
Deep Reinforcement Learning Solutions for
Energy Microgrids Management

Vincent François-Lavet v.francois@ulg.ac.be
David Taralla dtaralla@ulg.ac.be
Damien Ernst dernst@ulg.ac.be
Raphael Fonteneau raphael.fonteneau@ulg.ac.be
Department of Electrical Engineering and Computer Science, University of Liege, Belgium

Abstract
This paper addresses the problem of efficiently operating the storage devices in an

electricity microgrid featuring photovoltaic (PV) panels with both short- and long-term
storage capacities. The problem of optimally activating the storage devices is formulated
as a sequential decision making problem under uncertainty where, at every time-step, the
uncertainty comes from the lack of knowledge about future electricity consumption and
weather dependent PV production. This paper proposes to address this problem using
deep reinforcement learning. To this purpose, a specific deep learning architecture has
been designed in order to extract knowledge from past consumption and production time
series as well as any available forecasts. The approach is empirically illustrated in the case
of a residential customer located in Belgium.

1. Introduction
An electricity microgrid is an energy system consisting of local electricity generation, local
loads (or energy consumption) and storage capacities. In this paper, we consider microgrids
that are provided with different types of storage devices in order to be able to address both
short- and long-term fluctuations of electricity production using photovoltaic (PV) panels
(typically, batteries for short-term fluctuations, and hydrogen/fuel cells for long-term fluctu-
ations). Distinguishing short- from long-term storage is mainly a question of cost: batteries
are currently too expensive to be used for addressing seasonal variations. Energy micro-
grids face a dual stochastic-deterministic structure: one of the main challenge to meet when
operating microgrids is to find storage strategies capable of handling uncertainties related
to future electricity production and consumption; besides this, microgrids also have the
characteristics that their dynamics deterministically reacts to storage management actions.

In this paper, we propose to design a storage management strategy which exploits this
characteristic. We assume that we have access to: (i) an accurate simulator of the (deter-
ministic) dynamics of a microgrid and (ii) time series describing past load and production
profiles, which are realizations of some unknown stochastic processes. In this context, we
propose to design a deep Reinforcement Learning (RL) agent (Mnih et al. (2015)) for ap-
proximating the optimal strategy through interaction with the environment. The deep RL
algorithm proposed in this paper has been specifically designed to the setting which is origi-
nal in the sense that the environment is partly described with a deterministic simulator (from
which we can generate as much data as necessary), and partly with a limited batch of real

1

stochastic time series (load and production). Unlike Kuznetsova et al. (2013), our specific
deep Neural Network (NN) architecture is built upon a large continuous non-handcrafted
feature space that uses convolutional layers to extract meaningful features from time se-
ries (see e.g. Szegedy et al. (2015)). Compared to the approach in Mnih et al. (2015), we
propose a validation strategy which periodically evaluates how well the policy performs on
unseen time series to ensure that the agent does not overfit on the limited training data.
Finally, our approach also aims at minimizing sources of errors that may appear in other
related approaches: for instance, positive bias generated when learning from imitation of
optimal solutions (Aittahar et al. (2015)) or e.g. errors associated with scenario aggregation
in stochastic programming (Mohammadi et al. (2014)).

This paper is organized as follows: Section 2 describes the deep RL framework. Section
3 details the microgrid benchmark. Section 4 introduces our Deep RL structure dedicated to
microgrid management, as well as empirical results corresponding to the case of a residential
customer located in Belgium. Section 5 concludes.

2. Deep reinforcement learning solutions for sequential decision making
Optimally operating a microgrid can be formalized as a partially observable Markov decision
process, where the microgrid is considered as an agent that interacts with its environment.
In order to approach the Markov property, the state of the system st ∈ S is made up of an
history of features of observations Oit, i ∈ {1, . . . , Nf}, where Nf ∈ N is the total number
of features. Each Oit is represented by a sequence of punctual observations over a chosen
history of length hi: Oit = [oi

t−hi+1
, . . . , oit] (the history length may depend on the feature).

At each time step, the agent observes a state variable st, takes an action at ∈ A and moves
into a state st+1 ∼ P (·|st, at). A reward signal rt = ρ(st, at, st+1) is associated to the
transition (st, at, st+1), where ρ : S ×A×S → R is the reward function. We then define the
γ-discounted optimal Q-value function:

Q∗(s, a) = max
π

E
st+1, st+2, . . .

[∞∑
k=t

γk−T rk|st = s, at = a, π

]
.

We propose to approximate Q∗ using a Neural Network (NN). We denote by Q(·, ·; θk)
the so-called Q-network. NNs offer generalization properties that are adapted to high-
dimensional sensory inputs such as temporal series. The NN parameters θk may be updated
using stochastic gradient descent (or other related techniques) by sampling batches of tran-
sitions (s, a, r, s′) in a replay memory, updating the current value Q(s, a; θk) towards a target
value Y Q

k = r+γ argmaxa′∈AQ(s′, a′; θ−k) where θ
−
k refers to parameters from some previous

Q-network called the target Q-network as introduced in Mnih et al. (2015). When using the
squared-loss, a Q-learning update is obtained as follows:

θk+1 = θk + α(Y Q
k −Q(s, a; θk))∇θkQ(s, a; θk) (1)

where α is a scalar step size called the learning rate.

3. Electricity microgrid: benchmark description
First, note that the microgrid model described hereafter is fully described in François-Lavet
et al. (2016). We denote the storage operation state of the microgrid by sMG

t ∈ SMG: it

2

describes the amount of energy in the storage devices. The amount of energy in the battery
is denoted by sBt [Wh] ∈ SBt and the amount of energy in the hydrogen tank is denoted by
sH2
t [Wh] ∈ SH2

t . We introduce xB [Wh] (resp. xH2 [Wp]) as the battery (resp. hydrogen)
storage sizing. The variable ηB (resp. ζB) denotes the battery discharge (resp. charge)
efficiency. Similarly, the electrolysis and fuel cells efficiencies are respectively denoted by
ηH2 (when storing energy) and ζH2 (when delivering energy). At every time step, an action
at = [aH2

t , aBt] ∈ At is applied on the system, where aH2
t is the amount of energy transferred

into (if positive) or out of (if negative) the hydrogen storage device (H2), similarly aBt is
the amount of energy transferred into or out of the battery (B). We have, ∀t ∈ T : At =(
[−ζBsBt ,

xB−sBt
ηB

]
)
×
(
[−ζH2sH2

t ,∞[∩[−xH2 , xH2]
)

which expresses the fact that the bounds on
the power flows of the storing devices are, at each time step t ∈ T , the most constraining
among the ones induced by the charge levels and the power limits. The battery dynamics is
given by: sBt+1 = sBt + ηBt a

B
t if aBt ≥ 0 and sBt+1 = sBt +

aBt
ζBt

otherwise. Similarly, the hydrogen

dynamics is given by: sH2
t+1 = sH2

t + ηH2
t aH2

t if aH2
t ≥ 0 and sH2

t+1 = sH2
t +

a
H2
t

ζ
H2
t

otherwise.

The reward function of the system corresponds to the instantaneous operational revenues
rt at time t ∈ T . We now introduce three quantities that are prerequisites to the definition
of the reward function: (i) φt [Wh] ∈ R+ is the electricity generated locally by the PV
installation, (ii) dt [Wh] ∈ R denotes the net electricity demand, which is the difference
between the local consumption ct and the local production of electricity φt, (iii) δt [Wh] ∈ R
represents the power balance within the microgrid, taking into account the contributions
of the net electricity demand and the charge or discharge of the storage devices: δt =
−aBt − a

H2
t − dt. The instantaneous reward signal rt is obtained by adding the revenues

generated by the hydrogen production rH2 with the penalties r− due to the value of loss load:
rt = r(at, dt) = rH2(at, dt) + r−(at, dt). The penalty r− is proportional to the total amount
of energy that was not supplied to meet the demand: r−(at, dt) = kδt when δt < 0 and null
otherwise (k is the cost endured per Wh not supplied within the microgrid), while rH2 is
given by: rH2(at, dt) = kH2aH2

t (kH2 is the revenue/cost perWh of hydrogen produced/used)
From the series of rewards (rt), we obtain the operational revenues over year y defined as

follows: My =
∑

t∈τy rt where τy is the set of time steps belonging to year y. Optimizing the
operation of the microgrid requires to determine a sequential decision making strategy that
leads to the maximization of My. Note that in the microgrids literature, researchers often
use the overall Levelized Energy Cost (LEC) criterion, which is an economic assessment of
the cost that covers all the expenses over the lifetime of the microgrid (i.e. initial investment,

operation, maintenance and cost of capital): LECr =
I0+

∑n
y=1

My
(1+r)y∑n

y=1
εy

(1+r)y
where n denotes the

lifetime of the system in years; I0 corresponds to the initial investment; My represents the
operational expenses in the year y; εy is the electricity consumption in the year y; r denotes
the discount rate (either interest rate or cash flow discount).

4. Applying deep reinforcement learning for managing microgrids

We consider the case of a residential electricity consumer (average of 18kWh/day) located in
Belgium operating an off-grid microgrid. The cost k endured per kWh not supplied within
the microgrid is set to 2 e/kWh. Other microgrid parameters are taken from François-Lavet
et al. (2016). Three different cases (resulting in different state vectors) are considered:

3

(i) a base case with minimal information available to the agent:
st =

[
[ct−hc , . . . , ct−1], [φt−hp , . . . , φt−1], s

MG
t

]
where hc = 12h and hp = 12h are the lengths of the time series considered as input to the
neural network (consumption and production respectively);
(ii) the case where information on the season is provided:

st =
[
[ct−hc , . . . , ct−1], [φt−hp , . . . , φt−1], s

MG
t , ζs

]
where ζs is the smallest number of days to the solar solstice (21st of June) which is then
normalized into [0,1];
(iii) the case where accurate production forecasting is available:

st =
[
[ct−hc , . . . , ct−1], [φt−hp , . . . , φt−1], s

MG
t , ζs, ρ24, ρ48

]
where ρ24 (resp. ρ48) is the (known) solar production for the next 24 hours (resp. 48 hours).

4.1 Neural network architecture

We propose a Neural Network (NN) architecture where the inputs are provided by the state
vector, and where each separate output represents the Q-values for each discretized action.
Possible actions a are whether to charge or discharge the hydrogen storage device with the
assumption that the batteries handle at best the current demand (avoid any value of loss
load whenever possible). We consider three discretized actions : (i) discharge at full rate
the hydrogen storage, (ii) keep it idle or (iii) charge it at full rate.

The NN processes time series thanks to a set of convolutions with 16 filters of 2 × 1
with stride 1 followed by a convolution with 16 filters of 2× 2 with stride 1. The output of
the convolutions as well as the other inputs are then followed by two fully connected layers
with 50 and 20 neurons and the output layer. The activation function used is the Rectified
Linear Unit (ReLU) except for the output layer where no activation function is used.

Input #1

Input #2

Input #3

...

Fully con-
nected layersConvolutions Outputs

Figure 1: Sketch of the structure of the NN architecture. The NN processes time series
thanks to a set of convolutional layers. The output of the convolutions as well
as the other inputs are followed by fully connected layers and the ouput layer.
Architechtures based on LSTMs instead of convolutions obtain close results and
the reader is welcome to experiment with the source code.

4.2 Splitting times series to avoid overfitting

We consider the case where the agent is provided with two years of actual past realizations
of (ct) and (φt). In order to avoid overfitting, these past realizations are split into a training
environment (y = 1) and a validation environment (y = 2). The training environment is
used to train the policy while the validation environment is used at each epoch to estimate

4

how well the policy performs on the undiscounted objectiveMy and selects the final NN. The
final NN is then used in a test environment (y = 3) to provide an independent estimation
on how well the policy performs.

4.3 Training
By starting with a random Q-network, we perform at each time step the update given in Eq. 1
and, in the meantime, we fill up a replay memory with all observations, actions and rewards
using an agent that follows an ε-greedy policy s.t. the policy π(s) = maxa∈AQ(s, a; θk)
is selected with a probability 1 − ε, and a random action (with uniform probability over
actions) is selected with probability ε. We use a decreasing value of ε over time. During the
validation and test phases, the policy π(s) = maxa∈AQ(s, a; θk) is applied (with ε = 0). As
discussed in François-Lavet et al. (2015), we use an increasing discount factor along with a
decreasing learning rate through the learning epochs so as to enhance learning performance.

4.4 Results and discussions
We consider a robust microgrid sizing provided by François-Lavet et al. (2016). The size
of the battery is xB = 15kWh, the instantaneous power of the hydrogen storage is xH2 =
1.1kW and the peak power generation of the PV installation is xPV = 12kWp. We first run
the base case with minimal information available. The selected policy is based on the best
validation score. The typical behaviour of the policy is illustrated in Figure 2 (test data).
Since the microgrid has no information about the future, it builds up (during the night)
a sufficient reserve in the short-term storage device so as to be able to face the next day
consumption without suffering too much loss load. It also avoids wasting energy (when the
short term storage is full) by storing in the long-term storage device whenever possible.

(a) Typical policy during summer (b) Typical policy during winter

Figure 2: Computed policy with minimal information available to the agent. H action = 0
means discharging the hydrogen reserve at maximum rate; H action = 1 means
doing nothing with the hydrogen reserve; H action = 2 means building up the
hydrogen reserve at maximum rate.

We now investigate the effect of providing additional information to the agent. We report
in Figure 3(a) the operational revenue on the test dataMπq

y for the three cases as a function
of a unique percentage of the initial sizings xB, xH2 , xPV . For each configuration, we run the

5

process five times with different seeds. We first observe that the dispersion in the revenues
is higher for small microgrids: the operation being more challenging in such cases, small
differences in the decision process have a larger impact. Second, it can be observed that any
useful information added as input to the agent helps improving the policy, such as accurate
information about the production profile. Similarly, additional data on the consumption
profile would help to further improve the policy πq. This data could for instance take the
form of the current week day (1 to 7) in order to model the case where a residential customer
would consume, on average, more energy during some particular days of the week.

We can also plot the LEC obtained as a function of a unique percentage of the initial
sizings xB, xH2 , xPV . The LEC is calculated with the assumption that the operational
revenue obtained for the test data is the same over the lifetime of the microgrid.

(a) Operational revenue (b) LEC

Figure 3: Operational revenue and LEC (test data) function of the sizings of the microgrid.
The optimal deterministic operation is the one obtained by solving the problem
with the assumption of perfect knowledge of the whole future with the method
described in François-Lavet et al. (2016). The Naive policy operation is obtained
by optimizing the thresholds at which to discharge and charge the hydrogen stor-
age based on the level of energy in the battery (through grid search on rollouts in
the validation environment).

5. Conclusion

This paper has introduced a deep reinforcement learning architecture for addressing the
problem of operating an electricity microgrid in a stochastic environment. The proposed
approach is original in the overall validation process. Experimental results illustrate the
fact that the NN representation of the value function efficiently generalizes the policy to
situations corresponding to unseen configurations of electricity demand and solar irradiance.
Future works include the extension of the microgrid simulator, in particular by increasing
the diversity of electricity production and storage technologies. It would also be of interest
to investigate the case where several microgrids interact with each other and with the main
utility grid.

6

Data and source code
PV production and consumption profiles as well as main microgrid parameters can be found
at http://deer.readthedocs.io/en/master/user/environments/two_storages.html.
Source code is available at https://github.com/VinF/deer.

Acknowledgement

The authors thank the Walloon Region which has funded this research in the context of
the BATWAL project. We also acknowledge the use of the Python library Theano (Theano
Development Team (2016)).

The authors thanks the "Consortium des équipements de Calcul Intensif (CECI)", funded
by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No.
2.5020.11 for providing the computational resources needed for carrying out this research.

References

S Aittahar, V François-Lavet, S Lodeweyckx, D Ernst, and R Fonteneau. Imitative learning
for online planning in microgrids. In Data Analytics for Renewable Energy Integration,
pages 1–15. Springer, 2015.

V François-Lavet, R Fonteneau, and D Ernst. How to discount deep reinforcement learning:
Towards new dynamic strategies. arXiv preprint arXiv:1512.02011, 2015.

V François-Lavet, Q Gemine, D Ernst, and R Fonteneau. Towards the minimization of the
levelized energy costs of microgrids using both long-term and short-term storage devices.
Smart Grid: Networking, Data Management, and Business Models, pages 295–319, 2016.

E Kuznetsova, Y Li, C Ruiz, E Zio, G Ault, and K Bell. Reinforcement learning for microgrid
energy management. Energy, 59:133–146, 2013.

V Mnih, K Kavukcuoglu, D Silver, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

S Mohammadi, S Soleymani, and B Mozafari. Scenario-based stochastic operation man-
agement of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy
storage devices. International Journal of Electrical Power & Energy Systems, 54:525–535,
2014.

C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, and
A Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–9, 2015.

Theano Development Team. Theano: A Python framework for fast computation of math-
ematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.
org/abs/1605.02688.

7

http://deer.readthedocs.io/en/master/user/environments/two_storages.html
https://github.com/VinF/deer
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

	Introduction
	Deep reinforcement learning solutions for sequential decision making
	Electricity microgrid: benchmark description
	Applying deep reinforcement learning for managing microgrids
	Neural network architecture
	Splitting times series to avoid overfitting
	Training
	Results and discussions

	Conclusion

