3.2 — Comparison between the FEM and the LPM.

Figure 3.14 gives the relative time (actual time divided by the minimum achieved)
spent for the REFs computation with 1000 rays. For each case, the number of voxels
was varied and the computation time measured. As the computation time may slightly
fluctuate from one run to another, it is averaged over 10 runs. All three curves show that
USD offers a significant reduction of the computation time if the volume is divided in the
optimum number of voxels.

ed The right end of each curve corresponds to one voxel, i.e. the space is not divided
and all shells are checked for intersection for each ray. As the number of voxels increases,
the computation time decreases until an minimum is reached. Further increasing the
number of voxels involves more time wasted in the voxel traversal computation and voxel
data processing. Comparing all three curves seems to indicate that the optimum number
of voxel does strongly depend on the geometrical configuration of the model and that
a value around two shells per voxel always requires a computation time close to the
minimum. This value was used in the previous sections and the optimal number of voxels
to achieve two shells per voxel is obtained iteratively.

3.6 CONCLUDING REMARKS

The purpose of this chapter was to assess the performances of the method developed
in Chapter 2 on real space structures. The 4-dimensional Halton sampling and planet-
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Figure 3.14 — Total relative computation time in function of the total number of voxels for all
three configurations studied in this chapter.

focused Halton sampling strategies were applied to models with several hundreds of faces.
Performances similar to the two or three faces cases were observed: between two and ten
times as less rays as crude MCRT are required to achieve the same REFs accuracy and
between 10 and 100 times as less rays are required for orbital heat fluxes computation
for both albedo and solar heat fluxes. Diffuse and specular reflectances were considered.
Based on heat fluxes and REFs, the convergence of the temperature was also studied.
The improvements observed for REFS and OHFs were transposed to the temperatures.
Conduction was neglected to highlight radiative effects. If conductive links are included
and if the solution is primarily driven by conductive effects, temperature differences are
reduced and the curves in Figures 3.4(b), 3.9(b) and 3.13(b) are closer to each other.



FINITE ELEMENT MESH
CLUSTERING AND SUPER

NODES

Abstract

Reducing the number of faces is another key to decrease the REFs com-
putation time. To this aim, this chapter first discusses the clustering of
a detailed FE mesh. The process includes initialisation through k-means
clustering followed by greedy region growing and boundary smoothing.
In addition to the radiative reduction, the generated clusters also drive
the conductive reduction and the concept of super node is defined. From
this definition, the algorithm to efficiently derive the reduced conduction
matrix is developed. The procedure also allows recovering the detailed
temperatures from the reduced ones. The reduction process and detailed
temperature recovery are then validated with two simple structures.

102
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4.1 INTRODUCTION

Improving the MCRT was the first step to alleviate the radiative couplings computa-
tion issue. As mentioned in the introduction, reducing the number of faces is the second
natural approach to decrease the REFs computation time.

The idea of creating patches for radiative heat transfer analyses with FEM has been
around for quite some time [45, 319]. The method described in [319] relies on Oppenheim’s
radiosity method [149] and needs corrective terms to cancel false diffusion effects due to
the redistribution of the reduced radiation couplings to the underlying mesh since the
model is solved on the detailed mesh. The radiation super element method introduced
in [45] also redistributes back the reduced REFs onto the detailed FE mesh. In the
computational fluid dynamics (CFD) tool ANSYS Fluent, face clustering is also exploited
to compute radiation heat exchanges but they are again re-distributed to the underlying
detailed mesh faces. These methods reduce the radiative model without the conductive
model and redistribute the REFs onto the conductive mesh, therefore limiting the use of
detailed structural meshes.

As the temperature field is usually much smoother than the deformation field, the
thermal model requires a much coarser mesh than a mechanical model. Finite element
mesh clustering therefore seems the proper path to follow to reduce the number of REFs
to compute and the size of the associated non-sparse matrix. However, the accuracy of
the conductive links still relies on the detailed FE mesh. We therefore propose to take
advantage of the clusters to reduce both the conductive and radiative models. This is
the second step and keystone towards the re-unification of LPM and FEM through global
reduction.

Each cluster will be associated to one or several super nodes representing its average
temperature. The proposed scheme exploits all the conductive information of the under-
lying detailed FE mesh to generate accurate reduced conductive links. In parallel, the
ray tracing will be applied to the super node external surfaces, called super faces, to gen-
erate the reduced radiative couplings between the super nodes. The reduced conductive
radiative model can then be solved to determine the temperature of the super nodes. The
conductive reduction further provides a method to recover back an approximation of the
detailed mesh temperatures from the reduced ones. Figure 4.1 illustrates the proposed
global reduction process.

super conductive reduced

/ nodes - reduction - conductive links\\
detailed global LPM

— clustering
FE mesh reduced model
super reduced

— ray tracing —
faces Y & radiative links

Figure 4.1 — The FE mesh clustering drives the conductive and radiative reduction process to
generate a global LPM reduced model.

This chapter first focusses on the clustering algorithm in Section 4.2. In Section 4.3,
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the super node concept is mathematically defined and the reduced conduction matrix is
derived. The reduction method is then validated in one and two dimensions in Section 4.4.
Section 4.5 eventually provides some concluding remarks. Chapter 5 will be devoted to
the adaptation of the ray tracing to the super faces.

4.2 THE CLUSTERING PROCESS

This section presents the clustering process, starting point towards the reduction of the
number external faces and REF matrix size. Mesh clustering is already used in a variety
of mesh-based scientific simulations to reduce computation time by taking advantage of
parallel computing [320-323]. Clustering is also widely applied to image processing [324,
325] and reverse engineering to retrieve surface properties from scanned data [326]. While
there exist many standard clustering algorithms like METIS [320] and others [322, 323]
developed in different fields, we chose to develop our own partitioning algorithm to keep
it simple, versatile and adapted to our needs.

The clustering of the detailed FE mesh is performed in several steps and each inde-
pendent part of the model is processed separately. The desired number of clusters is set
for each part by the thermal engineer, like when creating a separate dedicated thermal
model and mesh. As introduced later in Section 4.3, the concept of super node relies on
the unique assumption which is being uniformly subjected to external heat fluxes. 2D
parts are therefore first divided into regions to avoid clusters from crossing sharp edges or
junctions (edges sharing more than 2 elements) because these features inherently involve
non-uniformity in the REFs and environmental heat fluxes. Each 2D region as defined
above is then partitioned independently. Thermo-optical properties can also be taken
into account in the clustering process to avoid again clusters from being composed of too
non-uniform radiative properties.

3D parts are not divided into regions since volume elements have external faces crossing
sharp edges by definition. They are partitioned as a whole in volume clusters. However,
should the material have low thermal conductivity or a large gradient be expected between
the centre of the 3D clusters and the external faces of those clusters, one may add dedicated
2D super nodes to represent the external faces temperature to better capture radiative
heat exchanges. Figure 4.2 describes the 2D and 3D clustering schemes.

[ —— gy

(a) (b) ()
Figure 4.2 — Different clustering strategies for 2D and 3D: clusters do not cross sharp edges for

2D parts (a) while 3D clusters may contain faces on different sides (b) or have dedicated surface
super nodes associated with each 3D cluster (c).

After separating the 2D and 3D parts into the different regions, the clustering scheme
is applied to each of them independently. It is based on a multiple source greedy region
growing algorithm [323] and is divided into three steps:
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o the k-means clustering initialisation of a user-defined number of seed elements,
o the greedy region growing itself, starting from those seed elements

« and finally boundary smoothing with max-flow/min-cut algorithm.

4.2.1 K-means clustering seeding

This region growing algorithm strongly depends on the seeds that initiate the pro-
cess. To create uniform clusters, the seed elements are selected by applying the k-means
clustering algorithm to the centre of gravity of all elements. K-means was developed in
the mid-1950s independently in several scientific fields [327, 328], the most famous being
Lloyd [329] (k-means algorithm is also known as Lloyd’s algorithm). It provides a parti-
tion of a set of points p that minimises the distance between the cluster average and all
its assigned points:

min 3 S py - el

k=1 pi€cg

where n,. is the requested number of clusters and gy, is the centre of the k™" cluster ¢
defined as

He = i Z Pi
Ttk Pi€Ck
with n; the number of points in the cluster ¢;. K-means is an iterative algorithm that
requires cluster centre initialisation and therefore only converges to a local minimum,
different initial cluster centres resulting in different partitions.

In structural analysis, the mesh is often refined in location where large stresses are
expected. To avoid the k-means clustering algorithm from producing more clusters in
the refined mesh area, a weighted version of the algorithm is used. The cluster centre is
re-defined as the weighted average of its constituents:

D picey Wibi
o peck 1 (3
l’l’k - Zz

pPi€ck Wi

and the algorithm now minimises the sum of the weighted distance in all clusters

minz Z wi [|pi — gl
k=1 pi€cg

Since the points p; here correspond to the centre of gravity of the elements, the weights
are simply defined as the area for 2D elements or their volume for 3D elements. Figure 4.3
gives an example of k-means clustering of 2000 points non-uniformly distributed over the
unit square. In Figure 4.3(a), the unweighted version of the k-means clustering algorithm
is applied and more populated regions therefore attract more clusters. Conversely, Fig-
ure 4.3(b) shows that the weighted k-means algorithm produces more uniformly spaced
clusters even in non-uniform data point sets. Details about the implementation of the
algorithm are given in 330, 331].
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(a) (b)

Figure 4.3 — Two-dimensional unweighted k-means clustering of 2000 non-uniformly spread points
in the unit square (a). Weighted k-means clustering (b). The point set is partitioned in 5 clusters
and the final cluster centres are depicted by the black crosses.

The k-means algorithm already provides clusters but does not ensure contiguous
clusters. This is why it is only used for the generation of the seed elements of the greedy
region growing. The seed element is thus defined as the closest element to each k-means
cluster centre.

Because the region growing process is based on a distance criterion to some seeds that
are initiated by a k-means clustering, the clustering strategy tends to generate Voronoi-
like shapes, as illustrated in Figure 4.3. The boundaries between the clusters consist in the
perpendicular bisector segments (or planes in 3D) of the line segment joining the cluster
centres. The Voronoi-like nodal shapes agree with Dusinberre [14] recommendation to
perform LPM nodal breakdown following a triangular heat flow pattern. The classical
rectangular nodal breakdown is however preferred to Dusinberre’s sound approach for
practical reasons: as depicted in Figure 4.4, the triangular pattern results in Voronoi-
like shapes whose volume and conductive link are less easy to compute compared to
rectangular pattern.

Figure 4.4 — Dusinberre’s triangular heat flow nodal breakdown approach [14, 33|. The grey
dotted lines represent the heat flows and the black lines the nodes boundaries.
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4.2.2 Greedy region growing clustering

For a given set of seed elements, the algorithm iteratively adds the adjacent elements
to build each cluster in parallel, therefore enforcing contiguous clusters. To determine the
next element to be added to a given cluster, the distance between the centre of gravity of
the element and the one of the seed element of the cluster is computed. All candidates
(next adjacent elements of all existing clusters) are pushed in a queue that is sorted with
respect to the distance to the seed of their potential cluster affiliation. The candidate
with the smallest distance is pulled out from the queue, attributed to the corresponding
cluster and its adjacent elements are added to the queue. Figures 4.5(a-e) depict the region
growing process. The elements in the queue are represented by the light-shaded colour and
correspond to the adjacent elements of the already assigned ones represented by bright
colours. Starting from the orange, blue and red seed elements, the queue is initialised
with the three neighbours of each seed (Figure 4.5(b)). In Figure 4.5(c), one of the orange
neighbour is pulled out from the queue and its two unassigned adjacent elements added.
The next element to be assigned is the blue one as depicted in Figure 4.5(d). At some
point, elements will appear multiple times in the queue when they are adjacent to several
clusters. Since they are sorted according to their distance to the cluster seed, only the
closest will be assigned. The algorithm loops until all elements are assigned to one cluster.
Finally the boundary smoothing step is performed.

(f)

Figure 4.5 — The different mesh clustering steps: k-means clustering selection of seeds (a), ini-
tialisation of the queue with adjacent elements of seeds (b), iterative extraction from the queue
(represented by the light shaded elements) and assignment of candidate with smallest distance
to its cluster seed with addition of its adjacent elements to the queue (c,d) until all elements are
assigned to one cluster (e), boundary smoothing (f).
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4.2.3 Cluster boundary smoothing

As introduced in the previous sections, once the greedy region growing is completed, a
post-processing phase to smooth the cluster boundaries is performed as in [326]. Smooth-
ing the boundaries is not mandatory but having straight edges instead of zigzag boundary
curves can be exploited in the subsequent ray tracing step to reduce the computation time.

Smoothing the boundary is equivalent to minimising the total length of the boundary
between two clusters by re-assigning the elements of the fuzzy region to either one of
the two clusters, knowing that each element is attracted to both clusters according to
its distance to the cluster centre. First, the dual undirected graph of the fuzzy region
to smooth is considered: each external face becomes a vertex in the dual graph and two
vertices are linked if their corresponding faces are adjacent to each other. The set of dual
vertices v; belonging to the fuzzy region to smooth and the set of edges e; linking the
vertices of the dual graph are denoted V and &, respectively. The function to minimise is
expressed by

E(x) =Y Ei(z:)+ > Ea(e;) (4.1)
v, €V e; €€
where x is a binary vector representing the affiliation of the dual vertices v; to either one
of the two clusters (z; = 0 if v; belongs to the first cluster and z; = 1 if v; belongs to the
second). The term Fj(x;) represents a penalty function based on the attraction of the
vertex v; to either the first cluster A or the second cluster B:

dA 4B

The second energy term FEs(e;) is the cost of the dual edge e; connecting too linked vertices
x; and xy:

Bales) = L +1
where [;; is the length of the primal shared edge between the two faces corresponding to
x; and x) and [ is the average edge length over the whole boundary.

Greig et al. discovered in the end of the 1980s [332] that max-flow /min-cut algorithms
are suitable to minimise energy functions of binary variables as Equation 4.1 and the
implementation of Greig’s algorithm by Boykov and Kolmogorov [333], thoroughly used
in image processing and computer vision, is exploited.

Figure 4.6 shows the result of the boundary smoothing procedure applied after parti-
tioning a circular mesh in two clusters. The initial k-means cluster centres are drawn with
the white crosses and the corresponding region growing seed elements are filled with red.
Figure 4.6(a) shows the dual graph with the dual vertices v; € V (light green dots) and
edges e; € £ (light green dotted line) of the boundary elements and their first neighbours
(on each side of the boundary). Figure 4.6(b) gives the results of the minimisation of
Equation 4.1 through the max-flow/min-cut algorithm. In this example, the number of
layers on each side of the boundary taken into account for the dual graph generation was
two but it can be easily modified to include more elements and give more freedom to the
smoothing process.
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() (b)

Figure 4.6 — Raw output of the greedy region growing algorithm with the unsmoothed boundary
between the two clusters is depicted in white and the dual graph in light green (a). Boundary
smoothing resulting from the Boykov-Kolmogorov’s max-flow/min-cut algorithm (b).

4.3 THE CONDUCTIVE REDUCTION PROCESS

4.3.1 Super node definition, reduction and recovery

Once the detailed mesh is partitioned, the conductive model needs to be mathematic-
ally reduced. The reduction procedure is inspired from the EQUIVALE method [105, 174]
developed by Aerospatiale (now Thales Alenia Space), the RCN (reduced conductive net-
work) method implemented in THERMICA [102], from the TLP-reduction method in-
troduced in [176] and the LPM-FEM mapping tool SINAS [56, 60]. First the concept of
super node is defined: it is a new mathematical node whose temperature represents the
average temperature of a group of nodes of the underlying detailed finite element model:

Nn

Ton, = Z aij T;

=1

where Tyy, is the temperature of the i*® super node, n, is the number of nodes of the
detailed model. a;; is the relative weight of the detailed mesh node j contributing to
super node ¢ and is equal to 0 if it does not belong to super node 7. The sum of all
relative weights of a super node is equal to 1: 2?21 a;; = 1. In matrix form this gives:

Tey = AT (4.2)

with the ngy X n, matrix A containing the relative weights and ngy the number of super
nodes. Weights are given by the capacitance associated to the node divided by the total
capacitance of the cluster:
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where ¢; is the capacitance associated with a detailed node j. In steady state, the specific
heat is not required and the weights can be based on the volume (area times thickness
for 2D elements). As introduced in Section 4.2, surface super nodes can also be defined
on the external boundary of 3D clusters if a strong gradient is expected between the
surface and its centre. For those super nodes, the weight is defined as the area of the
node divided by the total area of the super node. Dedicated super nodes are also defined
similarly at the boundary conditions and at interfaces between connected parts (where
contact conductance might be applied).

The foundation of the reduction procedure is the linear steady state heat equation
obtained from Equation 1.55:

where K is the linear n,, x n, conduction matrix, T is the n, x 1 vector of nodal tem-
peratures and q the n, x 1 nodal thermal load vector. Combining the definition of the
super nodes given by Equation 4.2 and the above equation gives:

otk

with the (n, + ngy) X (n, + ngy) matrix M defined as follows:

K, AT
M = [A OWSNXTLSN:|

Solving Equation 4.4 for T and sub-structuring the inverse of M gives:

o] =l = e 2 43

If the load is uniform over each super node, i.e. uniform with respect to the super
node definition given in Equation 4.2, the detailed thermal load vector q is related to the
super nodes thermal load qgy by the same matrix A:

q= A-TqSN (4.6)
Since YAT =1 = AY", the super nodes thermal load vector qsy can be obtained from
the detailed one q:
sy = Yq

Extracting the second row of Equation 4.5

—ZTs =Yq =qu
leads to the identification of the matrix —Z as the linear conduction matrix of the reduced
system Kqy:
KisnTsy = g (4-7)

The first row of Equation 4.5 is used to compute back the detailed mesh temperatures
from the super nodes temperatures:
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T =Xq+ Y Ty (4.8)

To proof that the reduced system is equivalent to the detailed system, the above equa-
tion and Equation 4.6 are inserted in the detailed system equation defined by Equation 4.3
and pre-multiplied by Y:

KL<Xq + YTTSN) = ATqSN

YK Xq+ YKLYTTSN = YATqSN = Qsn
This equation is equivalent to the reduced system described by Equation 4.7 if:

e the first term YK X is equal to zero,
e and YK;Y is equal to the reduced conduction matrix Kgx

The first condition is demonstrated by inverting the matrix M block-wise:

M_lz{x Y }:{KL AT ]1

Y Ko A Qrsvxmsy
K - KTAT (AK'AT) TTAKS KGAT (AKIAT) T
- (AK;'AT) 7 AK! — (AK;'AT)

and expanding the term YK X:

YK, X = (AK;'AT) " AK; 'K, (Kgl ~K;'AT (AK;'AT) AKgl)
— (AK;'AT) T AK 'K K - (AK'AT) T AK K K AT (AK AT T AK!
— (AK;'AT) TAK; - (AK'AT) T AKS =0
The second condition YK;Y' = K, is also validated:

1

YK, Y = (AK;'AT) ' AK; 'K K AT (AKTAT) T = (AKIAT) T

since the term (AKZIAT)_1 is precisely defined as the reduced conduction matrix Kgy.

4.3.2 Augmented conduction matrix local inversion

It is worth mentioning here that the super nodes must all be linearly independent for
the matrix M to be invertible, meaning that the super node definition matrix A cannot
contain linearly dependent rows, making it singular.

Inverting matrix M to derive the reduced conduction matrix can be computationally
very intensive because it is even larger than the full conduction matrix K; and memory
demanding since even if M is relatively sparse, its inverse is not. Furthermore, only a small
fraction of M~! is required to obtain K¢ and the matrices X and Y are only required
to compute back the detailed temperatures. Algorithms were developed for selective
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inversion of square matrices [334| that are helpful to generate the reduced conduction
matrix but less effective if the X and Y matrices are required and need to be stored.
An equivalent alternative was therefore developed to avoid computing M~!. It consists
of two steps: first construct and invert, for each super node i, a local version of M
augmented by all interface nodes at the boundary with other super nodes to generate a
local reduced conduction matrices of K¢ ... These local reduced conduction matrices are

then assembled in K7, a temporary version of the global reduced conduction matrix
containing all interfaces nodes at the boundaries between the super nodes. The second
step uses the classical Guyan static condensation [183] technique to remove the temporary
kept interfaces nodes from K7 and obtain K¢y. Static condensation consists in splitting
the K7 matrix into retained and condensed nodes, here denoted with the subscripts gy

and IF-

* * —
TIF qIF

LsNip—sN LsNip—1r
The interface nodes can be condensed as in Equation 4.9 to derive the reduced con-
duction matrix K¢y that contains the super nodes.

*LSNSN,SN >kLSNSNIF:| |:TSN:| o |:qSN:|

Krsw = RK o Re (4.9)
where the Guyan reduction matrix R is given by:
R —lyex
RG — LSNli;éFanSNLSNIF,SN

This procedure gives the exact same results as the direct inversion of M. To recover
the temperature of the detailed mesh, the same strategy is applied backwards. First
the interfaces temperatures are recovered through the Guyan reduction matrix Rg and
then the local X* and Y? matrices are computed for each super node and the detailed
temperature progressively recovered. This procedure avoids the direct inversion of M and
enables to recover the detailed temperatures without storing the full X and Y matrices.
Figure 4.7 gives a schematic overview of the local inversion procedure.

i
I<LSN

*
KLSN _

Krsn

Figure 4.7 — Local inversion scheme to derive the reduced conduction matrix.

The only assumption required for the reduction/recovery process to be exact is that
the thermal load on the super nodes is uniform i.e. follows the super node relation with
its constitutive nodes as expressed by Equation 4.6.
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4.4 VALIDATION

4.4.1 The one-dimensional conductive beam

The first example aims at verifying the super node definition by comparison with
the analytical solution and considers a beam of length L, cross section S and thermal
conductivity k represented in Figure 4.8. The beam is meshed in n, linear elements with
n, = N+ 1 nodes. In this first example, the temperature of both extremities of the beam
is fixed to Ty and Ty, respectively and a linear heat rate ¢(z) Wm™ is applied. The
beam is divided into two super nodes and their temperature is compared to the analytical

lution.
solution g(z)

? ’ y it elem e o e J

T re L =z

Figure 4.8 — One-dimensional beam of length L and uniform cross section S meshed with n,
elements.

The analytical steady-state temperature distribution of the beam is driven by the
second order partial differential equation

T A S/ (4.10)

with the boundary conditions 7'(x = 0) = T} and T'(z = L) = T5. The linear heat rate
q(z) is assumed constant over each half of the beam and thus each super node to meet
the conductive reduction requirements:

o, 0<ax<L/2
q(z) =
qy, L/2<[L’<L

The analytical solution is obtained by solving Equation 4.10 in each half of the domain
and ensuring continuity of the solution. The temperature in the first and second halves
of the beam are given by

o) = 5% 210 71y 4oL 3t ) + T (4.11)
TS T L TREg e T W) T ‘
2 2
qpT T L L
Ty(z) = -2 L 219 —T1) 4 o= (—q, = (ga—q) + T 4.12
W(@) = —955 T L )T rgs Tt F el —a) T (412)

respectively. Integrating Equations 4.11 and 4.12 over each half and dividing by L /2 gives
the analytical expression of the average temperature of each half T, and Ty:

_ 5L%, L*q 307 T,
T — sh b 41
06kS T 32ks T 4 4 (4.13)

and
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— L2qa 5L2qb T1 3T2
T = _ = - i
"~ 32kS T o6kS T4 T 4
Now considering the FE solution, the n,, x n,, conduction matrix K is built and given
by

(4.14)

1 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
0o -1 2 0 0 0 0
nkS | 0 0 -1 2 0 0 0
Ke==7-1.
0 0 o o0 ... 2 —=1 0

0 0 0 0 .. -1 2 -1
0 0 o 0 ... 0 -1 1

In addition to the 2 super nodes representing the average temperature of each half of
the beam, the 2 interface nodes are kept and the 4 x n,, super node definition matrix A
becomes

1 2 3 e Zeq] e L ne—1 ne metl

ne 00 0 0 0 ... 0 0 0

ALl |1 22 2 1 0 ... 0 0 0
ne | 000 0o 1 2 2 2 1

0 00 0 0 0 0 0 ne

where the number of elements n, is assumed even to have the n./2 + 1*" node exactly

at the centre of the beam and hence shared equally between the two super nodes. All
super nodes are linearly independent and matrix M can be inverted to give the reduced
conduction matrix. If the number of elements of the detailed mesh tends to infinity, the
reduced conduction matrix converges to

7 -9 3 -1

: kS 5 -9 3
nlgnoo KLSN(ne) = T 15 —9 (415)

‘ sym. 7

Extracting rows 2 and 3 from the reduced system formed with reduced converged
conduction matrix given in Equation 4.15 leads to

kS L
f (_9TSN1 + 15TSN2 - 9TSN3 + 3TSN4) = (Gsng = an
kS L

(3Tsn, — Tsny, + 15T5n; — 9Tsn,) = Gsng = Gp—

L 2

with T4y, and Ty, being equal to the boundary condition temperatures 7 and 75, re-
spectively. Solving for Tyy, and Ty, gives the exact same solution as the one given by
Equations 4.13 and 4.14 and obtained from the analytical distribution, i.e. T}, = Tgy, and
Tb = TSN?,'
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The performances of the local inversion process is also assessed. To this aim, the
time to compute the reduced conduction matrix with the local strategy is compared to
the one taken by the global inversion, for different levels of detailed mesh refinement
(10? < n, < 10%) and for 4, 10 and 100 of super nodes. The time complexity of inverting
a n X n matrix ranges between O(n?) and O(n*?®) [335]. The observed performance in
Matlab (actually using the LAPACK library [336]) is about O(n*%). Assuming n,, >> ngy,
the local inversion strategy therefore reduces the computation time by a factor nl¢ which
is observed in Figure 4.9. With 10* nodes in the detailed model, the gain is about 26 = 3
and 10%° 2 40 for ngy = 2 and ngy = 10, respectively.

10° -
) Global, 2 SNs 1 ]
'5 — — — Local, 2 SNs 26 be
= 10t} : 3
o Global, 10 SNs 'd
9 — — — Local, 10 SNs / “
= 102 Global, 100 SNs e d
s 10 ~ 2
2, — — — Local, 100 SNs P
g P4
S 10%} 3
o
2
E 104 F
[0}
o'

107

102 10° 10*

Number of elements in detailed model

Figure 4.9 — Comparison of the relative computation time of the reduced conduction matrix with

the global and local matrix inversion strategies. For n, >> ngy, the gain approaches nl¢.

4.4.2 The one-dimensional conductive-radiative beam

The same beam is considered but only the temperature of the left extremity is fixed.
The beam is assumed to be made of Aluminium (k= 170Wm™ K™, ¢ =900J kg ' K~!
and p = 2700kgm™2) and it is 1m long with a 1cm wide square cross section. The
emissivity € of its external surface is 1 and the radiative environment temperature T;,; is
—100°C. The fixed temperature T; is 20°C and a 1 W thermal load is spread uniformly
along the beam (q(x) = 1 Wm™!). The reference temperature profile along the beam T'(z)
is given by solving numerically the non-linear second order partial differential equation:

or  0*T  deo, ., " q
Peor T gz T g Leink = T) + 15
with w the width of the cross section and the following boundary and initial conditions

=0 (4.16)

T(t,0) =20°C V t >0

oT
— =0Vt>0
Ox t,x=L
T(0,z) =20°CVzx
Figures 4.10(a) and (b) give the steady-state temperature and gradient profiles ob-
tained by numerical integration, respectively. They also show the solution obtained from
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the detailed FEM mesh consisting of 1000 linear elements for which the temperature
gradient is computed thanks to the super-convergent patch recovery technique described
in [337] and introduced by [338]. Both solutions almost perfectly overlap. The solutions
obtained after reducing the system to one and two super nodes are also presented with
the value of the super nodes and the recovered detailed profiles. The two super nodes
solution already give good results with an error of only 3.1 K at the tip of the beam.
Figure 4.10(b) highlights that the reduction process assumes a uniform thermal load over
the super node and therefore a linear gradient profile in each super node.

20@® T 300
Analytical solution g
\ — — — Detailed solution E 250
Or \ O 1 super-node —
8 N — — — Recovered solution 1 g 200
\Y _ =
© o0l O 2 super-nodes | g
= 20 — — — Recovered solution 2 150}
= N )
g a0l AN ®© 100 |
3 s B
< SIS £ 50f
-60 | ~ e 2
~ . = Oor
~ o
= &
-80 ' ' ' ' -50 ' ' ' :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Beam axial position [m] Beam axial position [m]
(a) (b)

Figure 4.10 — Temperature profiles along the beam obtained with the numerical integration, FEM
detailed and reduced (1 and 2 super nodes) models (a). Corresponding temperature gradient

(b).

To compare the recovered solution with the detailed solution, the RMS temperature
error Ap pys is computed:

AT,RMS = Z de - Tfr (417)
i=1

where T} 4 is the i node temperature of the detailed solution and T}, is the i node tem-
perature recovered after solving the reduced system. In this particular one-dimensional
case, the error can be computed with respect to the reference solution obtained from
numerical integration of Equation 4.16 for both the detailed and the reduced model: T; 4
is then the temperature given by the reference solution at the i node location and T},
the temperature given by the finite element detailed or reduced model for the same node.

Using 1 super node leads to approximately 15K error at the tip and 9.1 K RMS
error with respect to the reference solution because the radiative flux is not uniform and
violates the reduction assumption. Adding 1 super node already gives better results with
only 3.0 K error and the tip for 2.8 K RMS error along the beam. Figure 4.11 shows the
RMS error evolution as the number of super nodes is further increased (i.e. the reduction
factor decreased). Almost quadratic convergence behaviour is observed for both reduced
and detailed models and the reduced model gives almost exactly the same error as the
FEM with the same number of elements.
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Figure 4.11 — Convergence of the RMS error as a function of the number of nodes or super nodes.
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Figure 4.12 — Transient temperature profiles along the cantilever beam obtained with the detailed
and reduced (1 and 2 super nodes) models after 20, 60, 120 and 600 minutes.
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Radiation is not the only source of non-uniformity and transients also generate non-
uniform heat fluxes inside the super nodes. Radiation is neglected to discriminate the
effects and only assess the impact of transients, starting from 20 °C and applying the uni-
form thermal load defined above (¢(z) = 1Wm™!). Figures 4.12(a~d) present snapshots
of the temperature profile at different times. As expected, transients induce internal en-
ergy changes that are not uniform over the super nodes and cannot be captured by the
reduced solution. As for radiative heat fluxes, Figures 4.12(a-d) show that increasing the
number of super nodes rapidly decreases the error. The solution recovered from the 1
super node reduced model leads to a maximum error with respect to the detailed solution
over space and time of 2.6 K while adding one super node already decreases it down to
0.6 K. Once steady state is reached, both reduced models give back the same results as
the detailed FEM since the uniform thermal load assumption is again satisfied.

4.4.3 The circular radiating fin

The validation of the methodology is now extended to two dimensions by studying a
circular radiating fin. The problem is symmetric and is governed by the one-dimensional
non-linear differential equation as described in [35, 339]:

0*T 10T 2eo
i Wt g A3
or? * r Or + kt (Toink

with the temperature fixed on the inner edge and an insulated outer edge:

—~TH =0 (4.18)

T(Tl) =20°C
T
orl,_, "

The thickness t of the fin is constant and equal to 1 mm with the internal and external
radii being 50 mm and 150 mm, respectively. It is made of Aluminium as the beam in the
previous example and is also exposed to a radiative environment whose temperature T5;,.;
is at —100°C. The reference solution is obtained by integrating Equation 4.18 numerically
and presented in Figure 4.13(a). Starting from 20°C on the inner edge, the temperature
drops down to —2.87°C at its outer edge where the temperature gradient becomes equal
to zero.

Figure 4.13(b) gives the result of the clustering process obtained with 50 super nodes.
It also depicts the underlying detailed FE mesh dividing the fin in 20 elements along the
radius and in 120 elements along the circumference for a total of 2400 elements. While
there is a constant number of FE over the fin circumference, the number of super nodes
increases with the radius since all super nodes tend to have the same area. With 50
super nodes, this results in 10 super nodes at the inner edge and 21 at the outer edge.
Figure 4.13(b) also shows that some cluster boundaries are less smoothed than others.
This is a consequence of the cluster seed element that are not free to move during the
boundary smoothing process and of the boundary smoothing that is operated pair-wise,
1.e. without considering adjacent elements.

The error with respect to the reference solution is computed with Equation 4.17 and is
0.023 K RMS for the detailed FEM. Figure 4.14 presents the convergence of the reduced
and detailed models. The detailed model converges linearly with the number of nodes.
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Figure 4.13 — Radial temperature profile obtained by numerical integration (a) and detailed mesh
divided into 50 clusters represented by different colours (b).

The reduced model convergence is affected by the location of the super nodes: the error is
identical for 1 and 5 super nodes because the gradient is radial and both reduced models
have one super node radially. From 10 super nodes, there are multiple super nodes along
the radius and the error starts decreasing. The convergence of the reduced model even
exceeds the linear convergence of the detailed FEM and results in a better accuracy than
the underlying detailed FEM with 2400 elements for ngy > 100. This can be explained
by the better distribution of the super nodes combined with the fact that they can be
considered as second order elements since they assume a quadratic temperature profile
with a linear gradient.
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10° — A Reduced model |

Arrus [K]
5

107 * * * *
10° 10! 10° 10° 10* 10°
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Figure 4.14 — Convergence of the RMS error with respect to the reference solution as a function
of the number of nodes or super nodes. The linear detailed FEM convergence is also plotted
and the dashed line corresponds to the error of the detailed FEM at the base of the reduced
model convergence. The reduced model results in lower error than its underlying detailed FEM
for ngy > 100.
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4.5 CONCLUDING REMARKS

This chapter covered the clustering of FE mesh and the associated conductive reduc-
tion. The mesh partitioning process consists in three steps: k-means initialisation of seed
elements from which starts the greedy region growing ending up by a boundary smoothing
step through max-flow /min-cut algorithm. To further improve the boundary smoothness,
other algorithms might be applied such as the one proposed in [340] which tries to align
the boundary with the straight line segment joining the extremities of the boundary. The
seed elements could also be left free to change during the boundary smoothing step or
the cluster boundary smoothness might be taken into account during the region growing
step.

The reduced conduction matrix giving the conductive links between the clusters is
then computed. The reduction process relies on the only assumption that the super node
must be uniformly subjected to external heat fluxes. The sources of non-uniformity may
arise from radiative heat fluxes on the surfaces, applied heat dissipation or environmental
heat fluxes and heat fluxes produced by transients. Non-linear thermal properties such as
temperature-dependent thermal conductivity could also lead to non-uniform heat fluxes.
These would however be secondary effects since the reduced conductive links depend
only on the geometry and can be expressed as shape factor multiplying the potentially
temperature-dependent thermal conductivity that could depend on the super nodes it is
linking.

Based on the divide and conquer strategy, an innovative local matrix inversion scheme
was derived to avoid inverting the whole detailed mesh conductive matrix augmented with
the super node definition.

The validation of the methodology was performed on two academic cases in one and
two dimensions. The effects of non-uniformity generated by radiative heat fluxes or tran-
sients were assessed and the convergence of the method was demonstrated. In some par-
ticular cases, the reduced model was shown to exhibit higher accuracy and convergence
rate than the underlying detailed FEM.

As a perspective, for steady-state analysis or arithmetic super nodes, the weights
used in the super node definition could be updated by considering the fourth power of the
recovered detailed temperature inside the super node. This simple iterative scheme avoids
modifying the cluster definition and the corresponding radiative links. A more elaborated
iterative process might refine or merge the clusters based on their recovered temperature
non-uniformity:.



PARTITIONED MESH RAY
TRACING WITH QUADRICS

FITTING

Abstract

To complement the reduced conductive links and achieve a global reduced
model, the ray tracing needs to be carried out on the partitioned mesh to
derive the reduced radiative links and orbital heat fluxes. This chapter
presents the modifications brought to the ray tracing algorithm presented
in Chapters 2 and 3. In particular, quadrics are fitted to critical regions
of the FE mesh to better capture potential concentration effects.
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5.1 INTRODUCTION

Once the detailed mesh is partitioned and the conductive reduction is performed, the
super nodes radiative links and orbital heat fluxes must be computed. To this aim, the
ray tracing algorithm developed in Chapter 2 needs to be adapted to be applied to the
external surfaces of the super nodes. As mentioned in the introduction, CAD surface
information is lost during FE meshing step and FE faces may not be suitable when
accurate surface normals are required. Tessellated surfaces need very large number of
elements to correctly reproduce the original surface behaviour such as focusing effects. For
instance, Figure 5.1(a) depicts a square parabolic surface meshed with triangles reflecting
parallel incoming rays. The reflected rays are represented along with their intersection
with the focal plane. Parallel rays reflected onto a parabola should converge towards its
focal point represented in red. Instead, their intersections with the focal plane spread
over a finite area whose size varies with the mesh refinement. Figure 5.1(b) shows how
the spot size reduces as the number of triangles increases. Almost twenty thousands faces
are required to capture a 1cm radius spot size while exploiting the paraboloid surface
equation makes the rays converge exactly to the focal point.
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Figure 5.1 — 2m square shaped parabola (z = (22 + y?)/4f with f = 1) reflecting parallel
incoming rays. Reflected rays and their intersection with the focal plane are plotted and the
actual focal point is represented in red (a). Evolution of the RMS spot size radius as a function
of the number of elements (b).

Most surfaces in S/C and instrument structures that require accurate representation
for thermal purposes consist in relatively simple shapes such as cones, spheres, paraboloids
that belong to the quadrics family. Fitting the FE mesh with a quadric may therefore
provide accurate surface normals to be exploited in the ray tracing algorithm. In [326, 341],
the quadric is an integral part of the partitioning algorithm. They iteratively add regions
in such a way that all regions are eventually fitted by a quadric (planes being degenerate
cases of the quadric). Although interesting, this approach cannot be applied blindly to
classical detailed structural FE meshes that often contain details such as chamfers or
fillets. Such details are sometimes represented with only one element along the width and
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the algorithm is therefore not able to discriminate between chamfer and fillet. Screw holes
would be fitted with quadric while they are not useful for the radiative heat transfer.

Because the true normal information is only required for a few specific surfaces in
the model, we propose an approach more tailored to our need that only fits quadrics to
user-tagged critical surfaces.

As explained in Section 4.2, super nodes can be composed of several external surfaces
that will be called super faces. According to their shape, they are divided into three
categories:

« super faces that correspond to part of the FE mesh that was fitted with a quadric,
« super faces that are composed of coplanar FE faces, therefore forming a polygon,

« super faces that only consist of a single FE face that was not part of quadrics-fitted
regions and does not have coplanar neighbours.

Sampling and intersection computation are performed differently for each kind of super
faces. The first section of this chapter focusses on the quadrics where the fitting, sampling
and intersection strategies are developed. Then, Section 5.3 discusses planar polygons
super faces together with single FE faces. Validation of ray tracing with quadrics is
performed in Section 5.4 and performances are assessed by comparing detailed and reduced
REFs computation times on various space structures. Conclusions of this chapter are
finally drawn in Section 5.5.

5.2 (QUADRIC SUPER FACES

5.2.1 Quadrics fitting

Shape recovery and in particular quadrics fitting problems occur in a wide variety of
scientific and engineering applications [342] such as geometric reverse engineering [343],
surface reconstruction [344] or mesh segmentation [323, 326, 341|. For our application, we
seek the quadric equation coefficients that minimise the mean square distance between a
given set of vertices and the quadric. As demonstrated in [345], the distance from a point
p to an implicit curve f can be approximated by

IVl
where f is the implicit equation of the quadric:
f(p) = f(z,y,2) =cf=0 (5.2)
with the vector ¢ = [cg,c1,...,col' containing the quadric coefficients and the vector

f(x,y,2) =[1,2,y, 2,22 2y, 22, 9% yz, 2] the quadric monomials. Following the method
described in [326, 341] and originally developed by Taubin [346], fitting the quadric f to
a set of n, vertices p; consists in finding the coefficients ¢ that minimise

f(p:)?
5.3
Z ] (5:3)

U
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Because ||V f(p)]| is constant over f, Equation 5.3 simplifies to

cMc'
cNcd

(5.4)
with the matrix M and N defined as

1 Ty T 1 el T
M= ; f(p)f(p) and N = - > VE(p:) VE(p:)

i=1

and the monomial vector gradient

010022 y 2 0 0 0
Vi=({0 01 0 0 2 0 2y z O
0001 0 0x 0 vy 22

Finally, minimising Equation 5.4 is equivalent to computing the eigenvector corres-
ponding to the minimum eigenvalue of

¢(M — AN) =0 (5.5)

The method is applied to the EUI entrance baffle presented in Section 3.3. This time,
the mesh created for the structural analysis is considered. Figure 5.2(a) shows that two
quadrics are fitted to the FE mesh: one for the main conical part and one for the area
surrounding the aperture. The quadric is represented with a partially transparent surface
whose limits are slightly expanded compared to the vertices. In the CAD model, both
surfaces are cones and were designed to reflect sunlight efficiently taking into account
off-pointing. Figure 5.2(b) presents the quadric fit error, i.e. the distance between the FE
mesh vertices and the quadrics. The original shapes are almost perfectly captured with
errors below 1nm.

Distance [nm]

1.0

(a) (b)

Figure 5.2 — One quadric (in red) is fitted for the front conical annulus and another one is fitted
to the main part of the body (a). The distance between the mesh vertices and the quadrics is
less than 1nm (b).
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The UVN CAA Sun baffle presented in Section 3.4 exhibits a more complex shape
that is not designed from a quadric. Again, the structural FE mesh is now considered.
The difficulty lies in the correct determination of the region to fit. As opposed to the
EUI entrance baffle, there is no sharp edge delimiting the curved surface. The planar
regions adjacent to the curved surface to fit are first recovered and all FE faces belonging
to the planes are removed. The limit between the adjacent planar regions and the curved
region is fuzzy because of the discrete feature of the mesh itself and some tolerance on the
FE face normal deviation must be given to determine if it belongs to the curved or the
planar region. For practical purposes, only the top part of the Sun baffle is considered.
Figure 5.3(a) shows the two quadrics on each side of the Sun baffle part and the quadrics
limits are again expanded to better visualise them. Figure 5.3(b) gives the quadric fit
error that goes up to 14 pm with an RMS value of 2 pnm. As expected, larger error levels
are observed close to the boundary with the planar regions.
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(a) (b)
Figure 5.3 — One quadric is fitted on each side of the UVN Sun baffle top part (a). The distance
between the mesh vertices and the quadrics is only a few pm and is larger close to the boundaries
of the fitted regions (b).

The M and N matrices are 10 x 10 and the computation of the eigenvalues and
eigenvectors remains fast and takes only a few seconds even for such fine meshes.

5.2.2 Surface and direction sampling

Because the super faces exhibit large differences in area, a ray density leading to a
number of rays proportional to the area is preferred to a constant number of rays per face
regardless of its size. Nevertheless, as provided in ESATAN-TMS, the ray density can
easily be increased in specific critical regions of the model for which more accurate results
are desired.

Instead of sampling directly the quadric, the ray origins and directions are generated
with the coupled Halton sampling strategy at FE face level and then projected back onto
the quadric. This avoids the complicated determination of the super face boundary on
the quadric. The origins are projected onto the quadric along the quadric normal instead
of using the FE face normal. This procedure avoids the generation of gaps between the
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origins of adjacent faces. It is also assumed that the maximum distance between the
quadric and the underlying FE faces is small and such that the uniformity of the FE
surface sampling is preserved. Structural FE meshes are usually sufficiently fine for that
assumption to be valid.

The problem of projecting a point py = [:1:0 Yo ZO]T onto the quadric consists in
finding the footprint p of py such that p lies on the quadric and such that the segment
P — Po is perpendicular to the quadric at p. This is expressed by the non linear system
of equations:

f(p)=0
(P—po) X Vf(p)=0

that can be expanded and simplified to give the system of three non-linear equations:

Fy = co+ 12 + coy + 32 + cax® + csxy + cer2 + cry? + cgyz + 922 =0
Fy = (2 —xo)(ca + c52 + 2¢7y + cs2) — (y — yo) (a1 + 2caw + 5y + c62) =0
Fy = (y —vo)(cs + cex + cgy + 2¢92) — (2 — 20)(c2 + 52 + 2¢7y + cg2) =0

This system is solved by standard iterative Newton-Raphson procedure as in [347].
The initial point pg is sufficiently close to the quadric to ensure the fast convergence of
the algorithm. It is iteratively updated following the rule

pj+1 — pj + Apj

where Ap’ is obtained by solving the linear system

Ap’ = I~ (p))F(p/)
composed of the original system equation F = [FO F F2:|T and the inverse of its Jac-
obian matrix J. The normal at each origin, given by the first row of the Jacobian matrix,
is exploited to rotate the ray directions generated on the unit hemisphere to the local
coordinates system at each origin. This ensures that the curvature of the quadric is
taken into account in the direction sampling. This can be considered as an expansion
(contraction) of the unit hemisphere for convex (concave) shapes.

Figures 5.4(a) and (b) compare the FE face perpendicular projection to the quad-
ric normal projection, respectively. They provide a close-up view of the parabola mesh
presented in Figure 5.1 that is fitted with a quadric and sampled with 10° points for each
underlying FE face. Although faster, the perpendicular projection shown in Figure 5.4(a)
does not ensure a continuous sampling of the quadric and leaves gaps between adjacent
FE faces.

Figure 5.5(a) presents a side view of that same region showing also the original origins
on the FE faces before being projected onto the quadric whose shape is clearly visible. The
distance between the original and projected samples decreases close to the vertices since
the quadric fitting is based on the vertices. Figure 5.5(b) shows the angular deviation
generated by the rotation of the original direction produced by the Halton sampling. For
this particular mesh, the correction is larger close to the vertices of the mesh, where the
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(a) (b)

Figure 5.4 — Projecting the surface samples onto the quadric along the FE faces normal pro-
duces gaps between adjacent faces (a). Projecting along the quadric normal ensures continuous
sampling across FE faces (b).

(a)

Figure 5.5 — The original FE face surface samples are shown in black and their projection in
orange in this side view (a). The colour scale of the origins represents the deviation between
the original directions and the modified ones with the largest difference occurring close to the
vertices (b).

difference between FE face normal and quadric normal is largest. The relatively coarse
mesh gives rise to corrections ranging from 0 to almost 8 degrees.

Concerning the planetary heat fluxes computation and the strategy developed in Sec-
tion 2.4, the same procedure is followed. Planet focused Halton sampling (PFHS) is
carried out at FE face level and the samples are projected back onto the quadrics. The
sampling is performed in two steps. First, just the origins are sampled to find the min-
imum angle v (see Figure 2.25) between the planet direction and the quadric normal.
Knowing v, the directions are then generated. This time, the directions are not rotated
but the scalar product with the quadric normal is computed for each origin to check that
the rays do not penetrate the quadric. If this is the case, the penetrating rays are dis-
carded. The ratio between the initial number of rays and the number of discarded ones
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is computed. It is then exploited to ensure that the proper ray density is applied by
re-sampling the FE face with a number of rays increased proportionally to the calculated
ratio. The penetrating rays are again discarded but the number of remaining rays now
almost respects the desired ray density. Figure 5.6 shows the resulting planet sampling
strategy applied to the perpendicular cylinders. The sampling of only one super face is
displayed here for clarity. The super face is composed of the rightmost three FE faces.
In the bottom right corner, Figure 5.6 highlights the fact that origins that have no view
factor with the planet if left on the flat FE faces can actually contribute to the planet
heat flux if projected onto the quadric exploiting the correct normal.

Figure 5.6 — Side view of the planet sampling strategy applied to the quadric fitting the cylinder.
The orange dots represent the origin of the rays and correctly follow the recovered cylindrical
shape. The red circle highlights the origins that can now see the planet.

5.2.3 Ray-quadric intersection

To compute the intersection between a ray and the quadric, Equation 2.48 describing
the ray is inserted into Equation 5.2 defining the quadric shape. It results in a second
order equation in t:

agt? + bt +c, =0 (5.6)
where the coefficients a,, b, and ¢, are

(g = C4T2 + C5Toly + CoT'aTs + C75 + CaTy T + CoTs
bq = 1Ty + Cory + C37, + 2cyrzx0 + C5TyTo + CeT>,To + C5T2Yo + - ..
27Ty Yo + C8T2Yo + CeTxzo + CaTy20 + 2C9T 220
Cq = c4x% + C5ToYo + CsTo2o + C1XT0 + 07y§ + C8Yozo + C2Yo + 0923 + c329 + ¢
Unfortunately, there is not a lot of room for optimising the calculation of these coefficients
[158]. In [348], a slight optimisation is performed by taking advantage of parallel compu-

tations enabled by hardware such as GPUs (graphic processing units) or SSE! instruction
sets.

Istreaming SIMD extensions with SIMD standing for single input multiple data.
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The rules of thumb presented in Section 2.5.3 are here again applied and the inter-
section is computed sequentially. The discriminant bg — 4dagc, is first computed. If it is
negative, there is no intersection. If it is positive, Equation 5.6 has two real roots and the
ray intersects the quadric twice. The sign of ¢ indicates if the intersection lies ahead or
behind the origin of the ray. If both roots are positive, one might intuitively only check
the closest one. This strategy is however inadequate when the quadric super face presents
holes. In that particular case, the first intersection might fall in the hole and be discarded
and the second intersection must be considered.

Once the intersection point is known, the problem consists in checking if it falls in-
side or outside the current super face. Projecting the FE face edges onto the quadric and
exploiting the projected curves for this check would be extremely computationally expans-
ive. The alternative strategy is to project back the intersection onto the underlying mesh.
Projecting perpendicularly to the FE faces might again be attractive for its simpler im-
plementation and faster execution but the problem encountered in sampling arises again.
Figure 5.7(a) depicts the issue of perpendicular projection when the intersection is close
to the edge of the FE face: it might incorrectly fall outside each FE face. Instead, the nor-
mal to the quadric at the intersection point is exploited, as represented in Figure 5.7(b).
The intersection is projected normally to the quadric and the FE faces constituting the
super faces are checked, starting from the closest one and considering only the few FE
faces within reach of the intersection point. This strategy is more expansive since it can
be considered as a secondary ray-intersection computation but it offers robustness.

(a) (b)
Figure 5.7 — If the intersection is projected onto the underlying FE mesh normally to each FE

face, the projection might fall outside both faces (a). To avoid such degenerated cases, the
intersection is projected along the quadric normal onto the closest FE face (b).

Ray-quadric intersection checks are more computationally expansive than ray-triangle
and space subdivision techniques present the drawback of potentially repeating the same
intersection computation several times [304]. This occurs when two super faces with the
same quadric equation are present in one voxel, or if the quadric spans several voxels
crossed by the same ray. As introduced in Chapter 2, the mailboxing technique consists
in attaching a mailbox to each face, storing the results of the intersection check with a
ray counter that is incremented each time a ray is reflected or a new ray is emitted. This
technique was introduced by Arnaldi et al. [307| and is further detailed in [303, 306,
311, 349]. The technique was implemented but again did not significantly improve the
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performances because the number of times the mailbox is useful during the whole ray
tracing is relatively small and because the additional checks to be performed balance the
gain related to the computation of the quadric intersection. The mailboxing technique
also does not avoid checking whether or not it falls inside the super face.

5.3 PLANAR SUPER FACES

The second kind of super faces consists in clusters of co-planar FE faces. As for the
quadric super faces, sampling is performed at FE faces level to ensure uniform sampling.
Concerning the intersection check, computing the intersection point itself is straightfor-
ward since it comes down to a ray-plane intersection, being the first step in the triangle
intersection scheme. Determining if the intersection point lies within the irregular polygon
is more complicated. First, the problem is again reduced to two dimensions by discarding
the coordinate corresponding to the largest component of the normal. A robust and ef-
ficient strategy described in [308, 350], introduced in 1962 [351| and corrected in [352] is
the crossing test. The philosophy is presented in Figure 5.8. It relies on the fact that if a
ray from this point in an arbitrary direction crosses an odd number of times the polygon
boundary, then the point is inside the polygon. The test is simplified by considering the
ray parallel to one axis. In that case, only the edges having one vertex on each side of
that axis need to be checked.

N\

N 7

Figure 5.8 — Crossing test: an odd number of crossings indicates that the point is inside the
polygon.

The boundary smoothing step performed at the end of the clustering process helps
reducing the number of edges. This number is further reduced by checking if some edges
are collinear. If this is the case, they are combined and only the extreme vertices are kept.

The third kind of super faces is composed of single FE faces that are not part of quadric
fitted regions and do not have co-planar neighbours to be aggregated with. These faces
are simply processed as classical FE face in the way described in the previous chapters.

5.4 PERFORMANCE ASSESSMENT

First, the perpendicular cylinders presented in Section 3.2 are considered to enable
a comparison with ESARAD. Each cylinder is fitted with a quadric and clustered in 16
super nodes corresponding each to one super face in this case. Figure 5.9(a) presents the
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32 identical super nodes resulting from the clustering. Because of their regular shape,
the same subdivision can be applied to the cylinder primitive in ESARAD. Figure 5.9(b)
gives the convergence of the RMS line sum error. The higher accuracy and convergence
rate provided by the coupled Halton sampling is also present with the quadrics. This
confirms the assumption that projecting the origins and rotating the directions according
to the quadric normal does not jeopardise the uniformity of the coupled Halton sampling.
The curves are almost identical to the one obtained with the detailed mesh and presented
in Figure 3.1 and the performance gain remains limited for the same reasons i.e. only a
few REFs contribute to the performance improvement since most of them only face the
environment.

—A— coupled Halton

10° 10* 10° 10°
Number of rays
(b)
Figure 5.9 — A quadric is fitted to each cylinder mesh that is then divided into 16 super faces (a).

Convergence of the RMS LSE with the number of rays traced with ESARAD and the coupled
Halton strategy applied to the super faces (b).

To assess the performance of the super face ray tracing, it was applied to three different
structures, two of which were already presented in previous sections. The time to compute
the detailed FE mesh REFSs is compared to the super face REFs computation time. The
first two structures are the EUI entrance baffle and the UVN CAA Sun baffle. They
consist of only 2D elements and the FE meshes are divided into 50 and 118 super nodes,
respectively. Because the mesh of the EUI entrance baffie is only composed of two cones
and two planes, 100 (50 double sided) super faces are generated, one for each super node.
For the UVN CAA Sun baffle, it results in 506 (253 double sided) super faces because
some regions are neither planes nor fitted with a quadric. Figures 5.10(a) and (b) show
the EUI entrance baffle and UV CAA Sun baffle super faces, respectively. In particular,
Figure 5.10(b) shows the additional super faces located in the middle top part of the figure.
It also shows that the mesh is subdivided into multiple regions clustered independently,
the total required number of clusters being distributed proportionally not only to the area
but also to characteristic length of each region.

The third example does not contain quadrics. It is the support structure of the back
telescope assembly (BTA) that is part of the infrared sounder instrument of MTG. Fig-
ure 5.10(c) shows the FE mesh partitioned into 100 3D super nodes. Because the FE mesh
contains many details such as screw holes and chamfers, many FE faces cannot be grouped
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into planar regions. The 3D clusters also lead to separate super faces on each side. This
explains why 12081 super faces are generated. They are represented in Figure 5.10(d).

Figure 5.10 — EUI entrance baffle clustered into 100 super faces from 50 super nodes (a). UVN
CAA Sun baffle top part divided into 506 super faces (b). BTA structure FE mesh clustered
into 100 super nodes (c) and the resulting 12081 super faces (d).

Ray tracing is performed on both the detailed and reduced meshes and the computa-
tion times are compared. The same ray density is applied in both cases so that the total
numbers of rays traced are almost identical. Table 5.1 summarises the results. In all three
cases, computing the reduced REFs takes only a few minutes while it takes one or several
hours with the detailed mesh. hence, more than one order reduction of the computation
time is achieved.

The times mentioned in Table 5.1 are not to be compared with ESARAD computation
times because the major part of the ray tracing algorithm is still implemented in Matlab®.
For instance, tracing 5000 rays from each 100 faces composing an ESARAD GMM of the
EUI entrance baffle exploiting the cone primitives will take less than 2.5min.
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ny Prays Nyt lFE  NMSN  NSF sk gain
[m~—2] [min| [min| tpg/tsk
EUI baffle 36920 110" 0.5 10° 72 50 100 2.5 29
UVN baffle | 172532 1107 3.9 108 227 118 506 15 15
MTG BTA 49566 1 10° 30.2 106 235 100 12081 12.5 19

Table 5.1 — Super face REFs computation time for various structures compared to original mesh.
The columns give the number of active FE faces ny, the ray density prays, the total number of
rays traced in the model n, ;, the time to compute the FE faces REFs trg, the number of super
nodes ngy, the number of active super faces ngg, the time to compute the super faces REFs tgp
and finally computation time reduction factor.

5.5 CONCLUDING REMARKS

This chapter discussed the super face concept derived from the external surfaces of the
super nodes generated by the clustering presented in Chapter 4. To better capture the
original geometry behind the FE mesh, an algorithm fitting quadrics to specific regions
of the FE mesh was presented. The procedure gives excellent results and recovers the
original shape provided that the region to fit is actually a quadric or close to a quadric.
The coupled Halton direction and surface sampling strategy developed in Chapter 2 was
adapted to the quadric super faces. Sampling is performed at FE face level and the ray
origins are projected normally onto the quadric. The directions are also rotated according
to the local quadric normal at the origin. The planet sampling strategy was also adapted.
Planar super faces were also discussed. In particular the crossing algorithm, well known in
the computer graphics community, is exploited to determine if the intersection lies inside
the super face.

Finally the adapted ray tracing procedure was applied to the perpendicular cylinders
mesh. Each cylinder mesh was fitted with a quadric and partitioned. The identical
geometry was processed with ESARAD. Error convergence curves demonstrated that the
superiority of the coupled Halton sampling strategy could be extended to quadrics ray
tracing.

The time to obtain the REFs between the super faces with the adapted ray tracing
algorithm was compared to the computation time of the original detailed FE REFs, con-
sidering the same ray density. Three space structures were considered and more than one
order of magnitude reduction was achieved in all three cases.



RADIATIVE-CONDUCTIVE
THERMAL MODEL REDUCTION
APPLIED TO SPACE
STRUCTURES

Abstract

This chapter combines the developments of the global reduction method-
ology introduced in previous chapters, namely the FE mesh clustering,
the super faces quasi-MCRT, the super nodes definition, the conduct-
ive reduction and temperature recovery. The performance of the global
reduction and recovery process is demonstrated using two space struc-
tures, namely the EUI entrance baffle and MTG back telescope assembly.
Several orders of magnitude reduction is achieved in model size and com-
putation time without significant loss of accuracy.
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6.1 INTRODUCTION

Figure 6.1 shows how the different building blocks developed in the previous chapters
are integrated in the proposed global reduction process.

Starting from the structural FE mesh, small adaptations are inevitable such as adding
MLI, defining contacts between parts and all the thermal and thermo-optical properties
of the model. From that point, the thermal engineer selects the critical surfaces of the
model to be fitted with quadrics and defines the number of super nodes for each part of
the model, as he would define the nodal breakdown of a classical thermal LPM model.
Then, the clustering is carried out following the procedure described in Chapter 4 along
with the conductive reduction. In parallel, the quasi-MCRT developed in Chapter 2 and
adapted to super faces in Chapter 5 is carried out on the partitioned mesh.

Structural FE mesh

Structural FE mesh adaptation
Thermal properties

AV 4
Detailed thermal FE mesh

Selective quadric fitting
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Figure 6.1 — Proposed global reduction process workflow.

From the resulting super faces REFSs, the super nodes radiative couplings are derived.
To the resulting reduced LPM model consisting of the super nodes with their radiative and
conductive couplings, the thermal engineer may add user logic or specific components such
as heat pipes. The reduced non-linear model is solved with standard algorithm similar to
the soLvFM routine of ESATAN, iteratively linearising the radiation terms and solving the
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linear model. An iterative step can be envisaged to assess the error and locally modify
the clustering accordingly. This loop is represented by the dashed arrow in Figure 6.1.
Once the super node temperatures are computed, the approximate detailed temperature
field can be recovered and in parallel the heat flow maps can be generated. The detailed
temperatures can then be straightforwardly handed over to the structural engineer to
perform the necessary coupled analyses.

The price to pay for this framework to be followed is a more collaborative work between
the thermal and mechanical engineers early on from the model creation step.

This chapter is first devoted to the structure of the back telescope assembly. Section 6.3
discusses the global reduction process behaviour with the EUI entrance baffle already
introduced several times across this document. For both applications, different reduction
levels are assessed and compared to the detailed solution. Conclusions of the present
chapter are eventually drawn in Section 6.4.

6.2 MTG BTA

In this section, the Back Telescope Assembly (BTA) that is part of the Meteosat Third
Generation (MTG) Infrared Sounder (IRS) instrument is considered. Because it supports
4 mirrors, the temperatures of the BTA must be controlled and computed very accurately
to guarantee that the mirrors remain aligned during the mission.

The BTA is made of Aluminium and the radiative environment is set to —100°C for
this test case. To reduce the computation time and number of REFs of the detailed solu-
tion, the emittance is assumed to be 1. Figure 6.2(a) shows the detailed mesh composed
of 35217 nodes along with the location of the boundary conditions. The temperature
is fixed to 20°C at the location depicted in red and 10 W are applied at the opposite
mounting interface. Figure 6.2(b) shows the resulting detailed mesh temperatures. The
temperature drops down to almost —25.9 °C in the central region of the structure before
rising to —9.8 °C where the dissipation is applied.

Temperature [°C]

20.0

-20.0
-25.9

~
(2) (b)

Figure 6.2 — Detailed mesh showing the boundary condition location: 20°C fixed temperature
in blue and 10 W load in red (a). Reference solution obtained solving the detailed model (b).
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In the frame of the BTA project, a dedicated ESATAN-TMS model had to be de-
veloped. A dedicated CAD-independent mesh was created and because of the complic-
ated structure, no automatic conductive links computation was possible in ESATAN-TMS.
They were computed manually and therefore subjected to approximations based on simple
geometrical configurations [33]. The ESATAN-TMS model is composed of 422 LP nodes
and Figure 6.3 presents the temperature map corresponding to the same boundary con-
ditions. The minimum observed temperature is now —28.4 °C instead of—25.9 °C and the
heat load application area rises up to —7.2°C leading to an error of 2.6 K.

Temperature [°C]

20.000
16.976
13.952
10.927

7.903
4.879
1.855

-1.170
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-10.242

-13.267

-16.201

-19.315

-22.339

-25.364

-28.388

Figure 6.3 — MTG BTA structure ESATAN-TMS LPM model subjected to the same thermal
environment described in Figure 6.2.

Based on this observation, it was decided to use the FE conductive reduction method
to generate a new set of conductive links and replace the ones calculated manually. To
this aim, the ESARAD and FE meshes were superimposed and identified. A modified
version of the clustering algorithm was then applied to generate the more accurate reduced
conductive links [353].

The global conductive radiative reduction method avoids creating a dedicated LPM
mesh and directly exploits the FE mesh for both conductive and radiative aspects. It
might be argued that the conduction reduction generates many non-physical, i.e. negative,
conductive links, even between non-adjacent nodes in the model. Figure 6.4 shows the
magnitude of the conductive links associated with the super node represented in magenta.
Even though it exhibits non-zero conductive link with distant super nodes, the magnitude
of the conductive link decreases rapidly as the conductive path between the two super
nodes increases. Only a few super nodes in the vicinity of the considered one share
a significantly large conductive coupling with it, the rest being minor corrections. This
underlines that the reduced conductive links must be considered as a whole set and cannot
be treated separately.

As performed with the EUI entrance baflle, the mesh was partitioned in 10 and 100
clusters. Figures 6.5(a-f) present the corresponding results to be compared with the
detailed solution given in Figure 6.2. Figure 6.5(a) shows that each of the ten clusters
contains a large portion of the mesh including several beams of the truss while with
100 clusters, each beam is separated in two or three super nodes. Figures 6.5(c) and
(d) give the recovered detailed temperatures and, together with Figures 6.5(e) and (f),
they highlight the fact that 10 super nodes already capture a large part of the thermal
behaviour of the structure with errors ranging from —1.1 K to 1.2 K. The corresponding
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Figure 6.4 — The BTA structure is partitioned in 100 clusters. The magnitude of the conductive
links related to the super node highlight in magenta decreases with the distance to the super
node of interest.

RMS error is only 0.62 K and drops down to 0.06 K with 100 super nodes. Compared to
the initial ESATAN model, the proposed global reduction method gives with 4 times less
nodes a maximum error that is less than 0.3 K instead of 2.6 K.

6.3 EUI ENTRANCE BAFFLE

The first example consists of the EUI entrance baffle that is made of a 1 mm thick
Aluminium shell. Composed of 18460 elements and 18590 nodes, the structural mesh
is illustrated in Figure 6.6. It is mounted onto the EUI door mechanism and fixed by 6
screws and two pins located at the back of the baffle. To better highlight the performances
of the method, the thermal environment the baffle is exposed to is slightly modified. As
depicted in Figure 6.6, the temperature around the 6 screw holes is fixed to 20°C and
the baffle is surrounded by a radiative environment at —100°C. The 0.28 A.U. perihelion
solar heat flux (17.4kW m~2) impinges the whole surface of the baffle with a 45 degrees
off-pointing angle, i.e. the Sun direction is given by the [-1,1, 0] vector expressed in the
axes displayed in Figure 6.6. In reality, the instrument is enclosed in the S/C and is
protected from the major solar heat flux by its 400 mm thick heat shield that is equipped
with feedthroughs providing the strictly necessary field of view.

Figure 6.7(a) presents the resulting absorbed heat flux, assuming that the solar ab-
sorptance and reflectance of Aluminium are 0.2 and 0.8, respectively, with the reflectance
being entirely specular. Shadowing and multiple reflections effects are clearly observed.
In particular, the multiple reflections produce concentration of the absorbed solar flux
close to the middle and back annular interfaces. The flat nature of the FE faces also gen-
erates non-physical discrete concentration lines inside the baffle as well as on the annular
interfaces. The latter effect highlights the need for accurate surface normal representation
in the ray tracing process.

Figure 6.7(b) shows the detailed baffle temperature distribution resulting from the
aforementioned boundary conditions and environmental heat fluxes. This distribution
constitutes the reference solution to which the different reduced models will be compared.
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Figure 6.5 — The left (a,c,d) and right (b,d,f) column figures correspond to 10 and 100 super

nodes, respectively. Top (a-b): region growing clustering results. Centre (c-d): recovered detailed
temperature distribution. Bottom (e-f): recovered detailed temperature error.
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Figure 6.6 — EUI entrance baffle structural FE mesh with the z, y, and z coordinate axes
represented by the red, green and blue vectors, respectively. The temperature around the fixation
screw holes, depicted in red, is fixed.
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Figure 6.7 — Absorbed solar heat fluxes with a 0.2 solar absorptance and 0.8 specular solar
reflectance (a). Reference temperature distribution (b).

The computation of the absorbed solar heat fluxes and temperature with the present
FE mesh took several hours. From a thermal point of view, such a detailed model is
not necessary. The global reduction process is thus applied to decrease the number of
faces and nodes while keeping accurate conductive links. It is worth mentioning that
for 10 super nodes, computing the reduced conduction matrix takes less than 10 seconds
with the local matrix inversion scheme developed in Section 4.3 while it takes around 215
seconds to invert the whole augmented conduction matrix M and obtain the exact same
results.

As in the previous chapter, two quadrics are fitted to the model, i.e. one for the front
and one for the tube, to correctly model the surface normals. Figure 6.8 presents the mesh
partitioned into 100 clusters and shows the differences between the absorbed solar heat
rate of each super face and the one obtained from the detailed flat FE faces presented
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in Figure 6.7 and integrated over each super face. Even if the differences amount to a
few mW and remain insignificant in this case, Figure 6.8 highlights the differences in
the distribution due to the multiple reflections inside the baffle and close to the external
annular interfaces. It also shows the effect of taking into account the quadric not only
for the normal but also for the intersection and sampling. In this specific case, it means
taking the actual conical surface area which is larger than the FE face area to derive the
ray energy. This effect is more observed in the regions where the solar flux impinges the
surface at near grazing angles for which the actual cross section of the surface exposed to
the solar flux is larger. Figure 6.8 shows this effect with the orange super faces aligned
along the baffle axis and exhibiting a small positive difference.

Error [mW]
8.8

5.0

0.0

-11.9

Figure 6.8 — Differences between the absorbed solar heat flux obtained from the quadric and flat
FE faces ray tracing, integrated over each super face Qsp — Qrg [mW].

Figures 6.9(a-f) present the global reduction process results, for 10 and 100 super
nodes. Figures 6.9(a) and (b) show that the mesh is subdivided into 6 regions clustered
independently, the total number of clusters being distributed proportionally to the area
and characteristic length of each region. With 10 clusters, 5 of the 6 regions are left
undivided and only the central part of the cone is partitioned. If the part needs to
be divided into 100 clusters, the partitioning algorithm leads the annular regions to be
divided only angularly while the central cone clearly exhibits the Voronoi-like shaped
clusters. Figures 6.9(c) and (d) give the results of the solar ray tracing. Coming from the
super node definition, heat fluxes are averaged over the whole super face area. Shadowing
and concentration effects are inherently lost if the number of clusters is too small and can
only be recovered by increasing it.

Figures 6.9(e) and (f) directly present the error between the recovered detailed tem-
peratures obtained from the super nodes and the reference solution given in Figure 6.7(b).
The 10 super nodes reduced model, ¢.e. involving almost a 200 reduction factor, already
gives promising results with an RMS error of 1.4 K and a maximum error of 3.0 K. Largest
errors arise where the uniform heat flux assumption is most violated: on the second an-
nular interface, that is almost half in sunlight, half in shadow. Increasing the number of
super nodes to 100 reduces the RMS and maximum errors down to 0.21 K and 0.77 K,
respectively.

The whole procedure is automatised and varying the number of clusters does not take
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Figure 6.9 — The left (a,c,d) and right (b,d,f) column figures correspond to 10 and 100 super
nodes, respectively. Top (a-b): region growing clustering results. Centre (c-d): average solar
heat flux absorbed by the super face. Bottom (e-f): recovered detailed temperature error.
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much time. Hence, increasing the number of super nodes is straightforward and a new FE
mesh partition can be generated from which the conductive and radiative links REFs and
solar heat fluxes can be recomputed. Figure 6.10 presents the convergence of the RMS
temperature error with respect to the detailed solution. The convergence is almost linear
in function of the number of super nodes, meaning that doubling the number of super
nodes reduces the error by a factor 2. Some regions are however more useful to refine than
others, such as regions subjected to large temperature gradients or where abrupt changes
of the external heat fluxes are expected.
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Figure 6.10 — Convergence of the RMS temperature error.

6.4 CONCLUDING REMARKS

This chapter validated the global reduction methodology with two real space struc-
tures. Starting from the detailed FE mesh, two or three orders of magnitude reduction
of the number of nodes was achieved without significant loss of accuracy. Table 6.1 sum-
marises the size of the conductive and radiative coupling matrices. It highlights how large
the detailed model radiation matrix can be. As explained in the previous sections and in
Chapter 4, the proposed conductive reduction strategy tends to generate reduced conduc-
tion matrices with very low sparsity level. For the reduced model, the size of the matrices
is obtained by adding the number of super nodes to the number of detailed nodes kept
for the boundary conditions. For instance, to allow a fair comparison with the detailed
model, the EUI entrance baffle required the 6x9 nodes around the screw hole and the
environment node to be included in the reduction process, meaning that the size of the
reduced conduction matrix is 65x65 with ten super nodes.

In practice, a dedicated super node representing the average temperature would be
defined instead. It could be linked by a thermal contact conductance to another dedicated
super node representing its footprint on the door mechanism onto which the baffle is
mounted. These interfaces or boundary condition super nodes (like the red surface where
the heat flux is applied in the BTA example) are not considered in the clustering algorithm
and are defined separately. They are taken into account in the reduction process and only
need to be linearly independent, like all super nodes. For the reduced matrices, the kept
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interface nodes explain why there are more conductive couplings than radiative couplings.
The kept interface nodes do not participate radiatively since they are part of super nodes
already participating and the radiation exchanges are not counted twice.

From the numbers given in Table 6.1, only half of the values need to be stored and
processed in the solver since the matrices are symmetric. Even with 100 super nodes, the
reduction of the number of radiative couplings is huge: almost a factor 5000 for the BTA
structure and a factor 30000 for the EUI entrance baffle. As for the REFs in Chapter 5, this
drastic matrix reduction reduces the computation time of the temperatures significantly,
from several tens of minutes up to a few hours for the detailed models to a few seconds
for the reduced models.

detailed 10 SNs 100 SNs

BUI baffle | KL 165918 (99.9%) 4096 (3.1%) 23716 (1.3%)
Kr | 192295140 (44.4%) 119 (97.2%) 6490 (73.0%)

MTG BTA | K- 416827 (99.9%) 4489 (2.9%) 24649 (1.3%)

Kr | 46375025 (96.3%) 127 (97.3%) 9797 (61.0%)

Table 6.1 — Number of non-zeros elements of the conduction and radiation matrices of the full
and reduced models. The level of sparsity of each matrix is given in parentheses.

The global reduction approach is particularly suited for detailed space instrument
and component design that are usually composed of complex shapes for which thermo-
mechanical analyses are mandatory. Performing both analyses in the same modelling
environment would ease model data exchanges. The proposed method however does not
intend to replace the LPM for reduced LPM models exchanges between parties. ESATAN
and SINDA formalisms are indeed particularly adapted when various reduced models of
instruments or components need to be integrated into a higher level thermal model.

The proposed approach may be deemed inappropriate for early-phase S/C level ana-
lyses where a high degree of abstraction is needed with electronic boxes for instance
modelled with only one node for thermal model or one lumped mass in the structural
model. Yet, due to the short time scale often required by these pre-study analyses, spe-
cific early thermal and thermo-mechanical assessments could benefit from the automatic
meshing strategies provided by the FEM and the proposed reduction method avoiding
the time consuming creation of a dedicated LPM model.

The rapidly growing additive manufacturing techniques now enable manufacturing the
complex shapes generated by topology optimisation [354]. During the several European
Space Thermal Analysis Workshops I had the chance to attend, I discussed with space
industry actors about the thermal analysis challenges hidden behind topology optimised
structures. Today’s space thermal analysis techniques are inappropriate to model complex
shapes and additive manufacturing coupled to topology optimisation is calling for new
methods [355]. The proposed global reduction method is perfectly adapted to the study
of such complex shapes.

In the context of space instrument design, the purpose of thermo-mechanical analyses
is twofold: first verify the integrity of the structure across the whole thermal environment
it is submitted to and second to check optical elements remain aligned [356, 357|. Because
the proposed method offers the possibility to fit quadric to specific surfaces, this feature
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could be exploited to retrieve the change of curvature of mirrors and lenses during thermo-
elastic analyses.



CONCLUSIONS

The present doctoral thesis constitutes a new attempt to re-unify the finite element
and lumped parameter methods for space thermal analysis. Based on their respective
advantages and drawbacks described in Table 1 of the introduction, we propose a new
global non-linear radiative-conductive a prior: model reduction technique. The space
thermal analysis through finite element modelling (STARFEM) framework brings together
LPM and FEM and bridges the gap between thermal and structural analyses. Figure 7.1
summarises the proposed framework which relies on the strengths of both methods.

STARFEM

LPM
MCRT

small # of nodes

FEM

quasi-MCRT
FE mesh clustering
conductive reduction
quadric fitting
reduced LPM model
detailed T° recovery

automatic meshing

accurate conductive links

thermo-elastic analysis primitives

user logic

Figure 7.1 — Re-unification of the FEM and LPM with the STARFEM framework.

To combine the LPM with the FEM and achieve the global reduction method, several
building blocks are developed in the different chapters of this thesis.

o In Chapter 2, the Monte Carlo ray tracing method, one of the foundations of space
radiative analysers, is improved by introducing the new coupled Halton sampling
strategy. The proposed quasi-MCRT scheme significantly reduces the number of rays
required for a given accuracy'. Chapter 2 also improves the orbital heat fluxes com-
putation. In particular, the planet-focused Halton sampling strategy is developed.
Instead of relying on visible or infrared REFs, only useful rays are traced in the
direction of the planet. In Chapter 3, the performances of the proposed methodo-
logies in terms of accuracy and convergence rate are demonstrated using real space
structures.

! After attending my presentations during the past ESA Thermal Analysis Workshops, the developers
of THERMICA, T. Soriano and C. Théroude from Airbus Defence and Space Toulouse, were convinced
to integrate my developments in THERMICA [358].
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o In Chapter 4, the second approach to decrease the REFs computation time is ad-
dressed i.e. reducing the number of faces. Through FE mesh clustering, the concept
of super node is defined and lays down the foundations of the reduced thermal model.
Chapter 4 also exploits the second advantage of FEM (after automatic meshing) to
generate accurate reduced conductive links. Combined with the super nodes defin-
ition, the detailed FE mesh conduction matrix is reduced through an innovative
local inversion scheme.

o The conductive reduction being handled, the quasi-MCRT algorithm developed in
Chapter 2 needs to be adapted to the partitioned mesh. In particular, the primitives
from the classical space thermal analysis software are advantageously replaced by
fitting quadrics to the FE mesh. This process is developed in Chapter 5. The su-
per node external surfaces are divided into super faces classified as quadrics, planar
clusters or single FE faces. The sampling and intersection strategies are updated
in Chapter 5 to handle the super faces. From these, the REFs are computed and
the super node radiative couplings are derived. No performance degradation of the
updated quasi-MCRT algorithm is observed, therefore enabling both REFs compu-
tation time reduction techniques to complete each other.

o Chapter 6 finally brought together the previous developments building the non-
linear reduced model from the super nodes and associated reduced radiative and
conductive couplings. The reduced model can be treated as any LPM model and
the temperatures can be computed with standard iterative solvers. It therefore
allows the integration of any user logic or component like standard LPM models,
picking the last advantage from the LPM list.

The proposed global conductive-radiative reduction strategy leads to several orders of
magnitude reduction of the computation time of the radiative couplings and temperatures,
without significant loss of accuracy compared to the detailed model. Besides, it avoids the
time consuming task of creating dedicated GMM and TMM when a structural FE mesh is
available and most of the CAD simplifications were already performed. It further smooths
the interactions between the structural and thermal analyses, making the evermore critical
coupled analyses easier to be carried out.

PERSPECTIVES FOR FUTURE RESEARCH

The developments presented in this doctoral thesis give rise to several paths for im-
provements and generalisation of the method.

Error control and iterative reduction

Non-uniform heat fluxes are the root of reduction errors. As discussed in the thesis,
there are several sources of non-uniformity among which there are radiative heat exchanges
or environmental heat fluxes.

Because it is less computationally expensive than the REFs computation, performing
the OHFs ray tracing on the detailed mesh and exploiting the shadowing and concentration
locations in the clustering process could be envisaged. This may help generating more
uniform heat fluxes on the super nodes. While this may seem attractive for steady-state
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analysis, this strategy may become complicated for transient cases with spatially varying
external heat fluxes.

To illustrate this iterative procedure, the one-dimensional radiative beam example
presented in Chapter 4 is considered. A first reduced model is generated with two super
nodes from which the detailed temperature profile is recovered. The gradient in each
element is computed and input as the weight of the k-means clustering initialisation.
This way, large gradient regions are more densely populated with cluster seeds. Figure 7.2
presents the results with two super nodes. The updated clustering reduces the size of the
left super node where the temperature gradient is largest. Even if the error at the tip
is almost identical, the global RMS error decreases from 2.76 K to 1.86 K for the same
number of super nodes.
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Figure 7.2 — Iterative clustering method applied to the radiative beam. The detailed and initial
reduced models are compared to the updated reduced model.

An alternative would be to exploit again the recovered temperatures from the initial
reduced model not only to update the position of the clusters but also to modify the
number of super nodes. If the thermal engineer specifies a maximum temperature gradient
per cluster, the greedy region growing algorithm could take into account the recovered
temperature profile. The algorithm would stop to add adjacent elements to a region when
the gradient threshold is achieved, and start with new regions.

For large models, only specific regions might require an update and one may desire
to avoid the REFs re-computation. In such cases, the clustering could be applied locally
to the clusters to be modified and the new super nodes radiative links might be derived
from the already computed ones assuming a re-distribution proportional to the area of
each new cluster.

There is a lot of room to generalise these iterative concepts to three dimensions. Great
care must be taken in the iterative procedure, considering how it applies to transient
analyses. It is also worth mentioning that temperature gradients are not necessarily
synonym of reduced model errors. As demonstrated in Chapter 4, applying a uniform heat
flux over the super node gives rise to a temperature gradient that is perfectly captured
by the reduced model. The temperature gradient only becomes a source of error in the
presence of radiative heat transfer or transients.



Conclusions 149

Parallel computing

Throughout this manuscript, we showed that there was a lot to learn from the com-
puter graphics community, such as clustering algorithms or ray tracing acceleration tech-
niques.

It is therefore important to mention a third way to reduce the computation time of
the REFs i.e. to take advantage of the inherent parallelism of the ray tracing process.
Parallel computing [36, 359, 360], in particular using Graphics Processing Units (GPUs)
[361-363| is another field where the many developments are already performed by the
computer graphics community. Exploiting GPUs to accelerate scientific computation is
often referred to as General-Purpose GPU or GPGPU and has already been applied to a
wide variety of problems [364].

Although the actual performance gain provided by the GPUs over CPUs was subject
to discussions [365, 366|, substantial reduction of the computation time is nevertheless
achieved in industrial applications [367]. The main drawback of GPUs is that they re-
quire highly optimised memory management, depending on their specific architecture. Ef-
forts are undertaken to simplify coding in CUDA (the programming language of NVIDIA
GPUs) [368], and open programming languages such as OPENCL are developed to handle
hybrid CPU and GPU architectures [369].

Convection and participating media

Although convective heat transfer was not considered in this thesis, the proposed
method could be coupled with CFD analyses where the surface super nodes would act as
thermal bridges to which convective heat transfer would be applied. Adapting the ray-
tracing to include bulk absorption and participating media as described in [35] would also
allow reducing the computational burden associated with thermal modelling of exhaust
nozzles or combustion chambers [370, 371].



INTEGRATION LIMITS FOR
ORBITAL HEAT FLUXES
COMPUTATION

A.1 INTRODUCTION

To derive the planetary infrared and albedo heat fluxes, Equations 2.23 and 2.24
defined in Section 2.4 need to be integrated over the domains S, and S, defined as

Se=81N&ENS;
SezslﬂSg

where S1, Sy and S3 are

« the spacecraft field of view limited by the S/C FoV footprint C; ,
« the surface of the planet located above the face plane footprint Cs |

o and the sunlit side of the planet limited by the terminator Cs, respectively.

This appendix gives the equations of the three footprints along with their potential
intersection. The notations in this appendix are described in Figure 2.25.

A.2 THE THREE FOOTPRINT EQUATIONS

A.2.1 S/C field of view

The spacecraft field of view is defined as the cone subtended by the S/C and tangent
to the planet. Its footprint C; is a z-axis centred circle in the plane z = c08 6, max = 1/h;

with a radius sin 6, p.x = /h2 — 1 /h,:
Ci(0:,0.) =1/h, [\/h2 =1 cos¢, /hZ—1'sing, 1] (A.1)

A.2.2 The S/C face plane

The face plane equation, defined by its unit normal 0 = [Sin'y 0 —cos'y] in the local
frame, becomes:

xsiny — zcosy + hycosy =0 (A.2)
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If |7 >| 0 max, the face plane intersects the planet along a circle symmetric with respect
to the z — z plane. The equation of the intersection is obtained by rotating a circle of
radius r, = /1 — h2cos?y centred on z axis in the plane z = h, cosy by an angle —vy
around the y axis:

cosy 0 sinvy
Co(0,,0.) = [rn COS¢ T,CO08¢P COS ”yhr} 0 1 0

—siny 0 cosvy (A-3)

= [rn cos ¢ cosy — sinycosyh, r,sing 1, cos@siny + cos? ”yhr}

The face plane footprint vector equation then need to be translated in a 6.-¢. rela-
tionship. Identifying cosf, as the z component and tan ¢, as the ratio between y and =z
components of each vector, the face planet footprint becomes:

cosf, = cos ¢sinyy/1 — h2cos?y + cos® vh,
sin /1 — h2 cos? vy

tan ¢, = .
cos ¢ cosyy/1 — h2 cos?y — siny cosvh,

Extracting cos ¢ from the first equation to plug it into the second expresses the FoV
footprint as a 6, function of ¢,:

1 + cos? v tan? ¢,

0. ¢,(6,) — arccos (m cos? ysec? g, + siny /(1 — hZ) cos? ysec? g, + sit” v) (A1)

A.2.3 The terminator

The third footprint to be defined is the terminator defined as the line dividing the day
(sunlit) side of the planet from the dark night side. The normalized Sun position vector

~

T's o can be expressed with the angle 0 € [0, 7] and ¢ € [0, 27|

1%@_)@ = [cos Oosinfy  singgsinf,  cos 9@}

The terminator equation is obtained by rotating the great circle represented by the
vector [cos ¢ sing 0} in the x —y plane (corresponding to the terminator when the Sun
is located in the +z direction, 6, = 0) by an angle 6 around y axis and by ¢ around z
axis.

cosfl 0 —sinbg oS Qg singg 0
Cs5(0,¢) = [cos¢ sing 0] 0 1 0 —singy —cosos 0
sinfl;, 0 —cosf, 0 0 1

= [cos O cos O cos ¢ — sin g sin @ sin ¢ cos O cos @ + cos ¢ sin @ — sin O cos gb]

(A.5)
Similarly to the face plane footprint, the terminator vector equation is translated in a
0.-¢. relationship:
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cosf, = —sinfg cos ¢
sin ¢, cos O, cos ¢ + cos @, sin ¢ (A.6)
COS @, cos B cos ¢ — sin ¢ sin ¢

tan ¢, =
and ¢ is eliminated to get the 6, as a function of ¢, for the terminator:

—sin 0@

V14 cos? 0 tan?(ge — ¢.) ) (A7)

0. c,(¢.) = arccos (

A.3 INTERSECTION BETWEEN THE FOOTPRINTS

Because multiple footprints might be involved in the integration of Equations 2.23 and
2.24, their intersections need to be computed.

Many different intersection configurations can occur and Figure A.1 gives a repres-
entative configuration where all three footprints intersect. The S/C field of view S is
represented by the hashed area, the integration domain above the face plane footprint S,
is represented by the red transparent area and the sunlit integration domain S; by the
yellow transparent area. The global albedo integration domain S, is therefore represented
by the hashed orange (red+yellow) area. Integrating over this domain is reduced, in this
particular case, in splitting the integration of Equation 2.23 into four regions:

« up to the S/C field of view footprint (black line) from ¢, 22 to ¢, 21,
« up to the terminator footprint (yellow line) from ¢, 21 to ¢, 31,

« up to the face plane footprint (red line) from ¢, 31 to ¢, 32,

« and finally again up to the terminator footprint (yellow line) from ¢, 32 to ¢, 2.

Figure A.1 — Representative footprint intersection configuration and integration domain, viewed
from the S/C.
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The face plane intersects the S/C FoV footprint symmetrically with respect to x — z
plane at an angle ¢, found by inserting the components of the S/C FoV limit given by
Equation A.1 into the face plane equation:

Sin 7y sin 0, max €OS ¢, — cos 7y cos 0, max + My cosy =0
from which cos ¢, ; is extracted

92 max hr
cos ¢, 1 = cot WCOS ’ = —cotyy/hZ—1 (A.8)

sin ez,max

The azimuthal angle ¢, 5 at which the terminator intersects the FoV footprint is ob-
tained by equating the z component of the vector given by Equation A.5 to the z com-
ponent of the FoV footprint plane (which is perpendicular to z axis)

€08 0, max = — sin g cos ¢

The ¢ angle is then plugged into Equation A.6 giving tan ¢, and ¢, ¢, _c,

oS e/ h2 — csc? B — cot b sin qb@)
sin ¢g \/m + cot O, cos ¢

To derive the azimuthal angle ¢, 3 at which the face plane intersects the terminator,
the components of Equation A.5 are inserted into Equation A.2.

¢.2 = arctan (

.

cos ¢ (siny cos ¢ cos b + cosysin b)) — sin ¢ sin -y sin ¢, + h,. cosy = 0
—_———— ——

~~
Cc1 Cc2 Cc3

It can be transformed to a second degree equation in terms of tan(¢/2) to find the local

angle ¢
+ /2 2 _2
¢ = 2arctan (CQ R )

3 —C1

with the constants c;, c; and c3 as defined above. ¢,¢, ¢, is finally derived through
Equation A.6:

cos 0 sin ¢, cot ¢ + cos P
cos 0 cos ¢ cot ¢ + sin P

¢, 3 = arctan <

For each configuration, Equations A.4 and A.7 and their intersections ¢, 1, ¢, and
¢..3 define the proper integration domain to compute the albedo and infrared heat fluxes.
As depicted in Figure A.1, each intersection gives two azimuth angles ¢,1; and ¢, 12 for
the FoV and face plane, ¢, 21 and ¢, 92 for the FoV and terminator and ¢, 3; and ¢, 35 for
the face plane and the terminator.
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