# Robustness of spatial autocorrelation tests



ERNST Marie

Department of Mathematics, University of Liege, Belgium

m.ernst@ulg.ac.be

Joint work with HAESBROECK Gentiane

# **Spatial autocorrelation**

Measure of the dependence between values at neighbouring locations.



Positive spatial autocorrelation



Negative spatial autocorrelation



No spatial autocorrelation

 $w_{ki}$ 

# **Robustness of the tests**

As the set of locations is finite, one need to work with empirical devices instead of usual robust tools which are based on functional, i.e., correspond to asymptotic values.

### • **Resistance of a test** (analogous to BDP of an estimator) The resistance to acceptance (rejection)[12] of a test is the size of smallest subset of fixed values which always implies the acceptance (rejection) of $H_0$ , no matter what the other values are.

**Result:** Moran's and Geary's tests: 1/n and Getis and Ord's test: 2/n.

### Notation

• Spatial process  $\{Z(s_i) : s_i \in D\}$  over a fixed and discrete domain D.

• Sample data points  $z = \{z_1, \ldots, z_n\}$  for the spatial locations  $\{s_1, \ldots, s_n\}$ .

Weighting matrix  $W = (w_{ij})_{1 \le i,j \le n}$  describes spatial neighbours (not necessarily symmetric; with zero diagonal).

Notations: 
$$S_0 = \sum_{i=1}^n \sum_{j=1}^n w_{ij}$$
;  $w_{i\bullet} = \sum_{j=1}^n w_{ij}$ ;  $w_{\bullet i} = \sum_{k=1}^n w_{ij}$ 

## **Spatial autocorrelation indexes**

Spatial autocorrelation measures usually used by geographers in the literature:

• Moran's index [9] is a global indicator of the spatial autocorrelation:

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_i (z_i - \bar{z})^2}$$

• Geary's ratio [6] is based on comparisons between pairs of observations:



### • Empirical influence function on p-value

Measure of the strength of the evidence against the decision to reject  $H_0$ :

$$IFE(\xi, i; I) = \frac{\text{p-value}(z + \xi e_i) - \text{p-value}(z)}{1/n}$$

**Result:** asymptotic test (under N) based on Moran

$$IFE(\xi, i; I) = 2n \left[ \Phi \left( - \left| \frac{n}{S_0 \sigma(I)} \frac{P(\xi)}{Q(\xi)} + \frac{1}{n\sigma(I)} \right| \right) - \Phi \left( - \left| \frac{I(z) - E(I)}{\sigma(I)} \right| \right) \right]$$
$$\rightarrow 2n \left[ \Phi \left( -\frac{2 \left| S_0 - nw_{i\bullet} \right|}{(n-1)S_0 \sigma(I)} \right) - cste \right] \text{ if } \xi \to \infty$$

where  $\sigma(I)$  is constant,  $P(\xi)$  and  $Q(\xi)$  are 2-degree polynomials in  $\xi$ .

**Other results**: under R assumption and using the other indexes.

# **Robust alternatives**

#### • Test based on rank

Observations are replaced by their rank to compute the indexes. The

#### c(z) = $\sum_i (z_i - \overline{z})^2$

• Other index: general Getis and Ord's statistics [7]

# **Spatial autocorrelation tests**

Let focus on tests based on **asymptotic normality** of I and c (see [4, 11]). - Under N assumption: observations are the results of n independent drawings from a normal population.

-Under R assumption: the set of values  $\{z_1, \ldots, z_n\}$  is fixed and observations are randomly permuted on the locations  $\{s_1, \ldots, s_n\}$ .

**Other tests**: permutation tests and Dray's test [5]

## **Illustration:** school establishments

Number of school establishments in each Walloon municipality in 2008. Two municipalities are neighbors if they share a boundary.

Index

p-value

0.0007

asymptotic and permutation tests can be adapted.

#### **Robustness:**

-Non significant impact of a unique contamination on empirical IF.



-Resistance similar to BDP of rank correlation [2, 3].

### • Robust regression

Moran's index can be interpreted as the scope of a bivariate linear regression of the spatially lagged variable on the original variable [1]. Robust regression can be used: Least Trimmed Squares [10] and Mestimator [8].

### **Robustness:**

- -No impact of a unique contamination on empirical IF.
- -Resistance linked to the BDP of the robust regression (resp. h/n and at



### **References** :

[1] Anselin, L. (1996), The Moran Scatterplot [...], Spatial Analytical Perspectives on GIS: 111–125, London: Taylor and Francis. [2] Boudt, K. et al. (2012). The Gaussian rank correlation estimator: robustness properties. Statistics and Computing 22(2): 471–483. [3] Capéraà, P. and Guillem, A.I.G. (1997). Taux de résistance des tests de rang d'indépendance. Canadian Journal of Stat. 25(1): 113-124. [4] Cliff, A.D. and Ord, J.K. (1973). Spatial autocorrelation, Pion London. [5] Dray, S. (2011). A new perspective about Moran's coefficient [...]. Geogr. analysis 43(2): 127–141.

most 0.5) and to the sensibility of leverage points.

# On going research

- Comparison between the efficiency of classical tests and robust tests with or without contamination (using simulations).
- Testing the presence of a main direction, for instance Sambre-Meuse line in Wallonia.

[6] Geary, R.C. (1954). The contiguity ratio and statistical mapping, The incorporated statistician: 115–146. [7] Getis, A. and Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. *Geogr. analysis* 24(3): 189–206. [8] Huber, P. (1973). Robust regression: Asymptotics, conjectures, and Monte Carlo. Annals of Statistics 1(5): 799–821. [9] Moran, P.A. (1950). Notes on Continuous Stochastic Phenomena. *Biometrika* 37: 17–23. [10] Rousseeuw, P.J., (1984). Least Median of Squares Regression. Journal of the American statistical association 79(388): 871–880. [11] Sen, A. (1976). Large Sample-Size Distribution of Statistics Used In Testing for Spatial Correlation. Geogr. analysis 8(2): 175–184.

[12] Ylvisaker, D. (1977). Test resistance. Journal of the American Statistical Association 72(359): 551–556.