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Problem	
Drowsiness	is	a	major	cause	of	fatal	accidents,	in	particular	in	transportation.	It	is	thus	
critical	 to	 develop	 real-time,	 automatic	 drowsiness	 monitoring	 systems	 designed	 to	
warn	 a	 vehicle	 operator	 (and/or	 an	 automatic	 driving	 system)	 to	 take	 timely	 safety	
actions.	 One	 of	 the	 least	 intrusive	 approaches	 for	 this	 is	 to	 use	 one	 or	more	 cameras	
mounted	in	the	vehicle,	such	as	in	the	dashboard.		
	
We	report	here	on	the	preliminary	results	of	an	end-to-end	system	that	takes	grayscale	
video	images	of	the	operator's	face	(at	30	frames	per	second)	as	inputs,	and	produces	an	
estimate	of	the	probability	density	function	(PDF)	of	the	operator’s	reaction	times	(RTs)	
to	sudden	events.		
	
Method	
Our	system	is	composed	of	two	modules.	The	first	produces,	for	each	image	in	the	video	
stream,	 the	 eyelids	 distance	 (i.e.	 the	 distance	 between	 the	 eyelids),	 and	 the	 second	
produces,	from	these	distances	over	the	last	minute,	the	PDF	of	the	RTs.	
	
The	 first	 module	 consists	 of	 a	 convolutional	 neural	 network	 (CNN)	 taking	 as	 input	 a	
grayscale	 face	 image	 of	 size	 128×128	 and	 returning	 as	 output	 the	 eyelids	 distance,	
which	 is	a	positive	scalar	ranging	 from	0	to	6	pixels.	The	CNN	is	composed	of	 ten	3×3	
convolutional	 layers	(interspersed	with	2×2	max	pooling	 layers),	a	global	max	pooling	
layer,	 and	 two	 fully	 connected	 layers.	 We	 use	 the	 Rectified	 Linear	 Unit	 (ReLU)	 non-
linearity,	 Batch	 Normalization,	 and	 Dropout.	 In	 practice,	 the	 face	 input	 image	 is	
extracted	 from	the	 full	video	 frame	using	 the	Viola	and	 Jones	algorithm.	Each	 frame	 is	
processed	exactly	once	by	this	first	module.	
	
The	 second	 module	 is	 also	 a	 CNN.	 It	 takes	 as	 input	 a	 vector	 of	 size	 1×1,800	 that	
corresponds	to	the	concatenated	eyelids	distances	obtained	over	the	last	minute	at	the	
frame	rate	of	30	FPS,	and	returns	as	output	two	scalars:	the	log-mean	and	log-variance	
parameterizing	a	Gaussian	PDF	of	the	inverse	of	the	RTs	(=1/RTs).	It	 is	composed	of	a	
1×15	convolutional	layer,	a	1×3	max	pooling	layer,	a	1×31	convolutional	layer,	a	global	
average	 pooling	 layer,	 and	 two	 fully	 connected	 layers.	 We	 use	 ReLU	 and	 Batch	
Normalization.		
	
Results	
For	 our	 preliminary	 results,	we	used	35	participants	 (21	 females	 and	14	males)	 aged	
23.3	 ±	 3.6	 (mean	 ±	 SD)	 and	 free	 of	 drug,	 alcohol,	 and	 sleep	 disorders.	 The	 protocol	 -	
approved	by	the	Ethics	Committee	of	our	university	-	led	the	participants	to	be	in	three	
successive	 states	 of	 increasing	 sleep	 deprivation	 of	 up	 to	 30	 hours,	 induced	 by	 acute,	
prolonged	 waking	 over	 two	 consecutive	 days.	 For	 each	 of	 these	 three	 states,	 each	



participant	performed	a	10-minute	psychomotor	vigilance	task	(PVT),	during	which	we	
recorded	the	RTs	(in	milliseconds)	and	 the	near-infrared	 face	 images	with	a	Microsoft	
Kinect	 v2	 sensor.	However,	 due	 to	 some	 technical	 issues,	 only	 88	 out	 of	 the	 105	PVT	
tests	turned	out	to	be	usable.	
	
The	first	module	was	trained	using	a	Mean	Squared	Error	(MSE)	loss	function.	The	sizes	
of	 the	 training	 set	 and	 validation	 set	 were	 4,702	 and	 710	 annotated	 face	 images,	
respectively.	We	obtained	an	MSE	 loss	of	0.177	 square	pixels	 in	 training	and	of	0.234	
square	pixels	in	validation.	Figure	1	illustrates	some	of	the	results,	and	figure	2	shows	a	
scatter	plot	of	the	eyelids	distance	errors.	
	
The	second	module	was	trained	using	a	Negative	Log	Likelihood	(NLL)	loss	function.	We	
divided	each	10-minute	PVT	into	37	one-minute	segments,	resulting	in	a	training	set	and	
validation	 set	 of	 sizes	 2,812	 (31	 subjects,	 76	 PVTs)	 and	 444	 (4	 subjects,	 12	 PVTs)	
segments,	respectively.	Figure	3	shows	a	scatter	plot	of	the	predicted	log-mean	and	log-
variance.	
	
Discussion	
The	 method	 of	 the	 first	 module	 is	 slightly	 different	 from	 the	 typical	 face	 alignment	
method;	 here,	 it	 only	 returns	 the	 eyelids	 distance	 instead	 of	 multiple	 fiducial	 facial	
points,	but	this	has	the	advantage	of	being	fast	and	robust.	Figure	2	shows	that	the	first	
module	achieves	an	error	mostly	below	1	pixel,	and	always	below	2	pixels.	
	
The	 second	 module	 successfully	 estimates	 the	 log-mean	 parameter,	 but	 has	 some	
difficulties	with	 the	 estimation	of	 the	 log-variance	parameter	 (figure	3).	 The	difficulty	
with	 the	 latter	 parameter	 is	 probably	 caused	 by	 two	 facts:	 (1)	 the	 low	 amount	 of	 RT	
observations	within	one	minute	(with	an	average	of	9.4	RTs/min),	resulting	 in	a	noisy	
target	 variance,	 and	 (2)	 the	 absence	 of	 discriminative	 features	 in	 the	 eyelids	 distance	
signal	to	estimate	the	variance.	
	
One	 of	 the	main	 novelties	 of	 our	 second	module	 is	 the	 absence	 of	 pre-defined,	 hard-
coded	 eyelids	 distance-based	 features,	 such	 as	 PERCLOS	 and	 mean	 blink	 duration.	
Instead,	 the	 learning	 algorithm	 automatically	 discovers	 informative	 features	 in	 the	
temporal	signal,	i.e.,	the	features	that	are	the	most	discriminative	for	predicting	the	PDF	
of	 the	RTs.	Overall,	 the	only	a	priori	 assumption	 in	our	 system	 is	 the	design	choice	 to	
focus	 on	 the	 eyelids.	 However,	 the	 automatic	 feature-discovery	 property	 makes	 the	
second	module	a	“black	box”	that	is	hard	to	analyze	and	understand.		
	
Both	of	the	modules	could	be	further	improved	by	collecting,	and	training	on,	more	data.	
Nevertheless,	 our	 results	 show	 that	 our	 two	 modules	 do	 not	 overfit	 their	 respective	
training	sets,	even	with	their	modest	size.	Indeed,	the	overfitting	is	here	mitigated	by	the	
relative	 small	 model	 size	 we	 chose	 (compared	 to	 other	 CNN	 applications	 with	 larger	
datasets)	and	a	validation	of	the	hyperparameters.	
	
Summary	
We	 developed	 and	 presented	 here	 the	 preliminary	 results	 of	 a	 novel,	 automatic,	 real-
time,	data-driven,	end-to-end	drowsiness	monitoring	system	that	feeds	back	the	vehicle	
operator	with	the	probability	density	function	(PDF)	of	his/her	reaction	times	to	sudden	
events	based	on	images	of	his/her	face.	In	practice,	the	warned	operator	could	use	this	



information,	 realize	 that	 there	 is	a	high	 (or	higher	 than	usual)	probability	 that	he/she	
will	not	be	able	to	react	fast	enough	to	a	sudden	and	potentially	dangerous	situation,	and	
then	decide	-	with	full	knowledge	-	to	take	safety	actions	such	as	pulling	into	the	nearest	
rest	area.	
	
Future	 work	 includes	 collecting	 and	 training	 on	 more	 data,	 performing	 an	 in-depth	
analysis	of	the	trained	models,	extending	the	system	to	more	face	modalities	such	as	the	
head	pose,	and	implementing	different	temporal	model	architectures.	
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Figure	1:	Five	input/output	results	of	the	first	module.	The	taller	the	green	bar	is,		
the	larger	the	output	-	i.e.	the	eyelids	distance	-	is.	

	
Figure	2:	Scatter	plot	of	the	eyelids	distance	error	versus	the	true	eyelids	distance.	

	
Figure	3:	Scatter	plot	of	the	predicted	log-mean	(left)	and	log-variance	(right)		

versus	their	respective	true	value.	


