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The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anoma-
lous blueshift, which has been dubbed “Pioneer anomaly”. Whereas the effect is most commonly
interpreted as a real deceleration of the spacecraft, it could as well indicate an unknown effect
on the radio signal itself. Several authors have made suggestions how such a blueshift could be
related to cosmology or to varying fundamental constants. We consider this interpretation of
the Pioneer anomaly and study the impact of an anomalous blueshift on the Laser Interferom-
eter Space Antenna (LISA), the first space-based gravitational wave observatory. The relative
frequency shift (proportional to the light travel time and of the same magnitude as the Pioneer
anomaly) for the LISA arm length is estimated to 10−16, which is much bigger than the expected
amplitude of the weakest measurable gravitational waves. Hence the effect could in principle be
detectable.

The impact of the anomalous blueshift in the measurement band of LISA is considered both in
the framework of phase noise cancellation in the frequency domain and time-delay interferometry.
It is found that the blueshift does not spoil gravitational waves detection and is not detectable
due to the small relative change of arm length in the frequency range of the measurement band.
We also study the impact of the blueshift on timescales of a considerable fraction of the orbital
period of LISA. Here the effect of the blueshift due to change of arm length of the interferometer
can reach the magnitude of the LISA instrument noise. We discuss the possibility to detect the
anomaly on these timescales by monitoring data of the laser stability.
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Advanced Concepts Team

Université de Liège
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Influence de l’anomalie de Pioneer sur le
“Laser Interferometer Space Antenna”

Les données télémétriques en provenance de deux sondes spatiales aux confins du système
solaire, Pioneer 10 et 11, présentent un excès fréquentiel anormal, appelé anomalie de Pioneer.
Bien que ce phénomène soit souvent interpreté comme une réelle décélération des sondes, il
pourrait tout aussi bien indiquer un effet inconnu sur le signal lui-même. Plusieurs auteurs ont
suggéré que cet effet proviendrait de l’expansion cosmologique ou d’une variation des constantes
physiques fondamentales. Considérant ces interprétations, l’anomalie de Pioneer pourrait in-
fluencer la mission LISA (Laser Interferometer Space Antenna), le premier observatoire spatial
d’ondes gravitationnelles. Le décalage relatif en fréquence (proportionnel au temps de vol du
signal) sur les bras de LISA est estimé à 10−16, ce qui est 4 ordres de grandeur supérieur à
l’amplitude des plus faibles ondes gravitationnelles mesurables par LISA. L’effet pourrait donc
en principe être détectable.

L’influence de cet excès fréquentiel est étudié dans le domaine de sensibilité de LISA par
les méthodes interférométriques d’élimination des instabilités liées aux lasers. Cela permet de
conclure que cet excès fréquentiel n’affecte pas la précision de mesure des ondes gravitationnelles
et ne pourra pas être détecté dans la bande de sensibilité de LISA. Pour une période de détection
plus longue, en dehors de la bande de sensibilité de LISA, l’inluence de l’anomalie est maximum,
atteignant une amplitude comparable à celle des bruits instrumentaux de LISA. Cependant, pour
une période d’observation plus longue, l’ instabilité des lasers est moins efficacement éliminée et
la possibilité de détection de l’anomalie est alors spécifiquement étudiée.
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Introduction

The Pioneer anomaly refers to the discrepancy between the expected and observed frequencies
received by outer Solar System spacecraft. The effect is clearly seen on the two Pioneer space-
craft, launched in the early seventies in opposite directions of the Solar System. These spacecraft
are still the most precisely navigated deep space vehicles ever. The data from other deep space
vehicles, like Galileo and the Voyagers, cannot confirm the anomaly because of relative proximity
to the Sun and 3-axis spin-stabilization respectively, which make the effect harder to measure
accurately. As of 2005, there is still no universally accepted explanation for the phenomenon.
All internal sources of systematic errors have been studied and ruled out. Also to be rejected as
an explanation, the effect of interplanetary dust, which was estimated to be too small. The in-
ability to explain the anomalous acceleration of the Pioneer spacecraft with conventional physics
has contributed to the growing discussion about its origin. The possibility that it could come
from new physics or from a new effect of known physics is now being seriously considered.

The main difficulty in attempting an explanation of the anomaly in terms of new physics is
that a modification of gravitation, large enough to explain the Pioneer anomaly, is in obvious
contradiction with the planetary ephemeris. Hence the Pioneer anomaly can hardly be ascribed
to a gravitational force since this would indicate a considerable violation of the weak equivalence
principle. Recent works make the suggestion that the anomaly has nothing to do with the space-
craft motion but instead with an anomalous blueshift in the frequency of light. This blueshift
could be caused by a Berry phase, a geometrical effect in the adiabatic evolution of the quantum
state of a photon which propagates within an expanding space-time. Such a blueshift, propor-
tional to the light-travel time, could be confirmed by a large gravitational wave observatory, like
LISA (Laser Interferometer Space Antenna). This future ESA-NASA mission is aimed at de-
tecting and studying low-frequency gravitational waves through their influence on the phases (or
frequencies) of laser beams exchanged between three remote spacecraft. An additional Doppler
shift on these laser beams could have consequences on the detection of gravitational waves and
could reveal the Pioneer anomaly if it is measured. It is the purpose of this work to assess the
implications of such a putative blueshift for LISA.

After a brief introduction of the Pioneer and LISA missions, we first estimate the anomalous
frequency rate of change along the light path. By applying our result to LISA, it is found that
the anomalous relative frequency shift for the LISA arm length is about 10−16, which is much
bigger than the expected amplitude of the weakest measurable gravitational waves. Hence the
effect could in principle be detectable. Then, the main difficulty of this work was to establish
to what extent suggested physical interpretations of the blueshift affect the gravitational wave
propagation. Our results show the following:

1. The contribution of the anomaly within the sensitivity band of LISA is a second order
term, below all instrument noises. We show explicitly that it is still the case after the
cancellation of the leading noise source, the laser phase noise.

2. Outside the sensitivity band of LISA, the effect is bigger. It reaches the secondary noise
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sources but it is still below the laser phase noise. In order to detect it, we investigate if
the laser phase noise can be sufficiently cancelled by both frequency domain method and
time delay interferometry (TDI).

Time delay interferometry and a frequency domain algorithm are the two methods developed to
cancel the laser phase noise in the case of unequal arm length interferometers. This cancellation
is necessary since the gravitational wave signatures in the data are overwhelmed by the laser
phase noise, which is several orders of magnitude larger. For an equal arm length interferometer,
this noise is easily removed as the signals from one laser experience the same delay in the arms.
The instability of the laser is then exactly cancelled when the signals come back. Because of the
orbital motion, LISA will obviously have unequal arm lengths and signals will not experience
the same delays in different arms. In the frequency domain method, the problem is solved by
using the signal of one arm to determine the laser phase noise. Then, the measured time series
of the noise can be used to correct the interferometer response. In the case of TDI, the solution
is to introduce appropriate time delays on the signals before combining them. Both methods
are however developed for fixed interferometer in space and the continuous arm length changes,
induced by the orbital motion of LISA, have to be specifically addressed. These are the main
principles of the two methods cited above. The frequency domain method is the original baseline
method of LISA, while Time Delay Interferometry is newer but not yet fully developed.

Finally, note that the last pages of this report give the meaning of technical terms, written in
italic in the main text.
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Chapter 1

The Pioneer anomaly

Since the beginning of the eighties, the signals received by two outer solar system spacecraft,
Pioneer 10 and 11, have shown a clear discrepancy between the expected and the observed
frequencies. Commonly, it is said that the spacecraft are slowing down. However, despite the
growing number of publications on this phenomenon, its origin has not been yet figured out.
It might come from external or internal sources of systematic errors, or from some unknown
physical phenomena. In this section, we first describe briefly the Pioneer spacecraft before
giving more details on the anomaly.

1.1 Pioneer 10/11 missions: Overview

1.1.1 Mission status

The pioneer 10 and 11 missions started the exploration history of the giants planets. Launched
on 2 March 1972, Pioneer 10 was the first to explore Jupiter, which it encounters on 4 December
1973. On 5 April 1973, Pioneer 11 was launched to explore Saturn (see Fig. 1.1). Pioneer 11’s
primary mission was to be the backup for Pioneer 10. If Pioneer 10 failed before completing its
Jupiter flyby, Pioneer 11 would have to repeat that flyby. Fortunately, Pioneer 10 didn’t failed
and Pioneer 11 has been allowed to go to Saturn.

Figure 1.1: Hyperbolic orbits of the Pioneers.

After their encounters with the planets, the
two spacecraft have followed hyperbolic es-
cape orbits near the plane of the ecliptic to
study the solar wind and the cosmic radia-
tion. On 1 January 1987, Pioneer 10 was
approximately 40 A.U. from the Sun, and
receding with a nearly constant velocity of
12.8 km/s. The mission came officially to an
end on March 31, 1997 for budgetary rea-
sons. However, the Pioneer 10 radio system
was still operating and occasional contacts
with the spacecraft still occurred. The last
contact with the spacecraft, very weak, took
place on January 22, 2003 and a last unsuc-
cessful attempt on February 7 the same year.

Currently, Pioneer 10 is at more than 88 astronomical units from the Sun and gradually leaves
the Solar System. In spite of that, the record of distance to Earth is held by Voyager 1, which
was launched later. The operational life time of Pioneer 11 was shorter than that of its counter-
part. In 1990, a switch failure in the radio system disabled the generation of coherent Doppler

8



Chapter 1 The Pioneer anomaly

signals. So, after that date, when the spacecraft was about 30 AU away from the Sun, no useful
data have been generated for the trajectory investigations. Furthermore, by September 1995, its
power source was nearly exhausted. Pioneer 11 could no longer make any scientific observations
and routine mission operations were terminated. The last communication from Pioneer 11 was
received in November 1995, when the spacecraft was at distance of about 40 AU from the Sun.

Finally, note that, in 2 million years, Pioneer 10 should reach the red star Aldebaran while in 4
million years, Pioneer 11 should pass close to the nearest star in the constellation Aquilla.

1.1.2 Main characteristics of the spacecraft

Figure 1.2: Pioneer spacecraft [1].

Pioneer 10 and 11 are identical in design. At launch, each
had a total mass of 259 kg, including 36 kg of hydrazine
propellant. They were designed to fit on the third stage
of the Atlas-Centaur launch vehicle so that each space-
craft is 2.9 m long. The parabolic high gain antenna is
made of aluminium honeycomb material and has a ra-
dius of 137 cm. The other main physical features of the
spacecraft are the instrument compartment, which face
the direction of travel and the two radioisotope thermo-
electric generators (RTGs), which are attached to the
compartment by booms of 300 cm length. The space-
craft is spin stabilized, and spins at a rate of roughly 4
or 7 rpm (revolution per minute), respectively. The spin
axis is aligned with the high gain antenna axis, which
is designed to point towards the Earth, roughly opposite
the direction of travel.

The communication with the spacecraft is performed in
the S-band frequencies (2.11 Ghz for the uplink from Earth). Phase coherence with the ground-
transmitters is maintained by means of an S-band transponder with the 240/221 frequency
turnaround ratio. The signals sent back to Earth have thus a frequency of 2.29 Ghz. The power
source is Plutonium (238Pu) with an half-life of 87.74 years. This provides the thermal source for
the thermoelectric devices in the RTGs. These delivered about 160 Watts of electrical power at
launch time. At present, less than about 65 Watts are still available, so that some instruments
are switched off.

Finally, let us quickly list the main scientific instruments on board the Pioneer spacecraft.
These are the plasma analyzer, the cosmic ray telescope, the meteorite detector, the ultraviolet
photometer, the infrared radiometer and the imaging photopolarimeter.

1.2 The anomaly

The Pioneer anomaly refers to the observed deviation from expectations of the frequency received
from various unmanned spacecraft visiting the outer Solar System, notably Pioneer 10 and
11. The effect is seen in tracking data, yielding information on the velocity and distance of
the spacecraft, and was already observed before the Jupiter flyby of Pioneer 10 (about 5 AU
from the Sun). However, the effect was explained by fuel leaks and mismatch in the solar
radiation model. After the Jupiter flyby, these justifications become unsatisfactory because of
the decrease of the solar radiation pressure and the lower level of gas leaks, due to the quiet state
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Chapter 1 The Pioneer anomaly

of the spacecraft. In 1980, when Pioneer 10 passed a distance of ∼ 20 AU from the Sun, the
acceleration contribution from solar-radiation pressure on the spacecraft (directed away from
the Sun) had decreased to less than 4 × 10−10 m/s2 and therefore, a search for an unmodeled
acceleration of this level could start (see Fig. 1.3).

Figure 1.3: Unmodeled acceleration on Pioneer 10 as a function of distance from the Sun (bottom
line) and calculated solar radiation acceleration (top line) [3].

Nevertheless, at the beginning, the anomaly was not seriously considered and it was only in 1994,
since the anomaly has not disappeared, that an inquiry was initiated into its possible origins.
The initial results of the study were reported in 1998 [1] and a detailed analysis appeared in 2002
[2], confirmed in the same year by an independent study [3]. In these investigations, contribution
of all known sources of a possible systematic origin for the detected anomaly were specifically
addressed. The explanations for the discrepancy that have been considered include:

• observational errors, including measurement and computational errors, in deriving the
acceleration.

• a real deceleration:

– by gravitational forces from unidentified sources such as the Kuiper belt.

– drag from the interplanetary medium, including dust, Solar wind and cosmic rays.

– gas leaks, including helium, produced by the Pu decay, escaping from the spacecraft
radioisotope thermoelectric generators.

– radiation pressure of sunlight and the spacecraft radio transmissions, or thermal ra-
diation pressure from the radioisotope thermoelectric generators.

– electromagnetic forces due to an electric charge on the spacecraft.

• New manifestation of known physics:

– Gravitational interaction of the S-band radio signal with dust.

– Interaction between the solar wind and the S-band radio signal.

• new physics

– Interaction with dark matter of mirror type.
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Chapter 1 The Pioneer anomaly

– Modified gravity.

However, the conclusion remained that there was an anomalous acceleration of a∗=(8.74±1.33)×
10−10 m/s2 in the direction towards the Sun. This anomaly was constant in time for the whole
measurement, i.e. between about 20 to 70 AU from the Sun. In Fig. 1.4 below, the two-way
Doppler residuals (observed Doppler velocity minus modeled Doppler velocity) for Pioneer 10
are shown.

Figure 1.4: Anomalous velocity signal in two-way Doppler frequencies as a function of time [3].
1 Hz is equivalent to 65 mm/s range change per second.

Data from other outer Solar system spacecraft is also indicative of a similar effect. This is the
case of Galileo, which was dedicated to the study of Jupiter. However, because of its relative
proximity to the Sun, firm conclusions cannot be drawn from it. Furthermore, the spacecraft
that have gone sufficiently far from the Sun, like the Voyagers, are fully 3-axis spin-stabilized
which makes the effect harder to be accurately measured.

The inability to explain the anomalous acceleration of the Pioneer spacecraft with conventional
physics has contributed to the growing discussion about its origin. As of 2005, there is still no
universally accepted explanation for this phenomenon; while it is possible that the explanation
will be prosaic, such as thrust from gas leakage, the possibility of entirely new physics is also
being considered. In addition, there is no new useful data to test the Pioneer anomaly because
the Pioneer spacecraft are no longer providing data, Galileo was deliberately burned up in
Jupiter’s atmosphere at the end of its mission and currently operating spacecraft do not fulfill
the high navigational requirements. In addition, many of the deep space missions that are
currently being planned either will not provide the needed navigational accuracy and trajectory
stability of under 10−10 m/s2 or else they will have significant onboard systematics that mask the
anomaly (e. g. Jupiter Icy Moons Orbiter). However, there would be the possibility to test the
anomaly in non-dedicated missions to Neptune and beyond with Navigational precision about
15 times better than with Pioneer 10/11 [4].
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Chapter 2

LISA and Gravitational Waves

The Laser Interferometer Space Antenna (LISA) is a mission jointly sponsored by the European
Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). LISA
will be the first space-based gravitational wave detectors. Gravitational waves are a consequence
of general relativity and can be intuitively understood as ripples in space-time, which produce
a variation of the distance between free macroscopic bodies. LISA has been specially designed
to detect gravitational waves from massive black holes (MBH) and galactic binaries in the
frequency range 10−4 to 10−1 Hz where there are expected to be the most powerful. Once
in orbit, LISA’s observations will bring unprecedented information to better understand the
fundamental physical laws of the Universe. As it will be useful all along this report, we begin
this chapter by giving an overview of gravitational waves. Then, we briefly introduce the LISA
concept, stressing the characteristics relevant for our study.

2.1 Gravitational Waves

2.1.1 Physical characteristics

According to General Relativity, space and time do not have independent existence but rather,
are deeply intertwined. The physical world takes a geometric interpretation in terms of space-
time which is more intuitive than the Newtonian picture of gravitation. Then, as a result of
the Einstein field equations, massive bodies and energy influence this space-time. It is com-
monly said that they curve it. In this space-time, as Einstein showed in a paper that appeared
in 1916 [5], a mass distribution moving in an asymmetric way will produce ripples travelling
outwards. These ripples in space-time are called gravitational waves. These are fundamentally
different from the familiar electromagnetic waves. While electromagnetic waves, created by the
acceleration of electric charges, propagate in the framework of space and time, gravitational
waves, created by the acceleration of masses, are waves of the space-time fabric itself. Unlike
charge, which exists in two polarities, masses always come with the same sign. This is why the
lowest order asymmetry producing electro-magnetic radiation is the dipole moment of a charge
distribution, whereas for gravitational waves it is a change in the quadrupole moment of the
mass distribution. Hence those gravitational effects, that are spherically symmetric, will not give
rise to gravitational radiation. A perfectly symmetric collapse of a supernova will produce no
waves, a non-spherical one will emit gravitational radiation. A binary system will always radiate.

In 1950, it was proved rigorously that gravitational radiation is in fact a physically observable
phenomenon (c.f. [6] for the a review of the discussion at that time), that gravitational waves
carry energy and that, as a result, a system that emits gravitational waves should lose energy. In
accordance with this, in 1993, Hulse and Taylor were awarded the Nobel prize in physics for the
indirect proof of the existence of gravitational waves by observing the decrease of the angular

12



Chapter 2 LISA and Gravitational Waves

momentum of the binary pulsar PSR 1913+16. This decrease, which indicates the emission of
gravitational waves, was in perfect accordance with general relativity. It is interesting to note
that already in 1805, Laplace, in his “Traité de Mécanique Céleste” stated that, if gravitation
propagates with finite speed, the force in a binary star system should not point along the line
connecting the stars, and the angular momentum of the system must slowly decrease with time.

Today, several ground-based gravitational wave detectors are about to become operational
throughout the world to bring a direct detection, not yet achieved. A direct detection could be
brought also by LISA which has been specifically designed for the detection of several kinds of
sources predicted by current astrophysical theory (see next subsection). A gravitational wave
passing through the Solar System creates a time-varying strain in space that periodically changes
the distances between all bodies in a direction that is perpendicular to the direction of wave
propagation. In particular, these could be the distances between shielded proof masses inside
spacecraft that are separated by a large distance, as in the case of LISA. The main challenge is
to achieve the very high accuracy needed to measure the relative length change. For example,
the periodic change in distance between two proof masses, separated by 5 × 106 km, due to a
typical white dwarf binary at a distance of 50 pc (parsec) is only about 10−10 m. This small
change indicates the extreme stiffness of the space-time elastic medium and not a poor content
in energy. For instance, a supernova in a not too distant galaxy could drench every square meter
of earth with kilowatts of gravitational radiation intensity [8].

2.1.2 Astronomical sources

There are several expected sources of gravitational waves all over the frequency spectrum. This
is illustrated in Fig. 2.1 below.

Figure 2.1: Spectrum of the expected sources of gravitational waves [51].

Mainly, there are two important categories of gravitational waves for LISA: the galactic binaries
and the massive black holes (MBHs) expected to exist in the centres of most galaxies. Because
the masses involved in typical binary star systems are small, a few solar masses1, the observa-
tion of binaries is limited to our Galaxy. Galactic sources that can be detected by LISA include
a wide variety of binaries, such as pairs of close white dwarfs, pairs of neutron stars, neutron

1The Solar mass (∼ 1030 kg) will be denoted by M� in the following.
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Chapter 2 LISA and Gravitational Waves

star and black hole (5�- 20M�) binaries, pairs normal stars, normal star and cataclysmic white
dwarf binaries, and possibly also pairs of black holes. It is likely that there are so many white
dwarf binaries in our Galaxy that they cannot be resolved at frequencies below 10−3 Hz, lead-
ing to a confusion noise limit (see Fig. 4.16). LISA would also provide a lot of new information
about the formation, growth, space density and surroundings of massive black holes. There is
now compelling indirect evidence for the existence of MBHs with masses of 106 to 108M� in
the centres of most galaxies, including our own. The most powerful sources are the mergers of
MBHs in distant galaxies, with amplitude signal-to-noise ratios of several thousand for 106M�
black holes. Observations of signals from these sources would test General Relativity and par-
ticularly black-hole theory to unprecedented accuracy. Note that not much is currently known
about black holes with masses ranging from about 100 M� to 106M�. LISA can provide unique
new information throughout this mass range. Note also that there should exist background of
gravitational waves coming from the beginning of the universe. If, just after the Big Bang, grav-
itational radiation was in thermal equilibrium with the other fields, then today its temperature
would have been redshifted to about 0.9 K. This radiation peaks at frequencies inaccessible for
LISA (see Fig. 2.1). Thus, if LISA sees a primordial background, it will be non-thermal.

This brief overview of gravitational waves sources can be summarized by Fig. 2.2 below.

Figure 2.2: Image of the sky viewed by gravitational waves [51].

This figure shows the sky as seen from gravitational waves. The most important sources are the
galactic binaries. Some are so well studied, especially the X-ray binary 4U1820-30, that they are
one of the most reliable sources. If LISA would not detect the gravitational waves from known
binaries with the intensity and polarisation predicted by General Relativity, it would shake the
very foundations of gravitational physics.
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2.2 Laser Interferometer Space Antenna: LISA

The Laser Interferometer Space Antenna is the first dedicated space-based gravitational wave
observatory. So far the only space searches for gravitational waves have been made using mea-
surements of radio signals, not optimized for gravitational wave searches, from spacecraft on
their way to other planets (see [7] for the more recent results from Cassini). LISA will use an
advanced system of laser interferometry and the most delicate measuring instruments ever made
to directly detect gravitational waves. LISA is aimed at a launch in 2012 with a planned mis-
sion duration of 10 years. ESA is providing the three spacecraft and their propulsion modules,
the gravitational reference sensors, some interferometry components and the laser subsystems.
NASA is providing the launch vehicle and the spacecraft’s telecommunications systems. NASA
will also perform payload integration and testing. The mission will be operated from the Jet
Propulsion Laboratory.

2.2.1 The LISA concept

Figure 2.3: Cutaway of LISA’s instrument
[8]. The actual spacecraft will be protected
with a cover.

LISA consists of three identical spacecraft, which
have roughly the shape of a 2.2 m diameter cylindri-
cal boxes, as shown in Fig. 2.3 on the right. These
are freely flying (not connected to each other) five
million kilometers apart, in an equilateral triangle.
Together, the three spacecraft function as a Michel-
son interferometer with an additional redundant
third arm. The arm length has been chosen to op-
timize the sensitivity of LISA at the frequencies of
known and expected sources. An arm length in-
crease higher than 5× 106 km would begin to com-
promise the high-frequency sensitivity when the light
in the arms travels for more than half of the grav-
itational wave period. An interferometer shorter
would begin to lose the interesting low-frequency
massive black hole sources. It would give less scientific information but would not be any easier
to build or operate because the spacecraft and the interferometry would be essentially the same.

The goal is to operate the observatory with very few interruptions for long periods, typically
for a half or one year. This will provide near continuous data sets, which will be analysed to
separate the gravitational wave signals resulting from many different astrophysical sources. The
steady data acquisition may be interrupted for periods of adjustment such as making changes to
the relative spacecraft velocity. It may also be interrupted by events such as solar flares which
may cause disturbances to the drag-free sensor proof mass. Scientific data acquisition will be
limited by the mission consumables which are sized to permit extended operations over 10 to 20
years.

2.2.2 Spacecraft configuration

In each spacecraft, the two telescope arms are identical and subtend an angle of 60◦. The
configuration is outlined in Fig. 2.3. Not shown are the top lid, serving as a thermal shield,
and the down-link antennas. Each spacecraft will also always have the Sun shining on the
same, the “upper”, side, at an angle of incidence of 30◦. Baffles, with end angles at 30◦, will
be added to prevent sunlight from entering the telescopes. This will provide a thermally very
stable environment, necessary for the high precision required to detect gravitational waves. The
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scientific package will be located inside the gold-coated Y-shaped tubular protection, serving as
a thermal shield. This internal configuration is shown in detail in Fig. 2.4 below.

Figure 2.4: One of the two optical assemblies of the Y-shaped LISA payload [8].

Since it will useful for the following, we briefly describe below the important components for
our study, beginning by the innermost.

The proof mass

Figure 2.5: Highly polished
test mass cubes [51].

The proof masses are considered the heart of the instruments
as the interferometry between the spacecraft will be done with
respect to them. They consist of cubes allowed to float freely
within the spacecraft and shielded from external and internal
disturbances so that they detect only the force of gravity. The
cubes are highly polished to enable them to reflect laser light.
In this way, they act as mirrors in the interferometer. The
relative motion of these cubes on different spacecraft is what
will detect passing gravitational waves. The test masses are
essentially 40 mm cubes (see Fig. 2.5 on the left) with a mass
of about 1.3 kg and made from an alloy chosen for its low

magnetic susceptibility (90% Au, 10% Pt). These proof masses are also shown schematically in
Fig. 2.4.

The optical bench

The optical bench is a rigid structure made of ultra-low expansion material in which, for rigidity,
the optical components are embedded. All beams propagate in the central plane of this optical
bench. The laser light is conducted onto the optical bench via an optical fibre (mono-mode,
polarisation preserving). The light returning from the distant spacecraft is reflected on the
proof mass before it is brought to interference with a fraction of the internally generated laser
light. This configuration (see Fig. 2.4) will be very important when we will introduce the
interferometric measurement and more details will be given.

The telescope

On right hand part of Fig. 2.4, the telescope on board of LISA’s spacecraft is shown. It serves
the dual purpose of transmitting the laser beam to the distant spacecraft and of receiving the
light from that spacecraft. It is conceived as a Cassegrain, with a parabolic primary mirror of
300 mm in diameter, and a hyperbolic secondary mirror of 32 mm in diameter.
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2.2.3 Lasers

The use of lasers is a natural choice for interferometric measurements since highly stable co-
herent signals are required. Lasers offer this high stability and have extremely narrow beams
that can survive long journeys through space. In addition, the infrared frequency of the lasers
has been chosen to render it immune from refraction caused by the charged particles plasma
which permeates interplanetary space. It is intended to use solid-state diode-pumped monolithic
miniature Nd:YAG (Neodymium-doped: Yttrium-Aluminium Garnet) ring lasers that generate
a continuous 1 W infra-red beam with a wavelength of 1.064 µm. They allow LISA to deliver suf-
ficient power at high efficiency, being compact, stable (in frequency and amplitude), and reliable
at the same time. Each spacecraft has two 1 Watt lasers (actually four, two for redundancy),
one master and one slave. A fraction of the light from the master laser (10 mW) is bounced off
the back surface of its cube, and used as a reference to put the other local laser in slave mode.
In this way, the main (∼ 1 W) beams going out along each arm can be considered as having
originated from a single laser.

2.2.4 Data extraction

At each spacecraft, the light coming from the neighbours has to be amplified before being sent
back. This is due to the divergence of the beam over the 5×106 km between the spacecraft.
Even though each outgoing beam is extremely narrow, a few micro radians, it is about 20 km
wide when it reaches the distant spacecraft. The light sent out along an arm is received by the
end spacecraft telescope, reflected on its cube, then amplified using its local laser, in such a way
as to maintain the phase of the incoming light. The amplified light is then sent back. If the
signal was simply reflected and sent all the way back, only about 200 photons per hour would
reach the end spacecraft after the round-trip. The amplification brings the number back up to
over 108 photons per second, which makes the signal detection straightforward using standard
photodiodes.

2.2.5 Drag-free and attitude control

The purpose of the drag-free system is to shield the proof masses from interplanetary gas drag
and solar radiation pressure, so that they follow trajectories which are determined only by grav-
ity. The drag-free system consists essentially of a cavity containing sensors, which measure the
position of the proof mass with respect to the outer spacecraft. The spacecraft in turn one has
small thrusters which are fired so that it follows the proof mass, which then always remains
centered in the cavity. Only a few micro-Newtons are required to operate the drag-free system.
The delivered force must be smoothly controlable so that the varying disturbance forces can
be matched without introducing a further disturbance from the thrust system itself. This is
accomplished by accelerating ions in an electric field, and ejecting them to develop the thrust.
The name Drag-Free spacecraft stems from the fact that there is no drag on the inner proof
mass, and the drag on the main satellite is exactly compensated by the thrusters.

As an example, let us consider the momentum of the light from the Sun, which amounts to
an average pressure of about 5 × 10−6 N/m2. The internal dynamics of the Sun leads to small
variations, of less than one percent, in this photon pressure, which occur at the low frequencies
within LISA’s sensitivity band. Although this variable photon pressure may seem rather small,
if it were allowed to act on the proof masses, the resulting motion would be 104 times larger than
the tiny motions due to gravitational waves that LISA is looking for. Then, the drag-free sys-
tem has to come into operation to correct the relative motion induced by solar pressure blowing
on the surface. This is done very precisely by monitoring the change in electrical capacitance
between the proof mass and electrodes mounted at the spacecraft. The measurement is then
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converted into a force-command, which instructs thrusters mounted on the outer structure of
the spacecraft, to fire against the solar pressure and keep the spacecraft centred on the proof
mass.

The LISA Pathfinder mission, an ESA technology demonstrator mission carrying the LISA
Technology Package, will test the novel drag-free and attitude control technology needed for
LISA. LISA Pathfinder is planned for launch in 2008.

2.2.6 Ultrastable structures

The thermal stability of the spacecraft is a very crucial point of the mission. Mostly, it is
required to minimized the impact of the heat-load fluctuations induced by the small variations
in the intensity of sunlight. In fact, this could lead to thermal gradients across the optical bench,
which would upset the stability of the laser cavity. To obtain the required thermal stability, most
structural elements are made from carbon-epoxy which has a thermal expansion coefficient of 4×
10−7/K. The optical bench is made from ultra-low expansion material, which has a temperature
coefficient at least a factor 4 lower than the carbon-epoxy over the possible temperature range
of the LISA payload. Furthermore, low emissivity coatings are used on most surfaces inside the
spacecraft and a thermal shield surrounds the payload cylinder, in order to provide isolation
from the temperature variations of the spacecraft skin that is exposed to the Sun. These shields
are only effective against heat fluctuations faster than a few hours to half a day. The slower
variations will pass through, thus making the sensitivity of LISA deteriorate rapidly below
roughly 10−4 Hz. The use of carbon-epoxy structures also minimises any thermally-induced
mechanical distortions which could produce physical changes in the optical path-length, as well
as local gravitational disturbances on the proof masses.

2.2.7 The LISA orbits

Each spacecraft of LISA moves along an elliptic orbit, with major axis D = 2AU ≈ 3× 1011km,
eccentricity e ≈ L/D

√
3 ≈ 1/100 and inclination with respect to the ecliptic i = L/D ≈ 1◦. The

heliocentric orbit was chosen because a more stable environment it provides without a clear cost
disadvantage against the geocentric orbit. The three orbits (see Fig. 2.6) are displaced by 120◦

from each other along the ecliptic. With this special choice of orbits, the triangular geometry
of the interferometer is largely maintained throughout the mission. More details are given in
Appendix A.

Figure 2.6: LISA configuration [8].

18



Chapter 2 LISA and Gravitational Waves

The centre of the triangle is located on the ecliptic (20◦ behind the Earth) and follows the Earth
on its orbit around the Sun. Ideally, the constellation should be as far from Earth as possible
in order to minimize gravitational disturbances. The choice of 20◦ is a practical compromise
based on launch vehicle and telemetry capabilities. As the 3-spacecraft constellation orbits the
Sun in the course of a year, the observed gravitational waves are Doppler-shifted by the orbital
motion and amplitude-modulated by the non-isotropic sensitivity of the detector. This allows the
determination of the direction of the source and investigation of some of its characteristics such
as polarization. It is expected that the strongest LISA sources (from very distant supermassive
black holes) should be resolvable to better than an arcminute; and even the weaker sources
(galactic binaries) should be positioned to within one degree throughout the entire galaxy.

2.2.8 Complementarity with the others detectors

With the ground-based detectors, the frequency range of observation is limited to frequencies
higher than 1 Hz because of the overwhelming seismic effects and terrestrial gravity-gradient
noise. The range of frequencies spanned by ground- and space-based detectors are shown
schematically in the figure below.

Figure 2.7: Frequency range of ground-and space-based detectors. Some typical sources are also
indicated [8].

Ground-based interferometers are physically limited in length to a few km, restricting their
coverage to events such as supernova core collapses and binary neutron star mergers. In the low-
frequency band of LISA, sources are well known and signals are stable over long periods (many
months to thousands of years). The low frequencies are very important in present astrophysical
modelling and offer a range for great testing opportunity.

1. For systems involving Solar-mass objects, lower frequencies imply larger orbital radii, and
the range down to 10−4 Hz includes sources with the typical dimensions of many galactic
neutron star binaries, cataclysmic binaries, and some known binaries. These are the most
certain sources.

2. For highly relativistic systems, where the orbital velocities approach the speed of light,
lower frequencies imply larger masses (M ' 1/f), and the range down to 10−4 Hz reaches
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masses of 107 M�, typical of the supermassive black holes that are believed to exist in the
centres of many, if not most, galaxies. Their formation and coalescences could be seen
anywhere in the observable Universe and are among the most exciting of possible sources.
Detecting them would test the strong-field limit of gravitational theory and illuminate
galaxy formation and quasar models.

Both ground- and space-based detectors will also search for a cosmological background of grav-
itational waves. During the five-year lifetime of the mission, LISA is expected to yield 163
gigabytes of significant data for analysis. Since both kinds of detectors have similar energy
sensitivities, their different observing frequencies are ideally complementary.
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An anomalous blueshift of light?

Among the proposed explanations of the Pioneer anomaly, most would have no significance for
LISA. For example, this is the case for all based on systematics generated onboard the Pioneer
spacecraft. Generally, if the anomaly corresponds to a real acceleration on the Pioneers, the
anomaly should have no influence on LISA. This can be concluded from the fact that the LISA
orbit is practically identical to the Earth’s orbit. For the Earth itself an anomalous acceleration
of the magnitude of the Pioneers would lead to an orbital perturbation which is beyond current
observational limits (cf. [16]). Hence only a considerable violation of the weak equivalence
principle (e. g. between bodies of different mass) could result in an anomalous acceleration
on LISA but no on the Earth. Combining this requirement with the constancy of the Pioneer
anomaly such an effect seems very hard to envisage. On the other hand, based on the coincidence
in magnitude of the Pioneer anomaly and the Hubble acceleration, it was suggested that the
Pioneer anomaly could be related to the cosmological expansion :

a∗ ' cH , (3.1)

where c is the speed of light and H the Hubble constant (71±4 km/s Mpc). In this context,
several studies [1, 11, 12, 13, 14]) have made the suggestion that the Pioneer anomaly is not
caused by an anomalous force but rather by an effect on the frequency of light. Such an effect
could be highly relevant for LISA, which is supposed to detect gravitational waves through the
small frequency shift occurring on its arms.

3.1 The Pioneer anomaly as a blueshift

One of the obstacles for attempting an explanation of the Pioneer anomaly in terms of new
physics is that a modification of gravitation, large enough to explain the Pioneer anomaly, is
in obvious contradiction with the planetary ephemeris. This becomes particularly clear if one
considers the orbit of Neptune. At 30AU the Pioneer anomaly is visible in the Doppler data of
both Pioneer 10 and 11. The influence of an additional radial acceleration of 8× 10−10m/s2 on
Neptune is conveniently parameterised in a change of effective reduced Solar mass, µ� felt by
the planet. The resulting value, ∆µ� = 1.4×10−4 µ�, is nearly two orders of magnitude beyond
the current observational constraint of ∆µ� = −1.9 ± 1.8 × 10−6 µ� [17]. Similarly Pioneer 11
data contradict the Uranus ephemeris by more than one order of magnitude. Thus, the Pioneer
anomaly can hardly be ascribed to a gravitational force since this would indicate a considerable
violation of the weak equivalence principle. In particular, planetary constraints rule out an ex-
planation in terms of a long-range Yukawa force [2, 19]. Hence, more subtle explanations are to
be attempted.
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Amongst these several approaches have considered an origin of the anomaly in a blueshift of the
radio tracking signal rather than in an acceleration of the spacecraft [11, 12, 13, 14]. For the
concrete realisation several distinct models have been proposed. The work [11] considers the
anomaly as a kinematical effect of the cosmological expansion. The anomaly arises from the fact
that the coordinate system, in which local measurements are carried out, is not a synchronous
one. The studies [12, 13] consider an adiabatic effect of the cosmic expansion on the phase
of light viewed as the phase of a quantum state. Whereas [12] considers a closed path Berry
phase, [13] drops the closed path requirement and considers an open path Berry phase. In [14]
the anomaly arises from a time dependence of the local metric which leads to an effective time
acceleration.

All of the above models to explain a blueshift of the Radio signals transponded by the Pioneers
have to be considered as problematic. This is most obvious for the model of [11] where only a
Robertson-Walker metric is considered and the influence of the gravitational field of the Sun is
completely neglected. This seems too much of a simplification considering the predominant opin-
ion that the local Schwarzschild geometry of the Solar system remains practically unaffected by
the cosmological expansion (see [18] for a recent consideration of this problem and for references
to the older literature). The problem is ameliorated a bit for the quantum effect considered in
[12, 13] because in this case one could argue that the adiabatic evolution of quantum states is
governed by a different metric than the non-adiabatic dynamics of large bodies. We will hence
consider this model in more detail below. In [14] the embedding problem does not seem to
spoil the model because both the cosmic and the local metric are treated as perturbations of a
locally flat metric and can (at least formally) be superimposed linearly. In this model care has
however to be taken that the effective time acceleration by the cosmic expansion does not lead
to different velocities of light in different physical measurement processes (cf. [20] for a discus-
sion of this problem in the context of varying speed of light theories.). Indeed the coordinate
frame used by [14] seems to lead to a discrepancy between the speed of light as inferred from
local Lorentz transformations and the speed of light inferred from the phase velocity of waves
in vacuum.1 In conclusions, the current theoretical models to explain the Pioneer anomaly in
terms of a blueshift of light cannot yet be considered convincing. Despite of the deficiencies of
the currently discussed models the idea that the Pioneer anomaly is cause by a blueshift of light
is attractive because it automatically satisfies all constraints from planetary ephemeris.

3.1.1 Magnitude of the blueshift

To estimate the blueshift, which matches to the anomalous acceleration and without having to
reevaluate the original data set, one can calculate the conversion between these quantities. For
the Pioneer spacecraft, the Doppler tracking was used to determine the velocities. It consists
in transmitting a radio wave towards the spacecraft and measuring its frequency change when
it comes back. The wave-vector of the radio wave is a Lorentz vector and one can apply the
transformation below to obtain the angular frequency of the signal from the spacecraft point of
view (ω′1). 

ω′1
c
k′x
k′y
k′z

 =


γ −v

cγ 0 0
−v

cγ γ 0 0
0 0 1 0
0 0 0 1




ω1
c
kx

0
0

 , (3.2)

where c is the speed of light, v the velocity of the spacecraft in the direction Earth-spacecraft
(x-direction) and γ = 1√

1− v2

c2

. We have supposed without loss of generality that the signal is

1I thank A. Rathke for raising this issue.
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propagating along the x-direction. Thus, we have:

ω′1 =
1− v

c√
1− v2

c2

ω1 . (3.3)

Moreover, the angular frequency of the signal transponded at the spacecraft differs from ω′1,
depending on characteristics of the spacecraft. First, because of the phase coherent tracking
system, an exact ratio exists between the transmission and reception frequencies. In the case of
the S-band, the value of this ratio is 240/221. Second, the rotational movement of the spacecraft
introduces a shift that is proportional to the spin rate. Therefore, the angular frequency of the
signal transponded towards Earth is [3]

ωT =
[
RTω

′
1 − ηωspin

]
, (3.4)

where RT is the spacecraft transponder turnaround ratio and ωspin, the spacecraft spin angular
frequency (note that η=1 + 240

221). Finally, the angular frequency of the signal received (wr) can
be determined by applying again the Lorentz transformation.2

ωr
c
kx”
ky”
kz”

 =


γ −v

cγ 0 0
−v

cγ γ 0 0
0 0 1 0
0 0 0 1




ωT
c
k′x
0
0

 . (3.5)

Therefore, the relation between the frequency of the signals sent and received is given by

ωr =

RT

(
1− v

c

)√
1− v2

c2

ω1 − ηωspin

 1− v
c√

1− v2

c2

. (3.6)

The spin angular frequency of the spacecraft is very small (about 0.08Hz) and one can neglect
the term ηωspin for our purposes. Eq. 3.6 then becomes

ωr =

[
RT

(
1− v

c

)2
1− v2

c2

]
ω1 = RT

1− v
c

1 + v
c

ω1 . (3.7)

If one differentiates this relation, the acceleration of the spacecraft appears. Explicitly, it can be
decomposed into a sum of a nominal and anomalous acceleration like d~v

dt = ~a+~a∗.3 One obtains

d

dt

[
ωn + ω∗

ω1

]
=

−2RT

c
(
1 + v

c

)2 (a+ a∗) , (3.8)

where ωr is written as the sum of a nominal and an anomalous term. Of course, the nominal
part of this expression is given by

d

dt

[
ωn

ω1

]
=

−2RT

c
(
1 + v

c

)2a . (3.9)

The last two equations allows us to determine the time derivative of the relative anomalous
angular frequency

d

dt

[
ω∗

ω1

]
=

−2RT

c
(
1 + v

c

)2a∗ . (3.10)

2Here, we consider that the change in the relative velocity between Earth and the spacecraft during the tracking
process is sufficiently small to be neglected.

3This decomposition can be done because, in the outer Solar System, the gravitational back reaction on the
perturbation a∗ is sufficiently small [15].
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Then, to first order in v
c , this relation becomes

d

dt

(
ω∗

ω1

)
=

d

dt

(
∆ν∗

ν1

)
= −2RT

a∗

c
+O

(v
c

)
, (3.11)

which leads to the following anomalous frequency shift

ν∗ = −2RT ν1
a∗

c
t , (3.12)

where t is the one-way light-time to the spacecraft. This relation gives the value of the anomalous
shift if we assume that the spacecraft is actually anomalously accelerated. Now, we suppose that
there is no such acceleration on the spacecraft but, instead, a shift in the frequency of light that
produces the same Doppler measurement on Earth. Following the same procedure as above, the
angular frequency received on Earth, taking into account an anomalous shift, is given by

ω′r =

RT

(
ω1 +

∫
path1

(
dω

dt

)
1

dt

)
1− v

c√
1− v2

c2

+
∫

path2

(
dω

dt

)
2

dt

 1− v
c√

1− v2

c2

=

RTω1

(
1 +

1
ω1

(
dω

dt

)
1

t

)
1− v

c√
1− v2

c2

+
(
dω

dt

)
2

t

 1− v
c√

1− v2

c2

, (3.13)

where path1 is the light path to the spacecraft and (dω
dt )1 the corresponding rate of change in the

angular frequency. The frequency of the radio wave on the way back is equal to the first term of
the square bracket and the second term is the anomalous corresponding shift. Moreover, in the
second line of Eq. 3.13, the terms (dω

dt )i are assumed to be constant and we can take them out
of the integral. Finally, if we take the first term out of the square bracket, the equation becomes

ω′r = RTω1(1 + b∗t)2
1− v

c

1 + v
c

, (3.14)

where b∗ is defined as

b∗ =
1
ω1

(
dω

dt

)
1

=
1
ν1

(
dν

dt

)
1

. (3.15)

To find the value of b∗, we have to equal ω′r from Eq. 3.14 to ωr from Eq. 3.7, in which we write
explicitly the velocity as the sum of a nominal and an anomalous part

RTω1(1 + b∗t)2
1− v

c

1 + v
c

= RT
1− v+v∗

c

1 + v+v∗

c

ω1 , (3.16)

which leads to

(1 + b∗t)2 =
1− v+v∗

c

1 + v+v∗

c

1 + v
c

1− v
c

'
1− v∗

c

1 + v∗

c

' 1− 2
v∗

c
, (3.17)

where we have neglected the terms quadratic in v∗. If we replace b∗ using Eq. 3.15, we get the
following final expression

1
ν1

dν

dt
= −a

∗

c
. (3.18)
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This equation gives the physical variation of the frequency of light which corresponds to the
anomalous acceleration. It is negative so the frequency is increasing on the way (i.e. it is a
blueshift). Finally, note that similar expressions are obtained in the case of the gravitational
frequency shift (Einstein effect). Indeed, for a signal moving in a gravitational field, the frequency
is shifted as:

∆ν∗

ν
=
gt

c
, (3.19)

where g is the gravitational acceleration.

3.1.2 Comparison with the Berry phase model

A bit of theory

In the early eighties, Berry discovered a new peculiarity of the evolution of a quantum state [22] :
the quantum eigen-state acquires an additional phase when the Hamiltonian of a system is adi-
abatically transported around a closed path in parameter space. This extra phase is called
Berry phase. After the importance of Berry´s discovery was realised in many fields of physics,
it was liberated from its restriction to periodic variations of the Hamiltonian [23]. Let us briefly
describe the theory of the Berry phase.

Consider a quantum system driven by a slowly changing Hamiltonian H(R(t)) where R is a
set of external parameters. Then, the adiabatic approximation leads to the following solution
to the Schrödinger equation:

|Ψ(t) >= exp
[
− i

~

∫ t

0
En(t)dt

]
exp(iγn(t))|Ψn(R(t)) > , (3.20)

where |Ψn(R(t)) > are the instantaneous eigenstates of the Hamiltonian with non-degenerate
eigenvalue En(t). The first phase factor is the usual dynamical one. For closed-path in the
parameter space, the extra phase factor exp(iγn(t)) comes from the Berry phase given by

γn(C) = i

∫ R(tf )

R(0)
[< Ψn(R)|∇Ψn(R) >] · dR , (3.21)

where ∇ denotes the gradient with respect to the parameter set R(t). It was then proposed
that the same expression holds also for adiabatic evolution along an open path [25]. A more
recent discussion of the open path Berry phase however comes to the conclusion that in this case
a gauge potential has to be added to the Berry phase [26]. For an open path the Berry phase
would then become

γn(C) = i

∫ R(tf )

R(0)
[< Ψn(R)|∇Ψn(R) > +iPn(R)] · dR , (3.22)

where a gauge potential Pn(R) has now to be taken into account. This one is given by [26]:

Pn(R) =
i

2

[
< Ψn(R(0))|∇Ψn(R) >
< Ψn(R(0))|Ψn(R) >

− < ∇Ψn(R)|Ψn(R(0)) >
< Ψn(R)|Ψn(R(0)) >

]
. (3.23)

The work discussing the PA as the result of an open path Berry phase [13] does not consider
such a gauge term.
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The Pioneer anomaly as a Berry phase

Let us start by considering an expanding space-time with a Robertson-Walker metric

ds2 = −c2dt2 +R(t)(dx2 + dy2 + dz2) . (3.24)

where R(t) denotes the cosmological scale factor. Without loss of generality we consider photons
that travel in the z-direction so that we can restrict our considerations to a two-dimensional line
element and we drop the dx2 and dy2 in the following. The phases of these photons are given
by

ϕ = gµνX
µKν

= ω0t− kR(t)z , (3.25)

where Xµ ≡ (ct, z) is the position vector, Kµ ≡ (ω
c , k) is the wave-vector and gµν is the space-

time metric given by:

gµν =
(
−1 0
0 R(t)

)
(3.26)

Therefore, by using Eq. 3.25, we can write the wave function of one photon as

Aµ(t) = Nεµe
i(ω0t−kR(t)z) , (3.27)

where N is a normalisation factor and εµ is the polarisation vector. Then, during their round-trip
and according to [13], the photons acquire an extra phase given by (see Eq. 3.21)

γ = i

∫ R(tf )

R(0)

[
A∗µ

dAµ

dR

]
dR

= kz

∫ R(tf )

R(0)

[
A∗µAµ

]
dR

= kz[R(t)−R(0)]
' kzṘ(0)t (3.28)

where Aµ,0 = Aµ(R(0)). Then, for a specific value of the phase we can express z by the time t

z =
ω0t

kR(t)
. (3.29)

Using this relation, the Berry phase can be written as

γ =

(
ω0
Ṙ(0)
R(t)

t

)
t (3.30)

Then wave function of one photon is given by

Aµ(t) = Nεµ exp i

[
ω0

(
1 +

Ṙ(0)
R(t)

t

)
t− kR(t)z

]
. (3.31)

Employing the definition of the Hubble constant,

H ≡ Ṙ

2R
, (3.32)

where R and Ṙ are to be taken at the present time, and using R(t) ' R(0) we can rewrite the
photon wave function as

Aµ(t) = Nεµe
i[ω0(1+2Ht)t−kR(t)z] . (3.33)
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The expression for the phase of the photon in Eq. 3.33 obviously also holds for superpositions
of photons. Defining the frequency of a wave as the time derivative of the phase ω ≡ dφ/dt we
find the frequency shift induced by the Berry phase,

ω̇ = 4ω0H . (3.34)

Assuming that this Berry phase causes the Pioneer anomaly one would expect an effect about
four times as large as the observed anomaly (see Eqs. 3.1 and 3.18). It is however not surprising
if the observed anomaly is smaller because a smaller effective Hubble constant might enter the
adiabatic evolution. The question how big such an adiabatic effect could be is related to the
averaging problem of cosmology (cf. [21]) and beyond the scope of this thesis. It is further
worth noting that the effect derived above differs by a factor of four from the result found in
[12]. A factor of two arises from dropping the requirement that the scale factor at the instant
of emission and the instant of reception are the same. Another factor of two arises from an
unusual definition of the phase velocity in [12], which seems inappropriate to make connection
with experimental data.

It should be noted that the above considerations do not hold if the gauge potential (see Eq. 3.22)
is taken into account. This term would exactly cancel the obtained Berry phase and there would
be no influence of the cosmic expansion on the phase of a photon

γ = i

∫ R(tf )

R(0)

[
A∗µ

dAµ

dR
− 1

2

(
A∗µ,0

dAµ

dR

A∗µ,0Aµ
−

dA∗µ
dR Aµ,0

A∗µAµ,0

)]
dR

= kz

∫ R(tf )

R(0)

[
A∗µAµ

]
dR− i

2

∫ R(tf )

R(0)

[
−ikz

A∗µ,0Aµ

A∗µ,0Aµ
− ikz

A∗µAµ,0

A∗µAµ,0

]
dR

= 0 . (3.35)

Even with this doubts, the model can serve as a generic example for the influence on various
observables that one would expect from an anomalous blueshift of light.

3.1.3 Impact on LISA arms

As seen in the previous section, the anomalous blueshift is proportional to the light travel time
of the signal. The effect would therefore be several orders of magnitude bigger on LISA arms
than on ground-based detectors, which have arms limited to few km of length. The expected
blueshift on the LISA arms can be calculated from Eq. 3.18 with the appropriate values of the
parameters (5×106 km for the armlength and 3× 1014 Hz for the frequency):

∆ν∗ = −a
∗

c2
Lν ∼= 1.4× 10−2 Hz . (3.36)

This blueshift is very small compared with the nominal frequency (3×1014 Hz) but one can expect
LISA to be able to measure it. Indeed, the corresponding relative change of the frequency is
about 10−16 and the predicted value for the weakest gravitational waves detectable by LISA is
about 10−22. The impact on the frequency due to the anomaly is therefore 6 orders of magnitude
higher. Hence the effect could in principle be detectable. The ability to measure the contribution
of the anomalous blueshift will depend on the sensitivity of LISA (i. .e on the noise) at the
frequencies where the anomaly is present. In the next chapter, we will give a quick overview of
the noises that affect the sensitivity. This will allow us to study if the anomalous blueshift could
be detected by introducing the blueshift in two proposed methods of data analysis.
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3.2 Berry phase and gravitational waves

3.2.1 Doppler shift induced by the gravitational waves

When the solar system is crossed by a gravitational wave, the space-time metric fluctuates,
depending on the amplitude and the polarisation of the wave. As a consequence, the light path
between two free-falling bodies can change, leading to phase variation on the light exchanged
between them. To start, let us consider a transverse and traceless gravitational wave which gives
the following metric [37]

ds2 = −c2dt2 + (1− h)dx2 + (1 + h)dy2 + dz2 , (3.37)

where c is the speed of light and h = h(t− z) is the strain field of a train of plane gravitational
waves propagating in vacuum parallel to the z axis. This geometry is outlined in Fig. 3.1 below.

Figure 3.1: LISA and the gravitational wave geometry.

The double arrows indicate in which direction the LISA spacecraft will appear to move due to
the gravitational waves. The amplitude of the distance variation will depend on the amplitude
of the gravitational waves. Physically, as the gravitational waves passe the solar system, there
is a geodesic deviation and a strain.
From Eq. 3.37, the metric tensor is

gµν =


−1 0 0 0
0 1− h 0 0
0 0 1 + h 0
0 0 0 1

 . (3.38)

To calculate the geodesics, we can use three Killing vectors in this space-time, which are obviously

V1 = êx , V2 = êy , V3 = êt + êz , (3.39)

where êi indicates a unit vector along the ith direction. At the origin (see Fig. 3.1), a null vector
is given by

σ0 = (−ν0)
[
cdt−

(
1 +

1
2
h0

)
β0 − α0dz

]
, (3.40)
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where ν0 is the frequency of the signal emitted at spacecraft 1, h0 = h(t) and α2
0 + β2

0 = 1. The
null value of σ0 = gµνσ

µσν is immediately verified. By projecting σ0 onto an orthonormal triad
at the origin, it is easily found that α0 and β0 are the locally measured direction cosines of the
photon trajectory, with the z and x axes, respectively. At the reception at spacecraft 2, we can
write σ again as

σ1 = (−ν1)
[
cdt−

(
1 +

1
2
h1

)
β1 − α1dz

]
, (3.41)

where ν1 is the frequency observed at the spacecraft 2, h1 is the gravitational wave strain at the
same spacecraft and α2

1 + β2
1 = 1. To determine the Doppler shift of a light signal propagating

from spacecraft 1 to spacecraft 2, we can parallelly transport σ0 along the photon trajectory, as
it is done in [37]. To start, let us consider the null vector at the origin

gµνσ
µσν ≡ σνσ

ν = 0 . (3.42)

Then, the covariant derivatives of Eq. 3.42 is also equal to 0 and we have

[σνσ
ν ];µ = 0 , (3.43)

where the semicolon indicates the covariant derivative. Then, since the ith Killing vector (iV )
satisfies the Killing equation

iV(µ;ν) ≡
1
2

[iVµ;ν +i Vν;µ] = 0 . (3.44)

We have the following equation which illustrates the constancy of the components of σ on the
three iV

(σµiV
µ);ν σ

ν = 0 i = 1, 2, 3. (3.45)

Eq. 3.45 leads to the following system of equations

ν0(1 +
1
2
h0)β0 = ν1(1 +

1
2
h1)β1 , (3.46)

ν0(1− α0) = ν1(1− α1) . (3.47)

Dividing the square of Eq. 3.46 by Eq. 3.47 and using the relations between α and β, this system
leads to the following result:

ν1 − ν0

ν0
=

1
2
(1 + α)(h0 − h1) . (3.48)

In this equation, we use α for either α0 and α1, which differ only in first order. To the same
approximation, the coordinates of the spacecraft 2 are x = 1

2βT , y = 0 and z = 1
2αT where T

is the round-trip light time. Then, the gravitational wave strain h1 is given by

h1 = h(t+ (1− α)T/2) . (3.49)

Following the same method, we can calculate the Doppler shift of the returning photon. At
spacecraft 2, a null vector of the photon re-emitted along the reverse direction is given by

σ′1 = (−ν1)
[
cdt+

(
1 +

1
2
h1

)
β1 + α1dz

]
. (3.50)

This photon is finally observed at reception at spacecraft 1

σ′2 = (−ν2)
[
cdt+

(
1 +

1
2
h2

)
β2 + α2dz

]
. (3.51)
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This gives the following system by parallel transport:

ν1(1 +
1
2
h1)β1 = ν2(1 +

1
2
h2)β2 , (3.52)

ν1(1 + α1) = ν2(1 + α2) . (3.53)

Finally, in the lowest order, the Doppler shift along the return travel time is given by

ν2 − ν1

ν1
=

1
2
(1− α)(h1 − h2) , (3.54)

where h2 = h(t+T ). This equation and Eq. 3.48 lead to the total Doppler shift of the returning
photon of

∆ν
ν

≡ ν2 − ν0

ν0
=

1
2
(1− α)(h1 − h2) +

1
2
(1 + α)(h0 − h1)

=
1
2
(1 + α)h(t)− αh(t+ (1− α)T/2)− 1

2
(1− α)h(t+ T ) . (3.55)

In particular, note that if the photons travel parallel to the gravitons (i.e. α = 1), the Doppler
shift is null. On the other hand, if the gravitational wave propagates normally to light-path of
the photon, the Doppler shift is maximum and its value is given by

∆ν
ν

= ±1
2
[h(t)− h(t− 2li)] . (3.56)

The ”±” indicates that, in the plane transverse to the gravitational wave propagation, this
expression has to be added to one direction and subtracted from the other. This is because
the gravitational waves are area preserving in the transverse plane. Pictorially speaking, this
means that if a wave increases the proper distance between two free masses that lie along a given
direction, it will simultaneously decrease the distance between two free masses lying along the
perpendicular direction in the transverse plane.4 This is illustrated in the standard polarization
diagram below.

Figure 3.2: The 2 possible polarisations of gravitational waves [8].

This figure shows the effect of gravitational waves for two linearly independent polarisations on
a ring of free particles arranged in a plane perpendicular to the direction of the wave. It is
illustrated to scale how a wave with the dimensionless amplitude h = 0.2 distorts the original
circle.

4In the case of LISA, the arms are not perpendicular but subtend an angle of 60◦,i. e. α = 1/2, and a factor of
correction is necessary.
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3.2.2 Implications of the Berry phase and total Doppler shift

In the previous section, the Doppler shift is calculated with the assumption that the propagation
of the light signal is only perturbed by gravitational waves. Considering now an additional Berry
phase on the photons, the expression 3.55 has to be modified. According to Section 3.1.1, the
additional time dependance of the frequency is given by

ν(t) = ν0(1−
a∗

c
t) . (3.57)

where ν0 is the frequency at the signal emission and t the light travel time. In particular, in the
expression of the one-way Doppler shift induced by gravitational waves,

ν1 − ν0

ν0
=

1
2
(1 + α)(h0 − h1) , (3.58)

the starting frequency (ν0) can now be modified using Eq. 3.57. This leads to the following
expression

ν1 − ν0

ν0
=

1
2
(1 + α)(1− a∗

2c
T )(h0 − h1)−

a∗

2c
T . (3.59)

where T is the two-way light time. Considering the example case of a Berry phase, the delay
introduced on the propagation of a graviton can be neglected since the Berry phase arises in
adiabatic evolution which can hardly hold for a gravitational wave with a frequency of 10−2 Hz
compared to the THz frequency of the laser light.5 Hence the argument of h1 should remain
unimpaired.

The same method can be applied to the returning signal and the final expression of the Doppler
shift, including a Berry phase type contribution and the gravitational wave contributions, is
given by

∆ν
ν

≡ ν2 − ν0

ν0

=
1
2
(1 + α)(1− a∗

2c
T )h(t)− α(1− a∗

2c
T )h(t+ (1− α)T/2)

−1
2
(1− α)(1− a∗

2c
T )h(t+ T )− a∗

c
T . (3.60)

The anomaly appears in this equation in two different ways

1. As a multiplicative factor of the gravitational wave strain. The anomaly should thus have
an impact in the sensitivity band of LISA. The effect is however at second order compared
to the nominal gravitational wave contribution.

2. As an additional term proportional to the light travel time. If T is time dependent, as it will
the case for LISA, the influence of the anomaly could appear at the different frequencies
contained in T and at the null frequency anyway.

It is the purpose of the next chapter to assess how this Doppler shift affects the LISA measure-
ment.

5The search for an anomalous blueshift of the gravitational wave itself could be carried out along the lines of
that for massive graviton (see [27]) and will not be considered in this thesis.
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Implications for LISA

4.1 Introduction

In the previous chapter, we have shown that the pioneer anomaly could find its explanation in a
blueshift in the frequency of light and we have calculated the corresponding effect on the arms
of LISA. To understand how it could influence LISA, we begin this chapter by reminding the
principles of interferometric measurement. We also give a quick overview on the different noise
sources which spoil the measurements. Then, we show how the blueshift enters the data within
and outside the sensitivity band. This is done both in the framework of phase noise cancellation
in the frequency domain and time delay interferometry.

4.2 Interferometric measurement

Interferometry is a method to make very precise distance measurements. In the most widespread
version, the Michelson interferometer, a laser signal is divided by a beam splitter. Then, the two
divided beams are sent out along different paths and reflected back to the beam splitter, where
the beams interfere to produce light fringe. The intensity of the fringe is then monitored to
detect changes in the difference in the arm lengths. The advantage of the interferometer over a
system where a single arm is used and where the returning light interferes with a fraction of the
outgoing light to form the fringes, lies in the relative immunity of the interferometer to fluctua-
tions in the phase of the laser. In a single-arm, jitter in the laser phase over the round-trip light
time would cause the interference pattern to fluctuate, mimicking a change in the arm length.
With an equal arm lengths interferometer, the phase fluctuations are transmitted equally along
the two arms and, when the return beams finally combine, the fluctuations will be the same in
both signals and will be cancel.

LISA will operate nearly in the same way. The round-trip journey between two neighbours
spacecraft defines one arm of the large interferometer. However, because of the orbital motion,
the arm lengths cannot be maintained equal and the laser phase noise is not totally cancelled.
If the arm lengths are unequal by an amount of ∆L = L1 − L2, then the residual laser phase
noise will be given by

∆φ(t) = p(t− 2l1)− p(t− l2) ≈ 2ṗ(t− 2l1)∆l , (4.1)

where p(t) is the laser phase noise and li the light time along the ith arm. If uncorrected, this
residual noise can be dominant and can overwhelm the signature of gravitational waves.

The noises involved in LISA’s measurement are very crucial for the sensitivity and needs to be
carefully studied. In order to reliably distinguish the gravitational wave signals in the LISA’s
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data, a signal-to-noise ratio of 5 is generally required and also a geometric factor of
√

5 to allow
for less optimal directions and polarizations [8]. These constraints leads to the sensitivity curve,
as illustrated in Fig. 4.1 below.

Figure 4.1: LISA sensitivity curve for one year integration time and a signal-to-noise ratio of 5,
averaged over all possible source locations and polarizations [8].

In the case of LISA, the two arms do not subtend a right angle, but one of only 60◦, thus
decreasing the response by a factor sin 60◦= 0.8660. Furthermore, the angle of incidence depends
on the position of the source on the sky and on the momentary orientation of LISA, which
undergoes a continuous change during its orbit around the Sun. The following figure gives an
example of the rather complex dependence of the LISA response while orbiting the Sun.

Figure 4.2: Magnitude of the normalized LISA transfer function in dependence upon the orbit
azimuth for a source at declination 30◦ and azimuths of 0◦, 30◦, 60◦ and 90◦, at a frequency of
45 mHz [8].

The figure outlines the orbit dependence for four different source azimuths and six different
polarizations, considering for each a gravitational wave at the frequency of 45 mHz and a source
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declination of 30◦ above the ecliptic. When averaged over the different angles of incidence
of the gravitational wave in the course of one year, the antenna response is smoothed out
considerably. Fig. 4.3 shows the frequency response of LISA for four different source declinations
after averaging over the orbit and all possible source azimuths and polarizations.

Figure 4.3: Magnitude of the normalized LISA transfer function in dependence upon frequency
after averaging over the orbit and all possible source azimuths and polarizations [8].

4.3 The noises

A careful study of the noises involved in the LISA measurement is essential to determine the
precision required for the detection of the gravitational waves. It is convenient to work in terms
of signal-to-noise ratio which depends on several features of the expected signal, the character-
istics of the noise and the duration of the measurements.

There are two different types of noise; the one due to residual forces which lead to undesirable
accelerations on the proof mass and the one which fakes fluctuations in the lengths of optical
paths. Obviously, it is impossible for a receiver spacecraft to distinguish between the Doppler
shift cause by fluctuations in arm length or a true shift in the frequency of light. To be explicit,
let us consider an interferometer with an arm of length L. Then, the phase difference between
the outgoing and the returning signals is given by

ϕ =
4πνL
c

, (4.2)

where ν is the frequency of the signal and c the speed of light. Thus, for slow changes in L and
ν, we can see that, in the phase fluctuation δϕ,

δϕ =
4π
c

(
δL

L
+
δν

ν

)
, (4.3)

the relative change of frequency and arm length have the same impact. In the following, we
give a brief description of the dominant noises involving in the LISA measurement with their

34



Chapter 4 Implications for LISA

power spectra. A complete study of the noises is carried out in [8] where they are summarized
in useful noise budget tables.

4.3.1 Laser phase-noise

The laser system on-board of LISA consists of a diode-laser-pumped monolithic Nd:YAG ring
laser which can generate a continuous infra-red beam at 1064 µm of up to 2W. This choice relies
on its compact structure, reliability and high stability. The primary method of stabilization
is to lock the laser frequency on to a Fabry-Perot cavity. Any change in the length of the
cavity produces deviations from the nominal operational frequency. This is the laser phase
noise. With the temperature fluctuations inside each spacecraft limited in the region of 10−3Hz
to approximately 10−6 K/

√
HZ by three stages of thermal insulation, a cavity formed of ultra

low expansion material allows a stability level of approximately 30 Hz/
√

HZ. If we compare
this value to the maximum measurement noise level of 4pm/

√
Hz (about 6× 10−6 Hz/

√
Hz) in

order to detect gravitational waves, it is clear that correction scheme is required to decrease the
laser phase noise. A cancellation of about 10 orders of magnitude is necessary and this is the
purpose of the frequency domain and time domain methods described in subsequent sections.
According to [45], at the millihertz level, the power spectral density of the laser frequency noise
is approximately given by

Sp(f) = 4× 10−38f−4Hz−1 . (4.4)

At frequencies below the millihertz, the decrease in f−4 is still a good approximation until the
relative change in the length of the cavity reaches roughly 10−3 where the power spectral density
becomes flat.1 Since the instability in the cavity are exactly transmitted to the laser below 10−3

Hz [45], the power spectral density would become flat near the Fourier frequency of 10−8 Hz
(see Eq. 4.4).

4.3.2 Shot noise

Shot noise is due to the quantum-mechanical fluctuations in the arrival times of the photons.
According to [8], for each single passage through an arm of length L, the power spectral density
of the apparent optical path fluctuations is

Sn(f) =
1
2π

λ~c
Pavail

, (4.5)

where Pavail is the light power available. For LISA, this one is very low due to beam spreading
and the poor efficiency of optics and photodiode. The power spectral density commonly used
for shot noise is given by [34]

Sn(f) = 5.3× 10−38(f/1Hz)2Hz−1 . (4.6)

After having cancelled the laser phase noise by an appropriate algorithm, we will see that the
sensitivity of LISA is limited by the shot noise near the frequency of 1 Hz.

4.3.3 Acceleration noise

Despite the fact that the drag-free environment will effectively shield the proof masses from
outside influences, some residual acceleration noises will remain. In addition, the optical benches
themselves can undergo residual acceleration noises mainly due to thermal distortion. To be
specific, the major sources of acceleration noises are

1Thanks to Oliver Jennrich for these information.
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• The Lorentz force on charged proof mass from the fluctuating interplanetary field.

• Residual gas impacts on the proof mass.

• Thermal distortion of the spacecraft.

• Noise due to dielectric losses.

• Temperature differences across cavity.

A complete list of these acceleration noises with their magnitude is given in [8]. By accounting
for all of them, the estimated total effect on one inertial sensor is 3 × 10−15ms−2/

√
Hz. The

power spectral density for the acceleration noises is given by [34]

Sacc = 2.8× 10−41(1 + (f/3.10−3Hz)2)2(f/10−4Hz)(−8/3)Hz−1 . (4.7)

After the cancellation of the laser phase noise, we will see that the acceleration noises are
dominant in the low-frequency range of the sensitivity band of LISA.

36



Chapter 4 Implications for LISA

4.4 Frequency domain algorithm

With precisely equal arm lengths, the interferometer allows the direct cancellation of the leading
noise source, the laser phase noise. If uncorrected, this noise overwhelms the signature of the
gravitational waves in the data. Unlike the ground-based interferometers, LISA will be unable
to maintain precise arm length equality and an appropriate data analysis has to be performed.
A first method in the frequency domain was introduced in [30]. In this section, we review
this method, taking into account the anomalous blueshift. We also introduce additional noise
sources, such as acceleration noise, which was not addressed in [30] and we update the value of
laser and shot noise. Particularly, the main goals are to assess the impact on the gravitational
waves detection and if we can distinguish the signature of the anomaly in the data.

4.4.1 The two-way Doppler signals

For simplicity, we assumed in this first method that each laser has the same fundamental fre-
quency ν. This is different from LISA where the frequency of each laser may differ by several
hundred of megahertz. However, it is useful to begin with this method to understand how the
cancellation of the laser phase noise works for an unequal arm lengths interferometer and to have
first interesting results. In addition, we assume, for the moment, the arm lengths to be constant
and known exactly. We will remove this assumption later, and estimate the corresponding ac-
curacy needed in order for the techniques still be effective.

Let us begin by outlining the geometry of the interferometer on the figure below.

Figure 4.4: Geometry of the LISA formation [8].

Then, we define:

• pm(t) as the phase noise of the mth laser, so that the phase of the mth laser is Pm =
νt+ pm(t).

• li(t) as the one-way light-time for the signal along the ith interferometer arm, mainly
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affected by slow drift velocities from the orbits and faster changes produced by gravitational
waves.

• ∆ν∗i as the anomalous blueshift of light occurring during the travel on the ith arm.

• ni(t) as the shot noise on the ith laser.

• ai(t) as the residual acceleration of the ith spacecraft.

Each laser send a signal to its neighbour where a fraction of the local laser power being sent out
is beating with the incoming signal. There are also two-way reference signal exchanges between
the lasers on the same spacecraft to tie their phases.

Let us now look at the main effects which blur the phase of the signals.

1. The shot noise. Its effect is immediate at the time of reception, so that the response of
the Doppler measurement at the ith laser is simply given by ni(t).

2. The acceleration noise. As already mentioned, the phase variation ∆ϕ of a signal depends
on the path length x through

∆ϕ =
2πν
c
x , (4.8)

where ν is the frequency of the signal. Therefore, the residual acceleration of the space-
craft appears on the second derivative of the phase of the signal. Obviously, the residual
accelerations at the two spacecraft, at transmission and reception, have to be taken into
account and we have the following expression

∆ϕa =
2πν
c

∫ ∫
[û · ~aa(t)− û · ~ab′(t− l1)]dt2 , (4.9)

where a and b′ are the end lasers of arm 1 and û is the unit vector along the same arm
(see Fig. 4.4). Note that this equation is a first order estimate since it considers only the
acceleration along the optical axis. The phase shift on the other arms can be obtained by
the same way. Note that for the phase received at the kth laser, one can not simply switch
the indices in 4.9 because the indexing is not symmetric against û:

∆ϕb′ = −2πν
c

∫ ∫
[û · ~ab′(t)− û · ~aa(t− li)]dt2 (4.10)

3. The anomalous blueshift. Its contribution on the phase of the signal can be derived from
Eq. 3.36 and the relation between the frequency ν and the phase ϕ of a signal, i. e.

ν =
1
2π

dϕ

dt
(4.11)

This leads to the following contribution of the anomalous blueshift on the phase of the
signal received:

∆ϕ∗i (t) = 2π
∫

∆ν∗i dt (4.12)

By taking into account all these factors, the phase of the signal sent by the kth laser and received
at the ith is given by

ϕi(t) = 2πν(t− li(t)) + 2π
∫

∆ν∗i dt+ pk(t− li) + ni(t)

+2
πν

c

∫ ∫
[û · ~ai(t)− û · ~ak(t− li)]dt2 , (4.13)
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which becomes

ϕi(t) = 2πν(t− li(t)) + 2πα∗
∫
li(t)dt+ pk(t− li) + ni(t)

+2
πν

c

∫ ∫
[û · ~ai(t)− û · ~ak(t− li)]dt2 , (4.14)

by introducing the following expression for the anomalous blueshift,

∆ν∗i = −a
∗

c
νli(t) = α∗li(t) . (4.15)

At the reception, the incoming signal is beaten with the local laser to give the beat signal such
as

sin(ϕi(t)) + sin(Pi(t)) = 2 sin(
ϕi + Pi

2
) cos(

ϕi − Pi

2
) . (4.16)

The high frequency sine term is too fast to be read. Therefore, on the ith arm, the phases of
the beat signals read in the spacecraft photodiode are given by

si(t) = ϕi(t)− Pi(t)

= −2πνli(t) + pk(t− li)− pi(t) + 2πα∗
∫
li(t)dt+ nk(t)

+2
πν

c

∫ ∫
[û · ~ai(t)− û · ~ak(t− li)]dt2 (4.17)

sk(t) = ϕk(t)− Pk(t)

= −2πνli(t) + pi(t− li)− pk(t) + 2πα∗
∫
li(t)dt+ ni(t)

−2
πν

c

∫ ∫
[û · ~ak(t)− û · ~ai(t− li)]dt2 , (4.18)

where we have dropped the factor 1/2 and with the appropriate values for i and k. Finally, the
main signal is essentially an integrated Doppler measurement at the central point. This one is
formed by the combination

zi(t) = si(t) + sk(t− li)

= pi(t− 2li)− pi(t)− 4πνli(t) + 4πα∗
∫
li(t)dt+ nk(t) + ni(t− li)

+2
πν

c

∫ ∫
[û · ~ai(t)− 2û · ~ak(t− li) + û · ~ai(t− 2li)]dt2 . (4.19)

In order to obtain zi(t), sk(t) is sent to the ith laser to be beaten with si(t). Here, the beat
signal is filtered in order to keep the gravitational waves contribution, i.e. by reading the cosine
term in the expression of a beat (see Eq. 4.16). If unmodulated, the frequency of sk(t) is many
order of magnitude lower than ν and one can neglect the corresponding anomalous blueshift.

Gravitational waves contribution

In Eq. 4.19, the terms in li(t) account for the contributions of the orbital motion and the
gravitational waves. At this stage, we explicitly write each contribution by splitting li(t) into
the nominal arm length and the contribution of the gravitational. According to Section 3.2.2, the
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impact of a gravitational wave, transverse to the LISA plane and with appropriate polarization,
on the two-way Doppler signal is given by

∆ν
ν

= ±1
2
(1 + α∗li)[h(t)− h(t− 2li)] , (4.20)

where ∆ν is the difference between the frequency of signal sent and received at the central space-
craft and h is the gravitational wave strain amplitude. The ”±” indicates that this expression
has to be added to one arm and subtracted from the other Then, using Eq. 4.11, we can calculate
the corresponding contribution on the phase

ϕgw = ±πν
∫

(1 + α∗)[h(t)− h(t− 2li)]dt . (4.21)

By inserting this expression in Eq. 4.19, the explicit expression of the two-way Doppler signal
becomes:

zi(t) = pi(t− 2li)− pi(t)− 4πνli(t) + 4πα∗
∫
l′i(t)dt+ nk(t) + ni(t− li)

+2
πν

c

∫ ∫
[û · ~ai(t)− 2û · ~ak(t− li) + û · ~ai(t− 2li)]dt2

±πν
∫

(1 + α∗li)[h(t)− h(t− 2li)]dt , (4.22)

Eq. 4.22 shows the signal measured at the ith laser after it has propagated along one of the
interferometer arm. In order to estimate the contribution of each term, it is useful to compute
the power spectral density of zi(t). To begin, we restrict our study to the sensitivity band of
LISA, i.e. from 10−4 Hz to 1 Hz, and we drop the two terms in li(t) as the orbital motion has
no impact at these frequencies. In Section 4.4.5 below, we will study what happens outside
this frequency band. To compute the power spectral density, we can first calculate the Fourier
transform 2 of Eq. 4.22

zi(f) = pi(f)[e4πifl1 − 1] + ni(f)[1 + e2πifli ] + νai(f)
[e4πifl1 + 2e2πifl1 + 1]

2πcf2

±ν(1 + α∗li)h(f)
[e4πifli − 1]

2if
, (4.23)

where we have assumed that ni(f) = nk(f), ai(f) = ak(f) and the worst case for the relative
direction between ~ai,k and û. Here, we have to be careful because these expressions of the Fourier
transform suppose that the observing time is infinite. In practice, the mission will operate a few
years and thus, Eq. 4.23 only gives an estimate of the true spectrum. The error introduced is
discussed in section 4.4.4.

2Here,we use the following formula:

F.T.[

∫
g(t)dt] ≡ − 1

2πif
G(f)

where G(f) is the Fourier transform of g(t).
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Assuming independent acceleration and shot noise, so that their power spectra add each other,
we can plot Fig. 4.5 below by using the noise spectra given in Section 4.3.

Figure 4.5: Spectra involved in the two-way Doppler signal. The upper green points indicates
the expected signatures of some massive black hole binaries (MBH-MBH) located at z=1 and few
months before coalescence. M� is equal to the Solar mass. The upper blue point represents the
typical value for a neutron star binary in our galaxy. The lower points indicate the corresponding
signature of the Pioneer anomaly.

From this figure, it is clear that in order to distinguish the signal of gravitational waves, even for
the strongest one as MBH-MBH coalescence, the laser phase noise (in red) has to be cancelled to
several order of magnitude. The following sections explain how handle this. The contribution of
the Pioneer anomaly is shown by the lower points in Fig. 4.5 and it is well below the secondary
noise sources, as shot noise (in yellow) and acceleration noise (in black). The anomaly should not
have any impact since the noise cancellation algorithms of LISA is dedicated to the laser phase
noise. However, these algorithms apply transfer functions to the secondary noises and anomalous
term and it is not so obvious that, at the end, the effect is negligible. In the following section,
the laser phase noise cancellation algorithm in the frequency domain is applied to zi(t) in order
to see what really happen to the anomalous contribution.

4.4.2 Laser phase noise cancellation

The idea to cancel the laser phase noise is to compare the phases of signals which have propagated
along different arms. To perform this data analysis, the phase of two lasers in the same spacecraft
need to be tied. This can be done by using a reference signal, sent between them

σi(t) = −νd− νt+ pj(t− d)− pi(t) , (4.24)

where d is the light-time between the lasers i and j with {i,j}, chosen from {1,2}. The anomalous
blueshift on this path is very small because the lasers are close to each other and we can neglect
it. All the signals si(t) and σi(t) may be used to synthesize an interferometer in the data analysis.
The differenced phase reference signal is given by

σ2(t)− σ1(t) = [p1(t) + p1(t− d)]− [p2(t) + p2(t− d)] . (4.25)
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In the frequency domain, this equation becomes

σ2(f)− σ1(f) = [p1(f)− p2(f)](1 + e2πifd) , (4.26)

so, that knowing the light-time d, one can apply a linear filter to have the differenced laser phase
noise:

ζ(f) = p1(f)− p2(f) =
σ1(f)− σ2(f)

1 + e2πifd
. (4.27)

The inverse Fourier transform of this equation yields ζ(t) = p1(t)− p2(t) which allows to tie the
lasers of the same spacecraft together as if they were beams from a single laser. Now, we have
all the signals needed to implement the noise cancellation algorithm. By combining z1(t) and
z2(t) of Eq. 4.19 and using the reference signal ζ(t) of Eq. 4.27, one can write the interferometer
signal in terms of the noise in one laser only

γ(t) ≡ z1(t)− z2(t)− ζ(t− 2l2) + ζ(t)

= p1(t− 2l1)− p1(t− 2l2)− 4πν∆l(t) + 4πα∗
∫

∆l(t)dt+ n3(t) + n1(t− l1)

−n4(t)− n2(t− l2) + 2
πν

c

∫ ∫
[û. ~a1(t)− 2û. ~a3(t− l1) + û. ~a1(t− 2l1)]dt2

+πν
∫

(1 + α∗l1)[h(t)− h(t− 2l1)]dt− πν

∫
(1 + α∗l2)[h(t)− h(t− 2l2)]dt

−2
πν

c

∫ ∫
[û′. ~a2(t)− 2û′. ~a4(t− l2) + û′. ~a2(t− 2l2)]dt2 . (4.28)

For unequal arms, the algorithm to be used should lead to the minimization of the noise in
Eq. 4.28. According to Fig. 4.5, this can be done by neglecting all the contributions against
the phase noise, in which case the Fourier transform of z1(t) would be given in terms of the
transform of p1(t) by

z1(f) = p1(f)(e4πifl1 − 1) . (4.29)

We may therefore use z1(t) to generate an estimate p̃1(f) of p1(f)

p̃1(f) =
z1(f)

e4πifl1 − 1
. (4.30)

Computing the inverse Fourier transform gives estimates p̃1(t) and p̃2(t) = p̃1(t) − ζ(t) of the
phase noise of the lasers. These estimates can then be used to predict the effect of the laser
noise in the interferometer via

z̃i(t) ≡ p̃i(t− 2li)− p̃i(t) , (4.31)

and the resulting estimate,

γ̃(t) ≡ z̃1(t)− z̃2(t) . (4.32)

This value of the estimate of the differenced interferometer signal can then be subtracted from
γ(t) to give a signal

∆(t) ≡ γ(t)− γ̃(t) , (4.33)

which now does not contain the laser phase noise. This method will work as long as one remains
far from the poles of Eq. 4.30, that is at frequencies well away from fn = n/2li, where n is an
integer. So, the gravitational wave detector will be relatively insensitive near these frequencies.
Of course, this procedure breaks down near f = 0 but the laser phase noise contribution in
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Eq. 4.29 goes to zero [40] as f decreases and the detector sensitivity remains unimpaired.

The procedure described above has however an inevitable sources of errors: the error in the
knowledge of the actual time-of-flight of the signals in the two arms. In the following section,
we discuss the limitations that this error places on the tolerances for the system.

4.4.3 Theoretical performance of the algorithm

Still following the method of [30], let us now look to the theoretical performance of the algorithm.
The measurement of the position of the central and end masses of interferometer is not perfect
and hence, errors arise on the actual light-time on each arm. Let δl1 and δl2 be such errors.
Moreover, we assume, for sake of simplicity, that the phase reference signal ζ(t) in Eq. 4.27 is
null, i.e. that p1 and p2 are identical.By using the method described in the previous section and
taking into account the errors δl1 and δl2, one can reconstruct the laser phase noise

p̃1(f) =
z1(f)

e4πif(l1+δl1) − 1
, (4.34)

with z1 given by Eq. 4.23 which is reminded here after

z1(f) = p1(f)[e4πifl1 − 1] + n1(f)[1 + e2πifl1 ] + a1(f)[e4πifl1 + 2e2πifl1 + 1]

+ν(1 + α∗l1)h(f)
[e4πifl1 − 1]

2if
. (4.35)

Note that here, ai(f) has the unit of radian instead of m/s2 in Eq. 4.23. The conversion can be
easily done by using Eq. 4.8 such as

4π2f2ϕ(f) =
2πν
c
a(f) . (4.36)

Therefore, the estimate of the laser phase noise is given by

p̃1(f) =
[
pi(f) + ν (1 + α∗l1)

h(f)
2if

]
[e4πifl1 − 1]

[e4πif(l1+δl1) − 1]

+a1(f)
[e4πifl1 + 2e2πfl1 + 1]

[e4πif(l1+δl1) − 1]
+
n1(f)[1 + e2πifl1 ]
[e4πif(l1+δl1) − 1]

. (4.37)

Then, the differenced Doppler signal, the Fourier transform of γ(t) from Eq. 4.28, has the
following form

γ(f) = p1(f)[e4πifl1 − e4πifl2 ] + a1(f)[e4πifl1 + 2e2πfl1 + 1]− a2(f)[e4πifl2 + 2e2πfl2 + 1]

+νh(f)
[e4πifl1 + e4πifl2 − 2]

2if
+ n1(f)(1 + e2πifl1)− n2(f)(1 + e2πifl2)

+να∗h(f)
[l1e4πifl1 + l2e

4πifl2 − l1 − l2]
2if

. (4.38)

The reconstructed contribution of laser phase noise to this phase difference can be written in
terms of p̃1(f)

γ̃(f) = z̃1(f)− z̃2(f) = p̃1(f)[e4πif(l1+δl1) − e4πif(l2+δl2)] .

If we substitute Eq. 4.37 into Eq. 4.39, the following expression for the estimated phase difference
is obtained
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γ̃(f) = [p1(f) + ν(1 + α∗l1)
h(f)
2if

]
[e4πifl1 − 1][e4πif(l1+δl1) − e4πif(l2+δl2)]

[e4πif(l1+δl1) − 1]

+a1(f)
[e4πifl1 + 2e2πifl1 − 1][e4πif(l1+δl1) − e4πif(l2+δl2)]

[e4πif(l1+δl1) − 1]

+n1(f)
[1 + e2πifl1 ][e4πif(l1+δl1) − e4πif(l2+δl2)]

[e4πif(l1+δl1) − 1]
. (4.39)

Finally, if we subtract from the actual phase difference, Eq. 4.39, this estimate, we get a signal,
∆(f), that has the following terms

∆(f) ≡ γ(f)− γ̃(f) = P (f) +A(f) +N(f) +H(f) +H∗(f) , (4.40)

where P (f), A(f), N(f), H(f) and H∗(f) are equal to

P (f) = 4πifp1(f)
[
δl2(e4πifl1 − 1)e4πifl2 − δl1(e4πifl2 − 1)e4πifl1

[e4πifl1 − 1]

]
(4.41)

A(f) = a1(f)[e4πifl1 + 2e2πifl1 + 1]
[e4πifl2 − 1 + 4πifδl2e4πifl2 ]
[e4πifl1 − 1 + 4πifδl1e4πifl1 ]

−a2(f)[e4πifl2 + 2e2πifl2 + 1] (4.42)

N(f) = n1(f)[1 + e2πifl1 ]
[e4πifl2 − 1 + 4πifδl2e4πifl2 ]
[e4πifl1 − 1 + 4πifδl1e4πifl1 ]

− n2(f)[1 + e2πifl2 ] (4.43)

H(f) = 2πνh(f)
[
δl2(e4πifl1 − 1)e4πifl2 − δl1(e4πifl2 − 1)e4πifl1

e4πifl1 − 1
+
e4πifl2 − 1

2πif

]
(4.44)

H∗(f) = 2πνα∗h(f)
[l2e4πifl1(e4πifl2 − 1)δl1 + l1e

4πifl2(e4πifl1 − 1)δl2]
[e4πifl1 − 1 + 4πifδl1e4πifl1 ]

+να∗
h(f)
2if

(l1 + l2)(e4πifl1 − 1)(e4πifl2 − 1)
[e4πifl1 − 1 + 4πifδl1e4πifl1 ]

. (4.45)

Note that, for the case of an exact knowledge of the arm lengths (δl1 = δl2 = 0), the laser
phase noise is totally cancelled. However, in practice, this is not the case due to the limited
accuracy of ground tracking methods and the change of the arm lengths coming from the orbital
motion. Then, we need to restrict the maximum value of the accuracies δl1 and δl2 in order to
cancel sufficiently the laser phase noise, to a level below the gravitational waves signals. This
will lead to the maximum time required before updating the round-trip light times during the
implementation of the unequal-arm algorithm. It can be done by computing Eq. 4.40 which is
the final result of this frequency domain algorithm. In addition, we can find useful results in the
long-wavelength limit (fl1, f l2 << 1, i.e. f ≤ 10−2), although LISA will not operate exclusively
in it. In this domain, the equation for ∆(f) becomes

∆(f) ≈ 4πifp1(f)
[
l1δl2 − l2δl1

l1

]
+ 4

l2
l1
a1(f)

[
1− δl1

l1
+
δl2
l2

]
− 4a2(f)

+2n1(f)

[
l2 + δl2 − l2δl1

l1

l1

]
− 2n2(f) + 2πνh(f)l2

[
2 +

δl2
l2
− δl1

l1

]
+2πνh(f)α∗l1l2

[
1 +

l2
l1

+
δl2
l2
− δl1

l1

]
. (4.46)
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Gravitational wave component

In order to distinguish the gravitational waves signature in ∆(f), the gravitational wave term
must dominate the others. This leads to a requirement on the accuracy with which the arm
length must be determined in order for the data analysis algorithm correctly applied through∣∣∣∣p1(f)

f

v

[
δl2 − δl1

l2
+
l1 − l2
l1l2

δl1

]∣∣∣∣ ≤ |h(f)| . (4.47)

As an example, to be able to distinguish the gravitational wave of amplitude 10−20
√

Hz from a
galactic binary at the Fourier frequency of 10−2 Hz, the difference in arm length must be known
to better than approximately 27 km and the individual arm length to about 275 km. Of course,
the requirement on the length of one arm depends on the difference between l1 and l2. The
more l2 is different from l1 the more precisely we must known the arm length (i.e. δli smaller,
see the second term on the left side of Eq. 4.47). The corresponding requirement in time will
depend on when, during the mission, this change takes place. However, a minimum value of the
integration time can be given by considering the highest arm length rate of change (about 13
m/s according to Appendix A). This leads to an integration time to about 20000 s.

To illustrate this result, we have computed Eq. 4.40, which does not suffer from the long-
wavelength assumption, with an integration time of 10000 seconds. In the worst case, this
corresponds to a maximum uncertainty of about 130 km on the arm length. Indeed, if vr is
the relative velocity between 2 spacecraft (up to 13 m/s according Appendix A), during the
integration time, the arm length change is δl1 = vr

c × t.

Figure 4.6: Amplitude power spectrum after the laser phase noise cancellation algorithm for an
integration time of 10000s.

We can see that the noise cancellation process has effectively cancelled the laser noise below the
gravitational waves component. Indeed, the gravitational waves from the MBH/MBH binaries
can be clearly distinguished and the one of the galactic binary is just above the laser noise. On
a other hand, the shot and acceleration noise are almost not affected by this algorithm and it
would be useless to cancel the laser phase noise below these secondary noises. Therefore, even
if we sufficiently cancel the laser noise, the contribution of the Pioneer anomaly would still be
well below the other noises and can not be distinguishable.
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Note that in order to derive the accuracies above, the light-time for the two arms have been
taken to l1=16.70 seconds and l2 = 1.1 × l1 seconds. These arm lengths can be determined by
combining ground tracking of the spacecraft with the observed arm length changes from the
laser measurements or, alternatively, by computing the autocorrelation function3 of each phase
difference zi(t), i = 1, 2. Indeed, the autocorrelation of the laser phase noise has three maxima,
at times zero and ±2li, and the other noise sources have autocorrelation time smaller than 2li.
Therefore, the arm length can be determined by searching the position of the 2li peak.

Pioneer anomaly contribution

To confirm the above result, we can apply the same procedure on the Pioneer component of
Eq. 4.46. This leads to a requirement on the arm lengths, which allows the laser phase noise to
be sufficiently cancelled ∣∣∣∣ 2p1(f)f

ν(l1 + l2)

[
δl2 − δl1

l2
+
l1 − l2
l1l2

δl1

]∣∣∣∣ ≤ |α∗h(f)| . (4.48)

If we consider the effect on a strong gravitational wave, like the coalescence of MBH-MBH
binary(typically of amplitude 10−16

√
Hz−1 at the Fourier frequency of 10−3.5 Hz), this relation

leads to a requirement of about 1.3 × 10−8 m in the knowing of the difference in arm length!
This precision can not be achieved in space. The result of the method is shown in Fig. 4.7. To
plot this figure, we assume that the uncertainty on the arm length can be kept sufficiently low
during the integration time necessary to reach 10−4 Hz. This assumption is obviously wrong for
LISA but is useful to illustrate the performance of the cancellation method.

Figure 4.7: Amplitude power spectrum after the laser phase noise cancellation algorithm for an
uncertainty on the arm length of 10−8 m.

We remark that, even if the laser noise could be sufficiently cancelled, the secondary noises
remains well higher and the contribution of the anomaly would not be distinguishable.

3The autocorrelation function of a signal z(t) is defined as

Γzz(τ, T ) ≡ lim
T→∞

1

2T

∫ T

−T

z(t + τ)z(t)dt
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To conclude, with the assumption that we have the true spectrum of the arm lengths (see
Eq. 4.23), there is no impact of the Pioneer anomaly on the gravitational wave detection in this
Fourier frequency band. However, we have demonstrated that a certain minimal integration
time is necessary to perform the laser phase noise cancellation sufficiently accurately. Therefore,
the spectral leakage of the terms neglected in Eq. 4.23 needs to be specifically addressed.

4.4.4 Spectral leakage

The finite integration time required to sufficiently cancels the laser noise leads to the leakage of
the power to other frequencies. In particular, the low-frequency terms neglected in the two-way
signal zi(t), reminded here after, have now to be addressed.

zi(t) = pi(t− 2li)− pi(t)− 4πνli(t) + 4πα∗
∫
li(t)dt+ nk(t) + ni(t− li)

+2
πν

c

∫ ∫
[û.~ai(t)− û.~ai(t− 2li)]dt2 ± πν

∫
[h(t)− h(t− 2li)]dt

∓πα∗
∫ ∫

[h(t)− h(t− 2li)]dt2 . (4.49)

In the previous algorithm, the power spectral density of terms in li(t) has been dropped because
their amplitudes are negligible in the sensitivity band of LISA for an infinite integration time
(see Appendix A). Now, to be in accordance with our results, we have to limit the integration
time to a fixed value T (typically 10000 s). For such a time scale, the arm length rate of change
is nearly constant (see Appendix B) and depends on the position of the spacecraft along its
orbit. We call the relative velocity v which can be up to 13 m/s. The approximation of the
Fourier transform of li(t) is then given by

˜F.T .[li(t)] =
1
c

∫ T

0
(vit+ 5× 109)e2πiftdt

= vie
iπTf πTf cos(πTf)− sin(πTf)

2π2icf2
+
[
vi
T

2
+ 5.109

]
eiπTf sin(πTf)

πcf
.

(4.50)

The details of the calculations are reported in Appendix B. With the given parameter values,
one can see that the constant term (due to the nominal arm length, i.e. 5× 109 m) is dominant.
Here, we draw attention to the fact that intuition could lead to wrong interpretation. Indeed,
one could think that the constant term of the arm lengths, being nearly the same for the two
arms, would be removed by the algorithm. This is true when the signals from the two arms are
subtracted but then, the signal from one arm is used to cancel the laser noise which reintroduces
the constant term.

The amplitude power spectrum estimation can be computed by the periodogram method [47],
i. e. by dividing the absolute value of the Fourier transform by the square root of the observing
time. The complete Fourier transform of the two-way Doppler signal is now given by

z1(f) = p1(f)
[
e4πifl1 − 1

]
+ n1(f)

[
1 + e2πifl1

]
+ a1(f)

[
e4πifl1 + 2e2πifl1 + 1

]
+4πνli(f)− 2α∗

if
li(f) . (4.51)
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In this equation, we have removed the contribution of gravitational waves, which has been studied
in the previous section. As shown in Fig. 4.8, the nominal term in li(t) is much higher than the
phase noise but it can, in principle, be removed by preprocessing methods. We investigate this
point at the end of this subsection. The different amplitude power spectra involved in Eq. 4.51
are shown in Fig. 4.8.

Figure 4.8: Amplitude power spectra contributing to the two-way Doppler signal. The signal of
the Pioneer anomaly (in blue) is higher than the secondary noise sources (in black) but below
the laser noise(in red).

A first important observation is that the signal from the Pioneer anomaly (in blue) is still
well below the laser phase noise. This is important because the frequency domain cancellation
algorithm required that the laser noise is dominant in the Fourier frequency band of interest.
The method could thus be still implemented.

Frequency domain algorithm

By applying the algorithm to the new expression of zi(t), it is easy to find the corrected ∆(f)
signal

∆∗(f) = P (f) +A(f) +N(f) + L(f) , (4.52)

where P (f), A(f) and N(f) are given in Section 4.4.2 and L(f) is written as:

L(f) =
2α∗

if

[
l′1(f)

1− e4πif(l2+δl2)

e4πif(l1+δl1) − 1
+ l′2(f)

]
. (4.53)

In the long-wavelength approximation, L(f) becomes

L(f) =
2α∗

if

[
−l′1(f)

l2
l1

(1 +
δl2
l2
− δl1

l1
) + l′2(f)

]
(4.54)

These results are illustrated in Fig. 4.9 below. The integration time and the uncertainty on the
arm length are respectively taken at the value 10000 s and 5000 m.
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Figure 4.9: Spectra involved in ∆∗(f) for an integration time of 10000s. The signal of the
Pioneer anomaly (in blue) remains higher than the secondary noise sources (in black) and most
gravitational wave signals.

From this figure, it is clear that the cancellation algorithm might reveal the anomaly if an appro-
priate preprocessing treatment on the orbital motion term is performed. This point is discussed
in the next subsection. On the other hand, even the strongest gravitational waves (the green
points in the figure above come from MBH/MBH coalescences) would not be distinguishable.

Finally, note that the spectral leakage can be minimized by pre-multiplying the time-domain data
sets by a window function before taking Fourier transform [34, 49]. With this preprocessing, the
detection of gravitational waves remains unimpaired.

Pre-processing to remove the nominal orbit motion from the data

The crucial question of the previous method is how accurately we need to determine the arm
length of LISA to sufficiently remove the nominal orbital motion term. According to Fig. 4.8,
a cancellation of about 1015 orders of magnitude has to be performed. If we suppose that the
arm length is known to a factor of k · li, the Fourier transform of the one-way Doppler signal
becomes

z1(f) = p1(f)[e4πifl1 − 1] + n1(f)[1 + e2πifl1 ] + a1(f)[e4πifl1 + 2e2πifl1 + 1]

+4(1 + k)πνli(f)− (1 + k)
2α∗

if
li(f) . (4.55)

Therefore, after the removal of this nominal orbital motion term, it remains 4kπνli(f) which
should be sufficiently low to detect the anomaly. At 10−4 Hz, this corresponds to a knowledge
of the arm length of about 10−15 × 5.109 m= 5× 10−6 m which can not be achieved.

This discussion close the study within the sensitivity band. As it was already suspected when
we derived Eq. 3.60, it is now evident that the Pioneer anomaly will not be detectable in
the sensitivity band of LISA. The impact of the anomaly would nevertheless be bigger at the
frequencies of the orbital motion.
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4.4.5 Outside the frequency band

For long integration time, the arm length rate of change is not constant anymore. For the two
first years of the mission, the arm lengths will change like shown on the left part of Fig. 4.10
below. For our purpose, we need the power spectrum of this orbital motion. This has been
computed by taking the Fast Fourier Transform of each arm lengths. More details are given
in Appendix A. The dominant frequencies of the arm length change due to orbital motion are
shown in the right part of Fig. 4.10 below.4

Figure 4.10: On the left, the 3 arm lengths of LISA during the first 2 years of the mission. On
the right, amplitude power spectrum of arm length 1.

The dominant frequencies correspond to 6, 3 and 2 months and are shown with their amplitudes.
Taking this spectrum into account, one can plot the two-way Doppler signal, Eq. 4.55, outside
the sensitivity band of LISA (see Fig. 4.11).

Figure 4.11: Two-way Doppler signal outside the sensitivity band of LISA.
4This spectrum was computed with an integration time of 106 years in order to minimize the spectral leakage.

It was also computed without the continuous component of the arm length which is irrelevant in this case.
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The term due to the Pioneer anomaly (in blue) is still below the laser phase noise and would be
difficult to distinguish from the secondary noise (in black). Moreover, for the integration time
required to reach these frequencies, the arm lengths change by much more than the accuracy
needed to cancel sufficiently the laser noise. Indeed, from Eq. 4.46 and using Eq. 4.54, the
maximum value of the uncertainty on the arm length would be about 2000m while change on
this timescale will be of about 100000 km.

In conclusion, outside the sensitivity band of LISA, the laser noise can not be sufficiently can-
celled and the Pioneer anomaly will not be detectable.

4.4.6 Conclusions of the frequency domain study

In the previous chapter, we have seen that, on the LISA’s arms, the anomalous blueshift will
have an amplitude several orders of magnitude higher than the weakest gravitational waves de-
tectable. However, this “large” impact of the anomaly comes from the constant part of the arm
lengths. Hence it is located at a null Fourier frequency while relevant gravitational waves for
LISA are expected at Fourier frequencies between 10−4 and 1 Hz. In the sensitivity band of
LISA, the effect of the anomaly is well below all the instrumental noises and should not have
an impact. With the frequency domain method, we checked that it is still the case after the
cancellation of the laser phase noise. Then, we explained that, because of the orbital motion,
a limited integration time is required to sufficiently cancel the laser phase noise. With a finite
observation time, power of the constant contribution of the anomaly can leak in the sensitivity
band. We showed that, after the cancellation method, this contribution overwhelms the gravita-
tional wave signature and therefore, could be detectable. However, this would require a precision
in the knowledge of the arm lengths which can not be achieved.

Outside the sensitivity band, we showed that the contribution of the anomaly is just above the
secondary noise sources but still below the laser phase noise. Hence there was a chance to detect
the anomaly by removing the laser phase noise. However, at these timescales, the arm lengths
change by much more that it is allowed to remove efficiently the laser phase noise. Therefore,
we can conclude that the Pioneer anomaly has no impact on the gravitational wave detection
and cannot be detectable with the frequency domain method.
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4.5 Time delay interferometry

Time delay interferometry (TDI) is a noise cancellation technique performed in the time domain
[34, 35, 36]. The basic principle of TDI consists in combining appropriate of one-way Doppler
signals in order to remove the laser phase noise. As it will be shown below, these combinations
have the interesting property to remove the Doppler shifts due to the no inertial motions of the
optical-benches. The major question to be studied is how the Pioneer anomaly affects the TDI
combinations. As the frequency domain study showed that the effect of the anomaly is negligible
within the sensitivity band, we have focused our attention on the anomalous blueshift occurring
at lower frequencies.

4.5.1 Notation

Fig. 4.12 below shows the overall geometry of the interferometer in the plane of the three
spacecraft. These are equidistant from point O (distance L). Relative to O, the spacecraft are
located by the coplanar unit vectors p̂1, p̂2 and p̂3. As indicated in the figure, the lengths
between pairs of spacecraft are L1, L2 and L3, with Li being opposite of the ith spacecraft.
Unit vectors along the lines connecting spacecraft pairs are n̂1,n̂2 and n̂3, oriented such as
L1n̂1+L2n̂2+L3n̂3 = 0. This terminology allows cyclic permutation of the indices in subsequent
equations resulting in compact notation and facilitating coding of sensitivity calculations.

Figure 4.12: Schematic LISA configuration. At each vertex spacecraft, there are two optical
benches (denoted 1,1∗,etc.).

In this method, it is convenient to formulate the instrumental responses in terms of observed
relative frequency shifts rather than in terms of phase shifts5, usually used in interferometry
and in the frequency domain method. The Doppler data to be analyzed are now called yij =
∆ν
νo

, where ∆ν is the frequency deviation from the center frequency νo. The subscripts label
the transmitting and receiving spacecraft. The convention is that y31 is the beam received
at spacecraft 1 and transmitted from spacecraft 2, y21 is the beam received at spacecraft 1
and transmitted from spacecraft 3, etc. Internal metrology signals to correct for optical bench
motions are denoted by zij , with the same labelling convention described for yij . Delay of
laser data streams, either by time-of-flight or in post-processing, is indicated by commas in the
subscripts: y31,23 = y31(t− l2 − l3) = y31,32, etc (li is the light-time on the i arm).

5These data are easily interconvertible by using Eq. 4.11.
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4.5.2 Signal and noise response functions

The gravitational wave signal and the various noises, which enter the Doppler data, are given in
section 4.4.1 in terms of phase shifts. In this subsection, we quickly remind them, updating the
notations and giving the expressions in terms of relative frequency shifts. At the same time, we
also give a more general expression of the gravitational wave contribution.

Gravitational wave signal transfer function

According to [37, 38], the contribution to the one-way Doppler relative shift y31 and y12 of a
transverse and traceless plane gravitational wave having unit wave-vector k̂ is given by

ygw
31 (t) =

[
1 +

l

l3
(µ1 − µ2)

]
(Ψ3(t− µ2l − l3)−Ψ3(t− µ1l)) , (4.56)

ygw
21 (t) =

[
1 +

l

l2
(µ3 − µ1)

]
(Ψ2(t− µ3l − l2)−Ψ2(t− µ1l)) , (4.57)

where µi=k̂ · p̂i, and Ψi is

Ψi(t) =
1
2
n̂i · h(t) · n̂i

1− (k̂ · n̂i)2
, (4.58)

and where h(t) is the first order spatial metric perturbation at point O. In transverse traceless
gauge, the gravitational wave strain h(t) can be decomposed as [h+(t)e+ + hx(t)ex], where
the 3-tensors e+ and ex are transverse to k̂ and traceless. With respect to an orthonormal
propagation frame (̂i,ĵ,k̂), their components are

e+ =

 1 0 0
0 −1 0
0 0 0

 , ex =

 0 1 0
1 0 0
0 0 0

 . (4.59)

In the derivation of Section 3.2, only the “+” polarization was considered.

Noise transfer function

As shown previously, the laser noise of the receiving spacecraft enters the Doppler data imme-
diately at the time of reception, while the laser noise of the transmitting spacecraft enters one
one-way delay earlier. Thus, we have

ylaser
ij = pk(t− li)− p∗j (t) , (4.60)

where the laser phase noise is denoted by p and is now in unit of frequency strain.

Shot noise, ns
ij , enters each Doppler time series in the reception process at spacecraft j. It is

white phase noise so its effect on the derivative of phase, the Doppler time series, has a power
spectral density proportional to f2, where f is the Fourier frequency. Its effect is immediate at
the time of reception, so that the responses of the Doppler observables are

ys
ij = ns

ij(t) (4.61)

Let us look now closer to the light path of the signals inside the spacecraft to define an accelera-
tion noise transfer function more suitable for LISA. The schematic geometry of the proof-mass-
plus-optical bench assemblies for LISA spacecraft number 1 are shown in Fig. 4.13 below. The
left-hand optical bench is taken to be bench number 1, while the right-hand bench is 1∗. The
photodetectors that generate the data y21, y31, z21, and z31 at spacecraft 1 are shown.
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Figure 4.13: Schematic diagram of a LISA spacecraft [35]. The indices correspond to the
spacecraft 1.

The random velocity vectors of the proof masses are respectively denoted ~vi and ~v∗i , and the
random velocities of their optical benches are correspondingly denoted ~Vi and ~V ∗

i . An outgoing
light beam transmitted to a distant spacecraft is routed from the laser on the local optical bench
using mirrors and beam splitters; this beam does not interact with the local proof mass. Con-
versely, an incoming light beam from a distant spacecraft is bounced off the local proof mass
before being redirected onto the photo-detector where it is mixed with light from the laser on
that same optical bench.

With this configuration and using Eq. 4.8, the acceleration noise contributions to the relative
frequency shifts are

yacc
21 = −n̂2.~V3,2 + 2n̂2 · ~v∗1 − n̂2 · ~V ∗

1 (4.62)

yacc
31 = n̂3 · ~V ∗

2,3 − 2n̂3 · ~v1 + n̂3 · ~V1 , (4.63)

where the 2 multiplying ~vi occurs because the signals are bouncing off the local proof mass.

Pioneer anomaly contribution

According to Section 3.1.1, the relative frequency shift due to the Pioneer anomaly is given by

y∗ij = −a
∗

c
li(t) = α∗li(t) , (4.64)

where α∗ ≡ a∗

c . From the frequency domain method, it is clear that the contribution of the
anomaly at the gravitational wave frequencies is undetectable and we focus the TDI study on
the first order term.

Collecting all the contributions, the six time series (2 for each arm) of the total relative frequency
shift are given by

yij = ygw
ij + ylaser

ij + ys
ij + yacc

ij + y∗ij . (4.65)

It will be shown in Section 4.5.3 that appropriate combinations of these one-way Doppler signals
allow the laser noise cancellation.
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Intra spacecraft metrology

To link the phases of adjacent benches, the present LISA design baseline foresees optical fibers
transmitting signals between them. Because of the very small distance between the optical
benches on the same spacecraft, the time-delay effects for zij are ignored and we denote by
ηi(t) the frequency shifts upon transmission through the fibers. The light path is also shown in
Fig. 4.13. Light to be transmitted from the laser on an optical bench is first bounced off the proof
mass it encloses and then directed to the other optical bench. Upon reception it does not interact
with the proof mass there, but is directly mixed with local laser light. This configuration allows
the twelve Doppler data streams to be combined so as to eliminate all laser phase and optical
bench noises and preserving the gravitational waves signature. Therefore, the relative frequency
shift of the signals travelling inside spacecraft 1 are

z21 = p1 + 2n̂3 · (~v1 − ~V1) + η1 − p∗1 (4.66)
z31 = p∗1 − 2n̂2 · (~v∗1 − ~V ∗

1 ) + η1 − p1 . (4.67)

As explained in the frequency domain method, the light time between the optical benches on
the same spacecraft is very short and an eventual blueshifting would be negligible.

TDI consists in forming appropriate combinations of the data series yij and zij in order to
cancel the laser noise and reveal gravitational wave signatures. Note that in order to derive this
technique, the arm lengths are assumed to be constant and known exactly. This assumptions
leads to constraints on the maximum integration time which allows a sufficient cancellation of the
laser phase noise. This maximum integration time is determined exactly like for the frequency
domain method (appropriate calculations are made in [34]).

4.5.3 Linear data combinations

There are ten linear combinations which cancel the laser noises from all the spacecraft. These
combinations are illustrated in Fig. 4.14 below and detailed just after that.

Figure 4.14: Schematic geometries of the data combinations [34].

These combinations are not independent, since they belong to a three-dimensional function
space, but they have different spectral regions of sensitivity, and also can yield useful observables
when different laser links are unavailable.
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Unequal-arm length interferometric combinations

The nominal LISA configuration is the unequal-arm Michelson interferometer. There are three
independent possible combinations (X,Y and Z). As can be verified by direct substitution of the
laser noise contribution (Eqs. 4.60 and 4.66), they do not contain any laser noise are

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1
2
(−z21,2233 + z21,33 + z21,22 − z21)

+
1
2
(+z31,2233 − z31,33 − z31,22 + z31) . (4.68)

Y and Z combinations are given by cyclic permutation of the indices. It is noteworthy that the
optical bench motions (the Vi and V ∗

i ) are also cancelled.

In these combinations, each one-way signal occurs twice, at two different times; one term is
added and the other subtracted. As a consequence, the Pioneer anomaly component disappears.
Even the spectral leakage of the data has no impact because the terms which contain the anomaly
are all cancelled. However, the results of the TDI will be useful for the following and we briefly
show them. Explicitly, for X, the gravitational wave response is

Xgw = [1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − 2l3 − 2l2)−Ψ3(t− µ2l − l3 − 2l2))

−[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − 2l2 − 2l3)−Ψ2(t− µ3l − l2 − 2l3))

+[1 +
l

l3
(µ1 − µ2)](Ψ3(t− µ2l − l3 − 2l2)−Ψ3(t− µ1l − 2l2))

−[1− l

l2
(µ3 − µ1)](Ψ2(t− µ3l − l2 − 2l3)−Ψ2(t− µ1l − 2l3))

+[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − 2l2)−Ψ2(t− µ3l − l2))

−[1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − 2l3)−Ψ3(t− µ2l − l3))

+[1− l

l2
(µ3 − µ1)](Ψ2(t− µ3l − l2)−Ψ2(t− µ1l))

−[1 +
l

l3
(µ1 − µ2)](Ψ3(t− µ2l − l3)−Ψ3(t− µ1l)) , (4.69)

where Ψi, l, µi are given in terms of the wave properties and detector geometry (see Section 4.5.1
above). If the gravitational wave signal is a δ-function, it produces eight pulses in X, located
at time, that depends on the arrival direction of the wave and the detector configuration: µ1l,
µ2l + l3, µ3l + l2, µ1l + 2l3, µ1l + 2l2, µ3l + l2 + 2l3, µ2l + 2l2 + l3 and µ1l + 2l2 + 2l3.

The noises due to residual accelerations on the proof-mass remain and are dominant at low
Fourier frequency. The transfer function in the X combination is

Xproof mass = n̂2 · (−~v∗1,2233 + ~v∗1,22 − ~v∗1,33 + ~v∗1 + 2~v3,233 − 2~v3,2)
+n̂3 · (−~v1,2233 + ~v1,33 − ~v1,22 + ~v1 + 2~v∗2,223 − 2~v∗2,3) . (4.70)
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The transfer function of shot noise is similar to Eq. 4.68 since shot noise enters the data series
as ys

ij = ns
ij(t)

Xshot noise = n32,322 − n23,233 + n31,22 − n21,33 + n23,2 − n32,3 + n21 − n31 . (4.71)

This equation also reflects that the shot noise in the zij are negligible since these Doppler mea-
surements are performed at high signal-to-noise ratios.

Taking the Fourier transform of the shot and acceleration noise terms, it is easy to derive the
following expression for the one-sided power spectral density

SX = [8 sin2(4πfL) + 32 sin2(2πfL)]Sproof mass
y + 16 sin2(2πfL)Soptical path

y (4.72)

This equation is calculated by assuming independent individual proof-mass acceleration noises
(with equal raw spectra), and independent shot noises. It is also assumed that the configu-
ration of the interferometer is an equilateral triangle (L1=L2=L3≡L). The results of these
combinations are shown in Section 4.5.4.

The Sagnac combinations: α,β and γ

The α, β and γ are three different independent linear combinations of the Doppler data, which
do not contain laser and optical bench noises. These are interesting for their simplicity and the
six-pulse response to gravitational wave signals. The combination α is explicitly written (β and
γ are given by cyclical permutation of the indices) as

α = y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

−1
2
(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12)

+
1
2
(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12) . (4.73)

In this combination, the one-way signals are not used twice as for X,Y and Z combinations but
occur in pairs. This means that for each one-way signal on a given arm, there is its counterpart
travelling on the same arm and in the other direction. The result of this is again the cancella-
tion of the Pioneer anomaly component. Note that it would not be the case if the anomalous
frequency shift of light depends on the sense of travelling with respect to the Sun.

The gravitational wave response of α is:

αgw = [1− l

l2
(µ3 − µ1)](Ψ2(t− µ3l − l2)−Ψ2(t− µ1l))

−[1 +
l

l3
(µ1 − µ2)](Ψ3(t− µ2l − l3)−Ψ3(t− µ1l))

+[1− l

l1
(µ2 − µ3)](Ψ1(t− µ2l − l1 − l2)−Ψ1(t− µ3l − l2))

−[1 +
l

l1
(µ2 − µ3)](Ψ1(t− µ3l − l1 − l3)−Ψ1(t− µ2l − l3))

+[1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − l1 − l2 − l3)−Ψ3(t− µ2l − l1 − l2))

−[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − l3 − l1 − l2)−Ψ2(t− µ3l − l3 − l1)) (4.74)
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Note that here, a δ-function gravitational wave, would produce six pulses in α, depending also
on the arrival direction of the wave and the detector configuration. Non inertial motions of the
proof-masses do not cancel; this contribution to α is

αproof mass = n̂1 · (~v2,3 − ~v2,12 + ~v∗3,2 − ~v∗3,13)
+n̂2 · (~v3,13 − ~v3,2 + ~v∗1 − ~v∗1,123)
+n̂3 · (~v1 − ~v1,123 + ~v∗2,12 − ~v∗2,3) , (4.75)

while the shot noise in α is similar to Eq. 4.73.

With the same assumptions than for the X,Y and Z combinations, we have the following expres-
sion of the one-sided power spectral density

Sα = [8 sin2(3πfL) + 16 sin2(πfL)]Sproof mass
y + 6Soptical path

y . (4.76)

Fully symmetric (Sagnac) combination

Another combination of all six one-way signals which exactly cancels laser and optical bench
noises is the Sagnac combination:

ζ = y32 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2

+
1
2
(−z13,21 + z23,12 − z21,23 + z31,23 − z32,13 + z12,13)

+
1
2
(−z32,2 + z12,2 − z13,3 + z23,3 − z21,1 + z31,1) (4.77)

This combination has the property that each of the yij enters exactly once and is delayed by one
of the one-way light times. However, as we can see by introducing Eq. 4.64, the contribution of
the anomalous blueshift is also exactly cancelled. Like α, β and γ, this combination also has a
six-pulse response to gravitational radiation:

ζgw = [1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − l3 − l2)−Ψ3(t− µ2l − l2))

−[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − l2 − l3)−Ψ2(t− µ3l − l3))

+[1− l

l1
(µ2 − µ3)](Ψ1(t− µ2l − l1 − l3)−Ψ1(t− µ3l − l3))

−[1 +
l

l3
(µ1 − µ2)](Ψ3(t− µ2l − l3 − l1)−Ψ3(t− µ1l − l3))

+[1− l

l2
(µ3 − µ1)](Ψ2(t− µ3l − l2 − l1)−Ψ2(t− µ1l − l1))

−[1 +
l

l1
(µ2 − µ3)](Ψ1(t− µ3l − l1 − l2)−Ψ1(t− µ2l − l2)) . (4.78)

A δ-function signal would produce six pulses in ζ, located at: µ1l+l3+l2, µ2l+l1+l3, µ3l+l1+l2,
µ3l + l3, µ2l + l2 and µ1l + l1.
The proof mass noise for ζ is

ζproof mass = n̂1 · (~v2,2 − ~v2,13 + ~v∗3,3 − ~v∗3,21)
+n̂2 · (~v3,3 − ~v3,21 + ~v∗1,1 − ~v∗1,23)
+n̂3 · (~v1,1 − ~v1,23 + ~v∗2,2 − ~v∗2,13) (4.79)
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while the contribution of optical path noise is similar to Eq. 4.77 since shot noise enters the data
series as ys

ij = ns
ij(t). Finally, the power spectra of the acceleration and shot noise component

of ζ, assuming equal and independent individual proof mass acceleration noises, equal and
independent optical path noises, and the equilateral triangle configuration are

Sζ = 24 sin2(πfL)Sproof mass
y + 6Soptical path

y . (4.80)

The (P,Q,R), (E,F,G) and (U,V,W) combinations

There are other interesting combinations which allow the laser and optical bench noises to be
removed and thus, the detection of gravitational waves. These combinations

P = y32,2 − y23,3 − y12,2 + y13,3 + y12,13 − y13,12 + y23,311 − y32,211

+
1
2
(−z21,23 + z21,1123 + z31,23 − z31,1123)

+
1
2
(−z32,2 + z32,112 + z12,2 − z12,112)

+
1
2
(−z13,3 + z13,113 + z23,3 − z23,113) , (4.81)

with Q and R given by index permutation. The (E,F,G) and (U,V,W) combinations can be
obtained the same way by using Fig. 4.14. All these can be useful in the case of selected subsys-
tem failures. However, each one-way signal occurs twice and the Pioneer anomaly component
disappears. The contribution of gravitational waves to P is given by

P gw = [1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − l2 − l3)−Ψ3(t− µ2l − l2))

−[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − l2 − l3)−Ψ2(t− µ3l − l3))

−[1 +
l

l1
(µ2 − µ3)](Ψ1(t− µ3l − l1 − l2)−Ψ1(t− µ2l − l2))

+[1− l

l1
(µ2 − µ3)](Ψ1(t− µ2l − l1 − l3)−Ψ1(t− µ3l − l3))

+[1 +
l

l1
(µ2 − µ3)](Ψ1(t− µ3l − 2l1 − l3)−Ψ1(t− µ2l − l1 − l3))

−[1− l

l1
(µ2 − µ3)](Ψ1(t− µ2l − 2l1 − l2)−Ψ1(t− µ3l − l1 − l2))

+[1 +
l

l2
(µ3 − µ1)](Ψ2(t− µ1l − 2l1 − l2 − l3)−Ψ2(t− µ3l − 2l1 − l3))

−[1− l

l3
(µ1 − µ2)](Ψ3(t− µ1l − 2l1 − l2 − l3)−Ψ3(t− µ2l − 2l1 − l2)) . (4.82)

The proof mass noise contribution is

P proof mass = n̂1 · (~v2,2 − 2~v2,13 + ~v2,112 + ~v∗3,3 − 2~v∗3,12 + ~v∗3,123)
+n̂2 · (−~v∗1,23 + ~v∗1,1123 + ~v3,3 − ~v3,311)
+n̂3 · (−~v1,23 + ~v1,1123 + ~v∗2,2 − ~v∗2,112) . (4.83)

and the one-sided power spectral density of the noises is then given by

SP = [8 sin2(2πfL) + 32 sin2(πfL)]Sproof mass
y

+[8 sin2(2πfL) + 8 sin2(πfL)]Soptical path
y . (4.84)
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4.5.4 Gravitational wave sensitivity

The gravitational wave sensitivity is defined as the wave amplitude required to achieve a given
signal-to-noise ratio. With the transfer functions calculated for each combination and the raw
spectra given in Section 4.3, the level of noise in each combination is plotted in Fig. 4.15 below.

Figure 4.15: One-sided amplitude noise spectra for α, X, zeta and P for L1 = L2 = L3 = 10
√

3
seconds.

This figure shows the amplitude power spectra of the noise in combinations X, ζ, α and P as a
function of the Fourier frequency. Then, using the appropriate gravitational wave response from
the previous section, the average sensitivity can be calculated in order to have a signal-to-noise
ratio of 5 for 1 year observation (see Fig. 4.16 below).

Figure 4.16: Sensitivity to gravitational waves for the unequal-arm combination X [8]. Several
sources are also shown.

The sensitivity curve for the X combination is shown in with several expected sources. Specific
sensitivity curves for the other combinations can be found in [35]. These are very similar to the X
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combination with some minor differences such as the Fourier frequency of the optimal sensitivity.
Note that the optimal sensitivity is slightly better than with the frequency domain algorithm.
The heavy black curve shows the LISA sensitivity (or detection threshold), corresponding to a
signal-to-noise ratio of 5 after a 1-year observation. At frequencies below 3 mHz, binaries in the
Galaxy are so numerous that LISA will not resolve them, and they form a noise background
called binary confusion noise. The area labelled “resolvable binaries” shows where LISA should
resolve thousands of binaries that are closer to the Sun than most or that radiate at higher
frequencies. The signals expected from two known binaries are indicated by the green triangles.
Many other systems are known to be observable, but are not indicated here. Expected signals
from coalescences of massive black holes in galaxies at redshifts of order z = 1 are also shown
in the upper area. These signals may last less than 1 year and the region is drawn to indicate
the expected signal-to-noise ratio above the LISA instrumental noise. There are also two signals
indicated, for coalescences of binaries consisting of two 106M� and two 104M� black holes. In
this case, the signal-to-noise ration could reach an amplitude of several thousand. While such
events may occur only once per year, signals from small black holes falling into larger ones should
be very common. Their strength is indicated by giving one example, where a 10 M� black hole
falls into a 106 M� black hole at z = 1.

4.5.5 Conclusions of the TDI study

Several combinations of one-way Doppler signals, properly delayed, allow the cancellation of
the laser phase noise while preserving the gravitational wave signal. This is called Time Delay
Interferometry. The combinations have also the interesting property to cancel the optical bench
noise. Taking into account an anomalous blueshift in the frequency of the laser light, we reviewed
all the data combinations proposed in the LISA literature. The first order contribution due to
the armlength changes by the orbital motion cancels exactly. Therefore, a study of the spectral
leakage within the sensitivity band of the constant term will be useless. The second order
contribution in the sensitivity band due to armlength changes by the gravitational waves remains
but it has been clearly demonstrated in the frequency domain method that the effect is too small
to be detected. Therefore, we come to the conclusion that the time delay interferometry, as
presented in this section, would not reveal the anomaly. However, in orbit, the main assumption
of TDI, the immobility of LISA, is not satisfied and the first order contribution of the anomalous
blueshift might not be cancelled. This question is studied in the next section.
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4.6 Effect of orbital motion on Time Delay Interferometry

The performance of time delay interferometry,as presented in previous section, is evaluated in
the limit that LISA is fixed in space. However, each year, LISA will accomplish a complete
rotation around its center and the symmetries available for a fixed detector will be broken.
Because of this loss of symmetry, the contribution of the anomalous blueshift, occurring on each
arm, could not be cancelled exactly in TDI combinations. In addition, the laser phase noise does
not cancelled exactly either in these combinations and more complicated TDI combinations have
been developed to overcome this problem (see [44, 43, 42]). In addition to the rotation, there
is a complicated flexing of the arms in the detector. This is due to the orbital motion and the
perturbations by planets. In this section, we consider these two effects and assess their impact
on the contribution of the Pioneer anomaly in the TDI combinations.

4.6.1 The effects of rigid rotation

To take into account the effect of rigid rotation, let us first introduce a new notation for the arm
lengths. Where, in first generation TDI, L3 was the length of the arm between the first and the
second spacecraft, we denote now by L12 the length travelled by the signal sent from spacecraft
1 and received at spacecraft 2. As before, the capital letters denote the lengths while small
letters denote the light time. Similarly, the length travelled by the signal sent from spacecraft 2
and received at spacecraft 1 is called L21. Unlike first generation TDI, L12 will now differ from
L21. This is outlined in Fig. 4.17 below.

Figure 4.17: The rotation of the interferometer breaks the direction symmetry in the arm lengths
[42].

Consider spacecraft 1 and 2 in the figure above. Since the interferometer is rotating in the
clockwise direction, the spacecraft move during the signals are travelling along the arms. To be
specific, if we define the length of the arm between spacecraft 1 and 2 to be L12 in the limit of
no rotation, then the actual distance travelled by the signal from spacecraft 1 to spacecraft 2
will be L12 < L12. In the same manner, the signal from spacecraft 2 to spacecraft 1 will have to
reach spacecraft 1 in its motion and will therefore travel a distance L21 > L12. We see now that
the magnitude of an anomalous blueshift on one arm will depend on the direction in which the
signal has travelled. Then, if the signals which have travelled on the same arm but in opposite
direction are subtracted, it will remain a residual contribution of the anomalous blueshift. Let
us now look what happen to each TDI combination.

The unequal-arm length interferometric combinations X(t), Y (t) and Z(t), the contribution of
the anomaly cancels exactly anyway. Indeed, if we take the X(t) combination6 reminded here

6For simplicity and without lost of generality, we drop the intra-spacecraft metrology (zij data).
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after (the reasoning is the same for Y (t) and Z(t)),

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31 , (4.85)

we see that the one-way signals appear twice for a given direction, with opposite signs in the
combination but are delayed by different times. Hence, for a rigid rotation where the relation
Lij(t+ τ) = Lij is always satisfied, the contribution of the anomaly is cancelled. An analysis of
the (P,Q,R), (E,F,G) and (U,V,W) combinations leads to the same conclusion. For the Sagnac
combinations (α, β, γ and ζ), it is different. Let us consider the ζ combination

ζ = y32 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2 . (4.86)

In this combination, there are two signals from each arm, taken in opposite direction. Hence the
effect of the anomaly is not totally removed. To assess the residual contribution, we can write
the anomalous component in Eq. 4.86

ζ∗ = α∗(l12 − l13 + l23 − l21 + l31 − l32) , (4.87)

where α∗ = −a∗

c , as defined in the previous section. The term of this equation can be gathered in
two parts: l12+l23+l31, which is the total time around the interferometer in the counterclockwise
direction and l13+l21+l32, which is the total time in the clockwise direction. Even if the triangle
were perfectly rigid, the times of flight would not be the same because of the rotation. Let us
write the time of flight around the triangle in the limit of no motion as Ltot, and the times of
flight in the counterclockwise and clockwise directions as Ltot+∆l− and Ltot+∆l+, respectively,
when the triangle is rotating. Since the LISA constellation rotates in a clockwise direction (seen
from the ecliptic pole), ∆l− will always be negative and ∆l+ will always be positive. Then, ζ∗

can be re-written as

ζ∗ = α∗(∆l− −∆l+) . (4.88)

From [42], this difference is given by

∆l− −∆l+ = ∆lSagnac =
4AΩ
c2

=
2π
√

3L2

c2T
, (4.89)

where Ω is the angular velocity of the rotating light path, A is the area enclosed by the light path,
T is the period of rotation of the detector and L is a typical arm length. This time difference,
∆l− −∆l+, is the Sagnac time shift for signal circulating around a closed path (often referred
to Sagnac effect). By taking into account the LISA parameters (T=1 year and L = 5× 109m),
this time difference is ∆lSagnac=-10−4s. Therefore, the residual effect of the anomaly on the
combination ζ will be given by

ζ∗ = α∗(∆l− −∆l+) ' 3× 10−22 . (4.90)

The same conclusion can be drawn from the other Sagnac combinations. Then, the effect of
the anomalous blueshift is to add a constant frequency shift in the Sagnac combinations, α, β,
γ and ζ. The amplitude of this additional Doppler shift would be comparable to the weakest
gravitational waves detectable by LISA. Indeed, it is shown in the previous section that, with
TDI, the optimal sensitivity of LISA will be 10−23 (see Fig. 4.16). However, this optimal
sensitivity occurs in a Fourier frequency range obviously far from the null Fourier frequency
where the constant residual contribution of the anomaly has its impact. Hence this effect would
not be detectable.
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4.6.2 The effects of flexing

As we have seen in Section 4.4.5 (and is explained more in detail in Appendix A), the arms
of LISA don’t remain constant during the orbit. This is due to the orbital motion and the
perturbations of the orbits by the planets. Unlike a pure rigid rotation, the arms are flexing
and the important continuous symmetry, Lij(t+ τ) = Lij(t) for any value of τ is no preserved.
Now, we don’t consider the TDI combinations in the framework of a fixed interferometer and we
address the time varying light-times. Specifically, according to [42], the X combination becomes

X = y12

[
t− l31 − l

(1)
13 − l

(2)
21

]
− y13

[
t− l21 − l

(1)
12 − l

(2)
31

]
+ y21

[
t− l31 − l

(1)
13

]
−y31

[
t− l21 − l

(1)
12

]
+ y13(t− l31)− y12(t− l21) + y31(t)− y21(t) , (4.91)

where l21 = l21(t), l31 = l31(t), l
(1)
12 = l12(t− l21), l

(1)
13 = l13(t− l31), l

(2)
21 = l21(t− l31 − l

(1)
13 ) and

l
(2)
31 = l31(t − l21 − l

(1)
12 ). In this equation, we have also changed the notation of the yij to be

consistent with the lij . Now, yij is the signal received at the j th spacecraft and sent by the ith
spacecraft. Taking into account Eq. 4.64, the contribution of the anomalous blueshift in the X
combination is given by

X∗ = α∗
[
l12

(
t− l31 − l

(1)
13 − l

(2)
21

)
− l13

(
t− l21 − l

(1)
12 − l

(2)
31

)
+ l21

(
t− l31 − l

(1)
13

)]
+α∗

[
−l31

(
t− l21 − l

(1)
12

)
+ l13 (t− l31)− l12(t− l21) + l31(t)− l21(t)

]
(4.92)

= α∗
[
l
(3)
12 − l

(3)
13 + l

(2)
21 − l

(2)
31 + l

(1)
13 − l

(1)
12 + l31 − l21

]
, (4.93)

where l(3)
12 = l12(t− l31− l(1)

13 − l
(2)
21 ) and l(3)

13 = l13(t− l21− l(1)12 − l
(2)
31 ). To evaluate the size of the

residual effect of the anomaly in this equation, the time dependence in the arm lengths can be
estimated using l(n)

ij = lij(t) − nVijl, where Vij is the rate of change arm length in seconds per
second and l is a typical one-way light-time [42]. Including this expression in Eq. 4.92, we find

X∗ = 4α∗(V13 − V12)l = 6.47× 10−24 , (4.94)

where, according to [42], we have used V13−V12 = 10 (m/s)/c. This relation gives therefore the
maximum effect of the blueshift due to the orbital motion. This Doppler shift is below the opti-
mal sensitivity of LISA which is about 10−23. Similarly results apply to all TDI combinations.
Hence we conclude that the effect will not be detectable.
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Conclusions

The major outcome of this study is to state the inability of the future Laser Interferometer Space
Antenna (LISA) to confirm the Pioneer anomaly as a blueshift in the frequency of light. Since
only this interpretation is relevant for LISA, this conclusion applies to the Pioneer anomaly to
its full extension.

This study was motivated by the fact that the anomalous blueshift on the arms of LISA could
be several orders of magnitude bigger than the Doppler shift induced by the weakest measurable
gravitational waves. The effect would however be overwhelmed by the laser phase noise and
the cancellation methods developed to detect the gravitational waves have to be performed. In
the sensitivity band of LISA, the anomalous blueshift would be well below all the instrumental
noises, even after the laser phase noise cancellation. In addition, considering a finite observation
time, the power from the dominant contribution of the anomaly leaks into the sensitivity band.
This places a non-achievable requirement on the knowledge of the arm lengths of 5 × 10−6 m
in order to detect the anomaly. Appropriate work in the frequency domain was then carried
out to study the region beyond the sensitivity band where the anomaly has its largest impact.
The results show that the anomaly cannot be revealed at these timescales since the arm lengths
change by much larger distances than it is allowed to remove efficiently the laser phase noise.

Time delay interferometry, shows an even better immunity to the blueshift as it is cancelled
perfectly in all the data combinations. Only from the rotation and flexion of the interferometer,
a residual contribution of the anomaly would arise. This effect, outside the sensitivity band,
would however be below the detection threshold of LISA. At the present day, the only way to
test the Pioneer anomaly would be in non-dedicated missions to Neptune and beyond.
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A. Flight configuration

The performance of the laser phase noise cancellation methods, presented in this report, depends
strongly on to what extent the three spacecraft of LISA maintain constant distances between
them. The orbits of the three LISA spacecraft have thus been specially designed in order to
minimise variations in the LISA arm lengths. In this Appendix, we briefly describe the method
of [29] to get the expressions from the orbital motions of each spacecraft with respect to time.
These expressions will allow us to compute the power spectra of each arm length.

To start, let us define α ≡ l/2R, where l ∼ 5 × 106 km is the distance between two spacecraft
and R=1 A.U. ∼ 1.5× 108 km. The exact orbits of the three spacecraft are constructed so that
to first order in the parameter α, the distances between any two spacecraft remain constant.
The equation of an elliptical orbit in the (X-Y) plane is given by [29],

X = R(cosψ + e), Y = R
√

1− e2 sinψ , (5.1)

where R is the semi-major axis of the ellipse, e the eccentricity and ψ the eccentric anomaly.
The eccentric anomaly is related to the mean anomaly Ωt by

ψ + e sinψ = Ωt , (5.2)

where t is the time and Ω the average angular velocity. Note that on the left hand side of this
relation, we have a positive sign instead of the usual negative sign. This is because the spacecraft
is chosen to be at the aphelion at the zero time.

For the case of LISA, the geometry of the flight configuration is shown in Fig. 5.1.

Figure 5.1: Orbit and geometry of LISA. SC1, SC2 and SC3 denote the three spacecraft. The
barycentric frame is labelled (X,Y, Z).

The barycentric frame with coordinates (X,Y, Z) is chosen such that the ecliptic plane is X-Y
and makes an angle of 60◦ with the plane of the LISA triangle. The centre of this triangle is
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located on the reference orbit, which is assumed circular with a radius of 1 A.U. and centered
on the Sun. The spacecraft 1 is chosen such as Z is maximum at t = 0. This means that at this
point, ψ = 0 and Y = 0. Thus, to obtain the orbit of the first spacecraft, the orbit in Eq. 5.1
has to be rotated by a small angle ε about the Y -axis. In order to obtain the 60◦, the spacecraft
must have its Z-coordinate equal to l/2. Then, ε and e are obtained as:

tan ε =
α

1 + α/
√

3
(5.3)

e =
(

1 +
2√
3
α+

4
3
α2

)1/2

− 1 , (5.4)

and the orbit equations of spacecraft 1 are given by

X1 = R(cosψ1 + e) cos ε, Y1 = R
√

1− e2 sinψ1, Z1 = R(cosψ1 + e) sin ε . (5.5)

The eccentric anomaly ψ1 is implicitly given in terms of t by: ψ1 + e sinψ1 = Ωt. The orbits of
the 2 other spacecraft can be obtained by rotating the orbit of spacecraft 1 by 120◦ and 240◦

about the Z-axis. In addition, the phases ψ2 and ψ3 have to be adjusted so that the spacecraft
are about the same distance l from each other. This lead to the following equations for the
spacecraft k (k=2,3):

Xk = X1 cos
[
2π
3

(k − 1)
]
− Y1 sin

[
2π
3

(k − 1)
]

Yk = X1 sin
[
2π
3

(k − 1)
]

+ Y1 cos
[
2π
3

(k − 1)
]

Zk = Z1 , (5.6)

where the phase ψ1 must be replaced by the appropriate phase ψk, implicitly given by:

ψk + e sinψk = Ωt− (k − 1)
2π
3
. (5.7)

Using these equations of the spacecraft orbits, we can now plot the evolution of the arm lengths
during the two first years of the mission (see Fig. 5.2 below). With these orbits, the inter-

Figure 5.2: The 3 arm lengths of LISA during the first 2 years of the mission.

spacecraft distance can vary up to 100000 km. In the first order in α, it can be shown that the
arm lengths remain constant along the orbit [29]. Note that, if we take the first derivative of the
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arm length evolutions with respect to time, we obtain the arm length rates of change. These can
be up to 13 m/s during the first year. Without correction manoeuvres, they will grow every year.

Finally, we can compute the power spectra of the arm length evolutions. This can be done
by dividing the square of the Fast Fourier Transform (FFT) by the number of points used for
computing the FFT. The amplitude power spectrum for the first armlength is shown in Fig. 5.3
below.

Figure 5.3: Amplitude power spectrum of arm length 1.

The dominant frequencies correspond to several months and are outside the sensitivity band of
LISA.
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B. Orbital noise

For short integration time relative to the period of the orbital motion, the arm length rate of
change is nearly constant and the approximate Fourier Transform is then given by:

F̃.T .[l′i(t)] =
1
c

∫ T

0
(vit+ 5.109)e2πiftdt

=
1
c

∫ +∞

−∞
rect(

t− T
2

T
)(vit+ 5.109)e2πiftdt , (5.8)

where rect(t) is the rectangle function equal to 1 in [−1
2 ,

1
2 ] and 0 elsewhere. Then, by introducing

the new variable τ , define as

τ =
t− T

2

T
(5.9)

Eq. 5.8 becomes:

F̃.T .[l′i(τ)] =
viT

c

∫ +∞

−∞
rect(τ)(Tτ +

T

2
)e2πif(Tτ+T

2
)dτ + 5.109T

c

∫ +∞

−∞
rect(τ)e2πif(Tτ+T

2
)dτ

=
viT

c
eπiF

∫ +∞

−∞
rect(τ)(Tτ +

T

2
)e2πiFτdτ + 5.109T

c
eπiF

∫ +∞

−∞
rect(τ)e2πiFτdτ ,

(5.10)

where we have introduced F = fT . According to [48], the Fourier transform of the rectangle
function is equal to sin(πF )/πF so that:

F̃.T .[l′i(t)] =
viT

2eπiF

2πic
d

dF

[
sin(πF )
πF

]
+ T

[
v
T

2
+ 5× 109

]
eπiF sin(πF )

πF

= vie
πT if πTf cos(πTf)− sin(πTf)

2π2icf2
+
[
vi
T

2
+ 5× 109

]
eπT if sin(πTf)

πcf
.

(5.11)

This formula gives the Fourier transform of the arm length for integration time sufficiently short
relative to the orbital motion.
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Glossary and Acronyms

Figure 5.4: Definition of the eccentric anomaly E.

Amplitude power spectrum Square root of the power spectral density, defined here after.

Berry phase In quantum mechanics, phase acquired by quantum states when subjected to
adiabatic processes, resulting from the geometrical properties of the parameter space of
the Hamiltonian.

Black hole object with a concentration of mass great enough that the force of gravity
prevents anything from escaping from it except through quantum tunneling behavior.
The gravitational field is so strong that the escape velocity near it exceeds the speed of
light. This implies that nothing, not even light, can escape its gravity, hence the word
“black.”

Cassegrain Combination of a prime concave and a secondary convex mirror, both aligned
axially. The prime mirror is usually featuring a hole in the centre thus permitting the
light to reach an eyepiece, a camera, or a light detector.

Cataclysmic white dwarf White dwarf, which accretes mass spilling over from a low mass
hydrogen-burning secondary.

Dark matter Unseen matter that may make up more than ninety percent of the universe. As
the name implies, dark matter does not interact with light or other electromagnetic
radiation, so it cannot be seen directly, but it can be detected by measuring its
gravitational effects. It is believed that dark matter was instrumental in forming galaxies
early in the Big Bang.

Drag-free System aimed at shielding a proof mass from gas drag and solar radiation pressure
(see Section 2.2.1 for more details).

Eccentric anomaly The angle E obtained by drawing the auxiliary circle of an ellipse with
center O and focus F, and drawing a line perpendicular to the semimajor axis and
intersecting it at A. The angle E is then defined as illustrated above.
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Fabry-Perot cavity Optical resonator in which feedback is accomplished by two parallel
planes.

Geodesic A curve, which is everywhere locally a distance minimizer, in metric geometry.

LIGO Laser Interferometer Gravitational wave Observatory. A set of two gravitational wave
detectors in the USA.

MBH Massive Black Hole. Black hole with a mass in the range of millions to billions Solar
masses. See also supermassive black hole.

Michelson interferometer Classic setup for optical interferometry and invented by Albert
Abraham Michelson.

Nd:YAG Neodymium-doped Yttrium-Aluminium Garnet.

Neutron star Celestial body consisting of the superdense remains of a massive star that has
collapsed with sufficient force to push all of its electrons into the nuclei that they orbit,
thus leaving only neutrons, and having a powerful gravitational attraction from which
only neutrinos and high-energy photons can escape, rendering the body detectable only
by its X-ray emission.

Optical bench It is a rigid structure made of ultra-low expansion material on which, for
rigidity, the optical components are embedded (see Section 2.2.1 for more details).

pc Unit of astronomical length based on the distance from Earth at which stellar parallax is
one second of arc and equal to 3.258 light-years, 3.086× 1013 kilometers.

Power spectral density For a given signal, it gives a plot of the portion of a signal’s power
(energy per unit time) falling within given frequency ranges.

Proof mass It consists in highly polished cube allowed to float freely within the spacecraft
and shielded from external and internal disturbances so that they detect only the force of
gravity (see Section 2.2.1 for more details).

Quasar Extremely distant, and thus old, celestial object whose power output is several
thousand times that of our entire galaxy. The name is short for “quasistellar radio
source.”

RTG Radioisotope Thermoelectric Generator.

Sagnac effect Time shift for signals circulating around a closed path.

Sensitivity band Fourier frequency range, in which LISA will be sensitive to gravitational
waves (10−4 Hz to 1 Hz).

Spectral leakage Release of power between different frequencies due to the finite observation
time.

Super massive black hole Black hole with a mass in the range of millions to billions solar
masses. Most if not all galaxies are thought to host a supermassive black hole in their
center.

TDI. Time Delay Interferometry.

Weak equivalence principle Einstein’s principle, which states that the (local) effects of a
gravitational field are identical in all respects to the effect of uniform acceleration. It is a
central principle in the theory of general relativity.
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White dwarf Remnant of a star, that has collapsed, having an extremely dense state with no
empty space between its atoms, but not reaching the extremely dense state of a neutron
star or black hole.

Yukawa force Possible modification of gravity from a massive attractive field that leads to
the following non-relativistic gravitational potential

V (r) = − GMm

(1 + α)r
[1 + αe−r/λ]

where α is the new coupling strength relative to Newtonian gravity and λ is the new
force’s range.
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