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Abstract: A computationally efficient technique to simulate the dynamic response of a beam colliding with rigid obstacles is described in

this paper. The proposed method merges three key concepts. First, a low-order discretization scheme that maximizes the number of nodes of

the discrete model (where impacts are detected) at the expense of the degree of continuity of the constructed displacement field is used.

Second, the constrained problem is transformed into an unconstrained one by formulating the impact by using a Signorini complementarity

law involving the impulse generated by the collision and the preimpact and postimpact velocity linked through a coefficient of restitution.

Third, Moreau’s midpoint time-stepping scheme developed in the context of colliding rigid bodies is used to advance the solution. The

algorithm is first validated on the nonimpact problem of a cantilever Rayleigh beam subjected to an impulsive discrete load. Then the problem

of a cantilever beam vibrating between two (symmetrically located) stops is analyzed. Both cases of discrete and continuous obstacles are

considered, and the numerical predictions are compared with published results or those obtained with a commercial code. DOI: 10.1061/

(ASCE)EM.1943-7889.0001175. © 2016 American Society of Civil Engineers.

Introduction

Mechanical systems colliding with rigid barriers are ubiquitous.

Thus, there is significant interest in accurately predicting their re-

sponse to impact. Although robust computational techniques now

exist to simulate the constrained motion of rigid multibody systems

(Brogliato 1996; Glocker 2001; Leine and Nijmeijer 2004; Acary

2008; Leine 2008), methods to analyze the impact behavior of

continuous compliant systems remain an active area of research.

Recognizing that beamlike structures are prevalent in industrial

applications (Andrews et al. 1996; Bishop et al. 1996; Wagg

and Bishop 2002; Ibrahim 2009), this paper focuses on formulating

an efficient technique to compute the fast dynamics of a beam

colliding with rigid obstacles.

Contact and impact problems are related, although essential dif-

ferences exist in view of their differing static and dynamic natures.

In unilateral contact problems, the constraints on the system are at

the displacement level, with the contact forces being unknown a

priori. In problems involving the impact of a structure with a rigid

obstacle, the constraints are not only at the displacement level but

also at the velocity level through the application of Newton’s

impact law, with the impulse generated by the impact being now

unknown a priori.

As can be expected, numerous numerical techniques have been

developed for simulating the constrained deflection of a beam (con-

tact problem). They include finite-difference schemes using penalty

methods for the contact forces (Klapper 1996; Goyal et al. 2008)

and finite-element methods using different approaches for solving

the contact problem (Simo 1985; Simo and Vu-Quoc 1986;

Cardona and Geradin 1988; Belytschko et al. 2000).

Conversely, methods to simulate the impact of a beam with a

rigid obstacle are still under development. One group of methods

is based on the modal decomposition of the solution and on satis-

faction of Newton’s law at impact. In one approach, a velocity jump

is imposed at the point of impact, which is restricted to coincide

with a collocation point (Wagg 2004); in another, an impulse is ap-

plied wherever and whenever an impact occurs (Vyasarayani 2009;

Vyasarayani et al. 2009, 2012). However, the predicted dynamic

response is affected by the number of modes used to construct

the solution, which should be adapted to the stiffness of the obstacle

(Melcher et al. 2013). Hence, the impact of a beamwith an infinitely

rigid obstacle cannot be solved accurately from this standpoint.

A second group of methods is based on a variational formulation

of the constrained beam problem (Paoli 2001; Pozzolini and Salaun

2011; Dumont and Paoli 2015). For space discretization, a

Galerkin approximation (Dumont and Paoli 2015) or the method

of lines (Dumont 2002) are used commonly. Different strategies

are used to model the impact. One is to introduce a normal stiffness

(Dumont 2002; Johansson 1997). Although appealing because of

the simplicity of its implementation, this method introduces large

reaction forces, because of the assumed large contact stiffness, that

eventually cause difficulty in solving the contact problem (Baraff

1994; Dumont and Paoli 2015). Another strategy is to use a time-

stepping scheme with a predefined coefficient of restitution

(Dumont 2003; Pozzolini and Salaun 2011; Dumont and Paoli

2015). However, the presence of the unilateral constraints and

the necessity of minimizing numerical dissipation make the choice

of the time-integration scheme a challenging task (Pozzolini and

Salaun 2011). To cover all these requirements, multiple time-

integration schemes have been proposed, such as the backward

differentiation formula (BDF), the Hilber-Hughes-Taylor (HHT-α)

method, and the implicitNewmark scheme [seeDumont (2002), Chen

et al. (2012, 2013), Acary (2014), Bruls et al. (2014), and Depouhon

et al. (2014) for a discussion on different time-stepping schemes].

This paper describes a fast and accurate method to simulate

the impact of a Rayleigh beam against rigid obstacles that is also
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capable of efficiently managing multiple simultaneous contact

points and prolonged contact times. The proposed method merges

three key concepts. First, a low-order discretization scheme, equiv-

alent to a representation of the beam as a Hencky (1920) chain, is

used; such a scheme maximizes the number of nodes—the location

of the points on the beam at which impact can be detected—at the

expense of the degree of continuity of the constructed displacement

field. Second, the constrained problem is transformed into an un-

constrained one by formulating the impact by using a Signorini

complementarity law involving the impulse generated by the col-

lision and the preimpact and postimpact velocity linked through a

coefficient of restitution. Third, Moreau’s midpoint time-stepping

scheme, a two-step algorithm developed in the context of colliding

rigid bodies, is used to advance the solution. The combination of

the Signorini law formulated at the velocity level and the Moreau

midpoint scheme requires solving a nonlinear system of equations

for the impulse and the preimpact and postimpact velocities when-

ever a node of the discrete beam is detected to be in contact (within

a set tolerance) of an obstacle. The algorithm is validated first on

the nonimpact problem of a cantilever Rayleigh beam subjected to

an impulsive discrete load. Then the problem of a cantilever beam

vibrating between two symmetrically located stops is analyzed.

Both cases of discrete and continuous obstacles are considered, and

the numerical predictions compared with published results or re-

sults obtained with a commercial code.

Beam Subjected to Impact Loading

Problem Formulation

Fig. 1 illustrates a beam vibrating between two rigid walls that re-

strict itsmotion. It is an example of the class of problems that one aims

to simulate numerically.Consideration is limited in this study to beams

with a doubly symmetric cross section that are subjected to transverse

time-dependent loading acting in one of the planes of symmetry.

In Fig. 1, a Cartesian coordinate system fX;Y;Zgwith its origin
at the left end of the beam is defined so that the horizontal X-axis

corresponds to the centerline of the unstressed beam, and the Y- and

Z-axes to the principal axes of inertia. The Z-axis is vertical and

pointing upward. In its usual one-dimensional representation, the

beam of length l is defined in the interval 0 ≤ X ≤ l.

Let UðX; tÞ denote the transverse displacement of the beam, a

function of both position X ∈ ½0; l� and time t > 0. It is governed

by the classic equation of motion (Love 2013; Rao 2007; Han et al.

1999), as follows:

ρA
∂2U

∂t2
− ρI

∂4U

∂X2∂t2
þ EI

∂4U

∂X4
¼ Qþ Φ ð1Þ

where E = elastic modulus; I = moment of inertia; A = cross-

sectional area; and ρ = density. For simplicity, all properties have

been assumed to be uniform. Two kinds of loading are considered:

a known body-type force QðX; tÞ, where Q is defined per unit

length of the beam; and a priori unknown impact forces ΦðX; tÞ
resulting from collisions of the beam with the upper and lower

obstacles. Both QðX; tÞ and ΦðX; tÞ are transverse forces acting

in the plane ðX;ZÞ. The quantities U, Q, and Φ have the same sign

convention, consistent with Z. The governing equation is supplied

with four boundary conditions (prescribing either the transverse

displacement or shear force, and either the inclination or the

bending moment at both ends) and two initial conditions

[e.g., UðX; 0Þ ¼ ∂Uðt; 0Þ=∂t ¼ 0].

The presence of the two rigid walls constrains the motion of the

beam. Let Z̄ðXÞ and zðXÞ denote the signed clearance between the

beam in its initial configuration and the upper and lower obstacles,

respectively. Hence, the transverse displacement of the beam is

constrained to the interval

zðXÞ ≤ UðX; tÞ ≤ Z̄ðXÞ; 0 < X < l; t > 0 ð2Þ

The impact law, required to close the formulation of the prob-

lem, is described subsequently, together with some restrictions

on the nature of the collision between the beam and the walls.

Scaling

By introducing characteristic quantities (namely, a length l�, a time

t�, a displacementU�, a body forceQ�, and an impulse Λ�), such as

l� ¼ l; t� ¼

ffiffiffiffiffiffiffiffiffiffiffi

ρAl4

EI

r

; U� ¼
l4Q�

EI
; Λ� ¼ lt�Q�

ð3Þ

governing Eq. (1) can be scaled according to

ü − β2
∂2ü

∂x2
þ
∂4u

∂x4
¼ qþ ϕ ð4Þ

with the various dimensionless quantities and parameters appearing

in Eq. (4) defined as

x ¼
X

l
; τ ¼

t

t�
; u ¼

U

U�

; q ¼
Q

Q�

; ϕ ¼
Φ

Q�

;

β2 ¼
I

Al2
ð5Þ

The standard notation u̇ ¼ ∂u=∂τ has been adopted, and u 0 ¼
∂u=∂x also will be used at some point. The free scale Q� can, in

principle, be chosen arbitrarily but should be selected so that kqk is
of orderOð1Þ. This is not possible, however, if the imposed loading

is of an impulsive nature, e.g., QðX; tÞ ¼ ΛδðX − XoÞδðtÞ, where
δ is the Dirac δ-function, and Xo ∈ ½0;l�. In this case, the character-
istic impulse Λ� ¼ Λ, so that Q� is chosen as Q� ¼ Λ=lt�, and
U� ¼ l3Λ�=EIt�. In any case, Λ� is used to scale the impulsive

forces induced by collision of the beam with the surrounding walls.

Eq. (5) describes the dynamic response of a Rayleigh beam, but it

degenerates to the governing equation of a Euler-Bernoulli beam

when β tends to 0.

It is now assumed that the forces generated by the collision of

the beam with the rigid walls zðxÞ and z̄ðxÞ (where z ¼ z=U�, and

z̄ ¼ Z̄=U�) can be viewed as discrete and impulsive. In other

words, it is assumed not only that the length of contact at impact

is very small compared with the beam length l but also that the

duration of contact is negligible compared with t�, a measure of

the period of the first vibration mode of the beam. These assump-

tions not only limit the impact velocity of the beam, which should

Fig. 1. Vibrating beam between two rigid walls

© ASCE 04016116-2 J. Eng. Mech.
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be small enough to satisfy the imposed restrictions, but also

constrain the geometry of the rigid wall. Under these restrictive

conditions, the impact forces ϕðx; τÞ can be expressed as

ϕðx; τÞ ¼
X

mðτÞ

l¼1

λlδðx − xlÞδðτ − τ lÞ ð6Þ

where λl = defined by scaling the original impulses with Λ�. Im-

pulses λl, locations xl, and times τ l of the impacts are unknown a

priori. They are calculated as part of the solution by accounting for

the constraint

zðxÞ ≤ uðx; τÞ ≤ z̄ðxÞ; 0 < x < 1; τ > 0 ð7Þ

and Newton’s coefficient of restitution e

u̇ðxl; τ
þ
l Þ ¼ −eu̇ðxl; τ

−
l Þ with zðxlÞ ¼ uðxl; τ lÞ or

z̄ðxlÞ ¼ uðxl; τ lÞ ð8Þ

where it has been noted again that the contact condition z ¼ u or

z̄ ¼ u is restricted to be discrete in time and space. Eqs. (4), (7), and

(8), together with initial conditions at τ ¼ 0, boundary conditions

at x ¼ 0 and x ¼ 1, and known loading qðx; τÞ for x ∈ ½0,1� and
τ > 0, form a closed system of equations for the field uðx; τÞ.
The challenge in solving numerically this system of equations is

the robust and accurate determination of the impact parameters

λl and τ l, as the location of the collision events will be restricted

to coincide with the nodes of the discretization mesh.

Semidiscretized Equations of Motion

When devising a spatial discretization scheme of the equation of

motion Eq. (1), there is a trade-off between the number of nodes

at which u is calculated and the order of the polynomial that ap-

proximates the displacement field between the nodes. In this study,

motivated by the desire to capture the location of the impacts ac-

curately and recognizing that an algorithm that limits the collision

detection to the nodes of the mesh is expected to be computation-

ally efficient, one favors a discretization scheme with a low-order

interpolation function but with many nodes. The Hencky chain

model of a beam, which consists of rigid segments connected

by elastic hinges (Hencky 1920; Salvadori 1951; Challamel et al.

2015; Wang et al. 2015) is such a scheme, one that maximizes the

number of nodes. However, starting from a different representation

based on a dual-discretization scheme, one obtains discretized

equations of motion identical to those governing the response of

a Hencky chain.

Dual Discretization of a Rayleigh Beam

Inspired by Spillmann and Teschner (2007), the authors use a

low-order dual-discretization scheme to formulate the approxi-

mated equations of motion of a Rayleigh beam. The centerline

of the beam is discretized by a chain of nþ 1 equally spaced nodes

located at xi ¼ ði − 1ÞΔx, i ∈ ½1; nþ 1�, whereΔx ¼ 1=n denotes

the distance between two adjacent nodes. Let uiðτÞ denote the

transverse displacement, and qiðτÞ the force per unit length at

node i.

A set of n auxiliary midnodes iþ 1=2, i ¼ 1; n located at

middistance between nodes i and iþ 1 also is introduced. The in-

clination θiþ1=2, i ¼ 1; n of the centerline is assigned to these midn-

odes; θiþ1=2 is related simply to the nodal displacements ui and

uiþ1 according to

θ
iþ

�

1=2

� ¼
uiþ1 − ui

Δx
ð9Þ

In Fig. 2, two types of elements are introduced: rigid

R -elements characterized by a rigid body motion (in the approxi-

mation of beam theory); and deformable D-elements characterized

by bending and by a nonuniform rotation of the center line. The

discretized beam is thus seen as the superposition of these two

types of elements, which are staggered as shown in Fig. 2. There

are n R-elements and nþ 1 D-elements. Element R½i� is defined
by the two end nodes i and iþ 1, whereas element D½i�, for

i ¼ 2; : : : ; n, is delimited by the two midnodes i − 1=2 and

iþ 1=2. Elements D½1� and D½nþ 1� are half-elements defined

by nodes 1 and 3=2 and by nodes nþ 1=2 and nþ 1, respectively.

The R-elements are characterized by a linear variation of the

transverse displacement u and of the force density q between their

two end nodes at any time τ , and D-elements by a linear variation

of θ. Thus, a D-element has a uniform curvature. It is convenient to

define the following vectors as

uT ½i� ¼ fui; uiþ1g; θT ½i� ¼ fθi−12; θiþ12g;

qT ½i� ¼ fqi; qiþ1g; NTðξÞ ¼ f1 − ξ; ξg ð10Þ

noting that u½i� and q½i� are assigned to element R½i�, and θ½i� to
element D½i�. Hence, displacement uðξ; τÞ along element R½i�,
i ¼ 1; n, can be expressed as

uðξ; τÞ ¼ NTðξÞ · u½i� ξ ¼
x − xi

Δx
; ξ ∈ ½0; 1� ð11Þ

whereas inclination θðξ; τÞ along element D½i� centered at node

i ¼ 2; n reads

θðξ; τÞ ¼ NTðξÞ · θ½i� ξ ¼
x − xi−1=2

Δx
; ξ ∈ ½0,1� ð12Þ

with curvature κ½i� given by

κ½i� ¼
θiþ1=2 − θi−1=2

Δx
¼

uiþ1 − 2ui þ ui−1

Δx2
ð13Þ

The expression for the curvature of elements D½1� and D½n�
depends on the boundary conditions. As illustrated in Fig. 2, the

R-elements correspond to chords, and the staggered D-elements

to osculating arcs of circle.

The specificity of this discretization scheme consists, therefore,

in using the same interpolation functions for both the displacement

and the rotation fields. This is an essential difference with classical

numerical methods, such as finite elements, in which the order of

interpolation of the differentiated fields (rotation) is by nature

smaller than that of the fundamental ones (displacements). The

current scheme might be seen as a low-order interpolation of both

Fig. 2. Dual discretization of a beam
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the displacement and rotation fields, in the manner of a state-space

formulation, without a strong enforcement of the kinematic

relation θ ¼ ∂u=∂x. A second difference with classical methods

consists in the offset between the two grids used for the two un-

known fields.

Kinetic and Potential Energy

Kinetic energy T consists of contributions from both the rigid and

the deformable elements, i.e.

T ðτÞ ¼
X

n

i¼1

TR½i� þ
X

nþ1

i¼1

TD½i� ð14Þ

The kinetic energy of elements R½i� and D½i� is given, respec-
tively, by

TR½i� ¼
1

2
Δxu̇½i�T · Au̇½i�; TD½i� ¼

1

2
Δxβ2θ̇½i�T · Aθ̇½i�

ð15Þ

with

A ¼

Z

1

0

NTNdξ ¼
1

6

�

2 1

1 2

�

ð16Þ

Hence,

TR½i� ¼
1

6n
ðu̇2i þ u̇iu̇iþ1 þ u̇2iþ1Þ; i ¼ 1; n ð17Þ

TD½i� ¼
nβ2

6
ðu̇2i−1 þ u̇2i þ u̇2iþ1 − u̇i−1u̇i − u̇iu̇iþ1 − u̇i−1u̇iþ1Þ;

i ¼ 2; n ð18Þ

The kinetic energy of the two end elements D½1� and D½nþ 1�
depends on the boundary conditions at the extremities of the beam.

For example, if u ¼ u 0 ¼ 0 at x ¼ 0, then TD½1� ¼ nβ2u̇22=6.
The potential energy consists of contributions from internal

(moment) and external forces (distributed forces q) acting on the

beam, i.e.

V ¼
X

n

i¼1

VE½i� þ
X

nþ1

i¼1

VI½i� ð19Þ

with

VE½i� ¼ −Δxq½i�T · Au½i�; i ¼ 1; n ð20Þ

VI½i� ¼
1

2
Δxκ2½i�; i ¼ 2; n ð21Þ

Hence,

VE½i� ¼ −
1

6n
½ð2qi þ qiþ1Þui þ ðqi þ 2qiþ1Þuiþ1�; i ¼ 1; n

ð22Þ

VI½i� ¼
n3

2
ðui−1 − 2ui þ uiþ1Þ

2; i ¼ 2; n ð23Þ

Again, the internal energy of D½1� and D½nþ 1� depends on the

boundary conditions at the extremities of the beam; if u ¼ u 0 ¼ 0

at x ¼ 0, then VI½1� ¼ n3u22=2.

Discrete Equations of Motion

The Lagrangian for the discrete model is thus of the form

ℒðu; u̇Þ ¼ T ðu̇Þ − VðuÞ, and the corresponding Euler-Lagrange

equations are

d

dτ

∂T

∂u̇
þ
∂V

∂u
¼ ϕ ð24Þ

where ϕ = set of impulsive forces acting at the nodes of the discrete

model, resulting from impact with the rigid obstacles. In view of

Eqs. (14) and (18)

d

dτ

∂

∂u̇

�

X

n

i¼1

TR½i� þ
X

nþ1

i¼1

TD½i�

�

þ
∂

∂u

�

X

n

i¼1

VE½i� þ
X

nþ1

i¼1

VI½i�

�

¼ ϕ

ð25Þ

The explicit expressions for the various terms entering in the

discrete Euler-Lagrange Eq. (25) are

d

dτ

�

∂TR½i�

∂u̇

�

¼ MR½i�

�

üi

üiþ1

�

with

MR½i� ¼
1

6n

�

2 1

1 2

�

; i ¼ 1; n ð26Þ

d

dτ

�

∂TD½i�

∂u̇

�

¼ MD½i�

8

>

<

>

:

üi−1

üi

üiþ1

9

>

=

>

;

with

MD½i� ¼
nβ2

6

2

6

6

4

2 −1 −1

−1 2 −1

−1 −1 2

3

7

7

5

; i ¼ 2; n ð27Þ

∂VI½i�

∂u
¼ KD½i�

8

>

<

>

:

ui−1

ui

uiþ1

9

>

=

>

;

with

KD½i� ¼ n3

2

6

6

4

1 −2 1

−2 4 −2

1 −2 1

3

7

7

5

; i ¼ 2; n ð28Þ

∂VE½i�

∂u
¼ −LR½i�

�

qi

qiþ1

�

with LR½i� ¼
1

6n

�

2 1

1 2

�

;

i ¼ 1; n ð29Þ

As discussed previously, the expressions for MD½i� and KD½i�
when i ¼ 1 or i ¼ nþ 1 depend on the nature of the boundary con-

ditions at x ¼ 0 and x ¼ 1, respectively. Finally, the various terms

are assembled to yield the semidiscretized equation of motion

MüþKu ¼ qþ ϕ ð30Þ

where q = nodal forces resulting from the assembly of LR½i�q½i�;
and ϕ = impulsive nodal forces associated with impact. The

preceding equations reduce to the equations of a Euler-Bernoulli

beam when β2
→ 0. In the static limit with no impact, the discre-

tized Eq. (30) is actually identical to those derived on the basis

of a Hencky chain representation of the beam (Salvadori 1951;

Challamel et al. 2015; Wang et al. 2015).

© ASCE 04016116-4 J. Eng. Mech.
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Impact Management

The existence of a contact and/or an impact is described by unilat-

eral (or inequality) constraints. Special treatment of the problem

is required in this case because of the nonsmooth conditions.

A numerical scheme based on Moreau time-stepping scheme is

suggested.

Decomposition of Motion and Forces in Smooth and
Nonsmooth Parts

To handle velocity discontinuities caused by the impulsive forces

generated by collisions of the beam with obstacles, the system

of Eq. (30) is transformed into measured differential equations

(Glocker 2001; Leine and Nijmeijer 2004)

Mdu̇þKudt ¼ qðtÞdtþ dp ð31Þ

where du̇ and dp = bounded differential measures of velocity and

momentum, respectively. The differential measure dp of the

discrete momentum can be expressed as

dp ¼ λdη ð32Þ

where λ = impulse arising from impacts during the time interval dt;

and dη = atomic differential measure [e.g., dη ¼ δðtcÞdt if only one
such impact takes place during dt at time tc]. The differential

measure of velocity du̇ can be expressed as

du̇ ¼ üdtþ ðu̇þ − u̇−Þdη ð33Þ

where ü = acceleration of the smooth background motion; and

u̇þ − u̇− = velocity jump associated with the impulse λ.

By using these decompositions of momentum and velocity and

considering that the external force qðtÞ is continuous in time, the

equation of motion [Eq. (31)] can be decomposed in terms of a

smooth and a nonsmooth part (Leine and Nijmeijer 2004)

MüþKu ¼ q ð34Þ

Mðuþ − u−Þ ¼ λ ð35Þ

where Eq. (34) describes the balance of forces for nonimpulsive

motion, and Eq. (35) is the impact equation of motion.

Newton Impact Law

Consider a collision between the beam and an obstacle taking place

at position ξ ¼ ξi at time τ ¼ τ c. According to Newton’s impact

law, the velocity jump u̇þi ðτ cÞ − u̇−i ðτ cÞ ¼ −ð1þ eÞu̇−i ðτ cÞ, where
e is the coefficient of restitution. This law, in combination with

the equations of motion, determines the magnitude of the impulse

λiðτ cÞ generated at impact point ξi.
Two gap vectors, g ¼ u − z and ḡ ¼ z̄ − u, are introduced to

measure the relative distance between the beam and the lower and

upper obstacles, respectively: g
i
≥ 0 and ḡi ≥ 0, i ¼ 1; nþ 1.

Evidently, ġ ¼ u̇, and ˙̄g ¼ −u̇. The collision event at ξ ¼ ξi
and τ ¼ τ c corresponds, therefore, to either g

i
ðτ cÞ ¼ 0 or

ḡiðτ cÞ ¼ 0. Attention is focused on collisions of the beam with

the lower obstacle. Newton’s impact law, now rewritten in terms

of the gap [i.e., ġþ
i
ðτ cÞ ¼ −eġ−

i
ðτ cÞ] and the associated impulse

λiðτ cÞ can be formulated as a Signorini law

γ
i
ðτ cÞ ≥ 0; λiðτ cÞ ≥ 0; γiðτ cÞλiðτ cÞ ¼ 0; with

g
i
ðτ cÞ ¼ 0 ð36Þ

where

γ
i
ðτ cÞ ¼ ġþ

i
ðτ cÞ þ eġ−

i
ðτ cÞ ð37Þ

The preceding complementarity condition is interpreted as fol-

lows. Under the condition that the contact is closed at ξ ¼ ξi and at
τ ¼ τ c [giðτ cÞ ¼ 0], an impulse λiðτ cÞ > 0 induces a jump in the

relative velocity ġ
i
ðτ cÞ, i.e., g

þ
i
ðτ cÞ ¼ −eġ−

i
ðτ cÞ, evidently imply-

ing that u̇þi ðτ cÞ ¼ −eu̇−i ðτ cÞ. Conversely, λi ¼ 0 implies that it is a

grazing impact; thus, Newton’s impact law needs to be relaxed, and

u̇þi ðτ cÞ > −eu̇−i ðτ cÞ. The usual representation of Signorini’s law,

as applied to the impact problem, is sketched in Fig. 3(b); the pos-

sible states fγi;λig characterizing an impact are represented by the

two thick lines on the positive parts of the two axes.

By using proximal point formalism, the complementarity con-

dition Eq. (36) can be replaced advantageously by a projective

equation. Noting that the proximal point of a convex set C to a point

z is the point x of C that is closest to z [i.e., if z is outside C, the

proximal point is on the boundary of C that is closest to z; but if

(a) (b)

Fig. 3. (a) Velocity of bounded variations; (b) Newton impact law formulated as a Signorini complementarity law

© ASCE 04016116-5 J. Eng. Mech.
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z ∈ C, z ¼ proxCðzÞ], the proximal point function for the particular

case C ¼ ℝ
þ is simply

proxRþðζÞ ¼

�

ζ if ζ > 0

0 if ζ ≤ 0
ð38Þ

In other words, proxRþðζÞ ¼ maxðζ; 0Þ. Signorini’s law

Eq. (37) can be rewritten as

λi ¼ proxRþðλi − rγ
i
Þ ð39Þ

where r > 0 = penalty parameter. This projective equation satisfies

all the requirements of the impact law when the contact is closed,

i.e., g
i
ðτ cÞ ¼ 0. Indeed, λi > 0 implies that Eq. (39) reduces to

λi ¼ proxRþðλiÞ, indicating that γi ¼ 0. Conversely, λi ¼ 0 entails

that proxRþðλi − rγ
i
Þ ¼ 0 and thus that γi > 0, as r > 0.

Time-Stepping Algorithm

Integration of the momentum balance Eq. (31) over a finite time

interval fτ k; τ kþ1g yields

u̇kþ1 − u̇k ¼ −M−1K

Z

τkþ1

τ k

udtþM−1

�
Z

τkþ1

τk

qdtþ λ

�

ð40Þ

where u̇k and u̇kþ1 = nodal velocity at discrete times τ k and τ kþ1,

respectively; and λ contains the nodal impulses at each degree-

of-freedom resulting from collision of the beam with the obstacles

during time step Δτ ¼ τ kþ1 − τ k. The time-stepping algorithm is

based on the Moreau midpoint scheme (Moreau and Panagiotopoulos

1988), one of the classic algorithms used to solve the motion equa-

tions for rigid body mechanics with impact. This scheme has

several features. First, it operates at the level of velocity and mo-

mentum, not at the level of accelerations and forces that become

infinite at impact. Second, whenever a collision is detected during

a time step, the impulse of the impact force and the velocity

discontinuity are calculated iteratively during that time step.

Moreau’s algorithm is an Index 2 time-stepping scheme. Given

displacement uk and velocity u̇k at time τ k, the calculation of ukþ1

and u̇kþ1 at time τ kþ1 ¼ τ k þΔτ proceeds in two steps. In the first

step, the displacement ukþ1=2 at midpoint time τ kþ1=2 ¼

ðτ k þ τ kþ1Þ=2 is calculated by using the explicit scheme

ukþ1=2 ¼ uk þ
1

2
u̇kΔτ ð41Þ

and the gap distance vectors are updated accordingly, thus leading

to g
kþ1=2

and ḡkþ1=2. The midpoint state is then used to determine

the contact set Ikþ1=2 ¼ fijg
kþ1=2

≤ εg, which identifies the

nodes of the beam where an impact is detected within tolerance

ε. For simplicity of presentation, it is assumed that all the impacts

during this time interval Δt involve collision of the beam with the

lower obstacle; the development can be generalized readily for the

case of unilateral constraints on both sides of the beam. In the sec-

ond step, velocity u̇kþ1 and impulse λkþ1 are computed by using

the momentum balance in Eq. (40)

u̇kþ1 − u̇k ¼ M−1½−ðKukþ1=2 − qkþ1=2ÞΔτ þ λkþ1� ð42Þ

where the integrals in Eq. (40) have been evaluated by using the

trapezoidal rule, and Newton’s impact law is now formulated by

using the projective equation

λkþ1 ¼ proxRþ ½λkþ1 − rγ
kþ1

� ð43Þ

where γ
i;kþ1

¼ u̇i;kþ1þeu̇i;k with i ∈ Ikþ1=2; and r ∼maxðM−1
ii Þ =

penalty parameter. In view of the nonlinear nature of Eq. (43), the

set of algebraic equations in Eqs. (42) and (43) has to be solved

iteratively by using, for example, fixed-point iterations. Solving

Eqs. (42) and (43) is akin to adopting an augmented Lagrangian

method [see Leine and Nijmeijer (2004) and Leine (2008) for a

detailed explanation]. By formulating the impact law into a simple

projective iterative equation, the initial constrained problem has

been transformed into an unconstrained optimization problem.

Once the solution u̇kþ1 and λkþ1 of Eqs. (42) and (43) has con-

verged, the displacement ukþ1 is updated according to

ukþ1 ¼ uk þ
1

2
ðu̇k þ u̇kþ1ÞΔτ ð44Þ

The local truncation error for displacements u and velocity u̇ are

OðΔτ 3Þ and OðΔτ 2Þ, respectively, for smooth motion and OðΔτÞ
and Oð1Þ, respectively, when impulsive motion is included (Studer

2009). The pseudocode of the Moreau midpoint time-stepping

scheme is shown in Algorithm 1. The complete algorithm is called

HeMo. The MATLAB code is available for download (Liakou

et al. 2016).

Algorithm 1. Pseudocode of Moreau’s Midpoint Time-Stepping

Scheme

1. The collision points are checked at midpoint displacements

ukþ1=2 ¼ uk þ
1
2
u̇kΔτ

If contact set Ikþ1=2 ¼ fijg
kþ1=2

≤ εg is nonempty, move to 3;

otherwise, go to

2. Smooth motion:

u̇kþ1 − u̇k ¼ −M−1ðKukþ1=2 − qkþ1=2ÞΔτ
3. Impact motion:

u̇kþ1 − u̇k ¼ M−1½−ðKukþ1=2 − qkþ1=2ÞΔτ þ λkþ1�

λnþ1
kþ1 ¼ proxRþ ½λnkþ1 − rγ

kþ1
�

where n = index of iterations

The iteration procedure continues until convergence, kλnþ1
kþ1 −

λnkþ1k ≤ ε
4. Update displacements: ukþ1 ¼ uk þ

1
2
ðu̇k þ u̇kþ1ÞΔτ

5. Next step

Moreau-Jean’s θ-scheme, a variation of the Moreau time-

stepping scheme, is presented in Appendix II, (Moreau and

Panagiotopoulos 1988; Jean 1999). The two schemes have been

applied to the subsequent numerical examples, but only results

for the Moreau’s scheme are illustrated in “Numerical Results” sec-

tion, as it is found that this scheme performs faster although less

controllable in terms of energy dissipation.

The critical time step for the stability of the numerical scheme

depends on the phase velocity, which itself is a function of the

wavelength in beam models. For a Rayleigh beam model, which

is governed by Eq. (4), the phase velocity is given by (Graff 1975)

c ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2β2 þ λ2
p ð45Þ

Compared with the Euler-Bernoulli beam, where high-

frequency waves travel at unbounded phase velocity, the Rayleigh

phase velocity saturates to c̄ ¼ β−1. This makes it possible to

introduce a Courant-Friedrichs-Lewy (CFL) number defined as

C ¼ c̄Δt=Δx. For the validation problem of a cantilever Rayleigh

beam (discussed in “Cantilever Beam Subjected to Impulsive

Force” section), c̄ ¼ 10 (β ¼ 0.1). Furthermore, Δτ cr=Δx ¼
0.0577 according to an eigenvalue analysis of the discrete beam

© ASCE 04016116-6 J. Eng. Mech.
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model, Ku ¼ ω2Mu, conducted for various values of n ≥ 20, thus

leading to a Courant number C ≃ 0.577.

Numerical Results

The computational algorithm is validated by comparing the numeri-

cal simulations with the analytical solutions of cantilever beam

loaded by an impulsive transverse force at its free end. Then,

the problem of a cantilever beam subjected to a harmonically

time-varying, uniformly space-distributed transverse load that is vi-

brating between two rigid obstacles symmetrically located across

the beam is analyzed. Two cases are considered: discrete stops

across the free end of the beam, and two longitudinal walls (Fig. 4).

Cantilever Beam Subjected to Impulsive Force

The dynamic response of a cantilever beam subjected to an impul-

sive force qðx; τÞ ¼ δðx − 1ÞδðτÞ is simulated numerically for both

an Euler-Bernoulli and a Rayleigh beam with β ¼ 0.1. A first set of

calculations was conducted by using n ¼ 500 and Δτ=Δx ¼ 0.01.

The results are illustrated in Fig. 5, which shows the history of the

displacement at the free end, uð1; τÞ, calculated for β ¼ 0 and

β ¼ 0.1. Also shown in Fig. 5 is the analytical solution based

on a Fourier series expansion, with only the first six modes used

to represent the solution. As described in Appendix I, deriving the

solution involves formulating the characteristic equation for the im-

posed boundary conditions, whose roots are the natural frequencies

for the different modes. It can be observed that the numerical so-

lutions faithfully reproduce the analytical ones in both cases.

The influence of the spatial discretization can be assessed from

Fig. 6, which shows the evolution of uð1; τÞ over τ ∈ ½0; 0.3� com-

puted for n ¼ 100, 200, and 500 andΔτ=Δx ¼ 0.01, together with

the analytical solution, for a Rayleigh beam characterized by

β ¼ 0.025. In this figure, β is small enough that the overall dynamic

response of the Rayleigh beam is actually very close to that of an

Euler-Bernoulli beam, as can be seen by comparing Figs. 5 and

6. There are few visual differences between the curves, suggesting

that the overall response is already captured well with n ¼ 100.

The discretization error is illustrated more rigorously in Fig. 7,

in which the l2-norm of the global numerical error kei;kk is plotted

versus n; kei;kk decreases approximately as n−1. The error kei;kk,
evaluated over a fixed time interval τ , is defined as

kei;kk ¼

�

ΔτΔx
X

m

k¼1

X

nþ1

i¼i

e2i;k

�1=2

(a)

(b)

Fig. 4. Vibrating cantilever beam between two rigid obstacles: (a) dis-

crete; (b) continuous

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 Euler-Bernoulli

Num. Euler Bernoulli

Rayleigh

Num. Rayleigh

Fig. 5. Comparison between numerical and analytical solutions of end

displacement uð1; τÞ for a cantilever beam under impulse loading

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Rayleigh

n=100

n=200

n=500

Fig. 6. Cantilever Rayleigh beam under impulse loading; influence of

spatial discretization on the history of the end displacement uð1; τÞ

10 100 1000

0.001

0.01

0.1

1

1.15
1

Fig. 7. Cantilever Rayleigh beam under impulse loading; influence of

spatial discretization on the l2-norm of the error on the displacement

field
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where ei;k = difference between the analytical and numerical solu-

tions at x ¼ xi and τ ¼ τ k; and m ¼ τ=Δτ = number of time steps.

The computational time required to calculate the responses shown

in Fig. 6 is approximately 1 s for n ¼ 100 and approximately 10 s

for n ¼ 500 on a computer equipped with an Intel Core i7-3630QM

CPU (Santa Clara, California) clocking at 2.4 GHz with 8.00 GB

of RAM.

Vibrations of Euler-Bernoulli Beam Constrained
by Two End Stops

Consider now the problem of a cantilever Euler-Bernoulli beam

fixed at x ¼ 0 and subjected to a time-harmonic uniformly distrib-

uted load qðx; τÞ ¼ sinωτ for τ > 0, with the beam being initially

at rest, i.e., uðx; 0Þ ¼ u̇ðx; 0Þ ¼ 0, x ∈ ½0,1�. The beam deflections

are constrained by two punctual rigid obstacles located at zð1Þ and
z̄ð1Þ. This problem has been solved with a finite-element approach

by Dumont and Paoli (2015), who combined some classical space

discretizations (i.e., Hermite or B-spline polynomials) with velocity

time-stepping schemes or a penalty method. Despite their some-

what unrealistic magnitude, the same parameter values are adopted

for this study to enable comparison of the results; hence, in dimen-

sionless form, ω ¼ 59.6, and z̄ð1Þ ¼ −zð1Þ ¼ 3.37 × 10−4 [the gap

distance had to be increased by a factor 10 to match Dumont and

Paoli (2015) results]. The simulations were carried out with HeMo

described in this paper and with ABAQUS using the penalty and

kinematic methods.

In ABAQUS, the beam is modeled as a two-dimensional (2D)

planar deformable beam element with a cylindrical section, while

the punctual obstacles are constructed by using 2D planar analytical

rigid elements. A “hard contact” was adopted for the interaction

normal to the contact surface, and a “frictionless contact” for the

tangential interaction. The dynamic response of the beam is com-

puted with ABAQUS/Explicit. The default time step is assigned be-

cause it is consistent with the Courant number. For the penalty

method, at least 200 elements are needed to capture the results,

whereas the kinematic method requires less elements. To generate

the results shown in Figs. 8 and 9, 400 elements were used for the

computations with both methods.

The history of the displacement of the free end of the vibrating

beam is shown in Fig. 8. The predictions made by using HeMowith

n ¼ 400, Δτ=Δx ¼ 0.001, and e ¼ 0.5 are in good agreement

with those obtained with the kinematic and penalty methods of

ABAQUS. However, theDumont and Paoli (2015) results show larger

discrepancies comparedwith the other predictions, as can be observed

in Fig. 8. The coefficient of restitution has hardly any effect on the

dynamic response of the beam in this particular example.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
-4

-3

-2

-1

0

1

2

3

4

Kinematic Method

Penalty Method

Dumont and Paoli (2015)

Midpoint Method

First contact

Fig. 8. History of displacement of end point of a cantilever beam

vibrating between two discrete obstacles calculated with ABAQUS

(kinematic and penalty method), by Dumont and Paoli (2015), and with

the proposed algorithm HeMo

0.04 0.05 0.06 0.07 0.08
3.0

3.1

3.2

3.3

3.4

0.04 0.05 0.06 0.07 0.08
-5

-4

-3

-2

-1

0

1

 Kinematic

 Penalty

 Midpoint

0.04 0.05 0.06 0.07 0.08
0

5

10

0.04 0.05 0.06 0.07 0.08
-3

-2

-1

0

1

2

3

(a)

(b)

(c)

(d)

Fig. 9. Detailed response at the free end of the cantilever beam vibrat-

ing between two stops as function of time during the first contact phase

(n ¼ 400, Δt=Δx ¼ 0.001): (a) displacement uð1; τÞ computed with

HeMo and ABAQUS (kinematic and penalty methods); (b) inclination

θð1; τÞ; (c) impulse λð1; τÞ, noting that the impulse induced at the first

impact, λ ≃ 2 × 108, has been truncated; (d) velocity u̇ð1; τÞ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-4

-3

-2

-1

0

1

2

3

4

n=50

n=100

n=200

n=400

Fig. 10. History of displacement of end point of a cantilever beam

vibrating between two discrete obstacles; influence of number of

elements n (Δt=Δx ¼ 0.001)
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Some insights about the deflection of the beam and the working

of the algorithm can be gained by analyzing the results shown in

Fig. 9, which illustrate the history of displacement u, beam incli-

nation θ ¼ u 0, velocity u̇, and impulse λ at the free end of the beam

during the time interval (0.033, 0.08) that includes the first contact

phase (the first impact takes place at τ c ≃ 0.0346). The plots of

uð1; τÞ and u̇ð1; τÞ in Figs. 9(a and d), respectively, indicate that

the free end remains in contact with the punctual stop located at

z̄ð1Þ for a finite time interval lasting approximately 0.01 after

the first impact at time τ c. During that time, the beam end rotates

around the stop, as illustrated by the evolution of inclination θð1; τÞ
in Fig. 9(b). An examination of the evolution of the impulse λð1; τÞ
during the phase of permanent contact [Fig. 9(c)] suggests that

λ ∼ ðτ − τ cÞ
−1=2.

The excellent match between the displacement uð1; τÞ com-

puted with ABAQUS (kinematic and penalty methods) and HeMo

can be seen in Fig. 9(a). Furthermore, despite being a Level 2

algorithm that is designed to deal with impact by operating on im-

pulse and velocity, the method handles well a prolonged contact

phase, as confirmed by the results summarized in Fig. 9.

Fig. 10 shows that the influence of the spatial and time discre-

tization as n is varied while keeping the ratio Δτ=Δx ¼ 0.001

constant. Although the overall response is captured well with

n ¼ 50, reproducing the finer details of the displacement history

of the free end requires at least n ¼ 200. The CPU time for various

combinations of n andΔτ=Δx is summarized in Table 1. Moreau’s

midpoint scheme is faster than the method described by Dumont

and Paoli (2015), but it is slower than the penalty method.

Vibrations of a Euler-Bernoulli Beam Constrained by
Two Walls

Finally, consider a problem similar to the previous one, but nowwith

two walls equally distant from the beam in its undeformed configu-

ration constraining its motion, i.e., z̄ðiÞ ¼ −zðiÞ ¼ 3.37 × 10−4 for

i ∈ ½1; nþ 1� [Fig. 4(b)].
The history of the displacement at the midspan of the beam,

uð0.5; τÞ, computed with HeMo (n ¼ 400 and Δt=Δx ¼ 0.001)

and with ABAQUS (using also 400 elements) is shown in Fig. 11.

Table 1. CPU Time for HeMo Computations of the Dynamical Response

of a Cantilever Beam Constrained by Two Discrete Stops

Δτ=Δx n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 400

0.01 1.52 1.89 2.48 14.91

0.001 2.87 7.46 14.89 123.51

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
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0
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 Kinematic 

 Penalty 

 Midpoint: e=1

 Midpoint: e=0

Fig. 11. History of midspan displacement of a cantilever beam

constrained by two walls, obtained with different methods
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(a) (d)

(b) (e)

(c) (f)

Fig. 12.Deflection profiles of the cantilever beam, uðx; τÞ, at various times: (a) τ ¼ 0.0337 andm ¼ 10; (b) τ ¼ 0.0340 andm ¼ 25; (c) τ ¼ 0.0347

and m ¼ 60; (d) τ ¼ 0.0353 and m ¼ 28; (e) τ ¼ 0.0360 and m ¼ 20; (f) τ ¼ 0.0380 and m ¼ 18 (n ¼ 400; Δτ=Δx ¼ 0.001; e ¼ 0.5; and

m = number of contacts)
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In contrast to the previous problem, in this case, the coefficient of

restitution e has a nonnegligible influence on the dynamic response

of the beam. For e ¼ 1, the response computed with HeMo com-

pares well with that predicted by ABAQUS using the penalty

method; however, for e ¼ 0, the response is closer to that computed

by ABAQUS with the kinematic method. Nonetheless, the global

response remains similar irrespective of e.

Fig. 12 illustrates the deflection of the beam at a few times

closely after the first impact; the caption of the figure gives the

number of nodes in contact at each time. The contact first takes

place at approximately x ¼ 0.4, with the contact region rapidly

spreading toward the free end of the beam over a time interval

of order Oð10−4Þ. The contact is not continuous, however, as the

beam can be seen in Figs. 12(c–f) to be detached from the wall at

various places. These results confirm the robustness of the algorithm

in its ability to handle multiple contacts/impacts simultaneously.

The CPU time for the HeMo calculations is provided in Table 2

for various combinations of n and Δτ=Δx.

Conclusions

This paper has described a numerical method to simulate the col-

lision of a beam with rigid obstacles. The method is based on three

building blocks: (1) a low-order discretization scheme that maxi-

mizes the number of nodes of the discrete beam, where impacts

are detected, at the expense of the degree of continuity of the con-

structed displacement field; (2) the transformation of a unilateral

constrained problem into an unconstrained one by using the proxi-

mal point formulation of the Signorini-type law governing the

impact; and (3) the implementation of Moreau’s midpoint time-

stepping scheme that decomposes the motion into smooth and

nonsmooth components. The algorithm was validated first on the

nonimpact problem of a cantilever Rayleigh beam subjected to an

impulsive discrete load. Then the problem of a cantilever beam

vibrating between two symmetrically located stops was analyzed.

Both cases of discrete and continuous obstacles were considered,

and the numerical predictions compared with published results or

those obtained with a commercial code. The examples confirm the

computational speed and robustness of the proposed technique and

also show that multiple quasi-simultaneous impacts and prolonged

contact can be handled efficiently by the algorithm.

Appendix I. Free and Forced Vibration of Cantilever
Rayleigh Beam

The equations governing the free vibrations of a cantilever

Rayleigh beam consist of the homogeneous equation of motion

∂4u

∂x4
þ
∂2u

∂τ2
− β2

∂4u

∂x2∂τ 2
¼ 0 ð46Þ

and the boundary conditions

u ¼
∂u

∂x
¼ 0; at x ¼ 0 ð47Þ

∂2u

∂x2
¼

∂3u

∂x3
− β2

∂3u

∂x∂τ 2
¼ 0; at x ¼ 1 ð48Þ

Assuming separation of variables, substitution of uðx; tÞ ¼
UðxÞTðtÞ into Eq. (46) gives

d4U=dx4

ðU − β2d2U=dx2Þ
¼ −

d2T=dt2

T
¼ ω2 ð49Þ

which leads to the following two equations:

d2T

dt2
þ ω2T ¼ 0 ð50Þ

d4U

dx4
− ω2

�

U − β2
d2U

dx2

�

¼ 0 ð51Þ

The solution of Eq. (50) is of the form

TðtÞ ¼ A sinωτ þ B cosωτ ð52Þ

where A;B = unknown coefficients to be determined by the initial

conditions. Additionally, setting UðxÞ ¼ esx into Eq. (51) leads to

s4 þ ω2β2s2 − ω2 ¼ 0

which has two families of roots

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ω2β2

2

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ω2β2

2

�

2

þ ω2

s

v

u

u

t

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

−
ω2β2

2

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ω2β2

2

�

2

þ ω2

s

v

u

u

t

noting that

ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2

β2

s

Thus, the general form of the eigenfunctions can be expressed as

UðxÞ ¼ C1 sin axþ C2 cos axþ C3 sinh bxþ C4 cosh bx ð53Þ

Using Eq. (53) with the boundary conditions in Eqs. (47) and

(48) leads to the frequency equation

2a2b2 þ ða4 þ b4Þ cos a cosh bþ ðb2 − a2Þab sin a sinh b ¼ 0

ð54Þ

which has an infinitre spectrum of discrete roots ωi, i ¼ 1;∞. The

roots depend on the slenderness ratio β2. As β → 0, a→ b,

the contribution of the rotational mass becomes negligible, and

the Rayleigh beam degenerates to the Euler-Bernoulli beam, which

is characterized by only one wave number.

Consider now two eigenfrequencies (ωi and ωj) solutions

of Eq. (54) and the corresponding normal modes [UiðxÞ and

UjðxÞ], which both satisfy Eq. (51). To derive the orthogonality

relations, multiply Eq. (51) expressed in terms of UiðxÞ by

UjðxÞ, and integrate it over the total length of the beam. After

applying an integration by parts, one obtains

Z

1

0

Uj

d4Ui

dx4
dx ¼

�

Uj

d3Ui

dx3
−
dUi

dx

d2Ui

dx2

�	

	

	

	

1

0

þ

Z

1

0

d2Uj

dx2
d2Ui

dx2
dx

ð55Þ

Table 2. CPU Time for HeMo Calculations of the Cantilever Beam

Constrained by Two Walls

Δτ=Δx n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 400

0.01 7.91 21.07 36.24 65.76

0.001 20.13 50.09 58.99 217.41
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Z

1

0

ω2
iUj

�

Ui − β2
d2Ui

dx2

�

dx

¼

Z

1

0

ω2
i

�

UiUj þ β2
dUi

dx

dUj

dx

�

dx − ω2
i β

2Uj

d2Ui

dx2

	

	

	

	

1

0

ð56Þ

where the left and right sides of Eq. (51) are shown separately for

clarity. By applying the boundary conditions, Eqs. (55) and (56)

become

Z

1

0

d2Uj

dx2
d2Ui

dx2
dx ¼

Z

1

0

ω2
i

�

UiUj þ β2
dUi

dx

dUj

dx

�

dx ð57Þ

Similarly

Z

1

0

d2Uj

dx2
d2Ui

dx2
dx ¼

Z

1

0

ω2
j

�

UiUj þ β2
dUi

dx

dUj

dx

�

dx ð58Þ

In view of Eqs. (57) and (58), one derives the orthogonality

relation for ωi ≠ ωj

Z

1

0

�

UiUj þ β2
dUi

dx

dUj

dx

�

dx ¼ 0 ð59Þ

By normalizing the ith normal mode UiðxÞ as

Z

1

0

�

U2
i þ β2

dUi

dx

dUi

dx

�

dx ¼ 1 ð60Þ

the final form of the orthogonality relation becomes

Z

1

0

�

UiUj þ β2
dUi

dx

dUj

dx

�

dx ¼ δij ð61Þ

where δij = Kronecker delta.

The general solution of a freely vibrating Rayleigh beam finally

can be expressed as

uðx; τÞ ¼
X

∞

i¼1

UiðxÞðAi sinωiτ þ Bi cosωiτÞ ð62Þ

Finally, consider a cantilever Rayleigh beam subjected to an

impulsive force (λ ¼ 1) at its free end. The displacement field,

the solution of

∂4u

∂x4
þ
∂2u

∂τ2
− β2

∂4u

∂x2∂τ2
¼ δðτÞδðx − 1Þ ð63Þ

is expressed as a linear combination of the normal modes, i.e.

uðx; τÞ ¼
X

∞

i¼1

UiðxÞTiðτÞ ð64Þ

Substituting Eq. (64) into Eq. (63), which then is multiplied by

Ui and integrated over ½0,1� leads to

d2Ti

dτ2
þ ω2Ti ¼ Uið1ÞδðτÞ ð65Þ

after using Eq. (51) in combination with the orthonormality con-

dition in Eq. (61). Assuming that the beam is initially at rest, the

solution of Eq. (65) is

TiðτÞ ¼
Uið1Þ

ωi

sinωiτ ð66Þ

which provides the complete solution after substituting Eq. (66)

into Eq. (64). More details can be found in Rao (2007).

Appendix II. Moreau-Jean θ-Method

The Moreau-Jean θ-method is an Index 2 implicit time-stepping

scheme. The local error estimate is the same as Moreau’s for the

impulsive motion. This appendix only summarizes the main results

obtained with this method [see Acary (2010) for details]. With this

scheme, the equation of motion and the time discretization scheme

become

u̇kþ1 − u̇k ¼ M−1½−ðKukþθ − qkþθÞΔτ þ λkþ1� ð67Þ

ukþ1 − uk ¼ Δτ ½θu̇kþ1 þ ð1 − θÞu̇k� ð68Þ

where the internal and external forces are expressed at a certain

time along the time step by using the same interpolation,

Kukþθ ¼ θKukþ1 þ ð1 − θÞKuk ð69Þ

qkþθ ¼ θqkþ1 þ ð1 − θÞqk ð70Þ

which leads to

u̇kþ1 − u̇k ¼ M̂−1f−½Kðuk þ θΔτ u̇kÞ − qkþθ�Δτ þ λkþ1g ð71Þ

and M̂ is the iteration matrix

M̂ ¼ Mþ θ2Δτ 2K ð72Þ

The contact detection also is performed at the midpoint

time. The steps of the Moreau-Jean θ-method are summarized in

Algorithm 2.

Algorithm 2. Moreau-Jean’s θ-Scheme

1. The collision points are checked at midpoint time

ukþ1=2 ¼ uk þ u̇k
Δτ
2

If contact set Ikþ1=2 ¼ fijg
kþ1=2

≤ εg is nonempty, move to 3;

otherwise, go to 2.

2. Smooth motion:

u̇kþ1 − u̇k ¼ −M̂−1f½Kðuk þ θΔτ u̇kÞ − qkþθ�Δτg
3. Impact motion:

u̇kþ1 − u̇k ¼ M̂
−1f−½Kðuk þ θΔτ u̇kÞ − qkþθ�Δτ þ λkþ1sg

λnþ1
kþ1 ¼ proxRþðλnkþ1 − rγkþ1Þ

where M̂ ¼ Mþ θ2Δτ2K: the iteration matrix,

n: number of iterations

The iteration procedure proceeds until convergence, kλnþ1
kþ1 −

λnkþ1k ≤ ε
4. Update displacements: ukþ1 ¼ uk þΔτ ½θu̇kþ1 þ ð1 − θÞu̇k�
5. Next step

This method has been implemented and applied to analyze the

cantilever beam impacting the two stops. The dynamic response

of the beam is virtually identical to the response obtained with

Moreau’s scheme. Again, the choice of parameter θ and coefficient

of restitution e do not play an important role in the final result for

this particular problem. For the problem of the cantilever beam con-

strained by two continuous walls, the Moreau-Jean θ-method also

compares well with the kinematic (for θ ¼ 1 and e ¼ 0) and

penalty (for θ ¼ 1 and e ¼ 1) methods of ABAQUS. In terms of

computational time, the Moreau-Jean θ-method is slower than

the Moreau scheme but is still faster than Dumont and Paoli

© ASCE 04016116-11 J. Eng. Mech.
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(2015). A comparison between the two schemes in terms ofCPU time

is presented in Tables 3 and 4 for constant ratio Δt=Δx ¼ 0.01 and

for a representative value of the coefficient of restitution, e ¼ 0.5.

Besides the speed of the algorithm to complete the simulation,

energy considerations also could influence the final choice of a time

integrator. It is commonly recognized that energy conservation is a

desired feature of a time integrator; in some instances, the possibil-

ity of adding a slight controllable amount of numerical dissipation

is also appealing to ensure stability of the scheme in more complex

nonlinear configurations.

For a rigid body motion, the Newton impact law for e ¼ 1 theo-

retically ensures that the energy remains constant for free vibration

if there is no damping. This is not the case when the Newton impact

law is applied to deformable bodies. The violation of the contact

constraint at a specific point affects the velocity and, accordingly,

the position of the adjacent points through the stiffness and mass

matrices, K and M, as they are not diagonal matrices.

Fig. 13 shows the time evolution of the total mechanical energy

of the beam, defined as

E ¼
1

2
u̇TMu̇þ

1

2
uTKu ð73Þ

as calculated by using the Moreau and Moreau-Jean θ-schemes, for

the problem of the cantilever beam vibrating between two stops.

Calculations were carried out with Δτ=Δx ¼ 0.001, e ¼ 1,

n ¼ 200 and 300 for θ > 0.5, and n ¼ 200 for θ ≤ 0.5. Energy dis-

sipation is observed and is reduced when the number of elements

increases. For the Moreau-Jean θ-method, the choice of parameter θ
is also important. The energy is not bounded; therefore, the scheme

is unstable for θ < 0.5. Energy is conserved for e ¼ 1 when θ ¼ 0.5

[see also Acary (2014)].
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