

#### POLARIZATION AND MICROLENSING IN THE QUADRUPLY IMAGED BROAD ABSORPTION LINE QUASAR H1413+117

#### D. Hutsemékers $^1$ , D. Sluse $^1$ , L. Braibant $^1$ , T. Anguita $^2$

<sup>1</sup> Faculté des Sciences, département d'Astrophysique, de Géophysique et d'Océanographie, Université de Liège, Belgium
<sup>2</sup> Departemento de Ciencias Fisicas, universidad Andres Bello, Santiago, Chile



#### **Gravitational lensing & microlensing**





#### **Gravitational lensing & microlensing**





#### The Cloverleaf



$$z_S = 2.55$$

**Polarized**  $\sim 2\%$ (Goodrich & Miller 1995)

#### Microlensed

(e.g. Angonin et al. 1990, Hutsemékers et al. 2010)



#### The Cloverleaf



| Slit          | Date             |
|---------------|------------------|
| (A,D)         | March 5th, 2011  |
| (A,D)         | March 31st, 2011 |
| VLT-FORS2 MOS |                  |



#### **Microlensing in the Cloverleaf**





#### **Microlensing in the Cloverleaf**





#### **Microlensing in the Cloverleaf**





Polarization in quasar images A of H1413+117





Polarization in quasar images A of H1413+117





Polarization in quasar images A of H1413+117





Polarization in quasar images A and D of H1413+117





Polarization in quasar images A and D of H1413+117





# **Two scattering regions?**

Under the hypothesis that the observed continuum polarization is the sum of the polarization from a microlensed compact source and a non-microlensed extended one, we can extract the intrinsic polarization of the two sources:

$$s_D = \frac{\mu s_c + \beta s_e}{\mu + \beta} \quad , \quad s_A = \frac{s_c + \beta s_e}{1 + \beta}$$

s=normalized stokes parameter, namely q or u.<br/>c denotes the compact microlensed source and e the<br/>extended one.  $\beta=F_e/F_c.$ <br/> $\mu$  quantifies the additional amplification due to<br/>microlensing.



# **Two scattering regions?**

Under the hypothesis that the observed continuum polarization is the sum of the polarization from a microlensed compact source and a non-microlensed extended one, we can extract the intrinsic polarization of the two sources:

$$s_D = \frac{\mu s_c + \beta s_e}{\mu + \beta} \quad , \quad s_A = \frac{s_c + \beta s_e}{1 + \beta}$$

s=normalized stokes parameter, namely q or u. c denotes the compact microlensed source and e the extended one.  $\beta=F_e/F_c.$   $\mu$  quantifies the additional amplification due to microlensing.

With  $\mu \sim 2$ , we obtained:

 $p_c \sim 3\%$ ,  $\theta_c \sim 115^{\circ}$  and  $p_e \sim 10\%$ ,  $\theta_e \sim 35^{\circ}$ 



## **Two scattering regions?**

Under the hypothesis that the observed continuum polarization is the sum of the polarization from a microlensed compact source and a non-microlensed extended one, we can extract the intrinsic polarization of the two sources:

$$s_D = \frac{\mu s_c + \beta s_e}{\mu + \beta} \quad , \quad s_A = \frac{s_c + \beta s_e}{1 + \beta}$$

s =normalized stokes parameter, namely q or u. c denotes the compact microlensed source and e the extended one.  $\beta = F_e/F_c$ .  $\mu$  quantifies the additional amplification due to

 $\mu$  quantifies the additional amplification due to microlensing.

With  $\mu \sim 2$ , we obtained:

 $p_c \sim 3\%$ ,  $\theta_c \sim 115^{\circ}$  and  $p_e \sim 10\%$ ,  $\theta_e \sim 35^{\circ}$ 



#### To conclude

The effect of microlensing on the polarization unveils the presence of two continuum sources polarized roughly perpendicularly.







Thank you for your attention.