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The hard pomeron in soft dataJ.R. Cudell∗, E. Martynov†, O. Selyugin‡Institut de Physique, Université de Liège, 4000 Liège, BelgiumA. Lengyel0Institute of Ele
tron Physi
s, Universitetska 21, UA-88000 Uzhgorod, Ukraine.Abstra
tWe show that the data for the total 
ross se
tion and for the real part of the elasti
amplitude indi
ate the presen
e of a hard pomeron in πp and Kp elasti
 s
attering at
t = 0, 
ompatible with that observed in deep inelasti
 s
attering. We show that su
h ahard pomeron is also 
ompatible with pp and p̄p data, provided one unitarises it at highenergy.1 The hard pomeron: what we knowThe existen
e of a hard singularity in hadroni
 amplitudes has been predi
ted a long timeago [1℄, within the 
ontext of perturbation theory at small-x. It was then shown that aleading-log(s) resummation would lead to a square-root bran
h-
ut in the 
omplex j planestarting at

αll
h = 1 +

12 ln 2

π
αSwith αS a �xed value of the strong 
oupling 
onstant.Su
h a �er
e singularity has not been seen in data, but it was shown later that the leading-log(s) predi
tions were unstable with respe
t to sub-leading resummation [2, 3℄, and that thesingularity was likely to be softer [4℄. Unfortunately, this result depends on the algorithm fol-lowed to 
hoose the renormalisation s
ale. Nevertheless, the main message is that perturbativeQCD leads to a strong singularity.As most of the data have some soft physi
s intertwined with short-distan
e e�e
ts, this�pure� BFKL pomeron may be transformed into another obje
t be
ause of long-distan
e 
or-re
tions. In fa
t, it is possible that su
h a singularity is already present in HERA data [5℄.If one assumes that the singularities of hadroni
 elasti
 amplitudes are well approximated bysimple poles only, then one needs to introdu
e a new singularity, apparently not present in
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soft 
ross se
tions, to a

ount for the rise of F2 at small x. This new singularity was taken tobe a simple pole, in whi
h 
ase one obtains a phenomenologi
al estimate of its inter
ept [5℄:
1.39 < αh < 1.44.From quasi-elasti
 ve
tor meson produ
tion, one 
an obtain an estimate [5℄ of the slope of thenew traje
tory
α′ ≈ 0.1 GeV−2.One of the troublesome properties of this singularity is that it is manifest only in o�-shellphoton 
ross se
tions. One may argue that, as standard fa
torisation theorems do not applythen, one 
an have a singularity that is not present in purely hadroni
 data. It is in fa
tun
lear whether this singularity should be present in the photon-proton total 
ross se
tion,for whi
h fa
torisation 
annot be proven either. A re
ent extrapolation [5℄ estimates that theratios of the soft pomeron to the hard pomeron 
oupling is given, for the total γp 
ross se
tion,by
ghard

gsoft
≈ 0.002. (1)It is possible however that the hard pomeron 
oupling is zero in this 
ase.So far, no observation of the hard pomeron has been reported in soft data, although severalauthors have shown that the in
lusion of a hard pomeron in soft data is possible [6℄. We shallargue here that su
h a singularity is in fa
t a ne
essary ingredient to obtain a good �t to allforward soft data − provided that one uses a simple pole to des
ribe the soft pomeron.2 Previous �ts to soft dataA 
onsiderable e�ort [7℄ has re
ently been devoted to the reprodu
tion of soft data throughanalyti
al �ts based on S-matrix theory. The main di�eren
e between the forms used 
on
ernsthe pomeron term, for whi
h three main 
lasses of dependen
e in s have been 
onsidered:

ln s
sd
, ln2 s

st
+ C, and simple poles (

s
s1

)α. Although these three forms for the pomeron workreasonably well in the des
ription of total 
ross se
tions at high energy (√s > 10 GeV), thesimple-pole des
ription fails if the energy threshold is lowered to √
s > 5 GeV, or if the realpart of the amplitude is in
luded, whereas the logarithmi
 forms a
hieve a good �t qualitydown to 5 GeV. Note that this is rather strange on theoreti
al grounds, as one would expe
tunitarised forms to work better at high-energy. We show in Table I the results 
orrespondingto those obtained by the COMPETE 
ollaboration [7, 8℄, but with the updated dataset usedin the present study [9℄: we 
onsider all1 pp, p̄p, K±p and π±p data for the total 
ross se
tionand for the ρ parameter, as well as all γp and γγ data for the total 
ross se
tion.As one 
an see from Table 1, the main problem of the simple pole �t stems from the Kpand πp data, and parti
ularly from the ρ parameter. Hen
e we want �rst to re-
onsider thetreatment of the real part of the amplitude. We have improved the �t of [7, 8℄ by in
ludingthe following sub-leading e�e
ts:1. We started with a parametrisation for the imaginary part of the asymptoti
 elasti
amplitude ab → ab. Regge theory predi
ts that it is a fun
tion of cos θt =

s−m2
a−m2

b

2mamb
=1Be
ause of the ambiguities linked to nu
lear e�e
ts, we ex
luded 
osmi
-ray data.2



χ2/n.o.p.Pro
ess Np Simple pole Dipole Tripole
σ(pp) 104 0.93 0.89 0.88
σ(p̄p) 59 1.1 1.0 1.2

σ(π+p) 50 1.4 0.67 0.71
σ(π−p) 95 0.94 1.0 0.96
σ(K+p) 40 1.0 0.72 0.71
σ(K−p) 63 0.73 0.62 0.62
σ(γp) 41 0.56 0.65 0.61
σ(γγ) 36 0.88 1.0 0.80
ρ(pp) 64 1.9 1.7 1.8
ρ(p̄p) 11 0.55 0.44 0.52

ρ(π+p) 8 2.7 1.5 1.5
ρ(π−p) 30 2.1 1.2 1.1
ρ(K+p) 10 0.87 1.1 1.0
ρ(K−p) 8 1.7 1.3 0.99all, χ2

tot 619 696 590 595all, χ2/d.o.f. 619 1.15 0.98 0.98Table 1: Partial χ2 per number of data points (χ2/n.o.p.) and total χ2 per degree of freedom(χ2/d.o.f.) for the COMPETE parametrisations [7, 8℄, �tted to the latest data [9℄, for 5 GeV<√
s < 2 TeV.

(s−u)/2
2mamb

, with θt the s
attering angle for the 
rossed-
hannel pro
ess. We re-absorbedthe denominator in the de�nition of the 
ouplings, and then expressed the 
ross se
tionusing exa
t �ux fa
tors, whi
h for 3 ex
hanges 
an be written as:
σ

(3)
tot ≡ 1

2pmb

[

ℑmAR
+

(

s − u

2

)

+ ℑmAS
+

(

s − u

2

)

∓ℑmA−

(

s − u

2

)]

, (2)with p the momentum in the laboratory frame 2 of b and the minus sign for the parti
le.For all models, we use the same parametrisation of the C = −1 part for the pro
ess
ap → ap (a = p̄, p, π±, K±),

ℑmA−(s) = Ma

(

s

s1

)α− (3)with s1 = 1 GeV2. For the C = +1 part, we use a 
ommon Reggeon 
ontribution, andwhi
h we allow to be non-degenerate with the C = −1 part:
ℑmAR

+(s) = Pa

(

s

s1

)α+

, (4)added to a pomeron term from one of the forms 
orresponding respe
tively to a simple,a double and a triple pole:
ℑmAS

+(s) = Sa

(

s

s1

)αo

, (5)2In the γγ 
ase, 2pmb gets repla
ed by s. 3



ℑmAS
+(s) = Das ln

s

sd
, (6)

ℑmAS
+(s) = Tas ln2 s

st
+ T ′

as (7)2. We have fully applied the fa
torisation 
onstraints in the γγ 
ase: there the 
ouplings
g (standing for M , P or S) of ea
h simple pole 
an be dire
tly obtained from the ppand the γp �ts through the relation gγγ = (gγp)

2 /gpp, and the 
ouplings of multiplesingularities obey more 
ompli
ated relations [10℄.3. For the derivation of the real part, we used three levels of sophisti
ation:(a) Derivative dispersion relations (DDR) [11℄ without a subtra
tion 
onstant. This
orresponds to the �t performed in [7, 8℄, but with the exa
t �ux fa
tors andarguments of Eq. (2).(b) DDR with a free subtra
tion 
onstant. Be
ause the 
rossing-even part of the am-plitude rises with energy, one must perform a subtra
tion, and the value of the realpart at the subtra
tion point is unknown. We keep it and �t to it.(
) Integral dispersion relations (IDR) for the analyti
 parametrisation, from the thresh-old √
s0 = ma + mb. If one takes the threshold to be zero, the IDR is equivalent tothe DDR. However, as the threshold is nonzero, there is a small 
orre
tion due tothis shift.(d) IDR for the analyti
 parametrisation down to √

s = 5 GeV, and to a �t of the datafrom √
s0 to 5 GeV, shown in Fig. 1. As the analyti
 forms (2)-(7) do not reprodu
ethe total 
ross se
tion data below 5 GeV, we do not use them there, but insteadperform a multi-parameter �t of the total 
ross se
tion, shown in Fig. 1. Hen
ethe input below the minimum energy where the �t is appli
able is determined bythe data themselves. It must be emphasised that the details of the low-energy �thave very little in�uen
e on the global �t (see Table 2), mainly be
ause most of thee�e
ts 
an be re-absorbed in the value of the subtra
tion 
onstant.
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Figure 1: Fit to low-energy data used in integral dispersion relations.4



Simple pole Dipole TripolePro
ess Np (a) (b) (
) (d) (d ) (d)
σ(pp) 104 0.93 1.1 1.1 1.1 0.88 0.87
σ(p̄p) 59 1.0 0.91 0.91 0.88 0.94 0.94

σ(π+p) 50 1.4 1.2 1.2 1.2 0.68 0.68
σ(π−p) 95 0.95 0.92 0.92 0.92 0.97 0.97
σ(K+p) 40 1.0 0.96 0.96 0.97 0.73 0.71
σ(K−p) 63 0.72 0.73 0.73 0.73 0.62 0.61
σ(γp) 41 0.56 0.56 0.56 0.56 0.58 0.54
σ(γγ) 36 0.88 0.88 0.88 0.88 0.80 0.73
ρ(pp) 64 1.9 1.6 1.6 1.6 1.6 1.7
ρ(p̄p) 11 0.49 0.40 0.40 0.40 0.39 0.42

ρ(π+p) 8 2.7 2.9 2.9 2.9 1.8 1.8
ρ(π−p) 30 2.2 1.9 1.9 1.9 1.0 1.0
ρ(K+p) 10 0.91 0.70 0.70 0.70 0.57 0.60
ρ(K−p) 8 1.7 1.7 1.7 1.7 1.2 1.0all, χ2

tot 619 694 661 661 661 564 558all, χ2/d.o.f. 619 1.15 1.10 1.10 1.10 0.94 0.93Table 2: Values of the χ2/n.o.p. for the new parametrisations: (a) the standard (analyti
) �t, basedon DDR, with the �ux and variables of Eq. (2) and without subtra
tion 
onstants; (b) the same �twith subtra
tion 
onstants; (
) �t with ρ 
al
ulated by the IDR, using the high-energy parametrisationfrom the thresholds; (d) �t of the high-energy parametrisation with IDR, using a �xed parametrisationof the 
ross se
tion data below √
s =5 GeV.The formula that we shall be using in this paper (ex
ept when otherwise indi
ated) for the ρparameter, i.e. the ratio of the real to the imaginary part of the elasti
 ap and āp amplitudes,
orresponds to 
ase (d) and 
an be written

ρ± σ± =
Rap

p
+

E

πp
P ∫ ∞

ma

[

σ±

E′(E′ − E)
− σ∓

E′(E′ + E)

]

p′ dE′ (8)where the + sign refers to the pro
ess ap → ap and the − sign to āp → āp, E is the energyin the proton rest frame, P indi
ates that we have to do a prin
ipal-part integral, Rap is thesubtra
tion 
onstant, and the �t of Fig. 1 is used for √s ≤ 5 GeV.The only possible improvement whi
h we have not implemented is the in
lusion of bound-state 
ontributions and the 
ontinuation of the �t to unphysi
al thresholds. However, at highenergy, the main e�e
t of these 
orre
tions 
an be re-absorbed in the subtra
tion 
onstant,leaving a 
ontribution of order 1/s to the real part. In fa
t, the values of the χ2/d.o.f. ofthe fourth and �fth 
olumns of Table 1 (
ases (b) and (
)) are very similar, pre
isely be
auseof this: the shift of the threshold, in this 
ase from 0 to 2mp, 
an be re-absorbed into thesubtra
tion 
onstant. The resulting values of the χ2/d.o.f. are shown in Table 2, for thesimple-pole �t (and for 
ases (a) to (d)), as well as for the log and log2 �ts (for 
ase (d)).Although the various e�e
ts detailed above signi�
antly improve the quality of the �t,they also improve the dipole and tripole �ts, and a simple-pole pomeron still does not seema

eptable. The only possibility left to keep this model is to introdu
e extra singularities and
he
k whether they 
an lower the χ2/d.o.f. su�
iently.5



soft pole soft+hard soft simple pole+only simple poles unitarised hard polePro
ess Np (d) (d) (d)
σ(pp) 104 1.1 0.87 0.87
σ(p̄p) 59 0.88 0.92 0.92

σ(π+p) 50 1.2 0.70 0.69
σ(π−p) 95 0.92 0.93 0.95
σ(K+p) 40 0.97 0.72 0.72
σ(K−p) 63 0.73 0.61 0.61
σ(γp) 41 0.56 0.54 0.56
σ(γγ) 36 0.88 0.70 0.82
ρ(pp) 64 1.6 1.7 1.7
ρ(p̄p) 11 0.40 0.41 0.40

ρ(π+p) 8 2.9 1.6 1.7
ρ(π−p) 30 1.9 1.0 1.0
ρ(K+p) 10 0.70 0.62 0.60
ρ(K−p) 8 1.7 0.98 1.0all, χ2

tot 619 661 551 557all, χ2/d.o.f. 619 1.10 0.924 0.933Table 3: The values of χ2/n.o.p., for 5 GeV<
√

s < 2 TeV, as in Table 2 (third 
olumn), if weintrodu
e a new pole with positive 
harge parity (fourth 
olumn, Eq. (9)) and if we unitarise it (�fth
olumn, Eq. (11))3 The hard pomeron poleIn fa
t, we tried to improve the quality of the simple-pole �t by further lifting the degenera
yof sub-leading ve
tor meson traje
tories: extrapolating hadros
opi
 data to M2 = 0 leadsto the 
on
lusion that the f inter
ept is higher than the a2 inter
ept [12℄. As a �rst step3,we simply added one C = +1 traje
tory to the �t, and left its 
ouplings free (and imposedthe 
orresponding fa
torisation properties for the γγ 
ross se
tion). This improved the χ2
onsiderably, and made it 
omparable to that of the other parametrisations: Table 3 showsthe quality of the �t if one introdu
es a new C = +1 singularity, so that the expression of the
ross se
tion now 
ontains four terms:
σ

(4)
tot = σ

(3)
tot +

1

2pmb
ℑmAH

+

(

s − u

2

) (9)with
ℑmAH

+ (s) = Ha

(

s

s1

)αh (10)with again s1 = 1 GeV2.However, this traje
tory did not 
hoose an inter
ept 
ompatible with that of a Reggeon,but rather settled on an inter
ept of 1.45, very 
lose to the one already observed by Donna
hieand Landsho� in DIS. Furthermore, if we �t to Tevatron energies, the traje
tory 
ouples to
πp and Kp pro
esses, but seems absent in pp and p̄p.This is easy to understand if one noti
es that the πp and Kp data have a maximum energyof the order of √s = 100 GeV. A hard pomeron, if present in soft data, will 
ertainly have3as in prin
iple one would have to de
ouple the a2 from some of the pro
esses 
onsidered here.6



soft+hard poles soft pole+ unitarised hardParameters value error value error
αo 1.0728 0.0008 1.0728 �xed
Sp 56.2 0.3 55 1
Sπ 32.7 0.2 31.5 0.9
SK 28.3 0.2 27.4 0.8
Sγ 0.174 0.002 0.174 0.003

αh(0) 1.45 0.01 1.45 �xed
Gp � � 0.18 0.06
Gγ � � 6×10−9 1.5×10−8

Hp 0.10 0.02 0.17 0.05
Hπ 0.28 0.03 0.43 0.08
HK 0.30 0.03 0.42 0.07
Hγ 0.0006 0.0002 0.0005 0.0002

α+(0) 0.608 0.003 0.62 0.02
Pp 158 2 157 5
Pπ 78 1 80 2
PK 46 1 47 2
Pγ 0.28 0.01 0.28 0.01

α−(0) 0.473 0.008 0.47 0.01
Mp 79 3 79 3
Mπ 14.2 0.5 14.3 0.6
MK 32 1 32 1
Rpp -164 33 -163 34
Rpπ -96 21 -86 21
RpK 3 26 8 26Table 4: Parameters obtained in the �ts. The se
ond and third 
olumns give the parametersand errors of the �t with a hard pole, Eq. (9) for √s from 5 to 100 GeV, the fourth and �fth
olumns give the parameters of a unitarised �t, Eq. (11) for 5 GeV<

√
s < 2 TeV.to be unitarised at very large energies −we shall 
ome ba
k to this point later−. In fa
t, theextrapolation of the �t with 4 poles of Eqs. (9, 10) gives πp and Kp total 
ross se
tions mu
hbigger than pp at the Tevatron: as it was not unitarised, the �t 
hose to turn o� the hardpomeron 
ontribution in pp and p̄p, whereas the 
ouplings to πp and Kp were non negligible.This zero 
oupling explains in fa
t why this 
ontribution has been overlooked before [13℄.Before 
onsidering a possible unitarisation s
heme, we show in the se
ond and third
olumns of Table 4 the results of a �t for 5 GeV <

√
s <100 GeV. The only di�eren
ewith the global �t of Table 3 is that the p̄p and pp data do not for
e the 
oupling of the hardpomeron to be zero anymore. Several 
omments are in order:1. The main improvement, as seen from the partial χ2 of Table 3, is in σπ+p, σK+p and in

ρπ+p, ρπ−p and ρK−p. We show in Figs. 2 and 3 the 
urves 
orresponding to these quanti-ties, where the e�e
t of the hard pomeron 
an be 
learly seen. Furthermore, all pro
essesbut two (ρpp and ρπ+p) 
an now be simultaneously des
ribed with a χ2/n.o.p.≤ 1.7
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e between ρ values �tted with (plain) and without (dashed) a hardpomeron, assuming all singularities are simple poles.2. The value of the hard pomeron inter
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αh = 1.45 ± 0.01and is very 
lose to the value obtained in DIS [5℄, and more re
ently in Υ photoprodu
tion[14℄.3. The value of the soft pomeron inter
ept be
omes slightly lower than estimated by Don-na
hie and Landsho�;4. The ratio of the 
oupling of the hard pomeron to the soft one varies from 0.2% in ppand 0.35% in γp to 1% in πp and Kp. This is 
ompatible with the estimate (1) of [5℄.8



It indi
ates however that the 
oupling me
hanism of the hard pomeron must be verydi�erent from that of the soft pomeron. Note however that it is possible to redu
e thehard pomeron 
oupling to a mu
h smaller value if one does not limit the upper energyof the �t [15℄.5. From the values of the 
oupling and of the inter
ept, and assuming a slope B = 4 GeV−2for the proton form fa
tor, and slopes of 0.25 GeV−2 for the soft pomeron and of
0.1 GeV−2 for the hard pomeron, one 
an estimate that the �Bla
k-disk� limit willbe rea
hed around √

s = 400 GeV. Hen
e it is likely that if we limit the �t to 100 GeV,we do see the �bare� singularity;6. Although the hard pomeron has a large inter
ept, its 
ontribution to the amplitude re-mains small be
ause its 
oupling is tiny. We show in Fig. 4 the relative 
ontribution ofthe various terms to the total 
ross se
tion. At 100 GeV, the hard pomeron 
ontributes6% to the total 
ross se
tion. Hen
e it is possible that it remains hidden, even in thedi�erential elasti
 
ross se
tion.

10 100 1000 10000
0.00

0.25

0.50

0.75

1.00

soft/tot

hard/tot

s  (GeV)

(g1/R2)(2mE/s0)δ h

f/tot

ω/totFigure 4: Relative 
ontribution of the various terms of the amplitude, 
ompared withthe C = +1 part of the amplitude (�tot�) in the pp 
ase. The dashed 
urve is for a hardpole, and the plain 
urves for the unitarised form.7. If the hard pomeron is present both in pp and γp s
attering, then one 
an predi
t the γγ
ross se
tion through fa
torisation relations for the 
ouplings of ea
h traje
tory. Thisleads to the 
urves shown in Fig. 5, whi
h are thus parameter-free in the γγ 
ase. Hen
ehaving a hard pomeron does not ne
essarily mean that the γγ 
ross se
tion will in
reasefaster than in the γp 
ase. Of 
ourse, it would also be possible to a

ommodate a fasterin
rease by redu
ing the hard pomeron 
oupling in the pp 
ase (see [15℄ for su
h analternative). Note also that it is possible to a

omodate the pp, γp and γγ data throughfa
torisation without a hard 
omponent [10, 16℄.9



1 10 100

0.2

0.4

γ p

σ to
t  (

m
b)

s  (GeV)
1 10 100

5.0E-4

1.0E-3

1.5E-3

γγ

σ to
t  (

m
b)

s  (GeV)Figure 5: Fit to γp total 
ross se
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tion of γγ via fa
torisation. The pole andthe unitarised �ts are identi
al in the energy range shown.3.1 Unitarised �tAs we have pointed out above, the hard singularity 
annot be extended to energies beyonda few hundred GeV, as one will rea
h the bla
k-disk limit in that region, and hen
e one willhave to unitarise the ex
hange. The problem of 
ourse is that nobody knows how to unitariseRegge ex
hanges unambiguously.Unitarisation 
omes from the 
onse
utive ex
hange of traje
tories. We know that if 1-pomeron ex
hange is given by the amplitude
ℑmA(s, t) ≈ g1

(

s

s1

)αh

eR2twith
R2 = B + α′ log sthen, if the hadrons remain inta
t during multiple ex
hanges, the n-pomeron 
ontribution willbe proportional to

ℑmA(n)(s, t) = (−1)n−1gn s
sn(αh−1)

[R2]n−1 e
R

2

n
tTo this, one must add the 
ontribution of inelasti
 
hannels, or equivalently that from n-reggeon verti
es, whi
h are a priori unknown. Even worse, the 
oe�
ients gn are also unknownin general. For the s
attering of stru
tureless obje
ts (as in QED or in potential s
attering),one 
an derive at high energy that gn = 1/(2n−1nn!), whi
h leads to the eikonal formula.However, both hadrons and reggeons have a stru
ture, hen
e it is very likely that this formulais not a good approximation to the true amplitude. Finally, in the 
ase of several traje
tories,one must take into a

ount mixed ex
hanges (e.g. Reggeon-pomeron, et
.).Hen
e we present here a possible model that would lead to a simple-pole pi
ture below 100GeV, and to a unitarised pi
ture (for the hard pomeron) at higher energies (whi
h is similarto that obtained in the U -matrix formalism of [17℄). As explained above, it is by no meansunique, and many improvements or modi�
ations 
an be brought in. Its purpose is not tosolve unitarisation, but only to show that it is possible to a

ommodate a hard pomeron with

t = 0 data up to the Tevatron4. The simplest 
hoi
e is to repla
e (10) in Eq. (9) by:
ℑmAH

+ (s) = HasR
2

[

1

G
log

{

1 + G
sαh−1

R2

}]

. (11)4Building of a unitarisation model will ne
essitate 
onsiderable work, and the adjun
tion of data at t 6= 0.10



(we shall use again B = 4 GeV−2 and α′ = 0.1 GeV−2 in R2). To simplify further, we haveassumed that G would take the same value Gp for p, π and K, and allowed it to be di�erent(and 
alled it Gγ )for γp.For small values of G, this form redu
es to a simple-pole parametrisation at low energy,and obeys the Froissart bound at high energy. One 
an see in Fig. 2 that the simple-pole �tto 100 GeV and the unitarised �t to 1800 GeV are very 
lose (in fa
t the log in (11) and itsTaylor expansion to order G di�er by 7% at √s = 100 GeV).Su
h a form produ
es the best �t so far to soft data, and we show the 
orrespondingparameters in Table 3. It 
learly 
an a

ommodate the Tevatron data, where the 
ross se
tionis predi
ted to be 75.5 mb, and where the hard pomeron 
ontributes about 10% to the total
ross se
tion. As we pointed out above, this is only a possibility: we do not know howto unitarise these ex
hanges, and we assumed that one 
ould unitarise the hard pomeronindependently from the other ex
hanges, whi
h is far from 
lear.It is worth pointing out that we have �xed the hard and soft pomeron inter
epts to theirvalues measured at lower energies. If we let them free, then the soft pomeron inter
ept movesto 1 and the hard pomeron inter
ept grows to larger values, but the 
hange in χ2 is not verysigni�
ant: in fa
t, the unitarised �t has too many parameters to be su�
iently 
onstrainedby the forward data alone.4 Con
lusionDue to its simpli
ity and theoreti
al appeal, the simple pole model has be
ome quite popular.However, it was shown [7℄ that it 
ould not a

ommodate forward s
attering data as wellas other �ts based on unitary forms. We showed here that the ingredient needed to restorethe simple-pole model as one of the best des
riptions − besides a 
areful usage of dispersionrelations and the lifting of the degenera
y of the C = +1 and C = −1 traje
tories − ispre
isely the hard pomeron introdu
ed in DIS5.Su
h a hard obje
t 
annot be dire
tly observed at high energy, be
ause it must �rst beunitarised. However, if one stays below energies of 100 GeV, the improvement brought in bysu
h a singularity is 
learly visible. We have also shown that it is possible to �nd unitarisedforms that look like a simple hard pole at low energy, and like a squared logarithm of s at highenergy. The 
oupling of the hard pomeron to protons turns out to be a fa
tor 2 to 3 lowerthan that to pions and kaons, whereas that to photons is roughly α/π times the 
oupling topions.Hen
e there are two major questions raised by this possibility of a hard pomeron in softdata: how does one unitarise the amplitude, espe
ially in the region of √s from 100 GeV tothe Tevatron, and why are protons di�erent? Pre
ision data in pp s
attering in the regionfrom 100 to 600 GeV would have been invaluable in settling this question. New measurementsof ρpp would also have helped de
ide if the high value of the χ2/n.o.p. for this observable 
anbe attributed to errors in the data.One pla
e where one should be able to de
ide whether the hard pomeron really exists insoft pro
esses is in γγ s
attering. If the hard pomeron is present in soft data, then from its
ontribution to pp and to γp, one 
an predi
t the γγ 
ross se
tion, both for on-shell and for5Note that we have also shown that the parametrisation using both soft and hard pomerons is not the onlypossible answer: unitary forms 
an also provide good �ts to ρ and σtot [7℄ (and to elasti
 slopes [16℄ and DISdata [10℄). 11



o�-shell photons, and the presen
e of a hard pomeron should be manifest in higher-pre
isiondata on the photon-photon and photon-proton total 
ross se
tions.A
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