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Spatial autocorrelation
Measure of the dependence between values at neighbouring locations.
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Notation

•Spatial process {Z(si) : si ∈ D} over a fixed and discrete domain D.

•Sample data points z = {z1, . . . , zn} for the spatial locations {s1, . . . , sn}.

Weighting matrix W = (wij)1≤i,j≤n describes spatial neighbours (not

necessarily symmetric; with zero diagonal).

Notations: S0 =
n∑
i=1

n∑
j=1

wij ; wi• =
n∑
j=1

wij ; w•i =
n∑
k=1

wki

Spatial autocorrelation indexes
Spatial autocorrelation measures usually used by geographers in the litera-

ture:

•Moran’s index [9] is a global indicator of the spatial autocorrelation:

I(z) =
n

S0

n∑
i=1

n∑
j=1

wij(zi − z̄)(zj − z̄)∑
i(zi − z̄)2

•Geary’s ratio [6] is based on comparisons between pairs of observations:

c(z) =
n− 1

2S0

n∑
i=1

n∑
j=1

wij(zi − zj)2∑
i(zi − z̄)2

•Other index: general Getis and Ord’s statistics [7]

Spatial autocorrelation tests

Let focus on tests based on asymptotic normality of I and c (see [4, 11]).

- Under N assumption: observations are the results of n independent draw-

ings from a normal population.

- Under R assumption: the set of values {z1, . . . , zn} is fixed and observa-

tions are randomly permuted on the locations {s1, . . . , sn}.

Other tests: permutation tests and Dray’s test [5]

Illustration: school establishments

Number of school establishments in each Walloon municipality in 2008.

Two municipalities are neighbors if they share a boundary.

Name Index p-value

Moran I = 0.13 7.4× 10−5

Geary c = 1.48 0.0007

Robustness of the tests

As the set of locations is finite, one need to work with empirical devices

instead of usual robust tools which are based on functional, i.e., correspond

to asymptotic values.

•Resistance of a test (analogous to BDP of an estimator)

The resistance to acceptance (rejection)[12] of a test is the size of smallest

subset of fixed values which always implies the acceptance (rejection) of

H0, no matter what the other values are.

Result: Moran’s and Geary’s tests: 1/n and Getis and Ord’s test: 2/n.

•Empirical influence function on p-value

Measure of the strength of the evidence against the

decision to reject H0:

IFE(ξ, i; I) =
p-value(z + ξei)− p-value(z)

1/n

Result: asymptotic test (under N) based on Moran

IFE(ξ, i; I) = 2n

[
Φ

(
−
∣∣∣∣ n

S0σ(I)

P (ξ)

Q(ξ)
+

1

nσ(I)

∣∣∣∣)− Φ

(
−
∣∣∣∣I(z)− E(I)

σ(I)

∣∣∣∣)]
→ 2n

[
Φ

(
− 2 |S0 − nwi•|

(n− 1)S0σ(I)

)
− cste

]
if ξ →∞

where σ(I) is constant, P (ξ) and Q(ξ) are 2-degree polynomials in ξ.

Other results: under R assumption and using the other indexes.

Robust alternatives
•Test based on rank

Observations are replaced by their rank to compute the indexes. The

asymptotic and permutation tests can be adapted.

Robustness:

–Non significant impact of a unique contamination on empirical IF.

IFE on School data (zoom) IFE on independent variables
(initial p-value ≈ 0) (initial p-value 0.53)

–Resistance similar to BDP of rank correlation [2, 3].

•Robust regression

Moran’s index can be interpreted as the scope of a bivariate linear regres-

sion of the spatially lagged variable on the original variable [1].

Robust regression can be used: Least Trimmed Squares [10] and M-

estimator [8].

Robustness:

–No impact of a unique contamination on empirical IF.

–Resistance linked to the BDP of the robust regression (resp. h/n and at

most 0.5) and to the sensibility of leverage points.

On going research
•Comparison between the efficiency of classical tests and robust tests with

or without contamination (using simulations).

•Testing the presence of a main direction, for instance Sambre-Meuse line

in Wallonia.
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