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We would like to congratulate the authors for having put together a very
interesting, thoughtful, and timely review paper about Random Forests (RF).
This paper will definitely serve as a reference on RF and foster further theoretical
and applied research about this family of algorithms.

In our comments below, we will refer to Biau and Scornet’s review paper as
BS. Based on our own experience with tree-based methods, we bring up a few
complementary points that were not explicitly addressed in BS, and which we
believe to be of importance to well position some relevant related work and also
to foster some interesting directions for further work.

Alternative randomization schemes

Research on tree-based ensemble methods dates back to the 19-nineties and was
motivated at that time by the success of generic ensemble methods for supervised
learning, such as Breiman (1996)’s Bagging and Freund and Schapire (1997)’s Ad-
aboost algorithms, that can be combined with any kind of base-model. It was
soon found that these ensemble methods are verry effective when applied on top
of decision or regression trees, and this success fostered further research, in par-
ticular towards the design of alternative randomization techniques exploiting the
specificities of tree-based models. Among the methods that were published at that
time, Breiman’s Random Forest method (BRF) was designed by combining two
randomization techniques previously proposed in two generic ensemble methods:
Breiman (1996)’s own bagging idea, by using bootstrap resampling of the learning
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sample, and Ho (1998)’s global random subspace idea, by introducing randomiza-
tion through the local pre-selection of a random subset of features used for deciding
how to split at any tree node. The excellent performances of the BRF method has
since been confirmed empirically in many contexts. This algorithm has also been
implemented in several widely used and publicly available software packages, and
has become the de facto standard RF method, well known and used in many
application fields.

Since the publication - in 2001 - of Breiman’s RF algorithm, a number of al-
ternative randomization methods have also been proposed in the literature (see
Section 4.2 of BS for a discussion of some of them), each one having been shown
empirically to perform better than BRF on a significant number of benchmark
problems. We contributed ourselves to this research effort by proposing the ex-
tremely randomized tree algorithm (ERT) (Geurts et al 2006a). With respect to
Breiman’s RF, ERT does not use bootstrap sampling, keeps the random subselec-
tion of features at each tree node, and it replaces the optimal cut-point selection
by a purely random cut-point selection (as in the uniform random forests model
discussed in Section 3.1 of BS). Due to the random cut-point selection, the ERT
algorithm is typically much faster than BRF, while its accuracy has been shown
empirically to be on many problems on par or better than that of BRF.

While often very effective, such alternative randomization methods, including
those of BRF and ERT, have been designed on the basis of intuitions rather than
from strong theoretical analyses and, therefore appear as heuristic. Surprisingly,
while significant advances have recently been made towards the theoretical charac-
terization of RF models, these characterizations do not yet provide any support for
understanding and comparing these existing alternative randomization methods.
In addition, none of these characterizations has proven that BRF was the best way
to go, nor has led to the development of novel alternative randomization schemes
with better properties than BRF. We believe that this lack of deeper understand-
ing is due to several reasons. First, the most recent theoretical works focus on the
consistency analysis of the RF estimators and thus on asymptotic settings, while
the choice of a specific randomization scheme has mostly an impact on convergence
rates. For example, purely random forests models (see Section 3.1 of BS) are con-
sistent, while they have been shown to be typically less accurate in finite sample
conditions than less strongly randomized models, in particular in the presence of
irrelevant variables (Geurts et al 2006a). Second, most theoretical works focus on
understanding Breiman’s Random Forests in its standard form, while they do not
analyse the impact of these alternative randomization schemes (with the exception
of some simplifications made for mathematical convenience). Third, the impact of
a randomization scheme in finite sample conditions is problem dependent (Geurts
et al 2006a), and this makes theoretical analyses much more difficult.

Given this state of affairs, we believe that it would be very interesting to widen
theoretical analyses around random forests so that they include a broader range
of possible tree-specific or generic randomization schemes and, to target these
analyses towards a better understanding of the optimal (problem-specific) way
of carrying out this randomization. These questions are also directly related to
the issue of choosing the optimal tuning parameters of Breiman’s RF, which, as
stated in BS’s conclusion, is still an open theoretical question. Note that there al-
ready exists some literature trying to address these questions, mainly by studying
the impact of different randomization schemes on the “diversity” of the result-
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ing ensemble models, with the main argument that increasing “diversity” should
be beneficial in the context of ensembles (Kuncheva and Whitaker 2003; Brown
et al 2005). We think that this line of research is interesting, since it has lead to
the design of new randomization schemes purposely targeting an increase in “di-
versity”. However, as shown by Breiman’s strength and correlation analysis (or,
equivalently, by the bias/variance analysis made in Geurts et al 2006a), decreasing
correlation will improve accuracy only if it does not come with a too important
decrease of strength. Relating theoretically changes in correlation and strength to
specific randomization schemes, under some useful assumptions about the nature
of the target problem, is an open and potentially difficult question that should
however be addressed in future research.

As a final thought, let us note that the choice of a randomization scheme should
not be guided only by predictive performances. Indeed, in the “Big Data” era, this
degree of freedom in RF methods can be also advantageously exploited to improve
their computing times and scalability. For example, while locally randomizing the
set of variables at each tree node is an essential ingredient of Breiman’s RF, on
the other hand, building each tree on a subset of variables randomly picked glob-
ally before building the tree (as in Ho (1998)’s original random subspace method)
has the advantage that only this subset of variables needs to be accessible when
training an individual tree. Therefore, although sampling the features globally in-
stead of locally affects the asymptotic properties of RF (e.g., it of course prevents
individual trees to be consistent), it neverthless results in a more convenient algo-
rithm when it comes to distribute data and computations over different computing
nodes and to address problems where all data can not fit into memory. On our side
(Louppe and Geurts 2012), we have shown empirically that a “random-patching”
approach, consisting in growing individual trees on a sub-dataset obtained by sub-
sampling both features and observations, was often quite competitive in terms of
accuracy. Further research is thus also needed to analyse theoretically the impact
of the randomization scheme on the large sample properties of the resulting esti-
mator, and so to design new randomization schemes providing potentially better
tradeoffs between accuracy and scalability in such conditions.

Further extensions

With respect to the list of extensions of the RF models discussed in Section 6 of
BS, we would like to comment below on three other important lines of research
of interest, namely i.) multivariate and output kernelized regression trees, ii) soft
tree models, iii) bayesian approaches for decision tree and forest learning.

Multivariate and output kernelized regression trees

While BS focuses on standard univariate regression and classification settings,
tree models, and therefore forests, can be very naturally extended to handle mul-
tivariate regression problems, where one tree or forest is built to predict several
outcomes at once (see e.g. Blockeel et al 1998; Geurts et al 2006b; Segal and Xiao
2011; Kocev et al 2013). These extensions are obtained by changing the CART-split
criterion and by attaching vectorial predictions at tree leaves. A simple adaptation
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of the split criterion consists in taking the sum over all outcomes of the standard
CART criterion but other more sophisticated criteria have also been proposed (Se-
gal and Xiao 2011). Adapting theoretical results related to standard RFs to the
multivariate setting would be very interesting. One additional open question in
this domain is to identify the conditions under which a single multivariate forest is
expected to perform better (or worse) than several individual forests each grown
separately to predict one specific outcome. So far, this question has only been
addressed empirically in the literature (e.g., in Kocev et al 2013).

Let us also mention the generalization of multivariate forests that we proposed
in (Geurts et al 2006b) to handle kernelized outputs, i.e., outputs that are not
expressed efficiently in the form of a vector of real numbers, but that can be
efficiently compared using a kernel (such as strings, images, graphs, for example).
The idea behind this generalization is that the empirical variance over the vector
output-space induced by the output-kernel, and used in the multi-output CART
split criterion discussed above, can be rewritten by using only the output-kernel
(i.e. the “kernel-trick”). This extension allows to grow and make predictions with
trees in very complex output spaces. Interestingly, this kernelization of the output-
space of forests builds on the input-space kernel interpretation of forests explained
in Section 3.5 of BS. Indeed, it can be shown that a random forest can be used to
compute an approximation of the output-space kernel among two test instances, in
the form of a convolution of the input-space kernel of the forest with the output-
space kernel values among the the training instances (Geurts et al 2006b).

Soft tree models

One of the trademarks of tree learning algorithms is the recursive partitioning that
they induce over the input space. This recursive partitioning makes the tree con-
struction algorithm very efficient and it is also at the heart of the interpretability
of trees and forests. Indeed, as a result of recursive partitioning, each tree leaf
is defined by a conjunction of simple tests based each one on a single predictor
variable, and thus making a single tree very easy to understand as a set of (mutu-
ally exclusive and exhaustive) rules. The greedy approach to build this recursive
partitioning also leads to the local selection of the most relevant variables, which
further enhances interpretability. Despite these advantages, it has been argued
that recursive partitioning is one of the reasons for the rather low accuracy of
single trees, since it renders choices at deeper nodes of the trees dependent on
only few samples and thus highly unstable (Geurts 2002). Geometrically, it also
leads to piecewise constant approximations that require huge trees, and thus huge
learning samples, to approximate smooth functions with sufficient accuracy.

Building a forest of random trees is one way to circumvent these issues and
it indeed very efficiently does so. An alternative approach is to exploit soft tree
models, namely trees where discrete binary splits are replaced by soft splits that
send a test example down to all successor nodes with weights that depend on the
value of the input variables for this example (Jordan 1994; Olaru and Wehenkel
2003; Geurts and Wehenkel 2005; Yildiz and Alpaydin 2013). For a given test
example, tree propagation with soft splits thus computes a weight for each tree
leaf and a final prediction is obtained by aggregating all leaf predictions by taking
into account these weights. Such weights have been interpreted as the probability
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that an example will reach a leaf given its input values (e.g. Jordan 1994; Geurts
and Wehenkel 2005), but they have also been interpreted as fuzzy set membership
degrees in the literature about fuzzy decision trees (Olaru and Wehenkel 2003).
Essentially two approaches have been proposed to grow soft tree models: the first
one is to start from a standard CART tree and then to soften its splits in a post-
processing stage, e.g. (Geurts and Wehenkel 2005). The second one is to directly
grow a soft tree model by adapting the tree construction algorithm, e.g. (Jordan
1994; Olaru and Wehenkel 2003).

Soft trees turn out to be often much more accurate than “crisp” CART trees.
It also is easy to realize that a soft split using a sigmoid function can be simulated
by an infinite ensemble of standard crisp splits where the attribute would be fixed
and the cut-point would be randomly drawn from a logistic distribution (since the
cumulative distribution function of a logistic distribution is a sigmoid). Softening
decision trees thus has a similar effect as building an ensemble by only randomizing
the cut-points in a post-processing stage applied on top of a single tree (Geurts
et al 2001; Geurts and Wehenkel 2005). Of course ensembles of soft trees could
also be built by randomizing their choice of splitting variables.

In addition to the improvement of accuracy, another advantage of soft tree
models is their smoothness. A soft tree indeed represents a smooth function that
can be differentiated with respect to its arguments and parameters. This opens
the door to gradient descent techniques based on the back-propagation algorithm
for refitting decision tree parameters (Olaru and Wehenkel 2003), with all their
associated benefits such as the possibility to regularize and to incorporate prior
constraints on model predictions. The price to pay with respect to crisp trees is
however a significant increase of computing times both for training these models
and for making predictions, and also some loss of interpretability as every test
example can possibly follow all paths in the tree, which make these models less
transparent than crisp trees.

Actually, soft trees share many of the features of multi-layer artificial neural
networks. This parallel has been noted and exploited in the literature, where soft-
ened decision trees have been used for example to initialize the structure of neural
networks (Sethi 1990). As a matter of fact, although soft tree models have been
proposed already a long time ago, there seems to be a renewed interest for these
models in the recent machine learning literature (see, e.g., Kontschieder et al 2015;
Ioannou et al 2016), and in particular about their link with deep neural networks,
certainly motivated by the recent successes of these latter methods. We believe
that analysing more thoroughly the link between random forests and soft trees, on
the one hand, and between soft trees and deep networks, on the other hand, is a
very exciting direction for future research and should improve our understanding
of all these seemingly different families of methods.

Bayesian approaches for decision tree and forest learning

To further broaden the perspective for understanding RF methods, let us briefly
highlight the literature on bayesian approaches for learning decision trees or forests
that have been proposed by several authors since more than twenty years ago
(see, e.g., Buntine 1992; Chipman et al 1998, 2010; Lakshminarayanan et al 2013;
Quadrianto and Ghahramani 2014; Matthew et al 2015). The common idea of these
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methods is to define a prior distribution on the set of all possible decision trees,
which typically penalizes more complex trees, and then to derive from this prior
and the data a posterior distribution over all possible trees. A prediction is then
obtained either by using a single tree of maximal posterior probability or, in the full
bayesian setting, by computing the conditional expectation of predictions over the
posterior distribution of all trees. The exact computation of this latter expectation
being generally intractable, it is typically approximated by using sophisticated
Monte Carlo methods, focusing on the modes of the posterior distribution, i.e. on
the trees having a good compromize between their complexity and their fit to the
dataset. There are obvious connections between forests of randomized trees and
these bayesian approaches for decision tree averaging and exploring further these
connections could potentially improve our understanding of random forests and,
related to the first section of this comment, could also lead to the design of more
principled randomization schemes to construct such forests while exploiting prior
information about the considered problem.
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