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Summary 

Senegalese livestock size has largely increased during the last three 

decades in relation to the population growth. The fodder biomass stock 

available at the end of the growing season, therefore, becomes increasingly 

limited to meet feeding needs of pastoral livestock which provides third of 

the national agricultural wealth. With the reduction of natural grazing lands 

mostly generated by the expansion of croplands, and the reduction of fodder 

biomass production due to drought effects, the increase of the livestock size 

leads to the rangelands overload whose persistence can lead in turn to their 

degradation. A technique based on a simple linear relationship between the 

temporal integration of the Normalized Difference Vegetation Index (NDVI) 

and the ground biomass data, developed in the 1980s, has been operationally 

applied by the Centre de Suivi Ecologique (CSE) of Dakar (Senegal) to 

assess the fodder biomass available in rangelands at the end of the growing 

season. The derived map of total biomass production enables to help pastoral 

livestock managers as well as national stakeholders against food insecurity 

and natural resources degradation. Carried out annually, this approach 

comprises unfortunately some uncertainties as: (1) the saturation drawback 

of NDVI in areas with high biomass productivity, (2) the temporal scale 

which is restricted to biomass data of the ongoing year not being used again 

in the following year, (3) the low predictive ability due to the large time gap 

between data collection and published results, and (4) the high costs for 

annual data collection. In addition, although the earth observation (EO) data 

have largely progressed during the last three decades, this technique has not 

changed over this period and consequently is not state-of-the-art. To tackle 

these limitations and advance the traditional method, new statistical models 

that include new earth observations datasets and historical in situ plant 

biomass data were developed for estimating and / or predicting the forage 

availability at the end of the growing season in Senegalese semi-arid 

rangelands. A backward analysis of the linear regression approach currently 

applied in Senegal provided evidence that nonlinear regression functions 

such as Exponential and Power are more suited to estimate the end-of-season 

total biomass in this region using annual data solely. A completely new 

methodology using multiple-linear models which include various 
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phenological metrics from the time series of the Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) and 14 years of in situ total 

biomass samples was developed. The proposed approach provided more 

reliable and accurate estimates as compared to the current CSE biomass 

product. Multiple-linear models developed with specific metrics adapted to 

ecosystem properties increased the overall accuracy of the fodder biomass 

estimates and mitigated the saturation of FAPAR obtained with models run 

across the whole study area. With this new approach, timely information 

about possible deficits/surplus of total fodder biomass can be provided to 

stakeholders using phenological metrics that are available relatively early in 

the growing season. Another new approach based on a machine learning 

algorithm (i.e., Cubist) was developed, as never done before, to assess 

herbaceous biomass in Senegalese Sahel. Three Cubist models using 

FAPAR seasonal metrics and/or agrometeorological variables (i.e., soil 

water status indicators) were established and compared. The Cubist model 

including both FAPAR and agrometeorological variables provided the best 

estimation performance. This model enabled to mitigate the saturation 

affecting optical remotely sensed vegetation data in areas of high plant 

productivity as well as the discrepancy between herbaceous biomass and 

greenness, and corrected therefore for herbaceous biomass underestimations 

observed with the sole FAPAR based model, particularly in sparsely 

vegetated areas. In contrast to the date of the growing season onset retrieved 

from FAPAR seasonal dynamics, the rainy season onset was significantly 

related to the herbaceous biomass and its inclusion in models could 

constitute a significant improvement in forecasting risks of fodder biomass 

deficit. The methods developed in this research provide tools to assess 

Senegalese forage resources at two levels: herbaceous and total fodder 

biomass (Herbaceous + woody leaf biomass). They require limited data and 

free available software and therefore can be easily replicated in other 

countries of the West African Sahel. 

 

Keywords: fodder biomass, models, FAPAR, phenological metrics, growing 
season, herbaceous, forecast, food security, Senegal, Sahel.  
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Résumé 

La taille du cheptel sénégalais a connu une forte augmentation au cours 

des trois dernières décennies en relation avec la poussée démographique. La 

production fourragère en fin de saison se rapproche de plus en plus des 

limites de satisfaction des besoins alimentaires du cheptel essentiellement 

pastoral qui fournit le tiers de la richesse agricole nationale. Avec la 

réduction des parcours naturels liée globalement à l’augmentation des terres 

de culture, et la réduction de la production de biomasse causée par la 

sécheresse, l’accroissement du cheptel entraine une surcharge des parcours, 

dont la persistance conduit à leur dégradation. Afin d’estimer le disponible 

fourrager des parcours à la fin de la saison de croissance, le Centre de Suivi 

Ecologique (CSE) de Dakar applique de manière opérationnelle, une 

technique utilisant une régression linéaire simple entre l’indice de végétation 

NDVI (Normalized Difference Vegetation Index) cumulé au cours de la 

saison et les données de biomasse végétale collectées sur le terrain. La carte 

de production fourragère élaborée annuellement est très utile pour les 

gestionnaires du système pastoral ainsi que les décideurs nationaux en 

matière de lutte contre l’insécurité alimentaire et la dégradation des 

ressources naturelles. Malheureusement, cette technique comporte un certain 

nombre de contraintes liées à : (1) la saturation du NDVI dans les zones à 

forte production fourragère, (2) les données de biomasse limitées à l’année 

en cours et qui ne sont pas utilisées les années suivantes, (3) la faible 

capacité de prévision en raison du temps important entre la collecte des 

données sur le terrain et la publication des résultats, et (4) le coût élevé 

requis pour la collecte annuelle des données. Par ailleurs, bien que les 

données d’observation de la terre (satellitaires) aient largement évolué au 

cours des trois dernières décennies, cette technique n’a pas changé et reste à 

améliorer par rapport à l’état de l’art actuel. Afin d’améliorer cette méthode 

« traditionnelle », de nouvelles approches statistiques ont été proposées dans 

cette étude. Ces méthodes intègrent de nouvelles données d’observation de la 

terre et des données historiques de production fourragère pour estimer et/ou 

prévoir les quantités de fourrages disponibles à la fin de la saison au niveau 

des parcours du Sénégal. Une analyse comparative de l’approche par 

régression simple actuellement utilisée au Sénégal, a montré que les 
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fonctions non-linéaires, Exponentiel et Puissance sont plus adaptées à 

l’estimation du disponible fourrager de fin de saison en utilisant les données 

d’une seule année. Une approche entièrement nouvelle avec des modèles de 

régression multilinéaire a été développée. Elle utilise différentes métriques 

saisonnières issues de séries chronologiques de la fraction absorbée du 

rayonnement photosynthétiquement actif (FAPAR ou Fraction of Absorbed 

Photosynthetically Active Radiation) et 14 ans de données de biomasse 

fourragère totale. Cette approche fournit des estimations plus précises telles 

que comparées avec les sorties de la méthode du CSE. Les modèles de 

régression multiple développés avec des métriques saisonnières spécifiques 

et adaptées aux propriétés des écosystèmes ont permis d’améliorer la 

précision globale des estimations de la biomasse fourragère totale mais aussi 

d’atténuer la légère saturation du FAPAR observée avec les modèles 

appliqués à l’échelle de la zone d’étude. Avec cette nouvelle approche, 

l’information sur les déficits/surplus de biomasse fourragère totale peut être 

très tôt transmise aux décideurs en utilisant des variables saisonnières du 

FAPAR disponibles relativement tôt au cours de la saison de croissance. Une 

autre approche incluant un algorithme d’apprentissage automatique appelé 

Cubist, a été développée pour l’estimation de la biomasse fourragère 

herbacée au Sénégal. Trois modèles Cubist qui utilisent des métriques 

saisonnières du FAPAR et/ou des variables agrométéorologiques 

(indicateurs de l’état de l’eau dans le sol), ont été développés et comparés. 

Le modèle Cubist qui utilise à la fois les métriques du FAPAR et les 

variables agrométéorologiques, s’est montré plus performant. Ce modèle a 

permis d’atténuer la saturation qui caractérise les données de télédétection 

optique de la végétation dans les zones à forte densité végétale mais aussi, de 

réduire la différence souvent observée entre la masse de végétation herbacée 

et la valeur dérivée des indices satellitaires. Par conséquent, elle a permis de 

corriger la sous-estimation de la production de biomasse notée avec le 

modèle utilisant le FAPAR uniquement, particulièrement dans les zones à 

faibles couvert végétal. Contrairement à la date de démarrage de la saison de 

croissance calculée à partir du FAPAR, celle du démarrage de la saison des 

pluies a été significativement liée à la biomasse herbacée et son utilisation 

dans les modèles pourrait nettement améliorer la prévision des risques de 
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déficits fourragers. Les méthodes développées dans cette étude constituent 

des outils d’estimation des ressources fourragères du Sénégal à deux niveaux 

: herbacé et total (herbacé et ligneux). Elles font appel à un nombre réduit de 

données et à des logiciels disponibles gratuitement,  et donc peuvent 

facilement être reproduites dans d’autres pays du Sahel Ouest Africain. 

 

Mots-clés : Biomasse fourragère, modèles, FAPAR, métrique, saison de 

croissance, herbacé, prévision, sécurité alimentaire, Sénégal, Sahel.   
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1 Introduction 

Chapitre 1 - Introduction 

 

1.1. Research framework 

 

1.1.1. General context and research justification 

 

Livestock is the first renewable resource in Sahel (Dicko et al., 2006), 

and in particular West Africa. Livestock is dominated in this region by 

pastoral systems with large herds of cattle and small ruminants (RPCA, 

2010). For this farming type, more than 90% of dry matter consumed by 

livestock comes from natural pastures (Carrière, 1996). Then, the rangelands 

form an indispensable component for meeting the needs of animal 

production in the West African Sahel. Also, they play an important 

ecological role, through soil fixing, carbon uptake and conservation of 

biodiversity. The grazing lands represent approximately 21% of the total 

area of Senegal (ISRA, 2003). They are largely dominated by natural 

pastures, and are found mainly in the eco-geographical zones of the Senegal 

River, the sylvo-pastoral zone (Ferlo), the eastern Senegal and the Upper 

Casamance. 

As in the whole Sahel, the Senegalese farming systems have undergone 

the effects of drought and agricultural influence over grazing lands, since 

early 1970s. These actions drove firstly, to a significant reduction of the 

herbaceous cover, the dieback of woody plants (Wispelaere, 1980) and the 

change in species composition (Akpo, 1990), and secondly, to the abatement 

of natural rangelands available for pastoral livestock. The pasture lands 

varied from 58,232 km² in 1983 to 57,224 km² in 2011 with an area decrease 

about 2% (Figure 1.1). Following this dynamics, the rangelands quality also 

decreases in the long term, because the best lands are mostly reserved for 

agriculture (Carrière, 1996). The livestock size (i.e. Cattle, Sheep, Goats, 
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Horses, Asses and Camels) has largely increased over the past decades and 

therefore the fodder stock available at the end of the growing season is 

increasingly limited to meet the livestock feeding needs. This increase of 

animal population can be explained by the important role of livestock in the 

socioeconomic development of the Senegalese people that also highly 

increased in the same period. In Senegal, livestock provides about a third of 

the national agricultural wealth (Magrin, 2008; Cesaro et al., 2010). The 

animal production affects in particular a significant part of the rural 

population for which they provide food security, savings, labor force and 

field fertilization (ISRA, 2003). With the reduction of natural grazing lands, 

mostly generated by the expansion of croplands, and the decrease in pastures 

productivity due to drought effects, the increase of the livestock size leads to 

rangelands overload whose persistence can lead to their irreversible 

deterioration (CSE, 2010). Figure 1.2 shows a scheme of the overall context 

of the rangelands exploitation and their consequences. 

 

 

Figure  1.1 – Evolution of human and livestock population (in Tropical Livestock 

Unit or TLU) as well as grazing area from 1983 to 2011 in Senegal. 

Source: (FAOSTAT, 2016). 
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Figure  1.2 – Schematics of the general context of the natural resources use and 
change in Senegalese rangelands 

 
In this context, many studies have been conducted in the Sahel to 

establish methods for assessing the forage resources (Tucker et al., 1983; 

Tucker et al., 1985; Prince, 1991; Mougenot et al., 2000). Among these 

methods we can cite the one proposed by Tucker et al. (1983) and Tucker et 

al. (1985), including the temporal integration of the NDVI (Normalized 

Difference Vegetation Index) and the aboveground plant biomass produced 

during a growing season. This technique was revolutionary in 1980’s since it 

was the first time this new NDVI was related to field biomass data, through a 

simple linear regression. The overall approach has been operationally 

applied by the Centre de Suivi Ecologique (CSE) of Dakar (Diallo et al., 

1991; Diouf and Lambin, 2001) (and also the Department of Livestock and 

Animal Industries of Niger) for evaluating the fodder biomass available in 

pasture lands at the end of the growing season. In Senegal, the sampling of 

herbaceous and woody foliar biomass is performed within ground sites 

distributed across the Senegalese pastoral domain that covers approximately 

fifteen administrative districts for an area of about 125,000 km². The ground 

biomass data collected each year have been typically used to calibrate by 
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regression the NDVI derived from the low resolution satellite imageries of 

the NOAA / AVHRR (from 1987 to 2002), SPOT / VEGETATION (from 

2003 to 2013) and Proba-V (from 2014 to present). The output product is a 

map of the total plant biomass yield (kg.DM/ha) with 1 km resolution across 

the whole Senegal. This information carrier of the fodder biomass 

availability at the end of the growing season helps for assessing the balance 

between the amount of fodder biomass production and the livestock. It 

constitutes, therefore, a helpful guide tool for implementing the annual 

backup strategies and protection of pastoral flocks. It is also a useful tool for 

the identification of areas with very high dry matter production which could 

be a starting point of bushfires, and so to prevent against degradation of 

natural resources. However, there exists a significant time from the data 

collection and the publication of model results. Several studies also 

supported that the simple linear relationships developed annually depend 

highly on the ongoing growing season and the studied region (Cornet, 1984; 

Bégué, 2002). These facts of course, limit the operational capacity of the 

method specially to deal with the current needs of the early warning systems 

(EWS) on fodder biomass availability and of the public institutions in charge 

of environmental protection against bushfires. Despite these limitations, the 

approach has not changed over the last 30 years whereas the earth 

observation (EO) data have largely progressed. The EO data are more 

reliable with more cloud free images. With new methods implemented in 

various analysis tools (e.g. TIMESAT, SPIRITS, GeoWRSI etc.), seasonal 

profiles can be extracted from EO time-series and seasonal metrics 

computed accordingly either for vegetation products such as NDVI, the 

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), the 

Leaf Area Index (LAI) or for satellite based rainfall data. Making use of the 

new data and statistical methods which have emerged especially in the past 

10 years, can allow improving the 1980’s approach to a newer state-of-the-

art. Definitely, this enables to develop more suited tools for assessing more 

accurately the plant biomass production at the end of the growing season, 

and to make warnings as early as possible in the season applying specific 

metrics. 
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1.1.2. Main features of the studied region 

 

The Sahel name comes from two Arabic words, (i) Es-Sahel that means 

“shore” as “the shore of south Sahara” and (ii) S’hel ou Sahil meaning 

“plain” or “flatlands” (Tracol, 2004; Hiernaux and Le Houérou, 2006). 

Located between 12 °N and 20 °N latitudes, the Sahel is a biogeographic 

entity defined generally by its arid to semi-arid tropical climate (Hiernaux 

and Le Houérou, 2006), with an unimodal rainfall regime. The rainfall 

regime is mainly controlled by the monsoon from the Gulf of Guinea and the 

Sahara Harmattan. The Sahel is a transition zone between the arid to 

hyperarid Sahara areas in the north and the humid tropical areas of the south 

Sudan savanna (Brooks, 2004). It extends about 6000 km between the 

Atlantic Ocean (west) and the Red Sea (east) for a width between 400 and 

600 km from north to south (Le Houerou, 1989). The Sahel belt passes over 

the Cape Verde, Mauritania, Senegal, Mali, Niger, Chad, Sudan and crosses 

the north of Burkina Faso, Nigeria and Cameroon, for a total area of 3 

million km² (Tracol, 2004). Figure 1.3 shows the major land cover classes of 

the Sahel as proposed by the Global Land Cover 2000 (GLC2000) map 

(Bartholomé and Belward, 2005). 

Part of the Sahel belt and member of the Comité inter-États de lutte 

contre la sécheresse au Sahel (CILSS), the Senegal covers an area of 

196,722 km² and is located in the extreme west of Africa, between 12° 20' N 

and 16° 40' N latitude and 11° 20' W and 17° 30' W longitude. It is bounded 

by the Atlantic Ocean to the west, the Islamic Republic of Mauritania to the 

north and northeast, Mali to the east, Guinea Bissau and Guinea Conakry to 

the south. It also has a border with Gambia which draws an enclave of about 

300 km long and 20 km width for an area of 10 300 km². 
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Figure  1.3 – Major Land cover classes of the Sahel provided by the GLC2000 map. 

The Sahel limits are based on annual average precipitation (African Rainfall 
Climatology Version 2 1983–2013). 

 

The study area covers 15 districts belonging to five administrative 

regions (i.e., Saint-Louis, Matam, Kaffrine, Louga and Tambacounda) in 

Senegal, with a total area of 125,000 km² (Figure 1.4). The area lies in the 

Sahelian and northern Sudano-Guinean zone of Senegal between 16.69°N 

and 12.63°N latitude and 16.74°W and 11.86°W longitude. It includes all 

natural grazing areas of the pastoral domain as defined by (Stancioff et al., 

1986), as well as some croplands, including fallows. The mean annual 

precipitation varies between 200 and 980 mm from north to south, with 

reference to the FEWS Net rainfall estimates for the 2000-2015 period 

(Herman et al., 1997; Xie and Arkin, 1997). The rainy season, driven by the 

West African monsoon, is unimodal, occurring over 3-5 months between 

June and October. The studied area includes different ecoregions, with a 

prevalence of red-brown sandy soils, ferruginous tropical sandy soils, leptic, 

gley and vertic soils (Maignen, 1965; Tappan et al., 2004). Typical of the 

Sahel, the herbaceous vegetation is particularly dependent on the intra-

seasonal rainfall distribution (Valenza, 1977) and is dominated by annual 

plants with C4-type photosynthesis (Hiernaux and Le Houérou, 2006). 



7 

According to the Centre de Suivi Ecologique (CSE, 2013; CSE, 2014), the 

northern zone (<= 300 mm annual rainfall) is characterized by Poaceae such 

as Chloris prieurii, Aristida mutabilis and Dactyloctenium aegyptium, as 

well as legumes such as Alysicarpus ovalifolius and Zornia glochidiata, 

whereas in the central zone (between 300 and 500 mm) the characteristic 

species are Zornia glochidiata (Fabaceae) and Schoenfeldia gracilis, 

Pennisetum pedicellatum and Eragrostis tremula (all Poaceae). Towards the 

south, Andropogoneae species such as Andropogon pseudapricus and A. 

amplectans are the most common species. Other species, such as 

Spermacoce stachydea (Rubiaceae), Cassia obtusifolia (Fabaceae) and 

Fimbristylis exilis (Cyperaceae) occur irregularly, depending on the terrain 

morphology (e.g., depressions) and human and livestock influence. 

 

 

Figure  1.4 – Location of the study area and the ground control sites 
 

Note: All information provided about the study area has adapted from the 

publication (Diouf et al., 2016). 
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1.2. Monitoring sites and plant biomass data 

 

The CSE established 36 ground control sites in 1987 for monitoring 

biomass at the end of the growing season in Senegalese pastoral areas. 

Among these sites, only 24 were monitored until now (see Figure 1.4) and 

used in this study. Sites are located in homogeneous vegetated zones of 3×3 

km², making them ideal for comparison with moderate/coarse resolution 

remote sensing data. They are representative of the main geomorphological 

forms of sampled landscapes (Diallo et al., 1991). Sites were selected, 

indeed, based on a number of criteria as their accessibility, their uniformity 

in ecological conditions, their distance from the cropping areas and 

boreholes as well as their representativeness of the surrounding landscape. 

They are arranged in a grid (virtual) identified by its columns (C) and lines 

(L), hence their identification in Cx Ly, where x and y are numbers varying 

between 1 and 9 in relation to their position on the intersection of columns 

and lines into the grid (see sites name in Figure 1.4).  

The in situ plant biomass data used in this research were obtained from 

the CSE database and covered the 1999–2015 periods, apart from 2004 when 

no data was collected. We have personally participated at data collection in 

2013 and 2014 for the purposes of this thesis. The measurements were 

conducted annually at the end of the growing season (October), separately 

for the herbaceous and woody layers. The herbaceous and woody leaf 

biomass values were subsequently added together to provide an estimate of 

total plant biomass production, if any. The in situ data were not regularly 

collected, however, for all monitoring sites due to occasional lack of 

logistics or the early passage of bush fires before planned conductance of 

field campaigns. 

 

1.2.1. Collection of herbaceous biomass  

 

The collection technique used for the herbaceous layer was the stratified 

sampling line developed by the International Livestock Centre for Africa 

(ILCA) for monitoring pastoral ecosystems in Mali’s Gourma region (Cissé, 

1980). Taking a 1000 m transect, each meter on one side of the measuring 
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line is allocated to one of four density/production strata, ranging from 0 to 3: 

0 = bare soil; 1 = low production; 2 = medium production; and 3 = high 

production. Then, between 35 and 100 plots of one square meter are chosen 

randomly along the transect, taking account of the variability of different 

strata. The plant biomass in each plot is cut close to the ground and weighed 

with a precision scale. After three strata (low, medium, and high production) 

are re-sampled, only three samples of about 200 g of fresh material are taken 

back to the laboratory and dried in an oven (three samples for each stratum = 

nine samples for the site). They are dried for 48 h at 110 °C in order to 

obtain the dry matter. 

The dry matter rate, obtained by dividing the dry weight of the sample by 

the green weight, is then integrated into an equation for calculating the 

herbaceous biomass production. The herbaceous dry matter production of 

the site is given by adding together the dry matter production of all three 

strata (low, medium, and high). For each stratum, the calculation equation is 

written as follows: 

 
�ℎ = �� × �� ×�� × 10 (1) 

 
where Ph is the herbaceous dry matter production (kg·DM.ha−1) in the 

stratum, fr is the relative frequency of the stratum along the transect, pm is 

the average green weight (g·m−2) measured in the field, ms is the dry matter 

rate, and 10 is a conversion factor for translating g·DM/m² into kg·DM/ha. 

 

1.2.2. Collection of woody leaf biomass  

 

The leaf biomass of trees and shrubs was sampled for each site in two 

steps, one repeated every 2 years and one annually. In the first step, every 2 

years, four circular plots were delineated and centered at 200, 400, 600, and 

800 meters of the 1000 m-long transect. The plot size depended on 

vegetation density and varied from 1 to 1/16 ha. The plots tended to be larger 

in the open land that characterizes the Sahelian area in the north of the study 

area and relatively smaller in the North Sudanian domain where the woody 

plant cover is denser. Within these plots, the parameters measured were 
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individual height, number of live trunks (some species, such as Guiera 

Senegalensis and Boscia Senegalensis, can have several trunks), plant cover, 

circumference at the base of the trunk(s), and phenological state (flowers, 

fruits, etc.). In the second step, the most representative species were sampled 

annually and, for each species type, 10 twigs were defoliated and fresh leaf 

biomass weighed. About 200 g of fresh leaves were dried and weighed in 

order to determine the leaf dry matter content. The primary foliage 

production of a given site reflected the total amount of leaf biomass 

produced for all trees and shrubs. Therefore, for each plant belonging to a 

given species, the primary foliage production (Pi) in kg was reached via an 

allometric relationship that integrates its circumference at the base. This 

relationship has been established for certain species of trees in the Sahel 

(Diallo et al., 1991; Diouf and Lambin, 2001) as a result of the work done by 

(Cissé, 1980) and (Hiernaux, 1980) in Mali. The expression is written as 

follows: 

 
�� = � × ��       (2) 

 
where a and b are two constants, depending on the species, and C is the base 

circumference of the trunk in cm. 

The primary foliage production in kg of one species (Pe) within the four 

sampling plots of the site is obtained using the following formula where n 

represents the number of individual plants inventoried: 

 

�� =���

�

���

 (3) 

 
The correction of this primary foliage production (including fruits, if any) 

(Cissé, 1980) into foliar production (Pf) (i.e., material that is available for 

the ongoing season and can be eaten by livestock as fodder) is done using 

the formula: 

 

�� = �� ×
��� ×���

��0
×
1

�
 (4) 
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where Pve is the average weight of fresh foliar biomass (kg) of the 10 twigs, 

Mse is the dry matter rate in %, Ps0 is the average dry weight of foliar 

biomass (kg) of 10 twigs (reference value), and S is the total area of the four 

sampling plots in hectares. 

Finally, the leaf biomass of one site was obtained by adding together the 

foliar production of all the inventoried woody species. 

 

1.2.3. Plant biomass filtering 

 

The ground measurements conducted by different people over 15 years 

were subject to uncertainty in sampling, measuring, and post-processing, 

which inevitably resulted in some unrealistic outliers. The post-processing of 

data (typing handwritten values into digital values) was never quality-

checked, thus, in order to filter out obviously erroneous observations related 

to typos, etc., the datasets went through a two-step filtering: (1) first, the data 

were examined through an exploratory analysis of all observations using a 

boxplot with boundaries that were ±1.5 times the interquartile range and (2) 

since biomass production in Sahel is highly dependent on rainfall (Figure 

1.10), a second filtering of biomass estimates was conducted with outliers 

identified in the first step to remove unrealistic values that showed no 

relation to the rainfall estimates obtained from FEWS Net imagery (Xie and 

Arkin, 1997). This rainfall data has a resolution of 8 km and is thus able to 

capture the heterogeneous pattern of the study area. Only those observations 

for which the difference between the anomalies of plant biomass and 

anomalies of annual rainfall was less than 65% were selected. This threshold 

value was determined by referring to the total biomass anomalies explained 

by the linear regression with rainfall anomalies (Figure 1.5b). The filtering 

removed 33 observations in the 1999–2013 periods, leaving 263 

observations in the dataset for further analysis. This dataset was used into 

Chapter 2, and 3 while for Chapter 4, 34 observations from the years 2014 

and 2015 were added to the dataset after they have been checked with same 

procedure described above. 
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Figure  1.5 – Inter-annual evolution of total biomass and rainfall anomalies (a), and 
comparison of total biomass (b), herbaceous and woody leaf biomass contribution in 
global anomalies (c), and herbaceous and woody leaf biomass (d) with annual 
rainfall anomalies averaged in the dataset between 1999 and 2013 (ground biomass 
data are missing for 2004). Red arrows in (a) and (c) show the highest total biomass 
anomalies in the time series (i.e., years 2002 and 2010). Note that the relationship 
between rainfall and biomass is strengthened when woody leaf and herbaceous 
biomass are added together. 

Note: All information provided in this Section 1.2.2 have been adapted from 

the paper (Diouf et al., 2015). 

 

1.3. Remote sensing data 

 

After the launch of the first Landsat satellite in 1972, many studies had 

demonstrated the advantages of using satellite remote sensing data for 

vegetation monitoring, with indices using the reflectance recorded by the 

satellite sensors. That is why the United Nations Conference on the Human 

Environment, held in Stockholm in 1972, suggested use of the remote 

sensing as a tool of "direct global monitoring" (Grainger, 2013). For 

monitoring the vegetation cover across the world, various satellite from 

medium to low spatial resolutions were launched and several indices and 

biophysical products developed for many application. The overall 

characteristics of the most used satellites in the past 40 years are shown in 

Table 1.1. 
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Table  1.1 – The main medium and low spatial resolution satellites and their overall characteristics 

Satellite NOAA SPOT TERRA/AQUA  MSG ENVISAT METOP PROBA SENTINEL3 

Sensor AVHRR VGT MODIS SEVERI MERIS AVHRR V OLCI 

Frequency daily daily 1/2 days 15mn 3/5 days daily daily 1/2 days 

Spatial resolution 1.1km 1km 250/500m 3km 300/1000m 1km 300/1000m 300m 

Swath width 2800km 2,200km 2300km hemisphere  1150km 2500km 2500km 1270Km 

Wavelength 
(nm) 

Blue   430-470     437.5 - 447.5       

Red 580-680 610-680 620 - 670 560-710 677.5 - 685.0 580-680     

NIR 725-1000 780-890 841 - 876 740-880 855 - 875 725-1000     

Service start 1979 1998 1999 2002 2003 2007 2013 2016 

Planned service end - 2013 2015 2015 2013 2016 2017 2023 
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1.3.1. Vegetation indices products 

 

There exist a large variety of quantitative indices of vegetation conditions 

using remote sensing instruments. These vegetation indices (VIs) measure 

the green vegetation that has the particularity through the chlorophyll to 

absorb solar energy for use in the photosynthesis process. The green 

vegetation has a variable spectral signature related to the chlorophyll activity 

in plants. In favorable conditions (healthy canopies), the chlorophyll in green 

vegetation absorbs red portion (Red) of the electromagnetic spectrum, while 

the near-infrared portion (NIR) is strongly scattered by the spongy structure 

of the mesophyll in leaves, due to the presence of numerous intercellular 

spaces. In contrast when conditions are unfavorable, for example in 

situations of water deficit, the NIR reflectance is low, while the return of 

Red (poorly absorbed) to the sensor is higher. It is this contrast between Red 

and NIR reflectance by canopies of green vegetation that has been 

considered to develop the large set of existing VIs nowadays. The VIs can be 

classified into two groups after (Baret and Guyot, 1991; Jackson and Huete, 

1991): (1) ratios (or slope-based) and (2) linear combinations (or distance-

based) VIs. Figure 1.6 shows a schematic distribution of pixels within a bi-

dimensional plot (scattergram) of Red against NIR reflectance of a given 

scene, and allows easy distinction of these two groups. 

 



15 

 

Figure  1.6 – Distribution of all pixels of a scene into the red and near-infrared bi-
spectral space. Adapted from Silleos et al. (2006). 

 
The slope-based VIs are simple ratio, or the ratio of sums, differences or 

products of the Red and NIR spectral bands (Jackson and Huete, 1991; 

Pettorelli, 2013). These VIs focus on the contrast between the spectral 

response patterns of green vegetation in the red and near-infrared portions of 

the electromagnetic spectrum and their values indicate both the state and 

abundance of green vegetation cover and plant biomass (Silleos et al., 2006). 

The position of each point in the 2-dimensional Red-NIR space is 

geometrically equivalent to the slope of the line connecting the origin of 

reference and this particular point on the scattergram (Mróz and Sobieraj, 

2004). Table 1.2 shows the main slope-based VIs used in the literature. 
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Table  1.2 – Slope-based vegetation indices 
Name Formula Author 

Ratio Vegetation Index 
(standard) 

����� =
���

�
 Birth and McVey (1968) 

Normalized Difference 
Vegetation Index 

���� =
��� − �

��� + 	�
 Rouse et al. (1974) 

Soil-Adjusted Vegetation 
Index 

���� =
�����

����	�
	(1 + �)  Huete (1988) 

Transformed Vegetation 
Index ��� = 	�

��� − �

��� + �
+ 0.5 Deering et al. (1975) 

Ratio Vegetation Index 
(inverse) 

��� =
�

���
  

Richardson and Wiegand 
(1977) 

Enhanced Vegetation Index 
��� = � ∗

��� − �

��� +	��� −	��� + �
 Liu and Huete (1995) 

Where NIR = near-infrared, R = red, B = blue, L = soil adjustment factor, C1 and C2 = constants 
and G = a gain factor. 

 

The distance-based VIs are functionally different to the slope-based ones 

and are computed from linear combinations of the Red and NIR bands. 

These VIs are calculated by taking into account the difference of any pixel’s 

reflectance from the reflectance of bare soil (Baret and Guyot, 1991; Silleos 

et al., 2006). This requires establishing the “soil line” that corresponds to the 

linear regression line of the NIR band against the Red band for a sample of 

bare soil pixels.  Then it enables to remove the effect of soil brightness in 

cases where vegetation is sparse and pixels are supposed to be contaminated 

by the soil background. Pixels located near the soil line are assumed to 

represent the soil, while those far away are assumed to represent vegetation. 

The distance-based VIs require the slope and intercept of the soil line as 

inputs for their calculation as well. Table 1.3 shows examples of distance-

based VIs frequently cited in the literature. 
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Table  1.3 – Distance-based vegetation indices 
Name Formula Author 

Perpendicular Vegetation Index 1 
PVI� =

(aNIR − R) + b

√a� + 1
 

Perry Jr and 
Lautenschlager (1984) 

Difference Vegetation Index 
DVI = aNIR − R 

Richardson and Wiegand 
(1977) 

Weighted Difference Vegetation 
Index 

WDVI = NIR − aR Clevers (1988) 

Transformed Soil-Adjusted 
Vegetation Index 1 

TSAVI� = 	
a(NIR − aR − b)

R + aNIR − ab
 (Baret et al., 1989) 

Modified Soil-Adjusted Vegetation 
Indices 1 

MSAVI� =
���	�	�

���	�	�	��
	(1 + L)  Qi et al. (1994) 

Where NIR = near-infrared, R = red, a and b are slope and intercept of the soil line respectively, 

L = 1- 2*a*NDVI*WDVI (Weighted near-infrared-red Difference Vegetation Index) 

 

Among all VIs, the NDVI remain the most commonly used in the Sahel 

for the quantification and temporal monitoring of the vegetation covers 

(Bénié et al., 2005). Indeed, it gives a quantitative measure that only yields 

relative estimates of vegetation amounts, but it can be used to better reflect 

the actual changes in primary production, as well as for quantification of its 

absolute value (Seaquist et al., 2003). NDVI time series were used in several 

studies to depict information on the spatial distribution of bioclimatic zones 

(Jönsson and Eklundh, 2004) and also on their cover change/trend over time 

(Anyamba and Tucker, 2005; Wei et al., 2012; Brandt et al., 2014).  

 

1.3.2. Vegetation biophysical products 

 

The Fraction of Photosynthetically Active Radiation absorbed by 

vegetation (FAPAR) and the Leaf Area Index (LAI) are important 

biophysical variables for quantifying interactions between the vegetation 

surface and the atmosphere (Myneni et al., 2002; Tian et al., 2004; Demarty 

et al., 2007; Baret et al., 2013). LAI and FAPAR represent two biophysical 

complementary ways of describing the earth's vegetated surfaces (Fensholt et 

al., 2004) and they play a key role in several surface processes, including 
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photosynthesis, transpiration rates, rainfall interception and gas exchange. 

For this raison, they have been identified by the GCOS (2006) to be essential 

terrestrial climate variables in the context of global change studies.  

Defined as half of the total intercepting area per unit ground surface area 

(m² leaf area  per m² ground area) (Chen and Black, 1992), the LAI 

characterizes the functioning surface area of a vegetation canopy (Myneni et 

al., 2002) and it quantifies the thickness of the green leaf area of terrestrial 

vegetation (Fensholt et al., 2004). Satellite remote sensing enables retrieval 

of LAI with algorithms based on the physics of radiative transfer (Hanes, 

2014). FAPAR is defined as the fraction of photosynthetically active 

radiation (400–700nm) absorbed by the vegetation canopy and expresses, 

thus, a canopy's energy absorption capacity (Fensholt et al., 2004; Fan et al., 

2014; Hanes, 2014). In order to avoid the local-specific disadvantage of 

empirical methods (i.e., statistical) which use spectral vegetation indices 

(e.g., NDVI) or LAI to calculate the FAPAR, physical inversion methods are 

commonly used nowadays based on radiative transfer models (Knyazikhin et 

al., 1998; Myneni et al., 2002; Baret et al., 2007; Gobron et al., 2007; Fan et 

al., 2014; Li et al., 2015). These latter models which describe the transfer of 

solar radiation in vegetation canopies are generally based on the energy 

conservation law (transmittance, reflectance and absorptance of the canopy) 

and retrieve the FAPAR products using satellite remote sensing observations 

(e.g., canopy spectral and directional characteristics) as constraints 

(Knyazikhin et al., 2004; GCOS, 2006). Plant biomass production is closely 

related to light interception (van Wijk and Williams, 2005), which is 

determined by FAPAR and LAI. These products, therefore, were used as key 

variables in many models of net primary production (NPP) to calculate the 

surface ecosystems productivity (Potter et al., 1993; Field et al., 1995; 

Running et al., 1999). Both FAPAR and LAI products are globally available 

now, through remotely sensed imagery, at different spatial resolutions (250–

1000m) and temporal frequency (10–30days). 
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1.3.3. Rainfall estimates dataset 

 

The number of rain gauges throughout Africa is small and unevenly 

distributed, and the gauge network is deteriorating (Dinku et al., 2007), 

explaining accordingly the difficulty to access on field rainfall data. Satellite 

rainfall estimates constitutes valuable products to ensure continuity of 

environmental studies in these areas. Several rainfall products have been 

elaborated and are generally freely available in various temporal and spatial 

levels. The product used in this research called FEWS Net RFE is produced 

by NOAA’s Climate Prediction Center (CPC) specifically for United States 

Agency for International Development (USAID) Famine Early Warning 

Systems (FEWS) to assist in drought monitoring activities over Africa 

(Dinku et al., 2007). The first version (RFE v1.0) was produced from 1995 

to 2000 (Herman et al., 1997) and was replaced from 2001 onwards by the 

RFE v2.0. This latest version is a blended product based on cold cloud 

duration (CCD) derived from Meteosat thermal infrared (TIR), estimates 

from the Special Sensor Microwave Imager (SSM/I) and the Advanced 

Microwave Sounding Unit (AMSU), and daily station rainfall data (Toté et 

al., 2015). The main difference between these two versions is that RFE v2.0 

uses passive microwave (PM) estimates while RFE v1.0 includes a 

procedure to estimate warm orographic rain (Dinku et al., 2007). 

Particularly, RFE v2.0 product was shown to be in good agreement with 

ground rainfall data (Jobard et al., 2011). Linear regression between annual 

FEWS Net RFE and field data collected in the period 1996-2012 for 

Linguere, Podor, Matam and Tambacounda gauge stations gave a coefficient 

of determination of 0.788. The data are available over Africa and freely 

accessible at (http://earlywarning.usgs.gov/fews/datadownloads) in dekadal 

time step and 8 km spatial sampling grid. 
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1.4. Plant biomass modelling 

 

The warning shot of the years 1967-1968 went unnoticed, quickly erased 

by the wet year 1969, and then came the "Great Drought" from 1972 which 

surprised everyone (Leroux, 1995). During this period of drought, thousands 

of people and millions of animals died because of the famine (Glantz, 1976). 

The lack of information on available food resources had not provided time to 

effectively assist the affected populations, particularly in the Sahel, where 

the drought effects on natural resources were particularly adverse. With this 

experience, the analysis of the hunger causes have been multiplied and the 

new concept of "food security" was developed with the creation in 1975 of 

the committee CFS on world food security (FAO, 2000). In the same 

context, the United Nations has inserted into the Charter of Human Rights, 

the right to sufficient food in 1976 (Bruegel and Stanziani, 2004). However, 

while the assessment of crop yields has always been the focus for food 

security, the availability of pastoral resources were actually taken into 

account in the control systems against hunger in the Sahel, only towards 

1970's. Then, the assessment of plant biomass productivity in rangelands 

became an important research area for many agro-pastoralists who carried 

out several studies in Senegal e.g.  (Bille, 1975; Bille, 1977; Breman and 

Cissé, 1977; Boudet, 1984). The use of remote sensing data for monitoring 

the plant production in the Sahel rangelands really began after the launch of 

the United State weather satellite NOAA-AVHRR. Subsequently, numerous 

studies have demonstrated the benefits of satellite remote sensing for 

vegetation monitoring (Tucker et al., 1983; Asrar et al., 1985; Tucker et al., 

1985; Seaquist et al., 2003; Fensholt et al., 2006), as well as the good 

correlations between plant biomass and satellite variables, expressed as 

models. The question we should ask, therefore, is: "What is a model?" 

Several definitions are proposed in the literature: 

- " the models are simple representations of systems, defining a system as a 

coherent part of the real world " (Djitèye and Penning de Vries, 1991) 

- "a model is a simplified representation of a complex reality expressing 

the relationships between elements of the system envisaged by the use of 

mathematical or computational expressions, providing enough operating 



21 

analogy with the studied system to allow forecasts" (Daget and Godron, 

1995) 

Considering the two definitions, it is clear that the role of models is not 

always to estimate only a given situation but in some cases they should be 

able to make forecasting (i.e., estimation in a distant future). To estimate and 

/ or forecast the production of plant biomass with remotely sensed data, two 

types of models are generally used worldwide: the parametric models and 

the non-parametric models. 

 

1.4.1. Parametric models 

 

Parametric models are computing tools that rely on assumptions about the 

shape of the distribution in the underlying samples and about the parameters 

(i.e., means and standard deviations) of the assumed distribution (Tanya, 

2009). Parametric modelling can be divided into two sub-categories such as:  

(1) stochastic (or probabilistic) regression modelling that consists to 

define accurate tools to model the observed/sampled data, taking into 

account their randomness (Wikistat, 2013). Stochastic models focus more on 

static patterns than on the dynamic processes that produce them (Bolker, 

2008). Such statistical approach, either linear or nonlinear, has the advantage 

of being simple and quick to set up, focusing directly on relevant indicators. 

The generated regression models can be single-based variable (i.e., including 

only one explanatory variable) or multiple-based variables (i.e., including 

several explanatory variables).  

(2) deterministic modelling where the dynamic patterns of input 

variables are well known as well as the processes that drive 

these patterns, without any randomness. Deterministic models can be divided 

into two groups: the mechanistic models for which input variables have a 

direct correspondence to the underlying mechanisms of the dependent 

variable being modeled (O'Reilly, 2016) and semi-mechanistic models which 

use fewer input variables with a lower complexity of their relationships to 

the dependent variable. In contrast to stochastic models where randomness is 

present, the deterministic models are completely dependent on the data to 

which they are trained, and will more easily reveal the fundamental causality 
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between predictors and the dependent variable (Immunetrics, 2016). Figure 

1.7 presents a simple classification of the main existing parametric models. 

 

 

Figure  1.7 – Schematic classification of the main groups of parametric 
models. This scheme is not exhaustive and can be improved. 

 

1.4.1.1. Simple regression models 

 
To assess the plant biomass productivity, the monocriterion models are 

generally obtained by a simple regression between ground sampled 

vegetation mass (dependent variable) and a satellite-derived proxy 

(independent variable) considered being relevant enough to explain it. The 

linear regression is the most commonly used function and the basic equation 

can be written as: 

Y= aX + b + e (5) 

 

where Y indicates the plant biomass production; X is the explanatory 

variable; a and b are the slope and offset of the regression line respectively 

and e is the error term. 

 
The model coefficients (a and b) are commonly determined using the 

ordinary least-squares (OLS) approach with the assumption that the satellite-

derived variable is accurately measured (Zhang and Ni-meister, 2014). The 

herbaceous yield mass estimation has been one of the first remote sensing 
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applications in the West African Sahel using simple regression models 

(Jarlan et al., 2008). Those were mainly the linear and exponential models 

established from field data and seasonal accumulated NDVI (Tucker et al., 

1983; Tucker et al., 1985; Diallo et al., 1991; Prince, 1991). The Centre de 

Suivi Ecologique (CSE) in Dakar (Senegal) used this method, operationally 

over thirty years, to nationally estimate the total production of plant biomass 

at the end of the growing season. It is used also by the Department of 

Livestock and Animal Industries of Niger to provide the annual map of 

fodder biomass in Niger.  

 

1.4.1.2. Multiple regression models 

 

Unlike the simple regression models, the multiple regression ones allow 

to better account for the interactions between plant biomass (predictand or 

dependent variable) and various explanatory variables (predictors or 

independent variables). Among those, metrics of the seasonal profile 

computed from remote sensing data can be applied to fit the different 

vegetation phenology. Thus the traditional forecasting models can be 

improved especially when they are built based on historical data including 

information from several years. The basic model equation for a given year 

can be written as follows: 

Yi = b0 + b1 Xi,1 + b2 Xi,2 + … + bk Xi,k + ei (6) 
 

where Yi indicates the plant biomass yield in year i; b0 is the regression 

constant; Xi,k is the value of kth predictor in year i; bk is the coefficient on the 

kth predictor and ei is the error term. 

 

Multiple regression models from OLS approach takes all predictors into 

account (Hanes, 2014) and is widely used for estimating forest aboveground 

biomass e.g. (Foody et al., 2003; Zheng et al., 2004; Lu, 2005; Powell et al., 

2010; Günlü et al., 2014). However, coefficients of established models could 

be instable if explanatory variables themselves are significantly correlated or 

have a weak relationship with the dependent variable. For this reason, 
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correlation tests (Pearson’s correlation, Kendall rank correlation or 

Spearman rank correlation) are often used to identify the highly and 

significantly correlated variables to keep for modelling. Another way used is 

the Variance Inflation Factor (VIF) retrieved during the regression and 

indicating that a variable is causing collinearity effect when VIF > 10 

(Belsley et al., 1980). In cases where there are several potential explanatory 

variables, a prior selection of relevant predictive variables can be very 

useful. To deal with, dedicated stepwise search procedures as the sequential 

forward selection, backward elimination and stepwise selection (combining 

the two previous procedures) are generally applied (Hastie et al., 2009; Kuhn 

and Johnson, 2013). For biomass modelling, these diagnosis steps can be 

useful before computing multiple regression models, since these models 

assume basically that the independent variables (remotely sensed predictors) 

are uncorrelated and that a linear relationship exists between them and the 

plant biomass (Hanes, 2014). 

It is worth to note that the assumption requiring a normal distribution in 

regression models, applies only to the error term (i.e., the random error in the 

relationship between the independent variables and the dependent variable) 

and not to the variables (Statistics Solutions, 2013). In addition, when the 

sample size is large enough (i.e., >200), the normality assumption is not 

needed to fit a linear regression as the Central Limit Theorem ensures that 

the distribution of error term will approximate normality (Lumley et al., 

2002; Statistics Solutions, 2013). 

 

1.4.1.3. Mechanistic models 

 

The plant biomass modelling has been the subject to numerous studies in 

different countries of the world using especially the so-called mechanistic 

model (Di Bella, 2002). International programs such as the Hydrologic 

Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) initiated in 1991 

(Prince et al., 1995) and the Analyse Multidisciplinaire de la Mousson 

Africaine (AMMA) launched in 2001 (Redelsperger et al., 2006), show 

undertaken effort by the international scientific community in using this kind 

of models. The mechanistic models help to explain plant biomass production 

from very complex interactions between factors that influence this 
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production such as plant physiology, phenology and environmental 

conditions (i.e., rainfall, soil moisture, texture...). Although more realistic, 

these very complex models are generally difficult to implement because 

requiring frequent (daily or even hourly) and detailed data that are not 

readily accessible in Sahelian countries (Bénié et al., 2005).  

As an example, the Sahelian Evaporation Transpiration and Production 

(STEP) model is by far the most famous among all mechanistic models 

tested in the Sahelian semi-arid areas. It is an eco-physiological functioning 

model based on an approach originally proposed by (Rambal, 1980) to 

monitor the Tunisian semi-arid areas. Developed by the Centre d’Etudes 

Spatiales de la BIOsphère (CESBIO) in France (Mougin et al., 1995), the 

model has been used in several thesis research performed typically in the 

Sahel: Tracol (2004) and Baup (2007) in the Malian Gourma, Zine (2004) in 

the agricultural region of Fakara in Niger and Faye (2013) in the Senegalese 

Ferlo. This model is well-adapted to the Senegal environment since its first 

release tool has been validated in the Senegalese Ferlo and Malian Gourma 

(Lo Seen et al., 1995). In the last two decades, STEP has experienced 

significant improvements including its coupling with optical and radar 

microwave remote sensing data (Tracol, 2004; Baup, 2007; Faye, 2013). For 

application, the STEP model combines spectral remote sensing 

measurements with a model describing the functioning processes of the 

Sahelian annual herbaceous species, taking into account the soil-plant-

atmosphere interactions. It includes two main interrelated modules: a 

vegetation growth module and a water balance module. Within these main 

modules, other sub-modules are involved. Figure 1.8 shows the STEP model 

operation with its different components. 



26 

 

Figure  1.8 – STEP operation diagram representing the relationships between 

the water balance and vegetation growth/senescence main modules. Adapted 

from Mougin et al. (1995). 

 

1.4.1.4. Semi-mechanistic models 

 

The Monteith's model is the most commonly used as semi-mechanistic 

model for assessing the plant production. This model is based on the concept 

of solar light use efficiency (LUE) that can be expressed as a conservative 

ratio between the absorbed photosynthetically active radiation (APAR) by a 

canopy and the net primary production (NPP) (Monteith, 1972). The solar 

radiation is absorbed, indeed, by plants to provide the useful energy for 

photosynthesis, while moisture deficits control the LUE (Seaquist et al., 

2003). Thus, the use efficiency of solar light is maximum when the canopy 

cover is wet and it is minimum when the canopy water content is low. On 

this basis, Monteith's model calculates the net primary production as the 

product of the photosynthetically active radiation absorbed by the canopy 

and the efficiency with which plants of the canopy convert this energy into 

dry matter. This efficiency is the product of seven efficiency types which are 
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difficult to quantify in general. For this reason, the model with seven 

efficiencies was subsequently amended by (Kumar and Monteith, 1981) and 

(Varlet-Grancher et al., 1982) in a much simpler form with only three 

efficiencies as presented in equation 7. 

 

��� =���	�����	��	��

�

���

 (7) 

 
where NPP is the net primary production (g.m-2) produced during n days; n 

is the running time step; Ԑc is the net conversion efficiency; fAPAR is the 

absorption efficiency; Ԑs is the climatic efficiency and GR indicates the daily 

global radiation (MJ.m-2). 

The above formula, simulates the NPP that should be differentiated to the 

gross primary production (GPP) also commonly cited in the literature. The 

NPP indicates the net carbon flux incorporated by plants from the 

atmosphere by photosynthesis minus the carbon flux lost by autotrophic 

respiration, while the GPP corresponds to the carbon retrieved by 

photosynthesis before any losses of energy (Running et al., 1999). Using the 

Monteith’s concept, Seaquist et al. (2003) proposed the GPP model 

presented in equation 7, based on the Normalized Difference Vegetation 

Index (NDVI) for grassland biomes across the West African Sahel. 

��� =���	�	(����� + �)	���

�

���

 (8) 

 
where GPP is the gross primary production (g.m-2) produced during n days; 

n is the time step; Ԑp is the maximum biological efficiency of PAR 

conversion to dry matter; Ԑ is the environmental stress scalar; NDVI is the 

Normalized Difference Vegetation Index; a and b the regression coefficients 

and PAR indicates the photosynthetically active radiation received by the 

canopy (MJ.m-2). 

Furthermore, the absorbed PAR seems better linked to gross than net 

primary production (Running et al., 1999) but some authors have found a 

very good correlation between the absorbed PAR and the net primary 

production (Asrar et al., 1984; Olofsson et al., 2007). This could justify the 
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use of Monteith’s simplified version to estimate the total dry matter 

produced during a given period as currently done by the Flemish Institute for 

Technological Research (VITO) to compute the Dry Matter Productivity 

(DMP) satellite product on a decadal basis and 1km spatial resolution (Smets 

et al., 2010). This DMP product is currently used in operational manner to 

assess plant biomass in West Sahel (Ham and Fillol, 2010). 

 

1.4.2. Nonparametric models 

 

The nonparametric models are statistical tools that make no assumptions 

regarding the distribution of the input data (Altman, 1990; Tanya, 2009). 

These models perform recursive partitioning of data sets and solve complex 

non-linear relationships between the response and predictor variables (Zhang 

and Ni-meister, 2014). An interesting application example of the 

nonparametric approaches is given now by machine learning algorithms that 

are an outgrowth of the intersection of Computer Science and Statistics 

(Mitchell, 2006). Unlike both simple and multiple regression models, 

nonparametric tools can handle a very large number of variables from 

satellite and ancillary data (Zhang and Ni-meister, 2014). These techniques 

were widely used in recent ecological and environmental studies (Powell et 

al., 2010; Herrmann et al., 2013; Zhu et al., 2015; Graves et al., 2016; Ke et 

al., 2016). Table 1.4 presents some examples of machine learning algorithms 

organized by topic with related packages in the open source software R. 

More information on these algorithms implemented in the R software are 

provided by Hothorn (2016). 

 

Table  1.4 – Examples of machine learning algorithms usually applied in ecological 
and environmental studies. 

N° Main topics Algorithms References 
Package in R 
software 

1 Neural Networks Multi-Layer Perception 

(Bishop, 1995); 
Venables and Ripley 
(2002) 

nnet 

2 Ensemble learning Random Forest  Breiman et al. (1984) randomForest 
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3 Rule system Cubist 
 RuleQuest Research 
(2015) 

Cubist 

4 Regularization 
and shrinkage 

Least absolute shrinkage 
and selection operator 
(lasso) 

 Tibshirani (1996) penalized 

5 Instance based K-Nearest Neighbors  Cover and Hart (1967) caret 

6 Support vector 
machines 

Support Vector Machines 
 Boser et al. (1992) e1071  

7 Bayesian 
Bayesian Additive 
Regression Trees 

 Chipman et al. (2010) BayesTree 

 

After a large review of applied statistical methods for predicting forest 

inventory attributes among which the plant biomass production, Brosofske et 

al. (2014) concludes that no analytical technique examined - specially the 

nonparametric ones - emerged as superior for all cases of classification and 

regression tree (CART), artificial neural networks (ANNs), random forest 

(RF) and k-nearest neighbors (k-NN). In addition, all these methods have 

particular strengths and weaknesses and should be determined carefully by 

identifying the specific goals of an analysis, the type of response to be 

modeled, the characteristics of the input data, and the resources available.  

 

1.4.3. Semi-parametric models 

 

Semi-parametric regression is a fusion between parametric and 

nonparametric regressions that integrates low-rank penalized splines, mixed 

model and hierarchical Bayesian methodology – thus allowing more 

streamlined handling of longitudinal and spatial correlation after Ruppert et 

al. (2009). This approach was not developed in this document but it was 

provided only for information and to dress the state-of-art. 
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1.5. Research focus 

 

1.5.1. Research objectives 

 

The research presented in this dissertation was conducted in the 

framework of the AGRICAB (Agriculture Capacity Building) project and 

through the “livestock systems” work package (WP) that was led by the 

International Livestock Research Institute (ILRI) with participation of the 

University of Liège (ULg) and the CSE. This WP aims at improving the 

current approaches or developing news methodologies to estimate the fodder 

biomass in rangelands and monitoring livestock by using models fed by 

biophysical variables computed from earth observation (EO). In this context, 

the main objective of this research is to develop models that include remote 

sensing data and field biomass data, for estimating and / or forecasting 

forage availability at the end of the growing season in Senegalese semi-arid 

areas. This overall research objective can be separated into three specific 

objectives as follows: 

i) To evaluate the existing annual estimation method of total fodder 

biomass by linear regression (currently applied in Senegal) in comparison 

to nonlinear approaches; 

ii) To develop a multiple regression approach (i.e., parametric models) that 

integrate FAPAR phenological metrics computed from EO time series for 

estimating and forecasting total fodder biomass at the end of the growing 

season; 

iii) To develop machine learning approach (i.e., non-parametric models) 

including agrometeorological variables and FAPAR phenological metrics 

to estimate the herbaceous biomass at the end of the growing season. 

In general, approaches developed in this research are expected to provide 

diagnosis and prognosis tools to the scientific community, research and 

development projects and NGOs that are working on pastoral livestock 

monitoring and management of natural resources (e.g., land degradation, 

carbon sequestration...) especially in the West African Sahel countries. 
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1.5.2. Dissertation outline 

 

This dissertation comprises five chapters that can be declined as follows: 

Chapter 1 presents the research framework, the study area, the ground 

biomass data and the remote sensing data used, a review of the statistical 

modelling approaches for assessing the plant biomass production, and finally 

the research objectives and the dissertation outline. 

Chapter 2 addresses the first objective and starts with a comparative 

analysis of the linear regression equation with five nonlinear regression 

functions (cubic, power, exponential, logarithmic and quadratic), following 

the same approaches currently applied in Senegal on an annual basis. This 

comparison lies on the hypothesis that the nonlinear models are more suited 

for plant biomass estimation in Sahelian countries because of (1) the 

influence of soil background on NDVI values in areas with low plant cover 

and (2) the saturation problem in areas with very high plant productivity.  

Chapter 3 deals with the second objective through the development of 

multiple linear regression models based on FAPAR metrics and historical 

field data. The main purpose of the study was to establish end-of-season 

models of total fodder biomass production (i) for the overall study area, (ii) 

within four different ecological regions (i.e., ecoregions) and (iii) for early 

warning across the study area. A comparison of outputs from these new 

developed models with the CSE biomass product based on NDVI shows if 

improvements are made with the new multiple linear models in term of 

precision for fodder biomass assessment in Senegalese Sahel regions. 

Chapter 4 addresses the objective three and provides a framework to 

develop suited nonparametric regression models for herbaceous biomass 

estimation. Additionally to models establishment, this chapter aims to verify 

if the saturation problem affecting also the FAPAR product is attenuated 

when including non-optical data as the rainfall estimates (RFE) from the 

Famine Early Warning Systems Network (FEWS Net) and related water 

status indicators. This chapter investigates also the spatial and temporal 

relationship between the onset/end of the growing season retrieved from 

FAPAR and those of rainy season calculated from RFE data. An analysis of 

influence of the growing season onset and rainy season onset on the final 
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herbaceous biomass yield is carried out to highlight their potential for early 

monitoring of herbaceous biomass in Senegalese semi-arid areas. 

Chapter 5 presents a general conclusion for the different chapters and 
outlook.  
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2 Evaluation of simple regression approaches to 

estimate the total biomass 

Chapitre 2 - Evaluation of simple regression approaches to 

estimate the total biomass 

2.1. Introduction 

 

The rainfall is well known for its very high spatial and temporal 

variability in the Sahel. It is the main climatic driver of vegetation 

fluctuations (Hickler et al., 2005; Ali, 2010; Huber et al., 2011; Anyamba et 

al., 2014). For this reason, the forage availability at the end of the season is 

particularly variable and difficult to predict (CSE, 2010) in this part of the 

West African Sahel. The livestock is essentially pastoral with most part of 

dry matter, consumed by flocks, coming from natural pastures (Carrière, 

1996). The plant production of rangelands is crucial to the economy of local 

people and the satisfaction of their food requirements. 

The potential of remote sensing for estimating the annual production of 

herbaceous pasture in the Senegalese Sahel has been demonstrated by 

Tucker et al. (1983) using the Normalized Difference Vegetation Index 

(NDVI) from the National Oceanic and Atmospheric Administration-

Advanced Very High Resolution Radiometer (NOAA-AVHRR). 

Subsequently, several studies have been conducted in the Sahel semi-arid 

areas to better understand the relationship between plant biomass and NDVI 

applying a simple linear regression function (Tucker et al., 1985; Diallo et 

al., 1991; Prince, 1991). Currently, the Centre de Suivi Ecologique in 

Senegal and the Ministry of Livestock and Animal Industries in Niger use 

this linear regression approach to operationally assess forage availability in 

Sahelian rangelands. The variables used by these institutions are respectively 

the cumulated NDVI during the season identified visually and the seasonal 

maximum of NDVI.  

However, the relationship between the above-ground biomass and the 

NDVI is not exactly linear because of NDVI values that easily saturates 
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when the vegetation becomes too dense (Box et al., 1989; Pettorelli et al., 

2006; Vescovo et al., 2012). In addition, this empirical relationship depends 

on local conditions of the region where it was developed as well as on the 

vegetation type (Hiernaux and Justice, 1986; Jarlan et al., 2008). Such 

empirical models, therefore, should be checked or fitted for each ecological 

zone (i.e., semi-arid, arid, etc.) before application (du Plessis, 1999). For this 

reason, other fitting functions have been tested in a variety of ecosystems 

and found to be better than the linear one: the Exponential function for the 

Malian Gourma (Hiernaux and Justice, 1986), the power function for the 

steppe ecosystems of China (Jin et al., 2014) and the logarithmic and 

quadratic regression function for rangelands located in the northeast of the 

Tibetan plateau (Xiaoping et al., 2011). For a given region, also, it is 

essential to test such a vegetation index before using it as vegetation 

productivity indicator particularly in an operational system (Santin-Janin et 

al., 2009). This chapter aims: 1) to investigate five nonlinear fitting 

functions against the linear regression model used in West Africa Sahelian 

areas to date, and to show, if any, their limitation or suitability to better 

handle the relationship between the NDVI from the SPOT-VGT images and 

the ground data of total biomass (herbaceous + woody leaf); 2) to verify if 

the use of field sampling data from several successive years enables 

improvement in estimates accuracy. 

 

2.2. Materials and methods 

 

2.2.1. Monitoring sites and plant biomass data 

 

As described in Chapter 1 (Section 1.1.2), the study area corresponds to 

the Senegal rangelands regularly frequented during the year by livestock 

belonging particularly to the transhumance. It covers all or part of eco-

geographical areas that are the river valley, the pastoral zone (or Ferlo), the 

groundnut basin, the Niayes and the eastern Senegal. The choice of this area 

is justified firstly by the fact that it contains most of the natural pastures of 

the Senegalese pastoral area and, secondly, because it contains all the ground 

control sites of the CSE for which total biomass production data are 
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available (Figure 1.4). The 24 monitoring sites used in this study are well 

described in Chapter 1 (Section 1.2) and shown in Figure 1.4. 

 
2.2.2. Seasonal NDVI integration 

 
For this integration, the period of the plant growing season was 

determined visually by analyzing the dekadal NDVI images within the May-

October period of each year. Then the growing season was considered to 

occur for between the first dekad of August and the third decade of October 

(3 months) due to the fact that significant NDVI values are approximately 

observed for the whole study area from the end of July. To compute the 

seasonal cumulated NDVI (i.e., iNDVI) from SPOT-VGT images, a 

weighted average of the nine dekadal images of the considered growing 

period was applied as the CSE during the last three decades. The basic 

equation of the integration procedure can be written as follows: 

iNDVI = (∑ �����
��� ∗ 	��) / P   (9) 

 
Where iNDVI corresponds to the seasonal cumulation of NDVI value; NDVI 

indicates the index value of the 10-day images; Xj indicates the number of 

days used to compute the 10-day images and P corresponds to the number of 

days into the integration period (i.e., growing period). 

In the specific case of this study, the covered period by each SPOT-VGT 

S10 image was considered equal to ten since the number of daily images 

used in the synthesis process was unknown. So the retrieved iNDVI for a 

given pixel is a simple seasonal average of dekadal NDVI values within the 

august-october period. 

 
2.2.3. Seasonal NDVI maximum 

 
The plant growing period was determined for each pixel in the study area 

using the TIMESAT software (Eklundh and Jönsson, 2015). For this reason, 

the beginning and end of season were estimated to be respectively at 20 and 

50% of the seasonal amplitude of the NDVI (Diouf et al., 2015). As required 

by the tool to retrieve this metrics, the profile of the annual NDVI was 
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smoothed by the Savitzky-Golay method and the key parameters used are:  

seasonal parameter = 0.5 (to fit one season per year), number of envelope 

iterations = 2 (number of iterations for upper envelope adaptation), 

adaptation strength = 2 (strength of the envelope adaptation, maximum = 

10), and window size = 4 dekads. The seasonal peak of NDVI (NDVIpk) is 

given by the maximum value of the index recorded between the beginning 

and the end of the growing season. 

 
2.2.4. Statistical fitting functions 

 
To model the vegetation mass in Senegalese rangelands, six fitting 

functions including the commonly applied linear regression one were used in 

this study. All functions are easily accessible in various statistical analysis 

tools. The fitting was made with total biomass data collected over a period of 

fifteen years between 1999 and 2013 (except for 2004). Table 2.1 shows the 

basic equations of the functions used. 

 

Table  2.1 – Basic equations of fitting functions 

 
  

Noms Equations 

Cubic Y = b0 + (b1 * X) + (b2 * X2) + (b3 * X3)  

Power Y = b0 * (Xb1)  

Exponential Y = b0 * (e (b1 * X))  

Linear Y = b0 + (b1 * X)  

Logarithmic Y = b0 + (b1 * ln (X))  

Quadratic Y = b0 + (b1 * X) + (b2 * X2)  

Y= plant biomass production (kg.DM/ha) and X= iNDVI or NDVIpk 
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2.2.5. Assessment of model’s performance and coherence 

 
According to Djitèye and Penning de Vries (1991), "the models are 

simple representations of systems, defining a system as a coherent part of the 

real world". So a model is only good when it reflects more or less faithfully 

the process for which it was calibrated. The NDVI is an indicator of the 

vegetation greenness and somehow of the plant biomass production. This 

theoretically means that the higher the index value, the higher the plant 

production is. The calibrated models (by regression between the total plant 

biomass data and the NDVI variables) have been tested on NDVI values 

ranged between 0.1 and 0.7 to check if they express the reality or not. This 

interval contains the typical NDVI values that reflect the presence of 

vegetation especially when using the SPOT-VGT satellite data (Jarlan et al., 

2008). Thereafter a model was considered to be consistent when estimates of 

total plant biomass are increasing or decreasing along with the NDVI with 

“reasonable” values of plant biomass (i.e., which can be justified by the 

historical field data).  

The number of observations was generally small for a single year and 

varied between 14 and 24. This was due to the fact that plant biomass data 

were not regularly collected for all 24 monitoring sites because of the 

occasional lack of logistics or the early passage of bush fires before field 

campaigns. Because the coefficient of determination (R²) of the calibration is 

not an adequate measure to compare nonlinear models (Spiess and 

Neumeyer, 2010), the predictive capability of the yearly models was 

assessed in this study instead by their goodness-of-fit to the total biomass 

data used. The models validation was achieved using the bootstrap technique 

(Efron, 2004). Then, the criteria used to measure the predictive ability of the 

models were the R² between observed and predicted total biomass (i.e., after 

bootstrap) and the Root Mean Square Error (RMSE), which was calculated 

using the following formula: 

���� =	�
∑��� −	��

��²

�
   (10) 
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Where �� = observed total biomass, ��= predicted total biomass by models 

and � = total samples in the validation set. 

Multiple year data-based models were compared to the single year data-

based models of the same function. The Wilcoxon signed-rank test was 

computed at the 95% confidence interval and applied to appreciate if there is 

difference (or not) in accuracy of the total plant biomass estimates of these 

models. This comparison was done in order to check if the use of successive 

years data enables improving models from one year of samples. 

 
2.3. Results 

 
2.3.1. Statistical performance of fitted functions 

 
The coefficient of determination (R²) and the validation root mean 

squared error (RMSE) of the fitted models varied strongly from a year to the 

next for both iNDVI and NDVIpk variables (Figure 2.1). The Cubic and 

Quadratic functions showed the higher values of R² (Figure 2.1a, b) and 

consequently the lower values of RMSE (Figure 2.1c, d) as shown by the 

averaged values of these statistics between 1999 and 2013 in Figure 2.2. The 

lower R² and the higher RMSE were provided by the Linear and Logarithmic 

models which constitute the less accurate models. Meanwhile, the 

Exponential and Power fitted functions showed intermediary performance in 

comparison to the two previous groups of models. The Exponential models, 

however, showed substantially better performance than the Power models. 

The iNDVI was more suited than the NDVIpk for estimating the total 

biomass in Sahelian Senegalese rangelands. Considering the models one by 

one, indeed, the statistical performances were better when using iNDVI than 

NDVIpk (see Figure 2.2).  
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Figure  2.1 – Statistical performance of the six models using the iNDVI 
 and NDVIpk predictors: (a, b) the coefficient of determination (R²) between 

observed and predicted total biomass and (c, d) the root mean squared error of the 
validation (RMSE) from 1999  to 2013 (no data collection in 2004). 

 

 
Figure  2.2 – Averaged statistical performance of the six models using the iNDVI 

and NDVIpk predictors for the period 1999-2013. 
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2.3.2. Biophysical consistency of model estimations 

 
Simulations of the six models in the range of NDVI values between 0.1 

and 0.7 showed similar profiles of total plant biomass for both iNDVI and 

NDVIpk variables (Figure 2.3). The Exponential and Power models 

presented the most consistent profiles looking to our basic theory where the 

predicted value of total biomass must increase if the NDVI increase or vice 

versa. Simulations by the Quadratic indeed, did not always progress in the 

same direction than the NDVI values. The Cubic fitted function has given a 

sinusoidal profile while the Quadratic model showed a parabolic curve. This 

means that these latter models could predict decreasing total biomass while 

the NDVI values are increasing. This demonstrates their inconsistency to the 

reality as well. The Logarithmic and Linear models provided null 

estimations of the total biomass when the NDVI values were generally about 

0.25 for the Linear function and 0.3 for the Logarithmic one. With NDVI 

values below these limits, the two models predicted negative values of total 

biomass which is also contrary to reality. Furthermore, for the same value of 

NDVI, the total biomass predictions were generally lower with NDVIpk than 

iNDVI for all models. 



41 

 

Figure  2.3 – Estimates of total plant biomass within the 0.1-0.7 range of 
iNDVI and NDVIpk, averaged from 1999 to 2013. 

 
2.3.3. Multiple year data-based estimates of total biomass 

 
Only Exponential and Power models were considered in this analysis, 

since they are the only ones among the six models that have been proved to 

be statistically significant and to enable consistent estimation of total plant 

biomass for all NDVI values within the theoretical range (0.1-0.7) 

corresponding to vegetation presence. The Linear model was included for 
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comparison purpose. Calibrated with multiple year data, the Exponential 

model was substantially the most accurate (higher R² and lower RMSE), 

followed by the Power fitted function and the Linear model (lower R² and 

higher RMSE) for both iNDVI and NDVIpk variables (Table 2.2). This 

performance order confirms the results shown for the same fitted functions 

with single year data of total biomass (Section 2.3.1). Here again, the models 

run with NDVIpk (e.g., R² = 0.58 and RRMSE = 38% for the Exponential 

model) were generally less accurate than those established with iNDVI (e.g., 

R² = 0.63 and RRMSE = 35% for the same model). The Wilcoxon signed 

rank test (at 0.05 p-level) showed that there is no significant difference 

between the means of total biomass estimated with the single year data- and 

the multiple year data-based models within the studied period 1999-2013 

(Figure 2.4). For the three models, the p-value of the V-test was higher than 

0.05, indicating that the null hypothesis (i.e., the means of total biomass 

estimations are not different) was accepted. 

 
Table  2.2 – Statistical performance of the Exponential, Power and Linear models 
calibrated with field sampling data of the period 1999-2013. The relative RMSE 
(RRMSE) in percentage was calculated using the averaged total biomass from all 

samples of the bootstrap dataset. 
 

Model Equation R² 
RMSE 

(kg.DM/ha) 
RRMSE 

(%) 

iN
D

V
I 

Exponential 370.91 * e^ (3.57 * iNDVI) 0.64 806.98 34.6 

Power 8022.57 * (iNDVI^1.78) 0.62 831.36 35.7 

Linear -1234.75 + (iNDVI * 7407.31) 0.59 863.14 36.9 

      

N
D

V
Ip

k
 Exponential 277.79 * e^ (3.49 * NDVIpk) 0.58 868.12 37.2 

Power 6642.51 * (NDVIpk^ 2.03) 0.56 891.90 38.3 

Linear -1455.46 + (NDVIpk * 6596.07) 0.52 930.64 39.82 
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Figure  2.4 – Statistical difference of means of total biomass estimates made by 
Exponential, Power and Linear models using the Wilcoxon signed rank test at 0.05 

p-level. 

 
2.4. Discussion 

 
The assessment of fodder biomass is currently done in Senegal and Niger 

from the simple linear regression between ground biomass data and seasonal 

integration of NDVI (iNDVI) and seasonal maximum of NDVI (NDVIpk) 

respectively. Taking into account the saturation effect of NDVI in areas with 

high plant biomass productivity mentioned by many authors (Santin-Janin et 

al., 2009; Bégué et al., 2011; Mbow et al., 2013; Tian et al., 2015), one 

should expect a nonlinear relationship between NDVI values and total 

biomass data, instead. However for a given region, the most suited fitting 

function is not known in advance since the empirical relationship between 

plant biomass and NDVI depends on the local conditions in which it was 

developed (Hiernaux and Justice, 1986; Jarlan et al., 2008). For these 

reasons, five simple nonlinear functions (Exponential, Power, Logarithmic, 

Quadratic, and Cubic) were tested against the usual Linear model to 

determine the most accurate and consistent to estimate total biomass from 

NDVI variables in Sahelian rangelands of Senegal.  

The results showed a high inter-annual variability of the relationships 

between NDVI and plant total biomass. As supported by Prince (1991), this 

variability materialized by inter-annual variation of R² and RMSE values is 

characteristic to the Senegalese Sahelian areas. Among the six models, the 

Logarithmic model was the lesser accurate followed by the Linear function 

while the most accurate were the Cubic and Quadratic fitted functions. The 
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Exponential and Power models showed intermediary accuracies which were, 

however, generally higher when using the iNDVI than NDVIpk variable. 

These two latter functions provided the most consistent behavior of total 

biomass estimates which increased, as expected, in the same way as the 

NDVI values. Meanwhile, the Cubic and Quadratic models even statistically 

good did not simulate consistently the total biomass within the given interval 

of vegetation presence (0.1 – 0.7). Particularly, the Quadratic fitted function 

showed a parabolic profile of estimated total biomass which means that this 

model could provide decreasing total biomass even if the NDVI values are 

increasing. This indicates that these two models are not suited for the 

Senegalese Sahelian rangelands at the risk to make erroneous estimations of 

total biomass at the end of the growing season. In addition to be the less 

accurate among the six studied functions, the Logarithmic and Linear models 

did not work very well with the low NDVI values. They provided null 

estimation of the total biomass with NDVI values about 0.3 even those do 

not necessarily mean absence of vegetation in Sahel areas. Below this value, 

the Logarithmic and Linear fitted functions predicted negative values of total 

biomass. These malfunctioning could be a limitation for the two models to 

be applied in Sahelian areas with low vegetation cover and in extreme years 

characterized by an important deficit of total biomass as in 2002 (Figure 

2.4).  In the year 2002, for example, pixels with negative NDVI values were 

masked out since they could impede the use of the corresponding images to 

establish a fodder balance (i.e. ratio between fodder production and livestock 

size into a delineated area). Particularly for the Logarithmic model, the 

exclusion of the negative estimates has led to an important loss of 

information in the northern part of the study area. For the Exponential and 

Power models, however, the distribution of the total biomass was spatially 

complete even if the Exponential fitted function provided higher predictions 

for a given NDVI variable (e.g., predictions above 6,000 kg.DM/ha to the 

south of the study area for iNDVI). 

From a multiple year data basis, the Exponential model was the most 

accurate followed by the Power function that was in turn more accurate than 

the Linear model as in the case of single year data calibration. This order of 

models performance was observed both for iNDVI and NDVIpk. No 
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significant difference was observed between means of total biomass 

estimated by models calibrated using single year data and multiple year data 

for the studied period 1999-2013. This means that there is statistically no 

improvement in calibrating the models with multiple year data. Models 

based on single year biophysical information were good enough to provide 

total biomass estimates at the end of the season. However, the advantage of 

using models based on several successive years of field sampling data 

remains in the fact that they can effectively enhance the stability of the 

estimates (Jin et al., 2014) and in their applicability on a given year without 

collecting the corresponding field biomass data. Multiple years models can 

be very useful when there is problem to conduct field data collection (e.g., 

lack of logistics, early passage of bushfire in sites…). The iNDVI was 

shown, in general, to be more suited than the NDVIpk for estimating the 

total biomass in Senegalese Sahelian rangelands. This contrasts with results 

obtained by Mougenot et al. (2000), where the NDVIpk was found to be the 

more suited for such Sahelian areas. 

Furthermore, in addition to their monocriterion character (they include 

only part of the reality with a single explanatory variable), the simple 

regression approaches apply the same equation for all pixels of the studied 

area. This constitutes another drawback of these methods with the well-

known high spatial variability of ecological conditions (i.e., soil type, 

rainfall, woody cover, and species patterns) across the Sahel. For this reason, 

different models which include multiple variables better describing the 

ecological characteristics (e.g., phenological metrics from satellite datasets) 

of different Sahelian ecoregions are needed to improve this approach. 
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Figure  2.5 – Example of total biomass predictions for the year 2002 with iNDVI and 
NDVIpk. Negative predictions were masked out and correspond to the white pixels 

within the study area. 
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2.5. Conclusion 

 
Instead of the Linear fitting function, the Exponential and Power models 

can be applied to fit the field sampling data with the seasonal NDVI data for 

estimating accurately and consistently the end of season total biomass in 

Senegalese Sahel rangelands. The Quadratic, Cubic and Logarithmic models 

show inconsistency and malfunctioning for estimating the total biomass and, 

therefore are not recommended for this purpose in the studied area. Unlike 

the seasonal maximum, the more suited variable is the seasonal integration 

of NDVI values within the August-October period. No significant difference 

exists between the means of total biomass estimated with models using 

single year data and those using several successive years of field sampling 

data. The multiple year data-based models, however, offer the advantage of 

more stable coefficients and their usability for predicting the total plant 

biomass on unseen years. To improve the 1980’s estimating method, a new 

approach including specific models for the different Sahelian ecoregions has 

required and investigated in the next chapter. 
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3 
Total biomass estimation using multiple-linear 
regression models and phenological metrics from 
FAPAR time Series 

 

This Chapter was adapted from the following publication: 

Diouf, A., Brandt, M., Verger, A., Jarroudi, M., Djaby, B., Fensholt, R., 
Ndione, J., & Tychon, B. (2015). Fodder Biomass Monitoring in Sahelian 

Rangelands Using Phenological Metrics from FAPAR Time Series. Remote 
Sensing, 7, 9122-9148. Doi:10.3390/rs70709122. 

Chapitre 3 - Total biomass estimation using multiple-linear 

regression models and phenological metrics from FAPAR time 

Series 

3.1. Introduction 

 

Livestock farming is the most widespread human activity and most 

dominant form of land use in rangeland ecosystems (Alkemade et al., 2013). 

Worldwide, it contributes 40% of the agricultural gross domestic product, 

and provides income for more than 1.3 billion people and nourishment for at 

least 800 million food-insecure people (Herrero and Thornton, 2013). In the 

West African Sahel in particular, livestock is the primary renewable resource 

(Dicko et al., 2006) and the region is characterized by an extensive breeding 

through rangelands. Rainfall here is considered to be the main driving factor 

responsible for fluctuations in natural vegetation (Hickler et al., 2005; Huber 

and Fensholt, 2011; Anyamba et al., 2014) and, therefore, fluctuations in 

grazing stock, for which growth is limited to 3–4 months of the rainy season 

(between July and October), are closely linked to rainfall. Because of 

unpredictable intra-annual variations in rainfall, the vegetation is often 

exposed to a water shortage in the growing season, sometimes leading to 

severe droughts, food shortages, and production deficits (Fensholt et al., 

2004). Given the random and recurring environmental stress, estimating 

plant biomass in the rangelands is important in assessments of livestock 

fodder availability (Mbow et al., 2014). Depending on the needs of the 
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agricultural monitoring systems, however, estimates should be provided as 

early as possible in the growing season so that stakeholders can take early 

decisions and identify areas with large variation in (and potential for) 

vegetation productivity (Atzberger, 2013). 

The estimation of biomass production using remote sensing data has been 

the subject of many studies in the Sahel (Tucker et al., 1983; Tucker et al., 

1985; Diallo et al., 1991; Prince, 1991; Rasmussen, 1992; Mougenot et al., 

2000; Diouf and Lambin, 2001). The Normalized Difference Vegetation 

Index (NDVI) is the most common satellite index used in the region for the 

temporal monitoring of vegetation (Bénié et al., 2005). Another widely used 

indicator is Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR), recognized as a key variable in the assessment of vegetation 

productivity (Prince, 1991; Meroni et al., 2013). FAPAR is defined as the 

fraction of radiation absorbed by the green vegetation elements in the 400–

700 nm spectral domains under specified illumination conditions (Baret et 

al., 2013). It is directly linked to photosynthesis and therefore expresses a 

canopy’s energy-absorption capacity (Fensholt et al., 2006). Many authors 

have studied the relationship between FAPAR and NDVI (Goward and 

Huemmrich, 1992; Bégué, 1993; Hanan et al., 1995; Myneni et al., 1995; Le 

Roux et al., 1997; Lind and Fensholt, 1999; Fensholt et al., 2004), which has 

been shown to be generally linear for green vegetation, particularly in the 

semi-arid environment of the Sahel (Fensholt et al., 2006). 

The Centre de Suivi Ecologique (CSE) has been estimating total annual 

biomass in Senegal on an operational basis since 1987 in order to monitor 

fodder availability in the national pastoral rangelands. The method used is 

inspired by an approach proposed in 1983 by (Tucker et al., 1983) and is 

based on an empirical relationship between the satellite seasonal integrated 

NDVI and in situ measured biomass at the end of the growing season. The 

same approach is used by Niger’s Ministry of Livestock and Animal 

Industries to assess forage availability in the rangelands at the end of the 

season. Although very useful for the spatial management of pastoral 

resources, this approach based on a simple linear regression has several 

limitations, including: (i) its temporal scale is restricted to biomass data of 

the ongoing year not being used again in the following year, which leads to 
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high costs for annual data collection; (ii) its low predictive potential is due to 

the large time gap between data collection (mid-October) and published 

results (late December); and (iii) this is a single-predictor model, which 

generally omits details of reality (Neville, 2013). 

The satellite-derived seasonal metrics of plant phenology and seasonal 

dynamics in reflectance and greenness (Hanes et al., 2013) could be very 

useful for establishing multiple-predictor models for estimating plant 

biomass production. Many authors have endorsed the applicability of these 

phenological metrics for crop (Atzberger, 2013) and grassland (Colombo et 

al., 2011) phenological monitoring, particularly for analyzing African 

farming systems (Vrieling et al., 2011). Recently, phenological metrics 

based on the FAPAR time series were recommended by (Meroni et al., 

2014b) for providing relevant early information on biomass production in 

the Sahel. When associated with ground biomass data, such variables would 

enable early warning models to be established and would improve the use of 

early warning systems (EWS) in planning emergency responses and food aid 

interventions in the case of a forthcoming crisis (Meroni et al., 2014a). 

A significant relationship (p < 0.001) between the field measurements of 

herbaceous biomass and the cumulated FAPAR over the growing season was 

found by Meroni et al. (2014b) in Senegal, although only 34% of the in situ 

biomass was explained by the linear regression. The study focused only on 

herbaceous biomass, however, and recently (Brandt et al., 2015) highlighted 

the importance of woody plants in the satellite time series of vegetation 

indices in the Sahelian ecosystems.  

In this context, the present study sought to develop an operational system 

for monitoring total biomass, including both herbaceous and woody leaf 

biomass, rather than focusing exclusively on using remote sensing data to 

forecast vegetation productivity (Funk and Brown, 2006; Meroni et al., 

2014a). The proposed method is based on multiple linear regression models 

using phenological variables derived from the seasonal dynamics of the 

FAPAR SPOT-VGT time series and ground measurements of total biomass 

production collected in different Sahelian ecosystems in Senegal over 15 

years. The specific objectives of the study were to: (i) determine the proper 

metrics and establish the best model for total biomass estimation across the 
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study area; (ii) verify whether or not the disaggregation of the overall dataset 

into ecoregions and related metrics improved the estimates; and (iii) validate 

the multiple-predictor models developed, including an early warning model, 

based on the comparison with ground measurements as well as with the CSE 

biomass product that is currently used for fodder-monitoring in Senegal. 

 

3.2. Materials and methods 

 

3.2.1. Study area and limit of studied ecoregions 

 

The study area is part of the one described in Chapter 1 (see Section 

1.1.2). It covers the northern and eastern parts of Senegal between 12.9°N 

and 16.8°N latitude and 12.3°W and 16.5°W longitude (an area of about 

98,556 km²; Figure 3.1) and includes all pastoral areas of the country. The 

mean annual rainfall varies between 250 and 750 mm from north to south, 

based on the average rainfall estimates (RFE) time series (1999–2013) of the 

Famine Early Warning Systems Network (FEWS Net) with 8 km spatial 

resolution (Herman et al., 1997). The terrain is relatively flat, with a 

maximum altitude of 163 m in the southeastern part of the study area. 

In this study, the 24 ground control sites were grouped into four 

ecological zones (ecoregions): Northern Sandy Pastoral Region (ECOnorth), 

Ferruginous Pastoral Region (ECOeast), Mixed Pastoral-Agricultural Region 

(ECOwest), and Eastern Transition Region (ECOsouth). The ECOwest area 

corresponds to a combination of the Southern Sandy Pastoral Region (north) 

and Agricultural Expansion Region (south) of the initial classification 

proposed by Tappan et al. (2004). Detailed information on the ecoregions 

used is provided in Table 3.1 (see also (Tappan et al., 2004; Brandt et al., 

2015)). 
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Figure  3.1 – Location of monitoring sites in the study area covering a range of 

Sahelian ecosystems in Senegal. The isohyets are based on average rainfall estimates 

provided by FEWS Net between 1999 and 2013. 

 
  



53 

Table  3.1 – Description of ecoregions: vegetation type and main woody species, 

annual rainfall (based on average values of RFE of FEWS Net data for the period 

1999–2013), biomass, and woody cover based on ground measurements (1999–

2013). The values for rainfall, woody leaf biomass, herbaceous biomass, and woody 

cover correspond to the average from sites in each ecoregion. 

Ecoregion 
Main Vegetation Type and  

Woody Species 

Annual 

Rainfall 

(mm) 

Woody Leaf 

Biomass 

(kg·DM/ha) 

Herbaceous 

Biomass 

(kg·DM/ha) 

Woody 

Cover  

(%) 

ECOnorth 

(Sandy 

Pastoral) 

Pseudo-steppe: Boscia 

Senegalensis, Balanites aegyptiaca, 

Guiera Senegalensis, Calotropis 

procera, Combretum glutinosum, 

Sclerocarya birrea 

345.0 490 905 5.5 

ECOeast 

(Ferruginous 

Pastoral) 

Shrub savannah: G. Senegalensis,  

C. glutinosum, Pterocarpus lucens, 

Grewia bicolor, B. Senegalensis, 

Adenium obesum 

488.0 1219 1257 17.7 

ECOwest 

(Pastoral-

Agricultural) 

Shrub/tree savannah: C. glutinosum, 

G. Senegalensis, G. bicolor, B. 

Senegalensis,  

C. micranthum, Commiphora 

Africana 

524.0 1204 1867 16.9 

ECOsouth 

(Eastern 

Transition) 

Tree savannah/woodland: C. 

glutinosum, Strychnos spinosa, 

Acacia macrostachya, Crossopteryx 

febrifuga, Terminalia avicennioides, 

Maytenus Senegalensis 

633.0 2611 1937 33.1 

 

3.2.2. Ground Biomass Data 

 

The in situ biomass data used in this Chapter were obtained from the CSE 

database and covered the 1999–2013 period, apart from 2004 when no data 

was collected. More details on the collection of these data are provided in 

Chapter 1 (see Section 1.2). 
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3.2.3. Satellite Data 

 

3.2.3.1. CSE biomass product 

 

The total biomass estimated by the CSE based on a NDVI single-

predictor model was used here for comparison purposes. The CSE biomass 

estimates are derived annually at the end of the growing season by a simple 

linear regression between the integrated NDVI over the growing season and 

ground biomass measurements for the corresponding year. The growing 

season is determined by visual analysis of dekadal (10-day) images 

throughout the May–October period. The start of the season corresponds 

roughly to the dekadal in May that displays generalized plant growth for the 

whole study area and the end of the season is fixed at the third dekade of 

October. Between 1987 and 1999, this method was implemented using the 

seasonal integrated NDVI (i.e., seasonal weighted average) from the 

Advanced Very High Resolution Radiometer (AVHRR) of the National 

Oceanic and Atmospheric Administration (NOAA) satellites acquired in 

Local Area Coverage (LAC) format at the CSE receiving station in Dakar. 

Since 2000, the 1-km NDVI S10 products derived from atmospherically 

corrected SPOT-VEGETATION reflectances based on the maximum 

composition value (MVC) algorithm at 10-day intervals have been used 

(VITO, 2005). Here, we used only the CSE biomass estimates from 2000, 

which are based on the same SPOT-VEGETATION satellite sensor as our 

biomass estimates. It has to be noted that the aim of the research presented 

here was not a direct one-to-one comparison between models, since different 

datasets were used for their calibration. On the contrary, the comparison is 

done at the level of biomass output estimates and the CSE biomass product 

represents the reference product used operationally for fodder-monitoring in 

Senegal. 
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3.2.3.2. Phenological metrics from FAPAR time series 

 

We used the 1999–2013 time series of the GEOV1 Copernicus Global 

Land FAPAR product derived from the SPOT-VEGETATION instrument. 

The products are freely available at a 1-km resolution and 10-day intervals 

on http://land.copernicus.eu/global. The principles for generating this 

FAPAR dataset are based on the use of neural networks that were first 

trained with CYCLOPES reflectances and existing MODIS and CYCLOPES 

FAPAR products (Verger et al., 2008). In order to take benefit from their 

complementarities, MODIS and CYCLOPES products were fused by 

assigning higher weights to the MODIS (CYCLOPES) product for the high 

(low) FAPAR values, with weight being defined by previous validation 

studies (Weiss et al., 2007 ; McCallum et al., 2010). The trained neural 

network algorithm was then applied using the directionally normalized top 

of canopy reflectance in the red, near infrared, and shortwave infrared bands 

and the cosine of the sun zenith angle at the time of satellite overpass (i.e., 

about 10:30 for VEGETATION). For details on the algorithm used to 

estimate GEOV1 products, we refer to Baret et al. (2013). Recent validation 

studies indicated that GEOV1 outperformed MODIS, CYCLOPES, and 

JRC-SeaWIFS FAPAR products in both accuracy and precision (Atkinson et 

al., 2012). 

Phenological metrics were derived from the GEOV1 FAPAR time series. 

Although compositing techniques were used for synthesizing dekadal 

GEOV1 products, these could have been affected by artifacts related to the 

presence of clouds (Fensholt et al., 2007) and residual atmospheric effects 

(Chen et al., 2004). Prior to using them for phenology detection, therefore, 

filtering the noise was essential (Atkinson et al., 2012). This is particularly 

important in the Sahel zone where the vegetation has a rapid phenological 

cycle associated to the short rainy season when most of the optical satellite 

observations are missing or affected by noise (Vintrou et al., 2014). GEOV1 

FAPAR time series were filtered using the Savitzky-Golay (SG) fitting 

method available via TIMESAT software (Jönsson and Eklundh, 2004). SG 

is a simplified least squares fit convolution that can be understood as a 

weighted moving average filter with weighting provided as a polynomial of 
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a given degree (Chen et al., 2004). This filtering method was demonstrated 

to improve other existing temporal filters for reconstructing satellite time 

series in terms of the accuracy as compared to the original data by ensuring 

robustness to noise and missing data, while preventing over-smoothing 

(Kandasamy et al., 2013). The accuracy of the estimation of the timing of 

phenological stages for the start, maximum, and end of the season as derived 

from the Savitzky-Golay reconstructed time series is about 10 days for the 

sites with a percentage of missing data <10% (which is mostly the case in 

the study area, except in some regions mostly located in the south close to 

the Gambia River; Appendix Figure 5.1-A1 and Figure 5.2-A2) but shows a 

rapid decrease with the percentage of missing data and the length of the 

period with missing data (Verger et al., 2011; Kandasamy et al., 2013; 

Verger et al., 2013b). The key parameters used in the TIMESAT SG filter 

are: seasonal parameter = 0.5 (to fit one season per year), number of 

envelope iterations = 2 (number of iterations for upper envelope adaptation), 

adaptation strength = 2 (strength of the envelope adaptation, maximum = 

10), and window size = 4 (half-window for SG filtering, also defining the 

degree of smoothing) (Eklundh and Jönsson, 2011). The beginning and end 

of the growing season were estimated at 20% and 50% of the FAPAR 

seasonal amplitude. These latter values were chosen after a qualitative 

analysis was conducted of the growth profile for different pixels throughout 

the study area. The result was a smoothed curve fitted to the upper envelope 

of the FAPAR values of the time series. From the smoothed profiles, 11 

phenological metrics were calculated (Table 3.2 and Figure 3.2). All metrics 

were computed at the pixel scale (1-km spatial resolution) for each year 

between 1999 and 2013. The annual values were then averaged for each site 

over a 3 × 3 pixel window to match, as far as possible, the spatial sampling 

of ground data. 

 

  



57 

Table  3.2 – Phenological metrics derived from the FAPAR time series (extracted 

using TIMESAT software). 

No

. 
Variables Abbreviation Short Definition 

1 Start of season SOS 
Time when the left edge has increased to 20% of the 

amplitude 

2 End of season EOS 
Time when the right edge has decreased to 50% of the 

amplitude 

3 Length of season LOS Time from the SOS to the EOS 

4 
Middle of 

season 
PMID 

Computed as the mean value of the times when the signal is 

higher than 80% of the amplitude 

5 Base value BVAL Averaged left and right minimum values over the annual cycle 

6 Maximum value PEAK Highest FAPAR value over the season 

7 Amplitude AMPL Difference between the maximum and BVAL 

8 Large integral LINTG Integral of the signal from the SOS to the EOS 

9 Small integral SINTG 
Integral of the signal above the BVAL from the SOS to the 

EOS 

10 Left derivative LDERIV 
Rate of FAPAR increase at the SOS, between the left 20% and 

80% of the amplitude 

11 Right derivative RDERIV 
Rate of FAPAR decrease at the EOS, between the right 20% and 

80% of the amplitude 

 

 

 
Figure  3.2 – Mean annual GEOV1 FAPAR time series for the four ecoregions in the 

study area. Phenological metrics are represented on the ECOsouth curve. For 

acronyms see Figure 1.4 and Table 2.3. 
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3.2.4. Modelling of the total plant biomass production 

 

3.2.4.1. Reduction of explanatory variables and model development 

 

In order to understand the relationship between phenological metrics and 

total biomass across the Senegalese rangelands, a Pearson correlation 

analysis was performed on the whole dataset (n = 263). Only those variables 

that were significantly correlated to the total biomass at the 99% significance 

level were considered for the study. The significant phenological metrics 

were sorted according to their importance in predicting total biomass using 

the Partial Least Squares (PLS) regression method (Wold, 2001). This 

technique is generally used to build predictive models when the number of 

explanatory variables is large or presents multi-collinearity. The usefulness 

of such a method to determine the most important predictor variable in 

predicting a response variable was discussed by (Afanador et al., 2013). The 

ranking was performed using the statistical criterion Variable Importance in 

the Projection (VIP) (Mehmood et al., 2012). Only the most important 

phenological metrics with a VIP ≥ 0.8 (Desbois, 1999) related to total 

biomass estimation were selected so as to reduce the number of variables for 

model development and therefore avoid the computational problems. 

In the development of statistical models, single selection parameters 

could be biased and only a combination of different unrelated parameters 

should be used to assess model performance. Several performance criteria 

for measuring the quality of the models have been proposed in the literature 

based on minimizing a penalty parameter. In this study, we used the Akaike 

Information Criterion (AIC) and the adjusted coefficient of determination 

(Adj. R²), which constitutes a good indicator of model robustness (Johnson 

et al., 2006). The Adj. R² is a corrected value of the R², taking account of the 

influence related to the number of predictor variables in a given model 

(Kouadio et al., 2012) and also considering the sample size. 

In order to detect the influence of observations on the model’s adjustment 

and to verify the homoscedasticity and normality of residuals, we analyzed 

the Cook’s Distance, the Studentized Residuals, and the QQ-Plot (Confais 

and Le Guen, 2006). The Variance Inflation Factor (VIF) indicator was also 
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used for detecting multi-collinearity between the variables in the models. 

Only those models in which all included variables had a VIF below 10 were 

selected (Belsley et al., 1980). Table 3.3 presents the main criteria and 

indicators used for model selection. 

 

Table  3.3 – Criteria for the variable reduction, model selection, and validation. 

Criterion Annotation Formula Decision Rule 

Ajusted coefficient of 

determination 
Adj. R² 1 − (1 − ��) �

� − 1

� − �
� 

Performance increases 

with |Adj. R²| 

Akaike Information 

Criterion 
AIC n.log �

���

�
� + 2(p+1) 

Performance increases 

with lower AIC 

Variation Inflation 

Factor 
VIF 1 (1 − �²�)⁄  

VIF > 10 points to co-

linearity 

Variable Importance in 

the projection 
VIP ���[���(�� ‖��‖⁄ )�]/�(���)

�

���

�

���

 
Variable is important if 

VIP ≥ 0.8 

Mean Absolute Error MAE 
∑ |O� −	P�|
�
���

n
 

A low MAE shows 

higher reliability 

Normalized Mean 

Absolute Error 
NMAE 

���

��
× 100 

A low NMAE shows 

higher reliability 

 

Where n is the number of observations; p is the number of predictor 

variables; R²j is the correlation coefficient for regression of Xj with the (p-1) 

other variables; SSE is the sum of squared errors; Oi is the observed biomass 

in the field, Pi is the predicted biomass by model; Bm is the mean observed 

biomass; A is the number of relevant components for prediction; wa is the 

loading weight; SSa is the sum of squares explained by the ath component; 

(wa/‖wa‖)² is the importance of the corresponding variable (Mehmood et al., 

2012). 

 

3.2.4.2. Bootstrap resampling and model verification 

 

The small sample size of the ground dataset does not allow a reliable 

assessment of the bias and variance report of the evaluated models and 

extraction of a validation sample of adequate size simultaneously. In order to 

overcome this, we used the bootstrap validation technique (Efron, 2004) to 
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assess the predictive ability of the models (Borra and Di Ciaccio, 2010). This 

technique involves using multiple randomized subsets of the observations in 

the original sample (Afanador et al., 2013). It provides random samples with 

the same size as the original sample, each of which is referred to as the 

bootstrap sample (Acquah, 2012). The number of bootstrap samples was set 

at 200, with a sample rate of 0.75. Statistical calculations were performed 

using these bootstrap samples, for which the standard deviation of the re-

sampled statistics was the empirical standard error of the statistics generated 

by the original sample (Cole, 1999). 

The parameters used to assess the predictive ability of the final models 

were the Mean Absolute Error (MAE) and the Normalized Mean Absolute 

Error (NMAE) (Table 3.3). The MAE was chosen for the model verification 

because it provides an unambiguous measure of the magnitude of the 

average error and is therefore more appropriate than the Root Mean Square 

Error (RMSE) for dimensioned evaluations of average model-performance 

error (Willmott and Matsuura, 2005). Finally, only models that included, at 

most, three variables with the highest Adj. R², while minimizing the AIC, 

MAE, and NMAE criteria, were selected. 

 

3.3. Results 

 

3.3.1. Relationship between total biomass and phenological variables 

 

The results of the Pearson correlation analysis (Table 3.4) showed that 

the phenological variables extracted were all significantly correlated to the 

total biomass (p < 0.0001), except for the increasing rate during the green-up 

stage (LDERIV). The large FAPAR integral (LINTG) had the highest 

correlation value, while the lowest correlation was produced by LDERIV. 

Therefore, only LDERIV was removed, and all the remaining phenological 

variables were used to assess total biomass across the Senegalese rangelands. 
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Table  3.4 – Mean values, standard deviation (SD), and Pearson correlation statistics 

of the phenological variables with total biomass collected in the 1999-2013 period (n 

= 263). For acronyms, see Table 3.2. 

Variable 

Simple Statistics Pearson Correlation Statistics 

Mean SD R p-value 

LINTG 6.09 2.88 0.79 <0.0001 

PEAK 0.65 0.19 0.77 <0.0001 

SINTG 5.25 2.34 0.76 <0.0001 

AMPL 0.59 0.17 0.72 <0.0001 

LOS 109 (days) 30 0.63 <0.0001 

BVAL 0.06 0.05 0.59 <0.0001 

SOS 196 (days) 20 −0.52 <0.0001 

RDERIV 14.03 6.10 0.45 <0.0001 

EOS 304 (days) 21 0.38 <0.0001 

PMID 258 (days) 14 0.23 0.0002 

LDERIV 20.85 6.21 −0.11 0.0825 

 

3.3.2. Importance of the explanatory variables in total biomass 

prediction 

 

Key variables were identified by VIP in order to further reduce the 

number of variables for model development. At the scale of the whole study 

area, the results confirmed that LINTG was the most important phenological 

metric, whereas at the ecoregion scale, the maximum FAPAR (PEAK) was 

the most important (Figure 3.3). Variables of minor importance (VIP < 0.8) 

were removed and the remaining variables for model selection differed 

among the ecoregions. For example, SOS was the least important variable 
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for ECOnorth and ECOwest, whereas in ECOeast and ECOsouth, the least 

important variable was middle of season (PMID). 

 

Figure  3.3 – Phenological variable importance for total biomass estimation across 
ecoregions and for the whole study area. Dashed dark line shows the threshold (VIP 

= 0.8) for the selection of key variables used for further model development 
(ecoregions are shown in Figure 3.1). 

 

3.3.3. Selection and verification of the estimation models 

 

Table 3.5 presents the best-performing models built across the study area 

and per ecoregion. It shows that the study area model (Model_SA) with the 

LINTG, LOS, and RDERIV variables could be considered the most suitable 

ones for estimating total biomass across the study area at the end of the 

growing season, with an adjusted R² (Adj. R²) of 0.67 and an NMAE of 

26%. Although slightly less strong (Adj. R² = 0.62) compared with 

Model_SA, the early warning model (Model_EW) using the PEAK and SOS 

variables also showed good accuracy (NMAE = 27.3%). For the ecoregions, 



63 

the models showed good accuracy, with NMAE usually below 24%, apart 

from ECOnorth (NMAE = 31%). The Adj. R² values were generally low and 

varied between 0.15 (ECOwest) and 0.49 (ECOeast). The selected 

phenological metrics varied among ecoregions. According to the VIP, PEAK 

was ranked as the most important variable in predicting total biomass 

throughout the four ecoregions (Figure 3.3). However, according to the 

prediction performance of the ecoregion models, PEAK was selected only in 

models for ECOnorth and ECOwest, whereas in ECOeast and ECOsouth, the 

models included LINTG (Table 3.5), suggesting a preferential selection of 

variables depending on ecoregion. LOS was also an important metric in 

modelling total biomass across ECOeast and ECOsouth. 

 

Table  3.5 – Calibration and bootstrap verification performances of multiple linear 
regression models for total biomass estimation across the study area and per 

ecoregion. “n” is the size of the original sample used for calibration and “n_test” is 
the size of all bootstrap samples used for statistical calculations of verification. For 

other acronyms, see Tables 3.2 and 3.3. 

Region Estimation Model of Total Biomass (B) 
Adj. 

R² 

MAE NMAE 

n/n_test 

(kg·DM/ha) (%) 

Study area 

Model_SA 

B = 424.13 × LINTG − 

100.91 × LOS + 39.80 × 

RDERIV + 293.71 

0.67 608 26.0 263/39600 

Model_EW 
B = 4594.18 × PEAK − 

129.09 × SOS + 1866.17 

0.62 641 27.3 263/39600 

Ecoregion 

ECOnorth 

B = 1703.10 × PEAK + 

1644.92 × BVAL + 

432.94 

0.24 427 31.0 121/18600 

ECOeast 

B = 463.02 × LINTG − 

296.29 × LOS − 152.37 × 

SOS + 5969.39 

0.49 575 23.1 65/9800 

ECOwest 
B = 3341.72 × PEAK + 

282.87 × PMID − 7125.91 

0.15 589 19.1 44/6600 

ECOsouth 

B = 603.53 × LINTG + 

52.83 × RDERIV − 

325.30 × LOS + 1944.04 

0.31 513 11.3 33/5000 
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3.3.4. Comparison with the NDVI-based CSE biomass product 

 

In order to assess the improvement in the quality of biomass estimates 

provided by the multiple linear models, the estimates from Model_SA, 

Model_EW, and the ecoregion models were compared with the CSE biomass 

product (Figures 3.4 and 3.5). The total biomass estimates for 1999 were 

removed because the CSE estimates were based on LAC AVHRR data for 

that year (see Section 3.2.3.1). The relationship between the observed and 

estimated total biomass was plotted using the validation dataset comprising n 

= 247 samples collected between 2000 and 2013 (except 2004). The 

relationship between satellite and ground estimates of biomass was highly 

significant in all cases (p < 0.01). Model_SA (R² = 0.68, Figure 3.4a), 

Model_ EW (R² = 0.64, Figure 3.4b), and the ecoregion models (R² = 0.77; 

Figure 3.4c) outperformed the CSE product (R² = 0.51, Figure 3.4d). The 

CSE product was the least accurate, with an MAE of 818.46 kg·DM/ha, 

whereas the ecoregion models used throughout the study area, with varying 

metrics per ecoregion, provided the most reliable estimates (MAE = 489.21 

kg·DM/ha). Total biomass estimates from the ecoregion models provided the 

highest slope (0.78) and the lowest offset (517) values of the linear 

regression equation with observed data, indicating an improvement in 

prediction accuracy when disaggregating the study area and applying models 

related to ecological characteristics. The ecoregion models allowed a better 

sampling of the space of biomass and corrected the slight saturation effects 

observed for Model_SA and Model_EW (Figure 3.4a,b) where high biomass 

values were misrepresented. The validation with ground measurements 

demonstrated that the new developed models improved the estimation of 

total biomass as compared with the CSE current product. This was 

confirmed by the temporal evolution of the estimated total biomass from 

these models between 1999 and 2013 (Figure 3.5). Along the full time series, 

estimates provided by Model_SA, Model_EW, and the ecoregion models 

had similar values, unlike the CSE biomass products that were generally 

found to be over-estimating total biomass. This over-estimation was clearly 

apparent in 2010, when estimated total biomass by CSE products exceeded 
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5000 kg·DM/ha, whereas the observed biomass value was about 3000 

kg·DM/ha, similar to the values provided by the multiple-predictor models. 

 

 

Figure  3.4 – Relationships between observed and predicted total biomass by (a) 
Model_SA, (b) Model_EW, (c) ecoregion models, and (d) CSE biomass product. 
Evaluation over the same validation dataset (n = 247 samples) from 2000 to 2013. 

The given statistics are the coefficient of determination (R²), the mean absolute error 
(MAE, kg·DM/ha), and the slope and offset of the linear regression equation. For 

color correspondence, see Figure 3.1. 
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Figure  3.5 – Temporal evolution of the estimated total biomass from CSE and 
multiple predictor models with regard to observed total biomass, averaged from the 

monitored sites between 1999 and 2013. Ground data are missing for 2004.  
Only satellite estimates from SPOT-VEGETATION data are considered (i.e., CSE 

from the year 2000). 

 

3.3.5. Testing the multiple-predictor model for early warning 

 

The early warning model (Model_EW) was tested and applied in 2002 

and 2010 (Figure 3.6a,b), selected because of extreme biomass production in 

these years compared with the 1999–2013 mean across the study area. Total 

biomass production was particularly low in 2002, with a deficit of about 

23%, whereas in 2010, there was a surplus, with an excess of about 25%. 

The extrapolated results with Model_EW visually reflected these exceptional 

anomalies of total biomass production. In 2002, particularly north of 

Linguère and Ranérou, estimated total biomass was very low, with values 

generally below 500 kg·DM/ha (Figure 3.6a). Total biomass values higher 

than 4000 kg·DM/ha were obtained only south of Tambacounda. In contrast, 

in 2010, about 60% of the study area was characterized by total biomass 

production above 3000 kg·DM/ha (Figure 3.6b). 

In addition, a strong and significant relationship was revealed by the 

scatterplot of observed and predicted total biomass anomalies from 

Model_EW (Figure 3.7a). A similar relationship have been noted between 

anomalies of predicted total biomass and rainfall (Figure 3.7b). This 

indicated that the early warning model was able to predict total biomass 

spatially (Figure 3.6) and temporally (Figure 3.7) at 1-km scale resolution 
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and provided enough information on the spatial distribution of biomass in 

extreme years, such as 2002 (in deficit) and 2010 (in surplus). 

 

Figure  3.6 – Total biomass estimates for (a) 2002 in deficit and (b) 2010 in surplus, 
given by the early warning model (Model_EW). 

 

 

Figure  3.7 – Scatterplots of anomalies of total biomass predicted by the early 
warning model, with (a) observed total biomass and (b) rainfall from 1999 to 2013. 

 

3.4. Discussion 

 

The seasonal analysis of FAPAR patterns along the 1999–2013 time 

series enabled us to retrieve 11 phenological metrics for total biomass 

modelling in the Senegalese rangelands. With the exception of LDERIV, all 

the phenological metrics were significantly correlated to total biomass and 

were therefore used to develop prediction models. Model development 
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involved using a multiple regression approach with a 15-year time series of 

in situ biomass data. The results showed that the model with the three input 

variables LINTG, LOS, and RDERIV was the most suitable for estimating 

total biomass production across the study area, with a high adjusted R², 

while minimizing the MAE, indicating good fit and accuracy of the model. 

The three variables selected for this model have been described in the 

literature in relation to their ecological function. The cumulated FAPAR 

during the growing season was found to be a well-suited proxy of biomass 

production (Fensholt et al., 2006; Dardel et al., 2014; Meroni et al., 2014b). 

The length of the season provides information on the timing of vegetation 

growing start and end. In various terrestrial ecosystems (e.g., savannah and 

grasslands), the LOS metrics are positively correlated with annual carbon 

sequestration, and thus with biomass productivity, simply due to the fact that 

more days are available for carbon assimilation (Richardson et al., 2010). 

The decay rate is strongly species-dependent (Mbow et al., 2013). Thus, by 

applying this metric information, the spatial patterns of dominating species 

are included, as well as other factors like grazing and burning. The 

performance of the models varied among the Sahelian ecoregions studied, 

with different metrics selected for each ecological region, adapted to local 

ecological conditions. The ecoregion models reduced the MAE on the total 

biomass estimates with 19%, compared with models calibrated over the 

whole study area. This meant that the subdivision of the study area into 

ecoregions increased the overall accuracy of estimates, confirming the study 

by Jin et al. (2014) in Chinese rangelands. The adjusted R² of the models per 

ecoregion, however, was generally low (less than 0.50). This can be 

explained by the reduced number and limited distribution of ground 

monitoring sites per ecoregion, giving an unequally distributed time series 

with a low dynamic range of values, in addition to possible remaining 

uncertainties related to the ground sampling method. This could be mitigated 

by using wider ecological regions where the distribution of monitoring sites 

is selected to reflect the spatial distribution of total biomass. This approach is 

supported by Brandt et al. (2015), who found that a wider spatial coverage of 

biomass data, including different ecological areas over many years, could 

improve results and reduce data uncertainties in the Senegalese rangelands. 
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The poor fit for ecoregion models could also be explained by the 

classification of the ecoregions, based on the integration of various 

biophysical and socio-economic components of the Senegal landscape 

(Tappan et al., 2004). Therefore, the ecoregions that comprise several 

environmental factors might not sufficiently reflect the spatial variation of 

plant biomass production. From this perspective and according to Moron et 

al. (2006), who agree that vegetation type is the main source of landscape 

heterogeneity across Senegal, future studies should apply other types of 

classifications related solely to the vegetation growth cycle, (e.g., 

“phenoregions” based mainly on phenological parameters, such as SOS, 

EOS, and LOS; an example is provided by Ivits et al. (2013). 

In addition, disaggregation to the ecoregion scale provides important 

information on the most appropriate phenological metrics for monitoring 

vegetation because metrics are closely linked to specific ecological 

characteristics, such as soil type, rainfall, woody cover, and species patterns 

(Table 3.1). These four points are closely intertwined and differ between the 

ecoregions. They control the biomass production in a different way, resulting 

in varying production levels of herbaceous and woody leaf biomass for each 

ecoregion. The selection of different metrics for the best performing 

ecoregion models indicates that these differences might be reflected in the 

metrics selected. LINTG was found to be the best proxy for total biomass 

production in ECOeast and ECOsouth, whereas in ECOnorth and ECOwest, 

the best proxy was the PEAK metric. The LINTG variable is known to 

represent the total amount of biomass produced by the entire vegetation 

cover, including woody and herbaceous vegetation (Olsson et al., 2005). Its 

selection in ECOeast and ECOsouth, therefore, seems to be related to the 

presence of woody strata providing a high woody leaf biomass production. 

Likewise, the PEAK metric was selected as the main proxy for ECOnorth 

and ECOwest. These regions have a high herbaceous biomass production 

(Table 3.1), the growth of which is highly dependent on rainfall and its intra-

seasonal distribution. The relevance of PEAK for grassland biomass 

monitoring in northern Senegal has been endorsed by Meroni et al. (2014b), 

supporting our results. LOS was found to be an important variable for 

ECOeast and ECOsouth, providing information throughout the growing 
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period. In addition, among the 10 phenological metrics used for developing 

models, SINTG and AMPL were the only ones not selected in the best-

performing models, either for the study area or at the ecoregion scale. 

Although significantly correlated with ground total biomass, SINTG and 

AMPL are therefore thought to reflect mainly the seasonal herbaceous cycle 

signal (Mbow et al., 2013) and are of minor importance compared with 

LINTG and PEAK. 

Until now, fodder biomass in the Sahelian rangelands of Senegal has 

been estimated using a single-predictor model retrieved annually by simple 

linear regression between a cumulated vegetation index and ground biomass 

measurements (Diouf et al., 2014). This method is cumbersome and 

expensive, with data having to be collected annually and processed before 

providing information on the available forage. Although the established 

method gives useful biomass estimations, the multiple-predictor models with 

phenological variables have proved to improve the available biomass 

estimates in terms of accuracy. Overall, the advantages and improvements 

with the proposed approach can be summarized as : (i) the phenological 

variables used are retrieved more precisely, pixel by pixel, by applying a 

fixed rule for the detection of the start and end of the growing season, 

instead of by a visual and general approximation of these two dates across 

the whole studied area; (ii) the multiple-predictor models are closer to reality 

because they take account of all or part of the interactions among 

phenological factors and therefore provide more reliable estimates; (iii) 

calibrated on a 15-year time series of biomass sampling data, the new 

approach is more robust than the conventional one, which is based on field 

sampling data for a single year (Jin et al., 2014), and it allows current year 

predictions to be made without additional field work; and (iv) the multiple-

predictor models allow the use of phenological metrics available early in the 

growing season to predict fodder biomass at the end of the season. A 

multiple-predictor model tailored to provide early biomass predictions is 

potentially very useful for the early warning monitoring systems in 

rangeland ecosystems in general and in Sahelian countries in particular, 

where most livelihoods are very dependent on fodder biomass. The 

usefulness of these phenological metrics for early warning of food insecurity 
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in the Sahel zone has been noted recently by (Meroni et al., 2014a; Meroni 

et al., 2014b). It is possible to link the SOS variable with the PEAK one in 

order to establish a precise early warning model, although the PEAK 

variable is often detected relatively late in the growing season (i.e., on 

average, in the second dekadal of September). With these two variables, the 

model gave valuable results when applied to 2002 and 2010, demonstrating 

the ability to provide information on a deficit or surplus in fodder production 

in extreme years. The early warning model outperformed the CSE 

prediction, which over-estimated actual biomass production in 2010. Such 

models could have mitigated the effects of the Sahel crisis in 2012, which 

was caused by late and irregular rains and the prolonged dry spells in 2011 

(FAO, 2012). In Senegal, this crisis led to a decline in agropastoral 

production that threatened the food security of more than 739,000 people 

(FAO, 2012). In the future, such early warning models should enable 

stakeholders to take decisions as early as September (current year as biomass 

shortage) with regard to livestock by triggering protocols designed for 

livestock management (e.g., Opération de Sauvegarde du Bétail (DEPA, 

2012)) in Senegal. The phenological anomalies for a particular year as 

compared to the long-term baseline characteristics of the seasonal cycle 

derived from FAPAR time series at the dekadal time step would allow the 

setup of critical indicators for food security (Verger et al., 2013b; Verger et 

al., 2015). The operational delivery of near real-time as well as long-time 

series of biophysical variables in the Copernicus Global land service from 

PROBA-V (Weiss et al., 2014) and forthcoming Sentinel-3 (Lacaze et al., 

2015) will ensure continuity of the early warning biomass monitoring 

system. A recalibration of the proposed models is required for a year with 

very particular climatic conditions (Mora et al., 2013) or in case of change in 

the satellite system (i.e., satellite/sensor drifts/end-of-life) (Richardson et al., 

2012). Special attention would be devoted to the early warning model in its 

future use insofar as Meroni et al. (2014b) found a large heterogeneity in the 

strength of the relation between the cumulated FAPAR over the growing 

season (i.e., biomass production) and the SOS and PEAK variables. More 

analyses are needed to better understand the relations between ground 

biomass and applied metrics. 
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3.5. Conclusion 

 

The multiple-predictor models using phenological metrics and 15 years of 

ground observation data showed robust performance and gave accurate 

estimates of fodder biomass production across the Senegalese rangelands. 

The phenological variables selected in the predictor models depend on the 

production level and the ratio between the total woody leaf and herbaceous 

biomass. The large integral (LINTG) of Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) appears well-suited in 

pastoral areas characterized by a dense woody cover and a high leaf biomass 

production, whereas the seasonal maximum (PEAK) metric is preferentially 

selected in grazing areas with lower woody density and a high herbaceous 

biomass production. The subdivision of the study area into ecoregions 

increased the overall accuracy of the multiple-predictor models. The 

validation with ground measurements shows that the proposed approach 

improves fodder resource monitoring in Senegal, providing more reliable 

and accurate estimates as compared to the current CSE biomass product. In 

addition, it allows reducing time and cost because, upon first model 

calibration, biomass estimation for a given year can be obtained without 

additional field work. On the contrary, the CSE model requires a yearly 

calibration with dedicated ground biomass measurements. Finally, using 

phenological metrics that are available relatively early in the growing season 

(i.e., PEAK and SOS), the proposed models can provide timely information 

on forage availability in rangelands. This allows helping stakeholders to 

make early decisions about possible livestock production deficits and related 

food insecurity. It constitutes an important benefit as compared to the current 

state of biomass estimation in Senegal, which is based on a single-predictor 

model that ingests the NDVI data at the end of the growing season. In order 

to enhance the performance of ecoregion models, future studies should apply 

classification schemes centered on the vegetation growth cycle (e.g., 

“phenoregions” based mainly on remotely sensed phenology). Further 

research is required to better understand the relation between satellite-

derived phenological metrics and ecosystem properties. In addition, models 

which use the satellite optical vegetation products are generally hampered by 
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their saturation in densely vegetated area and the effect of soil brightness in 

regions with sparse vegetation cover. In assumption, this could be mitigated 

when adding independant agrometeorological data and justify the study 

conducted in Chapter 4. 
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4 
Herbaceous biomass estimation using machine learning 

models, agrometeorological data and metrics from 

FAPAR time Series 

 

 

This Chapter was adapted from the following publication: 

Diouf, A. A., Hiernaux, P., Brandt, M., Faye, G., Djaby, B., Diop, M. B., Ndione, 

J. A., & Tychon, B. (2016). Do Agrometeorological Data Improve Optical 
Satellite-based Estimations of Herbaceous Yield in Sahelian Semi-Arid 

Ecosystems? Remote Sensing, 8, 668. doi:10.3390/rs8080668 

Chapitre 4 - Herbaceous biomass estimation using machine 

learning models, agrometeorological data and metrics from 

FAPAR time Series 

4.1. Introduction 

 

In the Sahel belt south of the Sahara desert, an arid to semi-arid region, 

the vegetation is composed of a herbaceous layer dominated by annual 

grasses and scattered woody plants including bushes, shrubs and small trees, 

among which are several thorny species (Anyamba and Tucker, 2005; 

Tagesson et al., 2015). These areas provide the bulk of pastoral livestock 

feeding (Carrière, 1996) and contribute to carbon sequestration, nutrient 

uptake and cycling, soil fixation and soil biologic activity, as well as water 

cycle regulation. In this context, an accurate evaluation of herbaceous mass 

yield at the end of the growing season is essential for ensuring the rational 

use of available resources and environmental sustainability. Vegetation 

indices derived from satellite data have been widely used to monitor 

Sahelian herbaceous productivity for about 40-years. After the severe 

drought of 1970s, the first applications of herbaceous yield estimation in 

Sahelian rangelands using the Normalized Difference Vegetation Index 

(NDVI) from the National Oceanic and Atmospheric Administration-

Advanced Very High Resolution Radiometer (NOAA-AVHRR) were 

published, and were pioneer studies in the field of applied remote sensing 
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(Tucker et al., 1983; Tucker et al., 1985; Justice and Hiernaux, 1986). In the 

past two decades and with regard to the technological advances in sensor 

design for vegetation monitoring (Seaquist et al., 2003), new satellites such 

as the Satellite Pour l’Observation de la Terre-VEGETATION (SPOT-VGT) 

and the Moderate Resolution Imaging Spectroradiometer (MODIS)-

TERRA/AQUA have been launched and more datasets have become 

available with higher spatial and temporal resolutions (Dardel et al., 2014; 

Tian et al., 2015). In addition to the NDVI, the Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) in relation to surface 

processes such as photosynthesis (Baret et al., 2013) has been recognized as 

constituting a key variable in the assessment of vegetation status (Prince, 

1991; Prince and Goward, 1995). For this purpose, the metrics of the 

FAPAR seasonal dynamics are commonly used in environmental studies 

(Meroni et al., 2014a; Meroni et al., 2014b; Brandt et al., 2016a) and their 

potential for herbaceous mass monitoring in Sahelian rangelands has 

recently been endorsed by Diouf et al. (2015). Most studies, however, rely 

exclusively on satellite-based vegetation indices (e.g., (Funk and Brown, 

2006; Meroni et al., 2014a)), with only a minority combining these indices 

with rainfall data, soil water status indicators and ground plant mass data. 

Rainfall distribution is generally considered as the main driver of plant 

growth in the West African Sahel (Cornet, 1984; Hickler et al., 2005; Ali, 

2010; Huber and Fensholt, 2011), although there are many other local 

drivers of plants’ photosynthetic capacity and spatial variability in the Sahel 

(Brandt et al., 2015; Ibrahim et al., 2015). Among them, the supply of 

mineral nutrients such as nitrogen (N) and phosphorus (P) are major 

determinants of plant growth rate (Penning de Vries and Djitèye, 1982). In 

the Sahel, N and P are the main limiting factors to plant production when 

rainfall is sufficient. For this reason, (Breman and de Ridder, 1991) proposed 

subdividing the Sahel belt according to the 250 mm isohyet, with rainfall as 

the main limiting factor below 250 mm and the nutrients N and P the main 

limiting factors above 250 mm annual rainfall. The wide temporal variability 

of N and P, however, in relation to the soil moisture regime and the absence 

of reliable information on their spatial distribution across Sahelian regions 

makes it difficult to include this information in statistical modelling 
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approaches. In contrast, comprehensive rainfall data have become 

increasingly accessible for use in the Sahel through the development of 

satellite-based products such as the Tropical Applications of Meteorology 

using SATellite (TAMSAT) data and ground-based observations (Tarnavsky 

et al., 2014), the Famine Early Warning System NETwork (FEWS NET) 

Rainfall Estimate (RFE) (Xie and Arkin, 1996) and the African Rainfall 

Climatology (ARC) (Novella and Thiaw, 2013). The use of rainfall data as 

the overall driver of plant growth is supported by the high variability of 

Sahelian herbaceous productivity, which is difficult to predict in time and 

space (Hiernaux, 1983; CSE, 2010). Not all rainfall water, however, is 

directly available to plants. Rainfall water availability is mediated by the 

redistribution (i.e., run-off/run-on) on the soil surface in relation to soil 

physical characteristics (i.e., structure and texture), to topography (Breman 

and de Ridder, 1991) and to the physical nature of the canopy (Breshears and 

Barnes, 1999). This could help explain the poor relationship observed 

between herbaceous yield and annual total rainfall in the Sahelian rangelands 

of Niger and Mali (Hiernaux et al., 2009a; Hiernaux et al., 2009b). It 

justifies the concept of a water requirement index (also called a water 

satisfaction index or a water requirement satisfaction index, WRSI) 

developed and implemented through a soil water balance model named the 

Crop Specific Water Balance (CSWB) by the Food and Agricultural 

Organization (FAO) of the United Nations. With this model, the water 

balance of a given cropped soil can be calculated in time increments, usually 

10 days (i.e., dekad), as presented in Equation 1 (Rojas et al., 2005). Then, 

when filled with complementary parameters, the CSWB model produces a 

set of water status indicators generally used to assess the effect of weather 

conditions on crop development and yield (Doorenbos and Pruitt, 1977; 

Frère and Popov, 1979). 

where,  

Wd: amount of water stored in the soil at the end of the dekad (d) 

Wd–1: amount of water stored in the soil at the end of previous dekad (d–1) 

R: cumulated rainfall during the dekad  

W� = W��� + R − ETm− (r + i)     (11) 
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ETm: maximum evapotranspiration in the decadal period  

r: represents the water losses due to runoff in the decadal period  

i: represents the water losses due to deep percolation in the decadal period  

For its agricultural monitoring activities, FEWS Net developed a grid 

cell-based modelling environment from the FAO’s CSWB (Verdin and 

Klaver, 2002). The established geospatial model, GeoWRSI, was then 

enhanced by Senay and Verdin (2002) for West Africa’s Sahelian rangelands 

(Senay et al., 2011). Plant production models established solely from the 

absorbed PAR, as mentioned earlier and according to Mougin et al. (1995), 

neglect the direct effects of other factors such as water availability and 

nutrient shortage on plant growth. Models including both soil moisture (i.e., 

soil water status indicators) and the metrics of FAPAR seasonal dynamics 

are therefore expected to overcome FAPAR-related problems (e.g., 

saturation and cloud contamination) and improve herbaceous standing mass 

estimations. In such models, agrometeorological data introduce information 

about soil water availability, whereas FAPAR metrics provide information 

on herbaceous productivity and species patterns not taken into consideration 

by the agrometeorological component (Rudorff and Batista, 1990).  

In this context, the overall aim of our study was to predict herbaceous 

yield across the arid to sub-humid areas of Senegal. The novelty of the study 

was the combination of satellite-based rainfall estimates, agro-ecological 

data and satellite-derived FAPAR metrics using a machine learning 

approach. The more specific objectives were to: i) develop three herbaceous 

models based respectively on FAPAR metrics, on agrometeorological 

variables and combined FAPAR and agrometeorological variables; ii) 

conduct a spatio-temporal comparison of model outputs; and iii)  analyze the 

relationship between herbaceous yields and the metrics of onset/end of 

season calculated from FAPAR and satellite-based rainfall data for early 

warning purposes. 
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4.2. Materials and methods 

 

4.2.1. Study Area 

 

Detailed information of the study area is provided in Chapter 1 (see 

Section 1.1.2). It contains, however, nine land cover classes that, when 

excluding cropped lands, coincide with woody plant density, which increases 

from north to south (Figure 4.1, Table 4.1). These nine classes were 

constituted by aggregating the 60 classes of the original land cover database 

of Senegal (FAO, 2009a) and more or less corresponded with those used by 

(FAO, 2009b) for analyzing land cover change in Senegal between 1990 and 

2005. 

 

 

Figure  4.1 – Location of the monitoring sites and the main land cover classes (FAO 
2009a). The isohyets are based on average rainfall estimates provided by FEWS Net 

between 2000 and 2015 (Xie and Arkin 1997). 

  



79 

Table  4.1 – General descriptions of land cover classes (FAO 2009c, d). Woody 
cover values were obtained from the woody cover map provided by (Brandt et al. 

2016) and correspond to the averaged values of pixels covered by classes. 

Land cover 
class 

Abbreviation Short description 
Area  
(km²) 

Area 
(%) 

Woody 
cover 
(%) 

Number 
of sites 

Herbaceous HER 

Open to closed 
herbaceous 

vegetation with 
sparse trees and 

shrubs  

38043 30.53 9 13 

Shrubs very 
open 

SVO Very open shrubs  33724 27.07 17 8 

Shrubs open 
to closed 

SOC 
Open to closed 

shrubs 
12155 9.75 28 2 

Trees very 
open 

TVO 
Very open trees, 

gallery forest 
8889 7.13 25 1 

Trees open to 
closed 

TOC 
Open to closed trees, 

gallery forest 
9274 7.44 25 0 

Agriculture AGR 

Large to small tree 
plantations and 

rainfed herbaceous 
crops  

19483 15.64 14 0 

Other classes - 
Bare areas, urban 
areas and water 

bodies 
3041 2.44 - 0 

Generic height classification:  
Herbaceous = 0.03 to 3 m; Shrubs = 0.3 to 5 m; and Trees = 3 to 30m. 

 

 

4.2.2. Data and Processing 

 

4.2.2.1. Historical Field Herbaceous Yields 

 

The in situ herbaceous mass data used in this study for the calibration of 

the models were collected annually from 2000 to 2015 (except for 2004) 

from 24 field sites located in free access natural rangelands, as shown in 

Figure 1 (black dots). The sites were selected away from the main water 

points and pastoral camps in order to avoid heavy grazing. Each field site 

covered a 3x3 km² homogeneous area and represented the most common 

land cover classes. Above-ground herbaceous mass was measured towards 

the end of the growing season, in early October. The technique used was the 

stratified sampling line originally proposed by the International Livestock 

Centre for Africa (ILCA) for monitoring pastoral ecosystems in the Gourma 

of Mali (Diouf et al., 1998). Along a 1000 m transect, four strata (bare soil, 

and low, medium and high herbaceous mass production) were identified. 
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Then, taking into account the variability of herbage mass in the three 

covered strata, between 35 and 100 plots (each 1 m2) were sampled 

randomly along the transect line and fresh herbaceous mass was cut and 

weighed within each plot. After re-sampling, three samples for each stratum 

(i.e., nine samples per site) were kept for drying. The dry matter rate 

obtained by dividing the dry herbaceous mass weight by the fresh mass 

weight, as well as the relative frequency along the 1000 m transect, were 

then used to calculate the herbaceous mass yield in kg·DM/ha, first for each 

of the three strata and then for the site by adding them together. Note that the 

biomass data were not regularly collected in all monitoring sites due to 

occasional lack of logistics or the early passage of bush fires before field 

measurement (Diouf et al., 2015). For more detailed information on the 

overall herbaceous mass collection, see Diouf et al. (2015). 

 

4.2.2.2. FAPAR Vegetation Dynamics and Calculated Metrics 

 

GEOV1 Copernicus Global Land FAPAR runs from 24-12-1998 to the 

present day at a ground sampling distance of 1/112° (about 1 km at the 

Equator) and 10-day steps (Verger et al., 2015). Derived from the SPOT-

VEGETATION (from 2000 to 2013) and Proba-V (for 2014 and 2015) 

instruments, this product is freely available on 

http://land.copernicus.eu/global. For detailed information on the principles 

used to estimate the GEOV1 FAPAR product, see Baret et al. (2013). 

In order to calculate seasonal metrics, the GEOV1 FAPAR time series 

were filtered using the Savitzky-Golay (SG) fitting method available via 

TIMESAT software (Jönsson and Eklundh, 2004; Diouf et al., 2015). 

Filtering is essential in semi-arid areas such as the Sahel, where many factors 

(e.g., clouds, aerosols, shadows, surface water) tend to produce noisy and 

erroneous FAPAR values (Chen et al., 2004; Fensholt et al., 2007). From the 

filtered FAPAR time series, eight metrics were retrieved with TIMESAT and 

used in this study (Figure 4.2): the start of the plant growth season (SOS); 

the end of the season (EOS); the length of growing season (LOS); the 

maximum FAPAR value over the season (PEAK); the amplitude (AMPL) 

corresponding to the difference between PEAK and the averaged left and 
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right minimum values over the ongoing annual cycle (BVAL); the small 

integrated FAPAR (SINT) from SOS to EOS and above BVAL; the small 

integrated FAPAR from SOS to PEAK time and above BVAL (GSINT); and 

the decreasing rate during the senescence phase (RDERIV). All these 

metrics have been described by Diouf et al. (2015) and Brandt et al. (2016a), 

except for GSINT, which was computed to include information during the 

green-up phase. SOS and EOS are essential for calculating the cumulated 

FAPAR metrics and were set to occur at 20% and 50% of the seasonal 

AMPL before and after the peak value, respectively (Diouf et al., 2015). All 

the metrics were derived for each year between 2000 and 2015 on a pixel 

basis and 1 km spatial resolution. The annual values were then averaged for 

each site over an area of about 3x3 km² to match, as far as possible, the 

spatial sampling of the ground data. 

 

 
Figure  4.2 – Seasonal FAPAR metrics considered in this study and shown for a 

single pixel. The base value (BVAL) represents the averaged minimum values over 
the annual cycle (i.e., before and after the growing season). 

 

4.2.2.3. Obtaining Agrometeorological Data 

 

Agrometeorological data were calculated using the GeoWRSI model of 

FEWS Net adapted to a grid cell-based modelling environment (Verdin and 

Klaver, 2002) from the original water balance algorithm of FAO (Doorenbos 

and Pruitt, 1977). As noted by Senay (2004), the GeoWRSI model was 

enhanced and extended into an operational mode for Africa, Central America 
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and Afghanistan after the work by Senay and Verdin (2003). The WRSI 

indicator (Equation 12) is the ratio of seasonal actual crop evapotranspiration 

(AETc) to the seasonal crop water requirement, which is equivalent to 

potential crop evapotranspiration (PETc) (Senay, 2004). AETc represents the 

actual amount of water withdrawn from the soil water reservoir by 

vegetation transpiration and soil evaporation (Senay and Verdin, 2001; 

Senay, 2004) and PETc is the cumulative optimum crop water requirement 

to be met by rainfall and soil moisture for a given accumulation period 

(Senay et al., 2011). After Senay (2004), the PETc at a given time in the 

growing season is calculated by multiplying the potential evapotranspiration 

(PET) by the crop coefficient (Kc), as in Equation 13. The AETc is 

determined by a set of functions integrating rainfall amount (PPT), plant 

available water (PAW), critical soil water level (SWC), soil water holding 

capacity (WHC), crop root depth (RD) and soil water content (SW) at the 

end of the study period. SW can be estimated using a soil water balance 

(Senay, 2004; Senay, 2008) with formula 14. 

WRSI =
∑AETc

∑PETc
∗ 100 (12) 

PETc = Kc ∗ PET (13) 

SW� = SW��� + PPT� − AETc�   (14) 

 

Where i corresponds to the time step. 

For more information on the development and parameterization of the 

GeoWRSI model, see (Senay and Verdin, 2003; Senay, 2004). The main 

parameters needed to run the model are PPT, PET, WHC and Kc values. We 

ran the model in this study using the rainfall estimate images (i.e., Africa-

wide blended product from satellite-gauge data) implemented by the Climate 

Prediction Center (CPC) of NOAA (Herman et al., 1997; Xie and Arkin, 

1997) and the global PET images estimated from the 6-hourly numerical 

meteorological model output using the Penman-Monteith equation 

(Shuttleworth, 1992). Rainfall and PET images were downloaded in dekadal 

time steps with a 0.1 degree (about 10 km) and 1 degree (about 110 km) 

spatial resolution respectively, from the ftp server of the Climate Hazard 
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Group for the archive data between 2000 and 2010 (Climate Hazard Group, 

2015) and the FEWS NET server  for the latest data between 2011 and 2015 

(FEWS NET, 2015). The WHC image shows the spatial variation of easily 

available water capacity in the upper 100 cm, based on soil physical 

characteristics (Verdin and Klaver, 2002) and was obtained from the FAO 

digital soil map of the world (FAO, 1994) with a 0.1 degree spatial 

resolution. Kc values correspond to those proposed by Allen et al. (1998) for 

the extensive grazing pastures in semi-arid climates (Figure 4.3). These 

values were chosen with the assumption that the study area is uniform in 

hydro-climatic conditions and after a visual analysis of the WRSI variable 

which showed the most reasonable distribution for a median year regarding 

rainfall conditions. 

The rainy season onset date (SOSp) was calculated for each modelling 

grid cell using the criteria of at least 25 mm of rainfall received over a given 

dekad, followed by a total of 20 mm for the next two dekads as applied by 

(Verdin and Klaver, 2002) after (AGRHYMET, 1996). The end-of-season 

date (EOSp) occurred when a climatological ratio between rainfall and 

potential evapotranspiration (i.e., PPT<PET/2) was observed (Senay, 2004). 

SOSp and EOSp were in turn used to calculate the herbaceous vegetation 

WRSI. In addition to WRSI, SOSp and EOSp, we calculated 12 other 

agrometeorological variables for the growing periods of each year (Table 

A3), particularly actual evapotranspiration (AET), water deficit (WDEF) and 

water surplus (WSUR) that accumulated during each of the four herbaceous 

vegetation growth phases (illustrated in Figure 4.3): initial (i); vegetative (v); 

flowering (f); and ripening (r). The seasonal fractions assigned to these four 

phases were 23%, 39%, 23% and 15%, respectively (numbers taken from the 

Sahelian Transpiration, Evaporation, and Productivity [STEP] model) 

(Mougin et al., 1995). The computed rainfall variables corresponded to the 

seasonal amount accumulated from the start to the end of the rainy season 

(PPTc) and the mean rainfall from the start to the end of the season (PPTm). 

All the agrometeorological images were re-sampled to a 1 km resolution in 

order to match the FAPAR metrics using a bilinear interpolation method. 
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Figure  4.3 – Overall crop coefficient curve for Senegal’s Sahelian rangelands during 
a growing season of 90 days. The growing period was divided into four phases: 

initial (i); vegetative (v); flowering (f); and ripening (r). SOSp indicates the mean 
date of the onset of the rainy season in the 2000-2015 period. Numbers in brackets 

indicate the total days of the phase. 

 
4.2.3. Methods 

The overall approach applied for elaborating the estimation models of 
herbaceous yield is presented in Figure 4.4. 

 

Figure  4.4 – Workflow for the development of the rule-based piecewise regression 
(i.e., Cubist) models for herbaceous yield estimation. 
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4.2.3.1. Explanatory Variable Selection for Herbaceous Mass Estimation 

 

Over-fitting is a major drawback of machine learning methods 

(Domingos, 2012) and can occur when there is a strong relationship between 

the explanatory variables. In order to avoid over-fitting, only relevant 

variables with no significant collinearity should be kept in a model. 

Redundant predictors can trigger substantial instability in a model’s 

coefficients. Wrapper methods (e.g., backward and forward) are widely used 

in the search procedure for predictors’ selection in environmental studies 

(e.g., (Fraser and Li, 2002; De Benedetto et al., 2013; Zhang et al., 2014)). 

As reported by Hastie et al. (2009) and Kuhn and Johnson (2013), however, 

the principle of these methods lies in repeated hypothesis tests with the same 

data, which invalidates many of their statistical properties. In order to 

overcome this drawback, Guyon et al. (2002) proposed the recursive feature 

elimination procedure. This method is a sequential backward selection 

approach (Marill and Green, 1963) that avoids refitting many models at each 

step of the search by including an importance-ranking criterion instead 

(Kuhn and Johnson, 2013). The recursive feature elimination algorithm 

available with R software (Kuhn et al., 2014) was used to identify less 

pertinent variables from the original dataset. In this algorithm, the random 

forest function (Liaw and Wiener, 2002) was used to compute the 

importance of the variables (i.e., mean decrease in accuracy when a variable 

is permuted) and rank them over subsets. The procedure's output with 

variables ranked from most to least important was then evaluated in order to 

eliminate interrelated explanatory variables (Brandt et al., 2016a), using the 

Variance Inflation Factor (VIF) indicator (Equation 5). The least important 

variables with a VIF ≥ 10 (Belsley et al., 1980) were eliminated one by one. 

This process was repeated until the VIF for all remaining variables was 

below 10. 

��� = 1 (1 − �²�)⁄  (15) 

 
Where R²j is the correlation coefficient for the regression of each 

variable with the remaining ones. 
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4.2.3.2. Rule-Based Regression Tree and Model Building 

 
The classification and regression trees (CART) approach, also called 

decision trees, is a data mining method used to identify patterns between a 

dependent variable and several independent predictor variables (Herrmann et 

al., 2013). CART models can be used for either classification or regression, 

where the classification trees predict classes and the regression trees predict 

a continuous response (Liaw and Wiener, 2002; White et al., 2005; 

Brosofske et al., 2014). We used the Cubist program (Kuhn et al., 2014), 

providing rule-based models using regression trees because the modeled 

herbaceous mass was continuous. Each tree was reduced to a set of 

conditional rules retrieved from the most important predictor variables 

(Kuhn et al., 2012). These rules partitioned the independent variables 

(FAPAR metrics and/or agrometeorological products) into smaller groups, 

and each of which was linked to a multiple linear regression model that 

predicted the dependent variable (herbaceous mass) (Kuhn and Johnson, 

2013). This algorithm, based on if/then rules, is well suited for Sahelian 

ecosystems, which are characterized by high spatial heterogeneity in terms 

of soil type and fertility, rainfall mediated by run-off/run-on, and species 

composition. The initial dataset was randomly separated into a ‘training set’ 

and a ‘verification set’ containing 70% and 30% of the data, respectively. 

Then a simple check was made to ensure that all land cover classes are 

represented in the two sub-datasets. Model learning was done with the 

training set, using a boosting-like scheme called ‘committees’ (Kuhn et al., 

2012), where each committee member corresponds to one regression tree. 

The number of committees was tuned by applying the commonly used 10-

fold cross-validation (Kohavi, 1995; Refaeilzadeh et al., 2009) in the 

model’s performance estimation. All instances of the initial dataset were 

used and the cross-validated root mean squared error (RMSE) applied in 

order to obtain the best value of the committee number. It should be noted 

that for each committee after learning, a subsequent member (multiple linear 

regression model) adjusts for inaccuracies in the prediction of the previous 

one and the final predicted value is a simple average of all predictions from 

the various members (Kuhn et al., 2012; Herrmann et al., 2013; Kuhn and 
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Johnson, 2013). For comparative purposes, three cubist models were 

established: i) the Vegetation Index-model (VI-model) including only 

FAPAR metrics; ii) the Agrometeorological-model (AGRO-model) 

computed with agrometeorological variables; and iii) the VIAGRO-model 

including both FAPAR and agrometeorological data. 

 

4.2.3.3. Model Verification, Error Analysis and Yield Anomaly 

Computation 

 

Model accuracy verification was performed using an independent set of 

samples that were not used (i.e., hold-out) for the training of the model. The 

Cubist models were trained using the training set (207 samples) and then 

used to estimate the herbaceous yield values of the verification set (90 

samples). The validation accuracy was retrieved using the observed and 

predicted herbaceous yield of the verification set. The quality of the models 

was assessed by the RMSE and mean absolute error (MAE). The anomaly 

values were calculated pixel-wise by the ratio (in percentage) of the 

difference between the actual and long-term average of the herbaceous yield 

(or rainfall) and the 15-year long-term average. 

 

4.3. Results 

 

4.3.1. Variable Selection and Model Development 

 

After removing all the correlated variables, a final dataset of 15 

explanatory variables remained and were used for model development 

(Figure 4.5c). Three models were developed for estimating herbaceous 

yields using: (a) only FAPAR metrics (VI-model); (b) agrometeorological 

data (AGRO-model); and (c) both FAPAR metrics and agrometeorological 

data (VIAGRO-model). The set of variables used for each model is shown in 

Figure 4.5 and the model performance is shown in Figure 4.6. 

The contribution of the input variables varied with each model. For the 

VI-model, the PEAK variable was the most important, followed by the right 

derivative (RDERIV) and EOS (Figure 4.5a). GSINT and SOS were the least 
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pertinent variables as neither was used in model conditions or equations. In 

the AGRO-model, the SOSp and water deficit during ripening (WDEFr) 

were the most important variables, whereas the least important were water 

deficit (WDEFv) and water surplus (WSURv) during the growth stage. The 

most important variable in the VIAGRO-model was PEAK, followed by 

RDERIV. The SOS had little or no importance in the VI-model and 

VIAGRO-model, unlike the SOSp, which played a major role in AGRO-

model and VIAGRO-model. The validation statistics of the three models are 

given in Figure 4.6. The VIAGRO-model showed the best performance, with 

R² = 0.69, RMSE = 483kg·DM/ha, MAE = 355kg·DM/ha and slope = 0.66. 

The VI-model performed less well (R²= 0.63; RMSE= 550kg·DM/ha; MAE 

=388kg·DM/ha; slope = 0.56), followed by the AGRO-model (R² = 0.55; 

RMSE= 585kg·DM/ha; MAE = 432kg·DM/ha; slope=0.51). 

 

 

Figure  4.5 – Importance of the predictor variables for the three herbaceous yield 
estimation models: (a) VI-model, (b) AGRO-model and (c) VIAGRO-model. Single 
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variable importance initially given as the means of the percentage of use in model 
conditions and equations were then normalized to sum 100% for each model. 

 

 

Figure  4.6 – Accuracy assessment of the developed Cubist models: relationship 
between observed and predicted herbaceous yield for (a) the VI-model, (b) the 

AGRO-model and (c) the VIAGRO-model. 
 

4.3.2. Spatio-Temporal Comparison of the Models’ Output 

 

All the established models provided herbaceous yield estimations with 

values increasing along a north-south gradient in the 2000-2015 period 

(Figure 4.7). The VI-model, however, gave generally lower estimations than 

the two other models. Particular years, such as 2002 and 2014, when there 

was a considerable deficit in herbaceous mass production, were reflected 

well in both the VI-model and VIAGRO-model. The year 2010, however, 

was characterized by a high herbaceous mass production, which was clear in 

the AGRO- and VIAGRO-model estimations but less so in the VI-model. 

Overall, the VI-model underestimated high values, especially in the more 

southern regions; this drawback was corrected in the VIAGRO-model. 
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Figure  4.7 – Latitudinal variation of the herbaceous yield estimated by the (a) VI-
model, (b) AGRO-model and (c) VIAGRO-model during the 2000-2015 period. 

 
As an indicator of the inter-annual variability of vegetation (Hiernaux et 

al., 2009b; Jin et al., 2014), the coefficient of variation (CV) of the 

herbaceous yield estimated by the three models over a 16-year period was 

used to assess the temporal variations in herbaceous yield across natural 

vegetation and agricultural land cover classes (Figure 4.8). The inter-annual 

variations in herbaceous yield differed among the land cover classes. The 

AGRO-model showed the highest CV values, followed by the VIAGRO-

model and the VI-model. For all the models, the HER class had the highest 

temporal variability, with an average CV of 17%, followed by SVO and 

AGR, with 14% and 13%, respectively. The lowest inter-annual fluctuations 

were observed in land cover classes with high herbaceous yield and woody 

cover, such as TVO (CV = 10%), TOC (CV = 9%) and SOC (CV = 9%).  
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Figure  4.8 – Coefficients of variation in annual herbaceous yield estimated by the 
three models: (a) VI-model, (b) AGRO-model and (c) VIAGRO-model, according to 

the 2000-2015 average. 
 

The herbaceous yield anomalies were assessed (Figure 4.9) and were 

generally in agreement with rainfall anomalies across the studied land cover 

classes, particularly for extreme years such as 2002 and 2010. Some 

discrepancies between the VI-model and the other two models were 

observed in 2000 and 2014. The VI-model showed a positive anomaly for 

SVO, whereas the AGRO- and VIAGRO models provided negative and no 

anomalies for the same class in 2000. For 2014, the AGRO-model provided 

positive anomalies for the SOC, TVO and TOC classes, whereas the VI-

model and VIAGRO-model provided negative anomalies. As shown in 

Figure 4.9, the VIAGRO-model generally provided a blended estimation of 

the anomalies compared with the VI-model and AGRO-model. 
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Figure  4.9 – Inter-annual variations in rainfall and estimated herbaceous yield over 
the whole study area from the (a) VI-model, (b) AGRO-model and (c) VIAGRO-

model. Rainfall values were averaged from the 24 monitoring sites and the estimated 
herbaceous yield was averaged from all pixels covered by a given class. Colors and 

acronyms are explained in Figure 8.4 and Table 1.4. 
 

4.3.3. Season Onset/End Derived from FAPAR and Rainfall Data 

 

As observed in Section 4.3.1, the onset/end metrics estimated from the 

FAPAR seasonal curve (indicating the plant growing season) and rainfall 

data (indicating the rainy season) played different roles in model 

establishment (Figure 4.5), contrary to what was expected. The onset and 

end of the growing season (SOS and EOS from FAPAR) and of the rainy 

season (SOSp and EOSp from rainfall) are illustrated in Figure 4.10. The 

mean SOS and SOSp dates were delayed from the southern to northern land 

cover classes along the climatic gradient, reflecting the progression of the 

West African monsoon. With regard to the median values in boxplots, the 

growing season started in June for the three classes (SOC, TVO and TOC) 
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located mainly in the south, whereas for the AGR, SVO and HER classes the 

growing season started in July. The SOS occurred mainly in the same dekad 

as the SOSp for all land cover classes, except HER, where it started about a 

dekad early (Table A4). The end of the growing season was concentrated 

between late October and November, being later towards the south. On 

average, the EOS occurred about 2 dekads after the EOSp which occurred 

about late October. The EOS varied, occurring early for the HER class, but 

late for TOC in November. 

 

 

Figure  4.10 – Boxplots of the start and end of season metrics derived from FAPAR 
(SOS and EOS) and rainfall data (SOSp and EOSp), averaged over the 2000-2015 

period for each land cover class. 
 

4.3.4. Linkage between Start of the Growing/Rainy Season and Annual 

Herbaceous Yield 

 

This section analyzes the relationship between SOS and SOSp and the 

herbaceous yield. The range of the SOS and SOSp anomalies was narrow (-5 

to +10%) compared with the herbaceous yield anomalies (-60 to +60%). A 

very weak and non-significant relationship (r = -0.30 and p = 0.28) was 
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observed between the SOS and in situ herbaceous yield anomalies averaged 

over the study area (Figure 4.11a). In contrast, the meteorological variable 

SOSp had a highly significant relationship with observed herbaceous yield 

anomalies (r = -0.65 and P < 0.01) (Figure 4.11b). This was confirmed over 

all the land cover classes where SOSp achieved r = -0.74 for SVO, whereas 

the maximum r value for the SOS metrics was -0.47 registered for HER 

(Figure 4.11c). For all the land cover classes, there was no significant 

relationship (at the 95% significance level) between SOS and the observed 

herbaceous yield anomalies. The weakest relationships for the two metrics 

were observed for the open to closed classes dominated by either shrubs or 

trees (i.e., SOC and TOC, respectively), being insignificant for both SOS 

and SOSp.  

 

Figure  4.11 – Relationship between anomalies of herbaceous yield mass and onset of 
(a) the growing season (SOS) and (b) the rainy season (SOSp) for the whole studied 

area, and (c) for each land cover class. Numbers on bars correspond to p-values. 
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4.4. Discussion 

 

4.4.1. Model Development and Output Comparison 

 

All three models gave a reasonable performance. The VIAGRO-model 

(including both FAPAR and agrometeorological variables), however, 

outperformed the models based solely on FAPAR metrics (VI-model) and 

agrometeorological variables (AGRO-model). Among the three models, the 

AGRO model had the weakest performance, which could be related to the 

fact that all applied variables are independent of internal factors (i.e., the 

influence of grazing) whereas all FAPAR metrics as well as the field data are 

influenced by grazing over time. All the models showed a coherent 

distribution of the estimated herbaceous yield, with values increasing along 

the north-south gradient, together with decreasing inter-annual variability. 

The saturation effect has always been a drawback in the optical vegetation 

products in relation to the high productivity of vegetation mass (Huete et al., 

2002; Santin-Janin et al., 2009; Xiaoping et al., 2011; Diouf et al., 2014; 

Tian et al., 2016) and was consequently observed in the VI-model. The 

simultaneous use of agrometeorological data and FAPAR metrics mitigated 

the saturation effect, being more sensitive to high greenness values. 

However, high biomass values (>3000 kg DM/ha) are still underestimated in 

the AGRO- and VIAGRO-models, which could be related to few sites 

sampled in densely vegetated classes within the global dataset (see Table 1). 

Hence there is need to establish more sites in southern Senegal to achieve a 

higher accuracy of the herbaceous yield forecasting over the whole country. 

The agrometeorological data also reduced the discrepancy between 

herbaceous mass and FAPAR values, with the VIAGRO-model having a 

smaller scatter of low values and high values closer to the 1:1 line (see 

Figure 4.6). The contribution and significance of the input variables varied 

among the models. In the VIAGRO-model and VI-model, the FAPAR 

PEAK was the most important variable, whereas SOS was the least 

important. The relevance of PEAK in Sahelian grasslands has been 

demonstrated by Meroni et al. (2014b) and Diouf et al. (2015). The most 

important variable for the AGRO-model, however, was SOSp and the least 
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important was WDEFv. The latitudinal variation of the herbaceous yield 

estimated by the three models is mainly related to the dominant role of 

rainfall for vegetation growth along the north-south gradient. The variation 

of the rainfall onset as well as the mean annual rainfall along this gradient is 

a well-known characteristic of the Sahel. This is the basis of the 

transhumance system where the herds move during the dry season from the 

north to the south to take advantage of more humid areas with available 

water and fodder biomass. 

The HER land cover class, located mainly in the northern Sahelian 

regions, had the highest temporal variability in herbaceous yield among all 

the land cover classes (see Figure 4.8). For this reason, anomalies in 

herbaceous mass were also the most pronounced in HER, particularly in 

extreme years (such as 2002 and 2010). Land cover classes with a higher 

herbaceous yield and annual rainfall, generally located in the south (i.e., 

SCO, TVO and TCO), had much lower inter-annual fluctuations. These 

results accord with those reported by Hiernaux et al. (2009b), who showed 

that inter-annual variability in herbaceous yield increases as the climate gets 

drier with latitude (i.e., to the north). The high temporal variability and 

magnitude of herbaceous mass anomaly (in percentage) in HER could also 

be related to the herbaceous species composition, which can vary greatly 

from one year to another. Species in HER are characterized mainly by 

annuals (Poaceae as Aristida mutabilis, Chloris prieurii and Dactyloctenium 

aegyptium) that are closely related to the annual rainfall and its intra-annual 

distribution (Valenza, 1977). These Poaceae species are also characterized 

by lower dry-matter production than species such as Andropogon amplectens 

(perennial) and A. pseudapricus (annual long-life cycle) prevalent in SCO 

and TVO areas, which have lower inter-annual mass fluctuations. 

 

4.4.2. Model Applicability and Uncertainties 

 

The three models can be used to estimate the spatial availability of 

herbaceous fodder at the end of each growing season across the Sahel in 

Senegal. The VIAGRO-model combines the advantages of both 

agrometeorological and FAPAR variables. The value of such a model 
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compared with traditional assessments (i.e., empirical statistic relationship 

between plant production and FAPAR metrics) derives from the integration 

of agrometeorological information that links herbaceous yield with climate 

and biophysical processes, thus taking account of management intervention, 

soil water availability and species patterns. The VIAGRO-model is 

replicable in other Sahelian countries because the data used (i.e., satellite 

images and programs) are freely available and easy to access (see links in 

Section 4.2.2.). The models should be applied carefully, however, because 

uncertainties caused by different collection dates of in situ data could lead to 

bias in their coefficients. Some dicotyledons, such as Zornia glochidiata, 

Alysicarpus ovalifolius and Tribulus terrestris, as well as grasses such as 

Tragus racemosus and Dactyloctenium aegyptium, shed their leaves before 

the end of the growing season (i.e., before the in situ data is collected). This 

can reduce the in situ herbaceous mass compared with the annual production 

peak. In addition, grazing during the growing season can also reduce the in 

situ herbaceous mass, particularly during dry years where transhumant herds 

return earlier to the south, crossing the whole study area. The standard 

deviation of in situ data collected for the 24 monitoring sites during the 

2000-2015 period are provided in Figure 5.3. Other sources of uncertainties 

could also be caused by the field herbaceous mass subsampling for the dry 

weight assessment and by the same Kc values applied to all land cover 

classes which may be not appropriate for densely vegetated areas. Future 

research can thus adjust Kc values to each land cover type based on average 

crop heights across Senegalese semi-arid areas and may lead to an adaptation 

of the GeoWRSI including a land cover mask to compute output variables 

with dedicated Kc values. 

4.4.3. Management Implications of Models Results 

 

The herbaceous yield estimated by the VIAGRO-model can be applied 

for the computation of both herbaceous production and anomaly detection 

per administrative unit across the whole Senegal. The biomass production 

could then be linked with the livestock number per unit to assess a 

prospective fodder balance which is useful to guide the management of 
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rangelands and livestock movement (Touré et al., 2012). To reduce the 

pastoral households vulnerability in relation to livestock mortality, the 

livestock insurance domain is more and more investigated to develop 

dedicated index based models (Chantarat et al., 2009; Ikegami et al., 2012). 

However, the classical NDVI based models have many flaws and do not 

realistically estimate the herbaceous biomass in shrub dominated areas 

which is important to properly predict livestock mortality. The VIAGRO-

model shows good results across all Sahelian land cover classes and could be 

an important step towards an applicable insurance index. 

 

4.4.4. Comparison of FAPAR and Rainfall-Based Onset/End Metrics 

 

The onset/end of the rainy season marks a vital time for livestock 

managers, pastoralists and stakeholders in natural resource management in 

West African regions (Fitzpatrick et al., 2015). Several definitions of the 

onset of the rainy season have been proposed in the literature in relation to 

the local onset of persistent rainfall (Sivakumar, 1988; Omotosho et al., 

2000; Marteau et al., 2009). With advances in remote sensing technology, 

other metrics of onset/end dates have been proposed for assessing the plant 

growing season. These metrics are generally retrieved using specific rules 

based on thresholds of the amplitude of seasonal vegetation indices and on 

certain rainfall amounts over given time periods. So far as we know, 

however, no study has yet investigated the relationship between the 

onset/end metrics derived from satellite vegetation indices and from rainfall 

estimates in the West African Sahel. We have shown the dissymmetry of the 

onset/end of the rainy season along the Sahel bioclimatic gradient, with the 

onset date staggered over 3 months from May in the south to July in the 

north. The end date is spread over only 1 month, from late September in the 

north to early November in the south, which accords with observations by 

Hiernaux and Le Houérou (2006). Our results also show that FAPAR based 

on SOS occurred at the same time as rainfall based on SOSp across the 

whole study area, except for HER land cover class where SOS was observed 

one dekad earlier (see Table A4). There are many possible explanations for 

this. The onset of the growing season or greening of plants follows the rains, 
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except for woody plants that start foliation earlier in response mainly to an 

increase in air temperature and humidity, enabling them to produce green 

leaves before the first rains (Hiernaux et al., 1994; Devineau, 1999; Ali et 

al., 2007). In addition, herbaceous vegetation is sensitive to low rainfall 

amounts, requiring less than 25 mm for the first dekad and 20 mm for the 

following two dekads to trigger the growth. The thresholds set for 

calculating SOS and SOSp could therefore be adjusted to better match the 

region's temporal dynamics. Apart from these botanical explanations, the 

reason could be related to data uncertainties. Almost no cloud-free optical 

satellite image is available at the start of season (Fensholt et al., 2007) and 

derived satellite data differ greatly from in situ measurements (e.g., NDVI) 

at this time (Proud et al., 2014). Both the smoothing algorithm used for 

GEOV1 data (influenced by clouds) and the further smoothing via 

TIMESAT therefore add uncertainty to the FAPAR-based SOS calculation 

and our results indicate that this metric should be used with great caution at 

the annual scale. 

Our results also showed that the onset dates of the rainy and growing 

seasons were more variable than their cessation, confirming the findings 

reported by Sivakumar (1988). The end date of both seasons occurs between 

late October and November for all land cover classes. The EOS is not 

entirely controlled by the end of the rains, but depends also on the wilting of 

herbaceous vegetation, which is determined by a biological clock (i.e., 

photoperiodicity) (Brandt et al., 2016a). This was confirmed by our results 

where EOS dates, defined by the FAPAR reduction by 50% of the seasonal 

amplitude, occurred later than the cessation dates of the rainy season. The 

EOS delay is further influenced by crops that stay green longer, depending 

on their genetic features and soil tillage, and by woody plants remaining 

green much longer, depending on their phenological behavior.  

 

4.4.5. Early Assessment of Herbaceous Yield from Onset Metrics 

 

For agricultural application, the SOS has attracted more attention from 

the scientific community and has been investigated in recent studies (i.e., 

(Mbow et al., 2013; Meroni et al., 2014b; Vintrou et al., 2014)). It has 



100 

frequently been used to investigate the land surface phenology trends in 

relation to climate variability (Begue et al., 2014). After analyzing the SOS 

metrics against a proxy of biomass production in the Sahel, however, 

(Meroni et al., 2014b) indicated that vegetation monitoring and biomass 

production forecasts should not be based on SOS in areas with non-

significant correlation. Given that our study showed no significant 

relationship (at 0.05 p-level) between SOS and in situ herbaceous mass, this 

statement can be confirmed by our results and we do not recommend using 

this metric solely at the annual scale. The SOSp metrics, however, were 

shown to have great potential for assessing herbaceous yield in the Sahelian 

region of Senegal. This was reflected in the VIAGRO-model where the 

SOSp variable was very important, confirming its superiority over SOS for 

detecting unfavorable rainfall conditions at the early stage of a growing 

season and therefore enabling early warnings about forthcoming risks of 

herbaceous mass deficit to be given to pastoral livestock managers and 

national stakeholders. Hence, even though the models presented here require 

a full season, this finding advances our knowledge towards an applicable 

early warning prediction (Diouf et al., 2015). 

 

4.5. Conclusion 

 

Using the Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR) seasonal metrics computed with TIMESAT software and 

agrometeorological variables retrieved from the GeoWRSI program, we 

established three Cubist models for estimating herbaceous yield at the end of 

the season in the semi-arid areas of Senegal: (a) the VI-model with FAPAR 

metrics, (b) the AGRO-model with agrometeorological variables and (c) the 

VIAGRO-model with both FAPAR and agrometeorological variables. All 

three models gave reasonable estimations of herbaceous yield over time and 

across land cover classes, among which those herbaceous areas with low 

woody cover showed the highest inter-annual variability and those in the 

south with higher woody cover showed lower variability over time. The 

VIAGRO-model gave the best estimation performance and indicated that the 

simultaneous use of agrometeorological data and FAPAR metrics improved 
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the estimation accuracy and mitigated problems encountered with the sole 

use of FAPAR metrics (i.e., VI-model): (1) the saturation affecting optical 

remotely sensed vegetation data in areas of high vegetation productivity was 

attenuated; (2) the discrepancy between herbaceous mass and greenness 

(caused by species with high greenness and low mass production, or vice 

versa) was attenuated, with a weaker scattering around the low and high 

values closer to the 1:1 line (the additional use of agrometeorological data 

corrected for underestimations with the VI-model, particularly in sparsely 

vegetated areas); (3) the onset of the rainy season calculated from rainfall 

data was shown to be well suited for herbaceous mass assessment, in 

contrast to the onset of the growing season retrieved from FAPAR satellite 

data, which was not significantly related to herbaceous yields. Nevertheless, 

these metrics should be further investigated in order to improve our 

understanding of their temporal patterns and determine future setting 

parameters for their retrieval across Sahelian ecosystems. 
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5 General conclusion and outlook 

Chapitre 5 - General conclusion and outlook 

5.1. General conclusion 

 

The overall aim of this research was to develop models that use remote 

sensing data and field biomass data, to estimate and / or forecast fodder 

biomass availability at the end of the growing season in Senegalese semi-

arid areas. To achieve this, a 17-year dataset of in situ biomass 

measurements and various satellite-based vegetation products, rainfall and 

evapotranspiration were used. Then, the global objective was separated into 

three specific objectives which led to open questions investigated 

subsequently into three steps (i.e., Chapter 2, 3 and 4 of the dissertation). 

The following paragraphs summarize our findings for each step and present 

the answer(s) proposed for related question(s).   

 

5.1.1. Total biomass estimation with simple regression models and NDVI 

variables 

 

Objective 1: Evaluate the existing annual estimation method of total 

fodder biomass by linear regression in comparison to nonlinear 

approaches. 

 

In this first step of the research, a comparison analysis of the linear 

regression equation (method currently applied in Senegal) with five 

nonlinear regression functions was done using the SPOT-VEGETATION 

time series of NDVI. This analysis showed that Exponential and Power 

models are more suited than the linear one to estimate accurately and 

consistently the total biomass at the end of the season in Senegalese 

rangelands. Another finding was that there is no significant difference 

between the means of total biomass estimated with models calibrated with 
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single year data and those retrieved from several successive years of field 

sampling data. The advantage of the several years-based models is that they 

have more stable coefficients and are applicable on a given year without 

including additional field data of the corresponding year. 

 

5.1.2. Total biomass estimation with multiple regression models and 

FAPAR metrics 

 

Objective 2: Develop a multiple regression approach (i.e., parametric 

models) that integrate FAPAR phenological metrics computed from EO 

time series for estimating and forecasting total fodder biomass at the end 

of the growing season. 

 

Although nonlinear models have been demonstrated to be well suited to 

assess fodder biomass in Senegalese rangelands, the simple regression 

approaches still have some uncertainties due to their monocriterion status 

and their weak forecasting capability. In this second step, a new 

methodology using multiple-linear models between phenological metrics 

computed from the SPOT-VEGETATION time series of the Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) and 15 years of in 

situ total biomass data was developed. Multiple-predictor models showed a 

robust performance and gave accurate estimates of fodder biomass 

production across the Senegalese rangelands. The proposed approach 

provided more reliable and accurate estimates as compared to the current 

CSE biomass product (obtained from the traditional linear regression 

approach). Likewise, disaggregation  to  the  ecoregions  scale  provided  

important  information  on  the  most appropriate phenological metrics for 

monitoring fodder biomass because metrics are closely linked to specific 

ecological characteristics, such as soil type, rainfall,  woody cover, and 

species patterns. For example, the seasonal large integral (LINTG) of 

FAPAR appeared well-suited to pastoral areas characterized by a dense 

woody cover and a high leaf biomass production, whereas the seasonal 

maximum metric (PEAK) was preferentially selected in grazing areas with 

lower woody density and a high herbaceous biomass production. Although 
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significantly correlated with ground total biomass, the small integral 

(SINTG) and the FAPAR amplitude (AMPL) were thought to reflect mainly 

the seasonal herbaceous cycle signal and therefore are of minor importance 

compared with LINTG and PEAK to assess total biomass. Developing 

multiple linear models with specific metrics into ecoregions increased the 

overall accuracy of the fodder biomass estimates and mitigated the saturation 

of FAPAR. Using phenological metrics that are available relatively early in 

the growing season (i.e., PEAK and start of season), timely information 

(e.g., in September) on forage availability within rangelands can be provided 

to stakeholders to enable early decisions about possible fodder biomass 

deficits and related food insecurity. Although their development at ecoregion 

scale attenuates the saturation in densely vegetated areas, the models which 

use the satellite optical vegetation products still are hampered by the effect 

of soil brightness in regions with sparse vegetation cover. In assumption that 

those can be mitigated when adding independent agrometeorological data, 

the research in the following step (i.e., Chapter 4) was conducted. 

 

5.1.3. Herbaceous forage estimation using FAPAR metrics and 

agrometeorological variables 

 

Objective 3: Develop machine learning approach (i.e., non-parametric 

models) including agrometeorological variables and FAPAR 

phenological metrics to estimate the herbaceous biomass at the end of the 

growing season. 

 

As never done before, a completely new approach based on a machine 

learning algorithm (i.e., Cubist) was developed to assess herbaceous biomass 

in Senegalese Sahel. Three Cubist models using FAPAR seasonal metrics 

and/or agrometeorological variables (i.e., soil water status indicators) were 

established. All models gave reasonable estimates of herbaceous biomass 

over time and across different land cover classes of the studied area. The 

model including both FAPAR and agrometeorological variables provided the 

best estimation performance and indicated that the simultaneous use of these 

two data source improved the estimation accuracy and mitigated problems 
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encountered with models using FAPAR metrics solely. The saturation 

affecting optical remotely sensed vegetation data in areas of high vegetation 

productivity as well as the discrepancy between herbaceous mass and 

greenness (caused by species with high greenness and low mass production 

or vice versa) was attenuated. As a positive consequence, the additional use 

of agrometeorological data corrected for herbaceous biomass 

underestimations with the sole FAPAR based model, particularly in sparsely 

vegetated areas. The onset of the rainy season calculated from rainfall data 

was shown to be well suited for herbaceous biomass assessment, in contrast 

to the onset of the growing season retrieved from FAPAR satellite data, 

which was not significantly related to herbaceous biomass. 

This PhD dissertation proposes diagnosis and prognosis methods 

developed to assess accurately the total biomass and the herbaceous biomass 

in Senegalese semi-arid areas, using limited data and free available software  

and therefore easily replicable in other West African Sahel countries. The 

proposed tools constitute an important improvement and benefit as compared 

to the current state of biomass estimation in Senegal. It allows reducing time 

and cost because, upon first model calibration, fodder biomass estimation for 

a given year can be obtained without additional field work and as early as 

possible, to help stakeholders to make early decisions about pastoral 

livestock monitoring (e.g., herd guiding and food insecurity prevention) and 

natural resources management (e.g., prevention of bushfires and land 

degradation). 

 

5.2. Outlook 

 

In accordance to the objectives of the study, different statistical tools that 

estimate and / or forecast forage availability at the end of the growing season 

in Senegalese semi-arid areas were developed and discussed in this PhD 

dissertation. In overall this study was done to contribute to the challenging 

task of modelling the plant biomass component of the very dynamic and 

complex Senegalese Sahelian ecosystem. Focusing more on the future 

operational usability of developed models, only the Geoland Version 1 

(GEOV1) vegetation products were used. Their 1 km spatial resolution, 
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indeed, matches very well with the biomass data collection method on the 

field (along a 1 km long transect). According to the length of these satellite 

imagery datasets, only plant biomass data collected from 24 monitoring sites 

(out of 36 before 1999) were used. This indicates clearly that several 

possibilities remain for the refinement and improvement of the proposed 

methodologies.  

A possibility of improvement will be the GEOV2 dataset (expected to be 

available very soon) which significantly improves GEOV1 in terms of 

continuity (less than 1% of missing data in GEOV2 as compared to the 20% 

of gaps in GEOV1) and consistency (smoother products less affected by 

noise in the data) (Verger et al., 2013a). The SENTINEL-3 satellite launched 

recently will ensure the delivery of near real-time biophysical variables with 

finer spatial resolution of 300 m. The total and herbaceous biomass models 

will be adapted, therefore, to ensure continuity of the developed assessing 

systems. To find out more improvement possibilities and for the sake of 

interoperability with the Copernicus Global Land products, different data 

source such as MODIS-TERRA/AQUA should be tested.  

The plant biomass production maps provided each year to the Department 

of livestock in Senegal through the Direction de l’Elevage et des 

Productions Animales (DEPA) is used only by visual analysis and 

qualitative interpretation to assess the fodder biomass availability with 

respect to livestock population. No formal method exists to date for this 

purpose in Senegal. Establishing an operational approach for the evaluation 

of fodder biomass balance and anomalies impact analysis should be a logical 

sequence of the research (findings) presented in this dissertation. The 

livestock numbers per district provided annually by the DEPA could be used 

even if these numbers are retrieved, in general, by projection based on 

growing rate. A research paper is currently being prepared about the 

supply/demand of fodder biomass in Senegalese rangelands. This study 

should result to an approach that defines a formal implementation of the 

results obtained from this thesis. 

A longer than 17-year time series of plant biomass maps can be very 

useful for eco-environmental studies (e.g., on land degradation, carbon 

uptake…). After a downscaling process with dedicated algorithms, the 



107 

Global Inventory Modelling and Mapping Studies GIMMS-3g NDVI 

imageries (Pinzon and Tucker, 2014) could be used to provide a time-series 

of plant biomass maps from 1987 to 2012, across the whole Sahel and with 

about 1/12° spatial resolution. Another potential imagery dataset can be the 

Vegetation Optical Depth (VOD) that has proven recently by (Tian et al., 

2016) to be an efficient proxy for green biomass of the entire vegetation 

stratum (both herbaceous and woody plant foliage) in the semi-arid 

Senegalese Sahel, extending from 1992 to 2011 with about 0.25° spatial 

resolution. For this purpose, biomass data available for Senegal (Ferlo), Mali 

(Gourma) and Niger (Fakara) within these periods could be very valuable.  

This study was mostly concentrated in solving the technical requirement 

of implementing tools to assess fodder biomass available at the end of 

growing season in Senegalese Sahel. All variables used were computed 

within the growing season as well. However, fodder biomass is used by 

pastoral herd along the dry season. The questions that could be raised in the 

case of Senegalese rangelands are: i) how is changing the forage across 

rangelands during the dry season? and ii) how they could be monitored using 

existing remote sensing datasets? The conclusions made by Jacques et al. 

(2014) in the Gourma region of Mali could be used as pioneer information to 

answer these questions. In addition, only some efforts were made to 

understand the relation between satellite-derived variables (i.e., phenological 

metrics and status water indicators) and ecosystem properties (e.g., 

ecoregions and land cover classes). Further research is needed to improve 

our understanding of their spatial and temporal patterns across Sahelian 

ecosystems. Another aspect that we will investigate in the future is the 

assessment of forage quality using field measurements and satellite based 

products. This was not developed in the research presented here because of 

the absence of quantitative information about the forage value for 

Senegalese rangelands. Such information on forage quality combined with 

the dry matter production (and may be with many others factors to be 

defined) could allow to estimate approximately the production of milk and 

meat from pastoral herd at the end of the growing season. 

During this PhD, we had the opportunity to work with other researchers 

on subjects more or less connected to our research theme. The collaboration 
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was fruitful for us (and the scientific community) as resulted on several 

article papers not included in this dissertation and published on high ranked 

journals (e.g., (Brandt et al., 2014), (Brandt et al., 2015), (Brandt et al., 

2016a), (Tian et al., 2016) and (Brandt et al., 2016b)). Beyond this PhD 

dissertation we will continue research to improve the proposed approaches, 

to develop or readapt deterministic tools, and to use their outputs for 

investigating the environmental change in the Sahel focusing specially on its 

relationship with livestock farming systems, climate variability and human 

induced effects (e.g., bushfires).  
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Appendices 

 

 
Figure  5.1  – A1. Spatial distribution of percentage of missing data (MD) in yearly 

FAPAR time series from 1999 to 2013 
 

 
Figure  5.2  – A2. Histograms of percentage of missing data in yearly FAPAR time 

series from 1999 to 2013 
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Table  5.1 – A3. Description, unit and selection status after recursive feature 
elimination and variable inflation control of 17 agrometeorological variables 

provided by the GeoWRSI water balance model and used in the study. The 10 
underlined variables correspond to those used for model development. 

Variables Description Unit 
Selection 

status 

WRSI Water requirement satisfaction index % No 

SOSp Start of the rainy season dekad Yes 

EOSp End of the rainy season - No 

AETi 
Actual evapotranspiration accumulated over the initial stage 

of the growing season 
mm No 

AETv 
Actual evapotranspiration accumulated over the vegetative 

stage of the growing season 
- Yes 

AETf 
Actual evapotranspiration accumulated over the flowering 

stage of the growing season 
- Yes 

AETr 
Actual evapotranspiration accumulated over the ripening 

stage of the growing season 
- No 

WDEFi 
Water deficit accumulated over the initial stage of the 

growing season 
- Yes 

WDEFv 
Water deficit accumulated over the vegetative stage of the 

growing season 
- Yes 

WDEFf 
Water deficit accumulated over the flowering stage of the 

growing season 
- Yes 

WDEFr 
Water deficit accumulated over the ripening stage of the 

growing season 
- Yes 

WSURi 
Surplus water accumulated over the initial stage of the 

growing season 
- No 

WSURv 
Surplus water accumulated over the vegetative stage of the 

growing season 
- Yes 

WSURf 
Surplus water accumulated over the flowering stage of the 

growing season 
- Yes 

WSURr 
Surplus water accumulated over the ripening stage of the 

growing season 
- Yes 

PPTc Cumulated rainfall during the rainy season - No 

PPTm Averaged rainfall during the rainy season - No 

 

Table  5.2 – A4. Mean signed difference (in dekads) between onset metrics 
calculated from rainfall and FAPAR data across the agricultural and natural 

vegetation land cover classes in the study area. 
 

Land cover classes 
Mean signed difference in dekads 

Start of season 
SOSp-SOS 

End of season 
EOSp-EOS 

Herbaceous  1.3 0.1 
Agriculture  0.3 -1.4 
Shrubs very open 0 -2.1 
Shrubs open to closed 0 -1.7 
Trees very open 0.3 -1.6 
Trees open to closed 0.4 -2.2 
Overall mean 0.4 -1.5 
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Figure  5.3 – A5. Averaged (a) herbaceous, (b) woody leaf and (c) total plant yield of 
the 24 sites used in this study and their corresponding standard deviation (error bar) 

for the 2000-2015 period. 

 


