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Abstract 9 

The Moulouya river has the largest catchment in Morocco and drains an area characterised 10 

by active crustal deformation during the Late Cenozoic due to the N-S convergence between 11 

the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly 12 

documented. Our study focuses on the lowermost reach of the river in north-eastern 13 

Morocco, which drains the Zebra-Triffa sedimentary basin directly upstream of the estuary. 14 

New field observations, measurements and sedimentological data reveal contrasted fluvial 15 

environments on each side of a newly identified, W-E striking thrust zone disrupting the 16 

sedimentary basin. On the one hand, long-lasting fluvial aggradation, materialized by ≥37 m-17 

thick stacked terraces, has occurred in the footwall of the thrust. On the other hand, the 18 

hanging wall is characterised by a well-preserved terrace staircase, with three Pleistocene 19 

terrace levels.. Whilst the identification of this thrust zone question some previous 20 

interpretations about the local (hydro-)geology, it is consistent with the statement that most of 21 

the Plio-Quaternary deformation in the eastern Rif mountains has concentrated in this region 22 

of Morocco. Our new data and interpretations also agree with morphometric indicators 23 

stating that the whole Moulouya catchment, showing several knickzones in its long profile, is 24 

at disequilibrium state. We also suggest that the knickzone in the Beni Snassen gorge, 25 

located directly upstream of the Zebra-Triffa sedimentary basin, could (partly) result from a 26 

transient fluvial reaction to Late Cenozoic thrusting activity and correlated uplift in the 27 

hanging wall. 28 
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1. Introduction   29 

Located in the convergence zone between the African and Eurasian plates, the northern part 30 

of Morocco represents an area of active crustal deformation during the Late Cenozoic (e.g. 31 

Meghraoui et al., 1996). The recent destructive 1994 and 2004 Al Hoceima earthquakes are 32 

evidence of the active seismicity of this region (e.g. Akoglu et al., 2006). Whilst seismicity 33 

was investigated by diverse methods, for instance radar interferometry (Akoglu et al., 2006), 34 

the reconstruction of Late Cenozoic and modern rates of crustal deformation is mainly based 35 

on GPS measurements (Fadil et al., 2006; Vernant et al., 2011), morphotectonics (i.e. 36 

displacement of geomorphological markers: Poujol et al., 2014; Pastor et al., 2015), and 37 

morphometric indicators (Barcos et al., 2014).  38 

Morphometric indicators showed that most of the fluvial systems draining the north-eastern 39 

part of Morocco are in disequilibrium (Barcos et al., 2014). This is especially true for the 40 

~74000 km² large Moulouya catchment, the second largest fluvial system of North Africa 41 

debouching into the Mediterranean Sea after the Nile. As a result of ongoing N–S 42 

compressive shortening in north-eastern Morocco, Barcos et al. (2014) also postulate that 43 

the main W–E striking deformational front between the Rif belt and the Atlas mountains 44 

stretches across the lowermost 65 km-long valley reach of the Moulouya river, the so-called 45 

Zebra-Triffa sedimentary basin. Even though river terrace sequences generally represent 46 

useful indicators to detect crustal deformation (e.g. Demir et al., 2012), the fluvial 47 

sedimentary record of the Moulouya remains poorly documented. Excepted a few studies 48 

about Late Cenozoic deposits in its middle reach (Raynal, 1961; Lefèvre, 1984; 1989), a 49 

reliable reconstruction of the Quaternary terraces along the entire river course is still lacking. 50 

In this lowermost valley reach, where most of the recent geomorphological and 51 

stratigraphical research took place, all studies exclusively focused on the Holocene 52 

sedimentary record to infer climatic and human-induced changes (Ibouhouten et al., 2010; 53 

Zielhofer et al., 2008; 2010), eustatic variations (Pissart and Boumeaza, 2010) or tectonic 54 

deformation (Zarki et al., 2004). However, the distribution of these (almost) continuous 55 

Holocene overbank fined-grained sediments along this reach was either not mapped 56 
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(Ibouhouten et al., 2010; Zielhofer et al., 2008; 2010) or at a very poor resolution (Pissart and 57 

Boumeaza, 2010). Even more problematic, the Pleistocene terrace sediments in the previous 58 

studies were either completely disregarded (Ibouhouten et al., 2010; Zielhofer et al., 2008; 59 

2010) or erroneously interpreted as Pliocene marine conglomerates (Pissart and Boumeaza, 60 

2010). 61 

Therefore, this study first aims at (i) providing a comprehensive image of the river terraces’ 62 

distribution, including changes in the valley morphology, and (ii) establishing a relative 63 

stratigraphy of Late Cenozoic landforms in the lowermost Moulouya reach. To achieve these 64 

goals, we conducted a field survey based on profile description and geomorphological 65 

mapping using a differential global positioning system (DGPS) and a laser distance meter. In 66 

the two selected profiles, clast lithological analysis and measurements of carbonate contents 67 

were carried out to investigate the sedimentary environment and the post-depositional 68 

evolution of the river deposits. Field survey was supplemented by the analysis of satellite 69 

images. Finally, the reconstruction of the Quaternary fluvial environments in the lower 70 

Moulouya reach was used to better understand the position of the deformational front in this 71 

sedimentary basin and the resulting fault pattern.  72 

 73 

2. Study area 74 

2.1. Geodynamical background of north-eastern Morocco 75 

In the northern part of Morocco, there is a general consensus to consider N-S compressive 76 

shortening as the main geodynamic process from the Miocene to the Quaternary. Ait Brahim 77 

et al. (2002) showed that Messinian sedimentary sequences are affected by N-S to N140° E 78 

compression in the eastern Rif belt and that Middle Pleistocene terrace sequences in the 79 

region of Oujda and of the Oued Kert, respectively located eastward and westward of the 80 

Moulouya, were deformed (Fig. 1A). Based on kinematic analyses of Pliocene and 81 

Quaternary fault systems in the Rif mountains, a N-S to NW-SE, main compressional stress 82 

direction, associated with shortening rates of 1–2.3 mm/yr, was suggested (Meghraoui et al., 83 

1996). Recently, trend-topography surface analysis highlighted an E–W trending lithospheric 84 
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dome in the eastern Rif and in the Beni Snassen massif (Barcos et al., 2014). Morphometric 85 

indicators also revealed active deformations accommodating a N-S shortening at the 86 

northern margin of the Beni Snassen massif (Barcos et al., 2014). At last, recent geodetic 87 

observations evidenced southward motion of the Rif mountains (~3 mm/a) relative to the 88 

African plate interior (Fadil et al., 2006; Vernant et al., 2010). 89 

 90 

2.2. The Moulouya catchment 91 

2.2.1. General hydro-geomorphogical setting  92 

Originating in the southern part of the Middle Atlas, the >600 km-long, SW-NE oriented 93 

Moulouya river represents the second largest fluvial system of North Africa draining into the 94 

Mediterranean Sea (Fig. 1A). With a catchment area of ~74000 km2 (Pastor et al., 2015), its 95 

river network drains the northernmost part of the High Atlas to the south, the High plateaus to 96 

the east, the eastern half of the Middle Atlas to the west and the south-eastern margin of the 97 

Rif mountains to the north (Fig. 1A). The main trunk flows across several intramontane 98 

sedimentary basins filled with Neogene sediments; from source to outlet, they are the 99 

Arhbalou, Ksabi-Missour, Guercif and the Zebra-Triffa-Ouled Mansour basins, the last one 100 

being located directly upstream of the river estuary (Fig. 1A, B). Morphometric indicators 101 

along with deformations of the drainage network and the presence of large knickzones in the 102 

Moulouya catchment point to a disequilibrium state (Fig. 1B; Barcos et al., 2014; Pastor et 103 

al., 2015). The catchment shows an S-shape hypsometric curve and has a hypsometric 104 

value of 0.313, while the normalized stream-length gradient index (SLk) points to high 105 

anomalies along the entire river course (Barcos et al., 2014).  106 

The Moulouya catchment is characterized by a semi-arid to arid Mediterranean climate. 107 

Average precipitations range from 150-200 to 600 mm between the basin lowlands and the 108 

Atlas Mountains (Kaemmerer and Revel, 1991; Ngadi, 1995). Highest fluctuations of the 109 

water discharge occur from October to January; they are generally related to heavy rainfall 110 

events, usually very concentrated in time (Snoussi et al., 2002). This results in very high 111 
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peak discharges: e.g. ~5200 m³/s for the 1963 flood event (i.e. >200 times greater than the 112 

mean annual discharge; Snoussi et al., 2002; Zielhofer et al., 2008). 113 

 114 

2.2.2. The middle reaches (Ksabi-Missour basin) 115 

In the High and Middle Atlas region, two main processes resulted in rock uplift: thrusting due 116 

to tectonic shortening, active since the Paleogene, and long-wavelength surface uplift due to 117 

mantle-driven buoyancy since the Late Cenozoic (Babault et al., 2002). In the Ksabi basin 118 

(Fig. 1A), the existence of a Quaternary terrace staircase, encompassing up to eight distinct 119 

levels, and stacked terraces were recognized (Raynal, 1961; Lefèvre, 1989; Kaemmerer and 120 

Revel, 1991). The landscape is characterized by a tight inter-fingering between alluvial 121 

deposits of the Moulouya and footslope sedimentation landforms (alluvial cones, glacis), the 122 

latter usually capping the river sediments (Lefèvre, 1989). Further to the north in the Missour 123 

basin (Fig. 1A), recent 10Be dating of fluvial landforms, i.e. terrace fans from a tributary of the 124 

Moulouya draining the eastern flank of the Middle Atlas, allowed inferring incision rates of 125 

~0.3 mm/a, implying that mantle-driven uplift amounted to ~0.1-0.2 mm/a during the Middle 126 

Pleistocene (Pastor et al., 2015).  127 

 128 

2.2.3. The lowermost reach: the Zebra-Triffa-Ouled Mansour sedimentary basin 129 

Downstream of the 30 km-long gorge cut into the Beni Snassen massif (see below) until the 130 

estuary, the ~65 km-long reach of the Moulouya successively drains the so-called Zebra 131 

plain, Triffa plain and Ouled Mansour plateau (Fig. 2A). For clarity, the geologic basin formed 132 

by these three geographic areas will be named lowermost sedimentary basin in the following 133 

text. It is a large WSW–ENE striking synclinal depression mostly filled with Neogene marine 134 

deposits (Ruellan, 1971; Boughriba et al., 2006). As a component of the larger-scale Melilla 135 

basin, it emerged around 3.6 Ma (Rouchy et al., 2003). This synclinal structure is bordered 136 

by two complex, generally WSW–ENE striking anticlinal ridges: the Beni Snassen and the 137 

Kebdana mountains to the south and the north, respectively (Fig. 2A). Both massifs are 138 

primarily formed by diverse Mesozoic carbonate rocks, including limestone, dolomite, 139 
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dolomitic limestone, calcareous marl and sandstone, and marl (Ruellan, 1971). They are 140 

secondarily composed of sandstone and slate formations of the Palaeozoic flysh series 141 

(Ruellan, 1971; Khattach et al., 2004). 142 

Located to the north of the Triffa plain (Fig. 2A), the up to 10 km-wide and up to 130 m-high 143 

Ouled Mansour plateau is mostly formed of Mio-Pliocene marls and partly solidified sands 144 

(Ruellan, 1971). Despite many recent geological or geophysical studies, mostly dealing with 145 

the hydrogeology of the lowermost part of the Moulouya catchment (e.g. Khattach et al., 146 

2004; Boughriba et al., 2006; Chennouf et al., 2007a, b; Fetouani et al., 2008; Sardinha et 147 

al., 2012), the geological structure of the Ouled Mansour plateau remains confusing. This is 148 

especially true for the >20 km-long, continuous lineament at its southern edge (Fig. 2A). 149 

Whilst the latter was traditionally mapped as a flexural feature (e.g. Ruellan, 1971; Boughriba 150 

et al., 2006; Fetouani et al., 2008), Khattach et al. (2004) and Chennouf et al. (2007a) 151 

interpreted the Ouled Mansour plateau as a Miocene horst, thereby implying the presence of 152 

normal faults at its borders. In this respect, several WSW–ENE striking fault lines stretching 153 

across the Triffa/Ouled Mansour area are represented on the neotectonic map of Morocco 154 

(Faure-Muret and Morel, 1994). However, their exact position remains somewhat imprecise 155 

given the 1: 1,000,000 scale of the map and the nature of fault motion remains unknown. A 156 

SW-NE striking deformational front between the Rif belt and the Atlas mountains through the 157 

lowermost sedimentary basin of the Moulouya was assumed on the structural map of 158 

Morocco (Saadi, 1982). This main deformational front is also postulated by Barcos et al. 159 

(2014) but has a W-E orientation and a different extension. Note finally that these last 160 

authors reported active faulting, both normal and reverse, affecting Quaternary river deposits 161 

at the northern rim of the Beni Snassen massif (i.e the lowermost Moulouya catchment, Fig. 162 

2A) but without any precision about the location and the extension of these faults.  163 

In the lowermost reach of the Moulouya, the up to 15 m-thick recent flood deposits are 164 

formed of unconsolidated clayey/silty/sandy laminae spanning the whole Holocene period 165 

(Zielhofer et al., 2008; 2010; Ibouhouten et al., 2010; Pissart and Boumeaza, 2010). For 166 

clarity, these sediments, which are not in the focus of this study, will be referred to as 167 
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Holocene overbank fines in the following. Up to three distinct erosional terraces were carved 168 

into these overbank fines during a stepwise Holocene river incision according to Pissart and 169 

Boumeaza (2010). The detailed chronostratigraphic study of this sedimentary record, along 170 

with palaeoecological proxies, allowed inferring its strong coupling with Holocene rapid 171 

climate changes (Zielhofer et al., 2008; 2010; Ibouhouten et al., 2010), although this was 172 

formerly contested by Zarki et al. (2004). At last, abundant archaeological material along with 173 

fire places found in these sediments reveal temporary human settlements along the lower 174 

Moulouya (Ibouhouten et al., 2010; Linstädter et al., 2012), with a peak of human presence 175 

during the Epipalaeolithic (~7.8-10.1 ka cal BP) and the Neolithic (~5.5-7.4 ka cal BP). 176 

 177 

3. Material and methods 178 

This study tests the hypothesis of Barcos et al. (2014) of a main deformational front related 179 

to ongoing N-S compression disrupting the lowermost sedimentary basin of the Moulouya: 180 

the presence of a thrust zone at the transition between the Triffa plain to the south and the 181 

Ouled Mansour plateau to the north is thus postulated. For clarity in the following text, the 182 

river reach draining the Triffa plain is assimilated to the footwall and the one draining the 183 

Ouled Mansour plateau to the hanging wall. A detailed discussion about the thrust zone is 184 

provided in the section 5.3.  185 

Field survey included geomorphological mapping and the description and sampling of two 186 

profiles along the ~20 km-long studied river reach draining the north-western part of the 187 

footwall (Triffa plain) and the south-western part of the hanging wall (Ouled Mansour plateau, 188 

Fig. 2B). Geomorphological mapping was firstly based on DGPS (Topcon HiPer Pro) and 189 

laser distance meter (TruPulse 200 Rangefinder) measurements. Both were used to estimate 190 

the relative elevations of the main fluvial morphological landforms above the modern 191 

floodplain. Moreover, five valley cross sections in the hanging wall reach were obtained from 192 

DGPS elevation data (see location in Fig. 2B). The latter were corrected using the elevation 193 

of topographic points mentioned on Moroccan 1:50,000 topographic maps (Berkane, les 194 

Triffa and Zaio) and were processed with the GPS-Track-Analyse.NET software. DGPS and 195 
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laser distance meter measurements reach an altimetric accuracy of ~2 cm and <0.3-0.5 m, 196 

respectively. To complement field mapping, Astrium satellite images provided by Google 197 

Earth were used: their resolution is appropriate for reconstructing the regional occurrence of 198 

major geomorphological units. They allowed inferring (i) the widths of both the present-day 199 

floodplain and the valley filled with Holocene overbank fines at twenty selected spots (see 200 

location in Fig. 2B) and (ii) the height of the fault scarp at the southern edge of the Ouled 201 

Mansour plateau along four cross sections (see location in Figs. 2A, B). 202 

Two river profiles were thoroughly studied: the GAR and DOE profiles (Fig. 2B). They were 203 

selected because they are representative of the contrasted valley reaches draining the 204 

footwall and the hanging wall, respectively (see 4.2. and 4.3.). The ~37 m-high GAR profile is 205 

located on the western bank of the Moulouya (34°58’ 15.2’’ N; 2°27’35.7’’ O) and was 206 

measured by laser distance meter. The ~23 m-high DOE profile is located ~3.6 km 207 

downstream of the previous one, on the eastern bank of the Moulouya (34°59’59.2’’ N; 208 

2°26’27.3’’ O) and was measured by laser distance m eter and DGPS. Clast lithological 209 

analysis was applied to both profiles: two sets were collected in the lower and upper parts of 210 

the GAR profile and one in the DOE profile (see 4.2.2. and 4.3.2., respectively). For each set, 211 

more than 150 pebbles were directly extracted and sieved. Given the mean individual clast 212 

size in both profiles, analysis is performed in the (very) coarse gravel fraction (-4 to -6 grain 213 

size classes on the φ scale, i.e. 1.6 to 6.4 mm). Clast lithological analysis performed in fluvial 214 

terraces is useful to unravel the source areas of coarse alluvial material transported by large 215 

rivers (e.g. Rixhon and Demoulin, 2010; Demir et al., 2012). Contrasted proportions 216 

observed in the clasts’ nature may also reflect major catchment-wide changes in sediment 217 

supply (Maddy et al., 1991). At last, a quantitative evaluation of the carbonate content in the 218 

fine-grained matrix of the GAR profile was performed using the Scheibler apparatus, where 219 

0.5 g of sediments was moistened and reacted with 10% HCl (Beck et al., 1993). Horizons of 220 

densely-cemented secondary carbonates frequently occur in ancient fluvial sediments of the 221 

Moulouya (Ruellan, 1971; Kaemmerer and Revel, 1991), similarly to river terrace deposits of 222 

semi-arid Mediterranean environments (e.g. Candy et al., 2009). 223 
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 224 

4. Geomorphological mapping and profile description  225 

4.1. Lithological and morphological duality of the valley  226 

Remarkable lithological variations associated with specific morphological features 227 

characterize the valley walls along the <1 km-long fault zone, located directly before the river 228 

cuts into the Ouled Mansour plateau (Figs. 2B, 3A). All observations detailed below are 229 

reported along flow direction: the footwall (Triffa plain) and the hanging wall (Ouled Mansour 230 

plateau) are the upstream and downstream reaches, respectively.  231 

First, sharp lithological contacts are observed along the fault zone: the footwall reach is 232 

composed of fluvial gravels capped by fine-grained deposits (see section 4.2.), whereas the 233 

valley sides of the hanging wall reach are formed by marine sediments exhibiting different 234 

facies (Figs. 3A, B). On the western valley side, the latter are composed of yellowish sands 235 

and greyish marls; they locally crop out in a 330 m-long and 190 m-wide landsliding area, 236 

located directly downstream of the lithological contact and stretching to the current channel 237 

(Fig. 3B). Note that these locally cemented sands and marls constitute most of both valley 238 

walls in the hanging wall further downstream. On the eastern valley side, light greyish fine-239 

grained carbonate sediments containing abundant marine fossils (shell fragments mostly) 240 

form the hanging wall directly downstream of the lithological contact (Figs. 3C, D, E). Note 241 

that the latter is located >500 m southward of the lithological contact on the opposite valley 242 

side (Fig. 2B). Recrystallization processes associated with deep brownish/reddish 243 

colourations occur in these fossil-bearing sediments, both at depth and at the surface (Fig. 244 

3C, D).  245 

Second, clear vertical offsets disrupt the topography in the fault zone. Whereas the vertical 246 

offset is 4-5 m-high on the western valley side (Fig. 3A), the fault scarp is very prominent on 247 

the opposite side and reaches heights up to 30-35 m eastward of the valley (Fig. 4). The 248 

scarp is (almost) continuously observable in the topography from the Moulouya valley (west) 249 

to the valley of the Oued Kriss at the Algerian border (east) along more than 20 km (Fig. 2A). 250 
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Note that its direction changes from WSW-ENE to W-E north of the locality of Madagh (Fig. 251 

2A). 252 

Third, larger-scale contrasts in the valley morphology and channel dynamics are readily 253 

recognizable in the several km-long reaches located up- and downstream of the fault zone. 254 

The valley geometry along with the elevation difference between the modern floodplain and 255 

the top of the valley walls is particularly contrasted; nearly symmetrical, 30-40 m-high valley 256 

walls evolve into asymmetrical ones, up to 50 and 90 m-high on the western and eastern 257 

river banks, respectively, directly downstream of the fault zone (Fig. 2B). The mean lateral 258 

development of the modern floodplain significantly increases from ~215 m to ~360 m 259 

between the footwall and the hanging wall (Fig. 5A). Whereas it is restricted to values below 260 

180 m in the 2 km-long reach directly upstream of the fault zone, maximal values exceeding 261 

800 m are observed only 1.5 km downstream of the fault zone. The mean valley width filled 262 

with Holocene overbank fines in the footwall is also twice narrow as that of the hanging wall 263 

(~535 and ~1035 m, respectively, Fig. 5A). In particular, the valley width reaches minimal 264 

values of ~300 m in the 2 km-long reach directly upstream of the fault zone, whereas it 265 

rapidly exceeds 1000 m in the next kilometre downstream (Fig. 5A). At last, recent channel 266 

dynamics observed on satellite images (i.e. from 2003 to 2013) in the hanging wall is 267 

characterized both by incipient free meandering in the broad floodplain and active point bar 268 

development and migration.  269 

 270 

4.2. The footwall reach (Triffa plain) 271 

4.2.1. General characteristics 272 

Along the 10 km-long reach upstream of the fault zone, no Neogene marine sediment can be 273 

observed anywhere at the base of the valley walls. Here, the latter are formed by several m-274 

thick cemented river gravels, capped by fine-grained sediments exhibiting several dm-thick 275 

calcretes at the top. These gravel bodies build sub-vertical valley sides at several locations 276 

(see GAR profile below). They also include frequent cemented sand lenses, locally exhibiting 277 

cross bedding. Holocene overbank fines are rarely present simultaneously on both river 278 
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banks; they are discontinuous and frequently occur in the inner banks of meanders (Fig. 2B). 279 

Elevation measurements of the top of river gravels above the current channel, where clearly 280 

identifiable, decrease from ~34 m in the fault zone to about 10 m ~4 km upstream of it (Fig. 281 

5B). Recent overbank fines may locally overlie the cemented river gravels at locations where 282 

the observable gravel thickness does not exceed 10 m (Fig. 6A). 14C dating of former human 283 

settlement places embedded in these fine sediments attest a Holocene depositional age 284 

(Linstädter et al., 2012). A bench-like surface, located ~2 km upstream of the fault zone on 285 

the western valley side, is also observed. It is carved into cemented river gravels and sand 286 

lenses, displaying abrasion flutes and potholes (Figs. 6B, C). Partly covered by recent 287 

overbank fines, the top of this strath terrace is located 3-4 m above the current channel (Fig. 288 

6B).  289 

 290 

4.2.2. The GAR profile 291 

The GAR profile is located on the western bank of the Moulouya, directly upstream of the 292 

fault zone (Fig. 2B). In this valley section, the narrow modern floodplain and the Holocene 293 

overbank fines (i.e. together less than 225 m-wide) are only observed on the eastern valley 294 

side whereas fluvial lateral erosion formed undercut slopes on the western valley side. The 295 

~37 m-thick sedimentary succession of the profile exhibits a repetitive pattern of two similar 296 

fining-upward sequences: river gravel at the bottom (units 1 and 4), sand layers in the middle 297 

(units 2 and 5) and silty/clayey sediments at the top (units 3 and 6) in each sequence (Fig. 298 

7A). The first sequence is at least ~23 m-thick (base not visible because of the water table) 299 

and the second is ~14 m-thick (Fig. 7A). Units 1 and 4, forming the lower and upper river 300 

gravel bodies, respectively, are ~15 and ~6 m-thick (depths of ~37-22 m and ~14-8 m). They 301 

are both clast-supported, poorly to moderately sorted and strongly cemented. Individual clast 302 

size usually amounts to several centimetres but very rarely exceeds 20 cm. Both contain 303 

several m-long and dm-thick sand lenses, also cemented, that regularly display cross-304 

bedding structures. CaCO3 contents from the cemented fine-grained matrix amount to 53-70 305 

% in these units (Fig. 7B). Clast lithological analysis performed in each unit, however, reveals 306 
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contrasted results (Fig. 7C). A dominance of carbonate rocks over rocks primarily built by 307 

silicate minerals is clearly observed in unit 1 (93 vs. 7 %, respectively). This ratio between 308 

both rock types is much more balanced in the unit 4: 52 vs. 48 %, respectively. In unit 1, 309 

more than 50 % of the analysed pebbles are microgranular limestone, sometimes with calcite 310 

veins, whilst other carbonates are macrogranular limestone/calcareous sandstone (21.2 %), 311 

dolomite (11.3 %) or belong to other categories or are indeterminable for instance due to 312 

strong weathering (10 %). Rocks built by silicate minerals, i.e. chert, sandstone, quartzite, 313 

slate and acidic volcanic, are sparse. In unit 4, the same kinds of carbonate rocks are found 314 

but in lesser proportions: microgranular and macrogranular limestones amount to 34.2 and 315 

7.5 %, respectively, while dolomite only represents 7.0 %. Rocks built by silicate minerals are 316 

much diverse but are primarily dominated by both high- and low-degree metamorphic rocks, 317 

amongst which quartzite, including quartz pebble originating from neo-formed quartz veins 318 

(22.5 %), and slate or phyllite (10.7 %). Plutonic rocks, encompassing granitic, dioritic and 319 

sheet intrusion rocks, and basalt represent 5.9 and 3.2 %, respectively. Chert pebbles 320 

amounts to 3.2 % while sandstone, grauwacke and breccia pebbles were also observed.   321 

Units 2 and 5, forming the lower and upper cemented sand layers, respectively, are at least 3 322 

m and several dm-thick (depths of ~22-19 m and ~8-7.5 m). They display, just like the sand 323 

lenses embedded in the gravel bodies, tafoni weathering features. CaCO3 content amounts 324 

to 46-54 % in these units (Fig. 7B). The (at least) 2 m-thick cemented silty/clayey sediments 325 

forming unit 3 at depths comprised between ~16 and ~14 m are homogeneous and show a 326 

deep, uniform brownish/reddish colouration along with CaCO3 contents ranging from 36 to 49 327 

% (Fig. 7B). While the lower contact of these sediments could not be identified, the upper 328 

contact with the overlying gravel body is sharp and erosive (Fig. 7A). The upper, light 329 

brownish, ~7-7.5 m-thick silty/clayey sediments forming unit 6 are homogeneous, although a 330 

several dm-thick layer characterized by a stronger reddish colouration is observable at mid-331 

height. They also show a gradual upward induration, reflected by the CaCO3 contents 332 

evolving from ~30 % at the base to >75 % at the top (Fig. 7B). The whole sequence is indeed 333 

sealed by a several dm-thick, very strongly cemented horizon.  334 
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 335 

4.3. The hanging wall reach (Ouled Mansour plateau) 336 

4.3.1. General characteristics 337 

In the several km-long reach downstream of the fault zone, thorough field survey together 338 

with DGPS measurements allowed to identify three distinct contacts between Neogene 339 

marine deposits and fluvial terrace sediments (Figs. 8, 9), and to document their relative 340 

elevation above the modern floodplain. From the highest to the lowest, these contacts are 341 

found at relative elevations of 67±1, 35±1 and 25±1 m (Figs. 8, 9), with associated absolute 342 

elevations of 77±1, 45±1 and 35±1 m above sea level . According to this, the corresponding 343 

terrace levels are named T1, T2 and T3, respectively (Figs. 8, 9). They are characterized by 344 

an identical sedimentary pattern. Several m-thick, massive gravel bodies, strongly cemented 345 

due to the induration of the matrix material, are overlain by several m-thick fine-grained 346 

sediments, all sealed by a several dm-thick, locally dismantled calcrete (Fig. 8A, B). Frequent 347 

cemented sand lenses, locally exhibiting cross bedding, are embedded in the gravel bodies. 348 

These cemented terrace sediments can be traced over several hundreds of meters in most 349 

instances; the corresponding terrace levels consequently build morphological units in the 350 

landscape (Fig. 8A). They are unequally distributed: T1 is only observable on the eastern 351 

valley side, T2 only on the western valley side and T3 on both of them (Fig. 2B). The nature 352 

of the underlying Neogene sediments also varies: locally cemented sands underneath T1 353 

and T2, and marls underneath T3. Sand layers underlying T2 are strongly tilted to the west 354 

(Fig. 8C). Holocene overbank fines almost continuously occur on both river banks. Similarly 355 

to the older terrace levels, DGPS measurements reveal three main morphological units in the 356 

Holocene overbank fines with the following relative elevations above the current floodplain: 357 

14±2, 6±1 and 3±1 m (Fig. 9). On the eastern valley side, a ~1.5 km-long palaeo-channel is 358 

cut into the Holocene 6±1 m-high terrace (Fig. 9).  359 

 360 

4.3.2. The DOE profile  361 
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The DOE profile is located on the eastern bank of the Moulouya, more than one kilometre 362 

downstream of the fault zone (Fig. 2B). The base of fluvial sediments unconformably lies on 363 

Neogene marls at a relative elevation of 25±1 m (Fig. 10A) and allows a correlation of these 364 

fluvial sediments to the T3 terrace. The contact could not be readily observed at the base of 365 

the DOE profile due to the presence of slope failure deposits but it was clearly identified 366 

several hundred meters to the west of the profile. The overall ~22.5-23 m-thick profile is 367 

characterized by a fining-upward sequence (Fig. 10A): river gravel at the bottom (unit 1), 368 

sand body in the middle (unit 2) and silt/clay sediments at the top (unit 3). The up to 8-9 m-369 

thick unit 1 corresponds to a massive, generally poorly-sorted and nearly completely 370 

cemented gravel body (depths from 23 to 15-14 m). A subdivision of unit 1 into three 371 

subunits with gradational contacts can be undertaken (Fig. 10B). The lowermost sub-unit is 372 

almost void of any organization and is characterized by the highest proportion of boulders, 373 

reaching up to 60 cm in size. The middle sub-unit shows large grain size variations from 374 

boulders (but less numerous than in the previous sub-unit) to sand, organized in lenses. 375 

Clast orientation may locally be observed and several meter-long sand lenses sometimes 376 

exhibit cross-bedding structures (Fig. 10C). The uppermost sub-unit is clearly clast-377 

supported due to the scarcity of the fine-grained matrix; in general it shows a better sorting of 378 

the pebble fraction. Lithological clast analysis reveals a clear predominance of carbonate 379 

rocks over rocks primarily built by silicate minerals (90.3 vs. 9.7 %, respectively, Fig. 10D). 380 

As with the lower gravel body of the GAR profile, the same kinds of carbonate rocks are 381 

found, almost in identical proportions: microgranular limestone, sometimes including calcite 382 

veins, macrogranular limestone/calcareous sandstone and dolomite represent 51.9, 17.5 and 383 

14.3 %, respectively. The only significant difference concerns the composition of silicate 384 

rocks; only quartz (5.2 %) and chert (4.5 %) pebbles are found. 385 

The sandy unit 2 cuts the underlying unit in a channel-like structure, implying thicknesses 386 

varying between ~4 and ~5 m (depths from 15-14 to 9.5-9 m, Fig. 10A). Where strongly 387 

cemented, it displays tafoni weathering features (Fig. 10B). It also includes channel 388 

structures filled with pebbles, one of them being several tens of metres-long but only a few 389 
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decimetres-thick. The 9 to 9.5 m-thick unit 3 is formed of homogeneous, light brownish 390 

silty/clayey stratum. In the upper part, it is characterized by a strong reddish colouration over 391 

a thickness of several meters (Fig. 10B). Although no carbonate content was measured in 392 

this profile, this unit also seems to exhibit a gradual upward induration. Same as in the GAR 393 

profile, the whole sequence is sealed by a several dm-thick, very strongly cemented horizon. 394 

 395 

5. Data interpretation and discussion 396 

The main thrust zone identified in this study (see section 5.3) has obviously affected the 397 

long-term evolution of the lower Moulouya. As attested by our field observations and data, 398 

fault activity lead to very much contrasting fluvial reactions up- and downstream of the thrust 399 

zone: fluvial aggradation primarily has occurred in the footwall block (Triffa plain), whereas 400 

development of a terrace flight related to gradual river incision has occurred in the uplifted 401 

hanging wall (Ouled Mansour plateau). Similar contrasted fluvial environments are indeed 402 

commonly observed where river systems cut across active thrust zones (e.g. Cording et al., 403 

2014; Monegato and Poli, 2015), notably involving considerable deformations of terrace 404 

profiles (Thompson et al., 2002; Amos et al., 2007). 405 

 406 

5.1. Stacked terraces and calcrete development in the footwall reach 407 

The ~37 m-thick, fluvial sedimentary succession of the GAR profile points to long-lasting 408 

aggradation in the footwall reach. It also probably reveals a composite fill terrace (e.g. 409 

Pazzaglia, 2013), with a second terrace body (~14 m-thick) stacked over the first main one 410 

(at least ~23 m-thick). Arguments for this interpretation are (i) the recurring pattern of two 411 

similar fining-upward sequences, i.e. from gravel at the bottom to silt/clay at the top; (ii) the 412 

deep reddish colouration of the intermediate fines, indicating paleosol development in the 413 

middle of the sequence and (iii) the sharp erosive contact between intermediate fines (unit 3) 414 

and the upper gravel body (unit 4). 415 

In the same profile, the contrasted petrographic assemblages of both gravel bodies must 416 

also be discussed (Fig. 7C). The prevailing amount of carbonate rocks in the lower terrace 417 
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body (>90 %) probably reflects a local origin of the transported material, with predominant 418 

inputs from the Beni Snassen and/or the Kebdana mountains. Both massifs are primarily 419 

composed of diverse kinds of Mesozoic carbonates rocks (see 2.3.1.; Hollard, 1985). By 420 

contrast, the upper terrace body is characterized by a balanced proportion between 421 

carbonates rocks on the one hand and varied metamorphic (quartz/quartzite, slate, phyllite) 422 

and plutonic (granite, diorite, dyke-related) rocks as well as basalt on the other hand. With 423 

the exception of the small-sized batholith in the Beni Snassen massif, the second kind of 424 

rocks is practically absent in the lower Moulouya catchment. This points to a more complex 425 

mixing of the river bedload, reflecting both local input and longitudinal input from further 426 

upstream. In this respect, the largest outcrop of crystalline rocks is located in the upper 427 

Moulouya, directly upstream of the Ksabi basin (Fig. 1B; Hollard, 1985; Margoum et al., 428 

2015). The main trunk, along a >50 km-long reach, and several tributaries have incised into 429 

both plutonic rocks (granite, granodiorite, diorite), belonging to the Paleozoic Aouli batholith, 430 

and associated contact metamorphic rocks (quartzite, micaceous schist). Triassic basalt 431 

occurs in this area as well and in the lowermost part of the Za catchment (Hollard, 1985; 432 

Margoum et al., 2015), the main eastern tributary of the Moulouya (Fig. 1A). Granitic rocks 433 

also crop out in this second area but to a much lesser extent than in the upper Moulouya and 434 

metamorphic rocks are almost absent there (Hollard, 1985). Since the latter represent more 435 

than 30% of the clasts analysed in unit 4 of the GAR profile (Fig. 7C), we might assume that 436 

material eroded from the upper Moulouya area was significantly deposited in the upper 437 

terrace body. We thus suggest that such a petrographic variation in the transported bedload 438 

might reflect an important catchment-wide change in sediment supply (Maddy et al., 1991): 439 

deeper basement rocks have been probably unroofed and denudated in this erosional area 440 

and transported up to the lower Moulouya sedimentary basin located several hundreds of 441 

kilometres downstream. This change in sediment supply might be related to the transition of 442 

the Ksabi-Missour basin from an endorheic to an exhoreic drainage system as a result of its 443 

capture by a former Moulouya river (Pastor et al., 2015). It remains however unknown when 444 

this piracy event occurred after the last depositional episode in this basin during the Early 445 
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Pliocene (Pastor et al., 2015). We finally argue that the observed petrographic change is a 446 

supplement argument for long-lasting, perhaps discontinuous, aggradation in the footwall 447 

reach, leading to the formation of a composite fill terrace, i.e. deposition of these crystalline 448 

rocks occurred after the formation of the lower terrace body. 449 

We also observe a bipartite distribution of carbonate contents in the matrix of the GAR 450 

profile: it displays relatively high values from unit 1 to unit 5 and a decrease at the base of 451 

unit 6 followed by a significant upward increase (Fig. 7B). We suggest that different 452 

processes were involved in secondary carbonate precipitation and calcrete formation. 453 

Sealing the sediment sequence, the very upper part probably corresponds to a densely-454 

cemented hardpan horizon (Kaemmerer and Revel, 1991; Candy and Black, 2009). Very 455 

frequently encountered in semi-arid Mediterranean environments, it is typical of per 456 

descendum calcrete profiles and is associated to pedogenic processes (Ruellan, 1971; 457 

Kaemmerer and Revel, 1991; Candy and Black, 2009). In contrast, the rather homogeneous 458 

cementation in the lower part of the sequence is probably the result of processes gathered 459 

under the generic term of groundwater calcrete (Kaemmerer and Revel, 1991; Candy et al., 460 

2009). More specifically, it might correspond either to a channel calcrete (Nash and Smith, 461 

2003) or perhaps likelier to a valley calcrete (Nash and McLaren, 2003); the latter is typically 462 

several m-thick and develops within broad drainage courses, cementing alluvium of valley 463 

flanks. We assume that the same general bipartite interpretation can be drawn for fluvial 464 

sediments of the lower Moulouya where a similar induration pattern is observed (e.g. in the 465 

DOE profile). In the Ksabi basin (Fig. 1A), the same conclusion was reached by Kaemmerer 466 

and Revel (1991), who also identified a bipartite induration pattern in old terrace sediments of 467 

the Moulouya. However, further investigations, including micromorphology (Nash and 468 

McLaren, 2003), are still required to better specify calcrete formation in our study area.  469 

 470 

5.2. Pleistocene terrace staircase and related incision episodes in the hanging wall reach 471 

The Moulouya developed a well-preserved terrace flight with three distinct terrace levels in 472 

the hanging wall reach: they are named T1 to T3, from the highest to the lowest (Fig. 9). The 473 
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strongly cemented gravel deposits in all of them, due to massive secondary carbonate 474 

precipitation (see 4.2.2.), contrast with the loose gravel and the unconsolidated 475 

clayey/silty/sandy laminae forming the current channel and the Holocene overbank fines, 476 

respectively. T1, T2 and T3 are thus interpreted as Pleistocene terrace deposits. A similar 477 

conclusion was reached by Ruellan (1971): latest Pleistocene and Holocene deposits in the 478 

Zebra and Triffa plains (almost) do not bear traces of any carbonate redistribution, whereas 479 

older Pleistocene deposits are all cemented by carbonate precipitation. Sedimentary 480 

successions from the three Pleistocene terrace levels, though only clearly exposed for T3, 481 

seem also to display fining-upward sequences, just like in the aggradation area of the 482 

footwall reach. These observations converge with the terrace stratigraphy in the Ksabi basin 483 

(Fig. 1A). A repeated sedimentary pattern was also recognized in all of the 10-15 m-thick 484 

alluvial formations there (Lefèvre, 1989); it consists in (i) an erosional contact at the base; (ii) 485 

a bipartite conglomerate, i.e. heterometric, boulder-rich and unstratified in the lower part 486 

evolving into meter-sized oblique and cross-bedded layering to the top; (iii) solidified sands 487 

with oblique bedding; and (iv) laminated silty layers capping the sequence, where still 488 

present (Lefèvre, 1989). This sequence is remarkably similar to the one exhibited in the DOE 489 

profile (Fig. 10). We therefore assume that there is a recurrent fining-upward sequence in 490 

Pleistocene terrace deposits along the whole Moulouya course. We also agree with the 491 

correlation of Lefèvre (1989) between deposition of the coarse sediment layers and river 492 

systems of high competence, characterised by former torrential flow regimes. This is 493 

particularly well exemplified by the lowermost sub-unit in the DOE profile, with no 494 

sedimentary organization and the highest proportion of boulders up to 60 cm in size (Fig. 495 

10B). Such a depositional environment is usually encountered in semi-arid streams 496 

significantly affected by flash floods and characterised by high sediment supplies 497 

(Thorndycraft and Benito, 2006).  498 

Incised into the underlying Neogene marine sediments, the terrace staircase in the hanging 499 

wall thereby records three main Pleistocene downcutting episodes (Fig. 11). From the top to 500 

the base, they amount to slightly more than 30 m, ~10 m and >25 m, based on the vertical 501 
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spacing between the bases of successive terrace levels, and in the third case, between T3 502 

and the unrecognized base of the current floodplain. According to Pazzaglia, 2013, given the 503 

alluvium thickness of each Pleistocene terrace level (see Fig. 9), they are all likely to 504 

represent fill terraces (Fig. 11), exhibiting clear erosive contacts at their respective bases 505 

(Fig. 8). 506 

Interpreting the three morphological units in the Holocene overbank fines, observable on 507 

both sides of the fault zone, is more delicate. They may correspond either to a main ~15-16 508 

m-thick aggradational terrace subsequently cut by two degradational terraces at relative 509 

elevations of 6±1 and ~3±1 m (Fig. 11), or to three distinct aggradational terraces (e.g. 510 

Burbank and Anderson, 2012). In the main aggradational terrace, the 14C age distribution in 511 

the different profiles investigated by Zielhofer et al. (2008; 2010, see Fig. 2b) repeatedly and 512 

consistently displays younger deposition ages from the base to the top: the most recent age 513 

of ~1.4 ka is found at a relative elevation of ~14 m. This age distribution and the strath 514 

terrace carved in older fluvial deposits at a relative elevation of 3±1 m (Fig. 6B) both argue 515 

for the first interpretation. A similar conclusion was reached by Pissart and Boumeaza 516 

(2010). 517 

 518 

5.3. Identification of a main thrust zone in north-eastern Morocco 519 

5.3.1. Implications at the basin scale 520 

Previous studies interpreted either the southern edge of the Ouled Mansour plateau as a 521 

major flexure (Ruellan, 1971; Boughriba et al., 2006; Fetouani et al., 2008) or the whole 522 

structure as a Miocene horst, implying the presence of normal faults at its borders (Khattach 523 

et al., 2004; Chennouf et al., 2007a). On the one hand, we reject the hypothesis of a flexure 524 

in the very upper part of the Earth’s crust in the light of our new observations and data, i.e. 525 

sharp and anomalous lithological contacts, recrystallization processes and diverse 526 

morphological variations including contrasted fluvial environments within a very short 527 

distance. On the other hand, faulting is much more adequate to explain our observations. 528 

This agrees well with recent studies using gravimetric and aeromagnetic data: the location of 529 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
the >20 km-long continuous fault scarp indeed fairly well matches W–E to WSW–ENE 530 

striking lineaments independently detected in this area (Khattach et al., 2006; Chennouf et 531 

al., 2007b; El Gout et al., 2010). However, the hypothesis of a horst structure must be 532 

questioned against the geodynamic background of north-eastern Morocco (Khattach et al., 533 

2004; Chennouf et al., 2007a). Normal faults accommodate extensional stress in the Earth’s 534 

crust (e.g. Twiss and Moores, 2007) and this contradicts the widely recognised N-S 535 

compressive shortening occurring from the Late Neogene until present in this region 536 

(Meghraoui et al., 1996; Ait Brahim et al., 2002; Fadil et al., 2006; Vernant et al., 2010; 537 

Barcos et al., 2014). Moreover, gravimetric-induced observations (Khattach et al., 2006; 538 

Chennouf et al., 2007b; El Gout et al., 2010) highlight a NNW dip of the WSW–ENE striking 539 

fault segment matching the ~10km-long fault scarp between the Moulouya valley to the west 540 

and the locality of Madagh to the east (Fig. 2A). Although fault motion is not indicated, the 541 

fault geometry and the higher topographic position of the Ouled Mansour plateau imply that 542 

the latter was the upthrown hanging wall block. In the light of these new considerations, we 543 

interpret this structure as a thrust zone disrupting the lowermost sedimentary basin of the 544 

Moulouya. 545 

Lithological contacts observed along both valley sides of the Moulouya are also slightly 546 

shifted (Fig. 2B). On the eastern valley side, the ~500 m-long offset to the south might be 547 

related to a subsidiary splay fault branching off from the main thrust (Twiss and Moores, 548 

2007). Folding of the Neogene marine layers seems also associated to thrusting motion, as 549 

pointed out by the westward dipping of the partly solidified sand layers underneath the T2 550 

terrace (Fig. 8C). Finally, the identification of this thrust zone in this sedimentary basin surely 551 

has implications on the local aquifer structure and water resources in the Triffa plain and 552 

Ouled Mansour plateau. This possibly implies a re-examination of several interpretations 553 

drawn by recent studies, which formerly interpreted the southern edge of the Ouled Mansour 554 

plateau as a large flexural feature (Boughriba et al., 2006; Fetouani et al., 2008). 555 

 556 

5.3.2. Regional implications 557 
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The presence of this large thrust zone in the lowermost sedimentary basin of the Moulouya 558 

must also be discussed at a regional scale. First, it validates the assumption of the W-E 559 

striking main deformational front between the Rif belt and the Atlas mountains in the north-560 

eastern part of Morocco (Barcos et al., 2014). This thrust zone is consistent with the 561 

statement that a substantial part of the N-S compressive shortening was accommodated 562 

along reverse faults located at the northern margins of the Beni Snassen massif and the 563 

Kebdana mountains (Barcos et al., 2014). A similar conclusion was previously reached by El 564 

Gout et al. (2010). Our observations clearly demonstrate that the studied thrust zone has 565 

accommodated a part of this deformation. Contrary to the claim that the marine/continental 566 

sediment cover of the Neogene-Quaternary impedes the recognition of fault patterns in the 567 

sedimentary basins of north-eastern Morocco (Chennouf et al., 2007b), we state that recent 568 

faulting activity in these basins significantly deformed the Neogene and Quaternary 569 

sediments and left clear imprints in the topography.  570 

Second, morphometric indicators along with deformations of the drainage in the Moulouya 571 

catchment point to a general disequilibrium state (Barcos et al., 2014; Pastor et al., 2015). In 572 

particular, two major knickzones are conspicuous in the longitudinal profile (Fig. 1B). While 573 

the upstream knickzone corresponds to the deeply-incised reach into the crystalline rocks of 574 

the Palaeozoic Aouli batholith (and related metamorphic rocks), the downstream one occurs 575 

in the Mesozoic limestones of the Beni Snassen gorge. According to Pastor et al. (2015), the 576 

upstream knickzone is related to the capture of the Ksabi-Missour basin (located 577 

downstream, see Fig. 1A), which occurred at an unknown time period after the Early 578 

Pliocene (see section 5.1.). This capture induced the upstream propagation of an erosion 579 

wave which, when reaching the resistant crystalline rocks at the basin margin, resulted in the 580 

formation of a lithological knickzone. Bouazza et al. (2009) similarly suggested that the 581 

formation of the Beni Snassen gorge and the related knickzone resulted from several capture 582 

episodes at the onset of the Quaternary, although these authors provided no clear evidence 583 

for this explanation. Alternatively, it is well known that surface rupture resulting from fault 584 

motion often create knickpoints in the river channel and that these retreat at varying rates 585 
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along the drainage network (e.g. Whittaker & Boulton, 2012; Cook et al., 2013; Boulton et al., 586 

2014). Without explicitly rejecting the capture hypothesis, we suggest that the 30 km-long 587 

knickzone in the Beni Snassen gorge could also (partly) result from a transient fluvial 588 

reaction to Quaternary thrusting activity in the sedimentary basin and correlated uplift in the 589 

hanging wall block which is located >35 km downstream of the gorge outlet. In this respect, 590 

Boulton et al. (2014) showed that knickpoint formation in the Dades catchment (High Atlas) 591 

was related to increased Plio-Quaternary uplift rates as a result of fault activity along a main 592 

thrust zone (i.e. South Atlas Fault).  593 

6. Conclusion and research perspective 594 

Our study confirms the usefulness of the terrace record of large rivers to investigate long-595 

term crustal deformation. Significant thrusting activity in the lowermost sedimentary basin of 596 

the Moulouya, associated with N–S compressive shortening in this region, led to contrasted 597 

fluvial reactions and environments. On the one hand, long-lasting fluvial aggradation, 598 

materialized by ≥37 m-thick stacked terraces, has occurred in the footwall of the thrust. On 599 

the other hand, the hanging wall is characterised by a well-preserved terrace staircase, with 600 

(at least) three Pleistocene terrace levels. Late Cenozoic deformation and uplift induced in 601 

the hanging wall probably hindered profile regularisation of the Moulouya and might have 602 

been responsible for the knickzone observed in the Beni Snassen gorge. These 603 

interpretations agree well with independent morphometric indicators highlighting the 604 

disequilibrium state of the whole Moulouya catchment. Moreover, we also showed that 605 

stratigraphies of Pleistocene terrace deposits display similar fining upward sequences in the 606 

middle and lower reaches of the river.  607 

Assessing the rates of crustal deformation along this main thrust zone related to ongoing 608 

collision between the African and Eurasian plates obviously constitutes the next decisive 609 

step; it therefore requires age estimations for these Pleistocene terrace deposits of the lower 610 

Moulouya. As recently stated by Rixhon et al. (in press), luminescence (OSL/IRSL) and 611 

electron spin resonance (ESR) dating techniques form one array of potentially applicable 612 
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methods for the considered time span. In a northern tributary system of the Moulouya 613 

catchment, first OSL age estimates obtained on Late Pleistocene and Holocene wadi 614 

deposits highlighted the suitability of this method (Bartz et al., 2015). Likewise, the presence 615 

of quartz or quartz-bearing pebbles in the investigated profiles would allow for the application 616 

of cosmogenic nuclide dating (10Be and 26Al). In this case, burial dating, especially isochron 617 

dating, would be more favourable and/or suitable than surface exposure dating because of 618 

the significant thickness of silty/clayey deposits capping the terrace gravels.  619 
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Figure captions 775 

Fig. 1. (A) Relief map of the Moulouya catchment (delimited by black dashed line), with the 776 

main geological regional structures of northern Morocco (according to Barcos et al., 2014). 777 

The dashed rectangle refers to the zoom in of the lower Moulouya (Fig. 2A). (B) Longitudinal 778 

profiles of the Moulouya river and its main tributary, the Za river, with location of the main 779 

sedimentary basins and knickzones. Modified after Pastor et al. (2015). 780 

Fig. 2. (A) SRTM-based DEM of the lower Moulouya catchment, showing the Beni Snassen 781 

gorge and the the ~65 km-long river reach draining the lowermost sedimentary basin (Zebra 782 

plain/Triffa plain/Ouled Mansour plateau). The red arrows refer to the continuous fault scarp 783 

at the southern edge of the Ouled Mansour plateau and P1 to P4 locate the cross sections 784 

represented in Fig. 4. The dashed rectangle refers to our study area. (B) The 20 km-long 785 

studied valley reach of the lower Moulouya with main morphological and geological features 786 

as well as profiles described in the text (satellite image: Google Earth, CNES/Astrium, 787 

02.08.2014). White triangles refer to the locations where valley and floodplain width 788 

measurements were performed (see Fig. 4A). DGPS cross sections (CS) are represented by 789 

bold white lines and were performed both on the eastern (E1-3) and western (W1-2) valley 790 

sides (see Fig. 8). Small black circles with numbers are absolute elevation according to 791 

topographic points mentioned on Moroccan 1:50,000 topographic maps. Uncertain extension 792 

of fluvial units is symbolised by questions marks. Details about the profiles in Holocene 793 

sediments with archaeological finds can be found in Zielhofer et al. (2008, 2010) and 794 

Linstädter et al. (2012). 795 

Fig. 3. (A) Panorama view of the western valley side in the fault zone, characterized by an up 796 

to 330 m-long landsliding area (scarp delimited by white line), stretching to the current 797 

channel. Note also the sharp 4.5-5 m-high vertical offset (∆H) at the western tip of this area, 798 

where the presumed thrust zone (black line with arrow) occurs. T2 and T3 refer to two 799 

distinct terrace levels observed in the terrace staircase downstream (see 4.3.1.). (B) Detailed 800 

view of the of the western valley side, exhibiting a lithological transition, along flow direction, 801 
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between 34 m-thick river gravels sealed by a calcrete to Neogene marine deposits, locally 802 

observable in the landsliding area. (C) Neogene marine deposits: contact between unaltered 803 

carbonates (light greyish zone) and recrystallized carbonates and fossils at the ground 804 

surface of the eastern valley side. (D) Fossil-rich outcrop in the upper part of the eastern 805 

valley wall. Note the blackish zone (red arrows), attesting for alteration of the shelly 806 

carbonate layers. (E) Close-up view of the marine fossils (shell fragments mostly). (All 807 

photos: G. Rixhon). 808 

Fig. 4. Topographic cross sections across the southern edge of the Ouled Mansour plateau, 809 

interpreted as a main thrust zone (location on Fig. 1B). 810 

Fig. 5. (A) Evolution of the floodplain width and the valley width filled with Holocene flood 811 

deposits in the up- and downstream reaches of the fault zone (grey area), with location of the 812 

DOE and GAR profiles. Note the contrasted mean values between both valley reaches. (B) 813 

Elevation of the top of the cemented river gravel upstream of the lithological contact 814 

observed on the western valley side. This graph clearly reveals a diminishing trend in the 815 

upstream direction, decreasing from more than 30 m in the fault zone to about 10 m ~4 km 816 

upstream of it. 817 

Fig. 6. (A) Panorama view of the outer bank of a meander located ~4 km upstream of the 818 

fault zone. Note the sharp contact (red arrow) between the underlying cemented Pleistocene 819 

river gravels and the overlying Holocene overbank fines, in which settlement sites of the 820 

Epipalaeolithic and Bronze ages, attested by five 14C dates (red circles), were found in 821 

archaeological excavations (Linstädter et al., 2012). (B) View of the strath terrace carved into 822 

cemented river gravels and sands, located ~2 km upstream of the fault zone. Also overlain 823 

by Holocene overbank fines, its top (white dashed line) is perched 3-4 m above the modern 824 

river channel. (C) Detailed view of the abrasion flutes and potholes observed on the strath 825 

surface. (All photos: G. Rixhon). 826 
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Fig. 7. (A) Stratigraphic log of the 37 m-thick GAR profile, illustrated by detailed photos, 827 

exhibiting a recurrent pattern of two similar fining-upward sequences: two stacked river 828 

terraces, each one built-up by a cemented river gravel body at the base and alluvium 829 

(floodplain loam) on top. U1 to U6 refer to the six sedimentary units (see 4.2.2.). The black 830 

and white stars represent the sampling locations for clast lithological analysis in the lower 831 

(U1) and upper (U4) gravel body, respectively. Top photo: overbank fines of U6; middle 832 

photo: cemented gravel body of U4, embedding a several dm-thick sand lens; bottom photo: 833 

sharp contact between the reddish silty/clayey sediments of U3 and the gravel body of U4 834 

(the person points to the erosional disconformity). (All photos: G. Rixhon). (B) Carbonate 835 

content in the fine-grained matrix. (C) Contrasted results of clast lithological analyses 836 

(numbers in percent). 837 

Fig. 8. (A) Panoramic view from the western valley side of the hanging wall reach and its 838 

terrace staircase incised into the Ouled Mansour plateau. In the foreground, sharp contact, 839 

i.e. erosional disconformity, between Neogene marl deposits and cemented river gravel of 840 

the terrace level T3, sealed by a calcrete (people for scale). In the background, note the clear 841 

elevation difference between T3 and T1. The black rectangle refers to the DOE profile 842 

detailed in Fig. 9. (B) Close-up view of the erosional disconformity, stick is 1 m-long. (C) 843 

Sharp contact between Neogene sand deposits, partially lithified, and cemented river gravel 844 

of the terrace level T2 (stick is 1 m-long). Note the westward dipping (yellow dashed lines) of 845 

the sand layers. (Photos: M. Bartz and G. Rixhon). 846 

Fig. 9. Topographic cross sections based on DGPS measurements in the terrace staircase of 847 

the Ouled Mansour reach (see Fig. 1B for location). Contacts between Neogene marine 848 

deposits and cemented river gravels at three distinct relative elevations above the current 849 

floodplain define three Pleistocene terrace levels, referred to as T1 to T3 from the highest to 850 

the lowest. Note also three other morphological units in the Holocene overbank fines (see 851 

4.3.1.).   852 
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Fig. 10. (A) Stratigraphic log of the 22-23 m-thick DOE profile, exhibiting a fining-upward 853 

sequence with three distinct units (U1 to U3). The white star refers to the sampling location 854 

for clast lithological analysis. (B) Panoramic view of the profile, showing the main gravel body 855 

(U1) and the overlying sandy (U2) and silty/clayey (U3) sediments. The dashed black line 856 

delimits the boundary between U1 and U2. The white stripes refer to the transition zones 857 

between the different sub-units of U1 (see 4.3.2.). The white rectangle refers to Fig. 9C. (C) 858 

Detailed view of a sand lens embedded in U1 and exhibiting cross-bedding. (D) Result of 859 

clast lithological analysis (numbers in percent). (All photos: G. Rixhon). 860 

Fig. 11. Schematic sketch of the terrace staircase in the hanging wall reach, differentiating fill 861 

terraces from degradational terraces (bold black lines refer to the base of the Pleistocene 862 

terraces observed in the field). Multiple cut-and-fill events are outlined in the grey box.  863 
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Highlights 

The lower Moulouya river shows contrasted terrace systems due to thrust activity. 

Long-lasting aggradation with stacked terraces occurred in the footwall. 

A terrace staircase related to gradual incision developed in the hanging wall.  

Thrusting has implications on the long-term regularisation of the river’s long profile.  

 


