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Rupture in geomaterials is often preceded by a localization of the deformations within
thin bands. The strain localization is therefore an important process, which has been
studied both experimentally and theoretically. This paper summarizes the main ob-
servations on localized phenomena and proposes numerical tools to characterize lo-
calization processes. To deal with interactions occurring between the different phases
of porous media, a regularization technique based on the second gradient model has
been extended to multiphysic couplings.

1 Introduction

Since the material behaviour and rupture are of importance regarding the design of
geotechnical works for which the materials can be subjected to strong solicitations,
failure has been widely investigated in geomechanics. Experimental observations on
geomaterials clearly indicate the appearance of localised ruptures [Des84]. Theoret-
ically, the concept of rupture surface is one of the oldest case of material localised
failure and was already used in the design of works and structures few centuries ago
[Cou73]. In some cases, a diffuse mode of failure can also be observed and it corre-
sponds to homogeneous failure in laboratory tests [KGDLO06]. Nowadays, it is com-
monly assumed that localised deformation and damage can appear in materials prior
to the rupture in many situations. In rock material, a stress redistribution can engen-
der damage that can firstly be diffused then localised. Once the damage threshold is
reached, microcracks initiate, then grow, accumulate, and propagate within the ma-
terial. If the microcracks coalesce, the distributed damage can further lead to strain
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localisation and to the initiation of interconnected fractures by the onset of macroc-
racks, which provokes a sudden material rupture [Die03].

The fracturing process instigates discontinuities in the material that can be represented
theoretically and numerically by various approaches. Two mains categories exist: the
continuous and discrete descriptions of fracture. The continuous description includes
material damage and strain localisation, while the discrete description explicitly repre-
sents cracks. In fracture mechanics, the different fractures can be in tensile or opening
mode (mode I), in sliding shear mode (mode II), in tearing shear mode (mode III), or
in mixed-mode (mode I-II, [JS88]). The modelling of shear strain localisation is a con-
tinuous approach that does not explicitly reproduce fractures and their discontinuities.
Nevertheless, it generally induces the appearance of shear bands and a non-uniform
strain distribution that may engender a displacement discontinuity between the mate-
rial located on the two sides of a shear band.

Furthermore, soils and rocks are porous materials, where the porous volume is filled
with one or several fluids (water, gas, oil ...). The general behaviour of the medium
depends not only on the skeleton response (solid phase) to a given loading path, but
also on the interactions occurring between the different phases of the medium. Cap-
illary effects, temperature variations, chemical reactions induce specific behaviours,
which have to be modelled by multiphysical constitutive laws. The numerical tools
for modelling strain localization problems have thus to be extended to this multiphysic
context, to deal with applications related, for instance, to nuclear waste disposal and
concrete behaviour under severe loading. Then, new questions arise concerning the
interactions between localization process and physical process (like liquid diffusion
for example). The answer to these new questions can only be given by experimen-
tal evidences. The section 2 of this paper summarizes the main observations on the
localization phenomenon, coming from experimental results. Section 3 describes the
regularization methods used to model properly the strain localization process. Section
4 is the description of the coupled second gradient model in saturated conditions. A
biaxial compression test is modelled in order to show the ability of the second gradient
model to represent correctly the post-peak behaviour. In section 5, the second gradient
model is extended to unsaturated conditions . The example of a gallery excavation is
proposed in section 6 to evidence the influence of hydro-mechanical couplings in satu-
rated and unsaturated conditions on the strain localization process. Some conclusions
end up the paper in section 7.

2 Experimental evidences of strain localisation

Strain localisation is frequently observed prior to material rupture. Starting from a
homogeneous deformation state, strain localisation consists in a brutal accumulation
of strain in a limited zone that can lead to cracks and failure (rupture lines). In geo-
materials like soils and rocks it is often considered as a shear strain accumulation in
band mode [Des05]. Nevertheless, the type of localisation may be of different nature
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for other materials.

Geomaterials have low tensile strength, thus tensile rupture is arduous to characterise.
On the other hand, plenty of small-scale compression laboratory tests are dedicated to
strain localisation [VGG78, HD93, FHMV96, FHMV97, ABS03] and allow to char-
acterise the compression material behaviour up to the rupture. They are generally
realised on axisymmetric triaxial or plane-strain biaxial compression apparatus and
involve special techniques, such as stereophotogrammetry [Des84, DV04], X-ray mi-
crotomography, and three dimensional digital image correlation [LBDT07], to study
the evolution of the strain localisation process. The advantage of biaxial compression
experiments is that the localisation process is clearly evidenced, whereas it can remain
hidden inside the sample in triaxial compression tests.

Under compressive regime, rupture is governed essentially by shear failure and these
experimental studies generally highlight shear strain localisation in band mode [Des05].
It is commonly accepted that the shear band establishment corresponds to a peak stress
in the stress-strain global response curve of the specimen [MD99, Des05].

The experimental localisation studies mostly analyse the behaviour of sand and only
a few are actually available on rocks [BDROO]. Analysing the formation of fractures
and strain localisation bands in rocks is quite challenging due to their high resistance
and brittle behaviour (quasi-brittle material), thence the development of appropriate
apparatus designed to test this type of material is necessary [DV04].

3 Regularisation methods

The further step is to define an appropriate and robust method that allows to properly
model strain localisation and shear banding with the finite element method, leading
finally to rupture in localised mode. Local descriptions of failure with classical finite
element methods are not efficient in the reproduction of strain localisation because
they suffer a mesh dependency (to mesh size and orientation) as indicated by [PM81],
[ZPVO01b], [CLCO09], and [WW10]. This pathological problem is due to the properties
of the underlying mathematical problem.

The dependence to the finite element discretisation can be solved by employing a
proper regularisation technique. Such method has to introduce an internal length scale
in the problem to model correctly the post-localisation behaviour. Two principal cate-
gories of enhanced models exist: one consists in the enrichment of the constitutive law
with for instance non-local [BBC84, PCB87, PABB *96, GSH12] or gradient plasticity
[Aif84, dBM92, PABBdV96], the other approaches in the enrichment of the contin-
uum kinematics with microstructure effects. For this second category the microkine-
matics are characterised at microscale in addition to the classical macrokinematics
[CCO09, Tou62, Min64, Ger73]. However, enhanced models restore mesh objectivity
but not the uniqueness of the solution.
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3.1 Enrichment of the constitutive law

In this approach, an internal length scale is introduced at the level of the constitutive
model. Advanced analyses of localisation phenomena have indicated that constitu-
tive equations with internal length are one solution to model strain localised pattern
properly.

The internal length scale is introduced by developing non-local definition of internal
variables involved in the material behaviour. The non-local variable V at a material
point x; can be defined as an averaging value of the local variable v in a considered
region {2 near that point [PCB87, PGdBBO01], as illustrated in Fig. 1.

Figure 1: Non-local approach on a representative material volume.

The non-local integral method gives:

1
W)=y [ Uvln) a2 ()
N
VZ/ vds? 2)
{2

where x; is the coordinate vector of the material point where the non-local variable
is considered, {2 is a representative volume centred in x;, y; is the coordinate vector
of the infinitesimal volume df2, and ¥ is a weight function scaling v to v = v for
a homogeneous distribution of the variable. It is generally defined with a Gaussian

distribution: ,
1 |2 = yill
U= ——— e Al
o ( 20 ®

which depends on the distance ||x; —y;|| and on a characteristic length parameter /..
This length parameter, or internal length scale, defines the material volume that sig-
nificantly contributes to the non-local variable and is consequently related to the mi-
crostructure.
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The regularised variable can also be defined explicitly from the local variable v(x;)
and its gradient. In his pioneering works, [Aif84] introduced such gradient in the
constitutive equations. The explicit gradient formulation is:

V=v+I1 Py
- Bx,-é)x,-

“

where the dependence of v and v on the coordinate vector x; is dropped for simplic-
ity and 7 has the dimension of length squared so V1 can be related to the internal
length scale /., introduced to regularise the model. Because the gradient term is a
local quantity, the spatial interaction of the material points located in the vicinity of
Vv is infinitesimal and the explicit gradient model is therefore local. This is a main
difference with the non-local integral formulation of Eq. 1 where the interaction dis-
tance is finite and related to the weight function. Moreover, the explicit gradient for-
mulation can be derived from the non-local integral formulation by introducing the
gradient of the internal variable, expanding the local variable v(y;) into a Taylor se-
ries [BBC84, LB88, PABBdV96], using the weight function definition of Eq. 3, and
neglecting the terms above the second order (approximation).

The definition of Eq. 4 is less suitable in the context of numerical analyses, such as the
finite element method, because of the explicit dependence of v with its local (second)
gradient. This dependence leads to a continuity requirement for the internal vari-
able which has to be a continuously differentiable function (class C! function whose
derivative is continuous). To avoid this drawback, an alternative implicit gradient for-
mulation, introducing an approximation of Eq. 1 similar to Eq. 4, can be expressed as
follows [PABBdV96, PGdBBO1]:

.

o1 _
v axiax,- v

&)

and enables a continuous definition of v (class C” function). For the implicit gradient
model, the non-local internal variable is an additional unknown which is solution of
the Helmoltz differential equation 5. Solution of this equation can only be found
provided that additional boundary condition on V is specified. The following condition
is usually assumed [LB88]: %

o nj=0 ©6)
where n; is the normal unit vector to the external boundary. This condition enables
v = v for homogeneous distribution. In contrast to the explicit formulation, the non-
local variable v is implicitly given as the solution of Egs. 5 and 6, and the spatial
interaction has a finite distance that implies a non-local character. The solution is
of the same form of the non-local equation 1 with ¥ = Gr and V = 1, Gr being the
Green'’s function [Zau89]:

i) = [ Grv(w de )
(P
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||xi_yi||>
Gr=———  oxp <—— ®)
Al |x; — yill Vi

The implicit gradient model is therefore a special case of the non-local model.

Non-local quantities as well as gradient of internal variables can finally be intro-
duced in constitutive models. Among other authors, Bazant, Pijaudier-Cabot, and
co-workers [BBC84, PCB87] proposed a family of constitutive models derived from
the non-local damage theory in which a non-local internal variable is used instead
of the local one. For instance, a non-local damage energy release rate obtained by
Eq. 1 is introduced in the damage loading function. Other variables such as non-local
equivalent strain are usually used in damage model [PGdBBO1].

3.2 Enrichment of the kinematics

The previous approaches (enrichment of the constitutive law) introduce the effect of
microstructure with non-local or gradient terms but the microstructure itself is not
explicitly defined. To this end, the classical kinematics of a continuous medium can
be enriched with additional description of the microstructure kinematics, leading to a
microstructure continuum medium also called enriched medium.

For a classical continuous medium, a material particle of volume (2 is defined at
macroscopic scale by its (macro) displacement field u;. The classical kinematic fields
are the macro-deformation field:

8u,-
Fj= o 9
= ) ©)
corresponding to the gradient of the displacement field, the macro-strain field:
1
&) = 5 (Fij + Fji) (10)
corresponding to the symmetric part of F;;, and the macro-rotation field:
1
rij = 5 (Fij — Fji) (11

2

corresponding to the antisymmetric part of F;;. Their rate forms are also commonly
used; the velocity gradient field:

Ot
Lij = o, 12)
the strain rate field: |
&= 5 (Lij+Lji) (13)
and the spin rate field:
0;j = % (Lij —Lji) (14)
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The first and most famous enhanced model was developed by the Cosserat brothers
[CCO09] who introduced local rotation degrees of freedom 7{ in addition to the dis-
placements of classical continua u; (Fig. 2). The Cosserat (or micropolar) elastic con-
tinuum theory is mostly suitable for the kinematic description of granular materials.
Accordingly, additional kinematic fields are introduced [VS95]. The deformation due
to the particle rotation, also called micro-rotation (antisymmetric tensor) becomes:

<
r3

Figure 2: Kinematic degrees of freedom of the Cosserat elastic continuum theory.

1 = eijk Iy (15)
where e;j; is the alternating tensor, and the gradient of the particle rotation, also called
curvature: ¢

C __ l

K= o, (16)
A relative strain is deduced as the difference between macro-deformation and micro-
rotation:

&j = Fj—rj amn
whose symmetric part coincides with the macro-strain €;; and its antisymmetric part
with the difference between the macro and micro-rotation 7;; — r{;. The latter charac-
terises the relative rotation of a material point with regard to the rotation of its neigh-
bourhood. A couple stress (torques) tensor associated to the rotations is thus added
introducing bending and torsion at the material point. This results in a moment equi-
librium equation involving the couple stresses that comes in addition to the classical
(local) momentum balance equation involving the stress field 6;;. Moreover, supple-
mentary elastic constants are considered in the constitutive equations which consist of
internal length scale parameters related to the microstructure [VS95].

In the 1960’s, [Tou62] and [Min64] defined materials with microstructure. A macro-
volume {2 is composed of smaller microscale particles that can be represented by a
micro-volume (2", embedded in the material volume {2 (Fig. 3). A micro-displacement
field u?" is defined independently of the macro-displacement ; and its gradient leads
to a micro-deformation field: oy

u.

Vj = 6_x] (18)
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(b)

Figure 3: Kinematics of a microstructure continuum: (a) initial configuration and (b)
configuration after external solicitation with relative displacement of the microstruc-
ture.

which is homogeneous in the micro-volume (2 but non-homogeneous in the macro-
volume {2.

The symmetric and antisymmetric parts of v;; correspond to the micro-strain and
micro-rotation:

1

& = 3 (vij +v;i) (19)
1

rij = 5 (0ij = 0ji) (20)

with the micro-rotation corresponding to the rotation components of the Cosserat
model r; = rj; (Eq. 15). Cosserat model is in fact a particular case of a microstructure
medium. Moreover, the micro second gradient is defined as:

o al)i j (92 u;-"

The relative deformation of the microstructure is defined as the difference between the
macro and the micro-deformation fields:

€jj=Fj—vij (22)

whose symmetric part coincides with the difference between the macro and the micro-
strain €;; — €]; and its antisymmetric part with the difference between the macro and
micro-rotation r;; — rl”/’ Similar to the Cosserat’s continuum description, additional
stresses are introduced: the microstress, an additive stress field associated to the mi-
crostructure, and the double stress.

Later, [Ger73] introduced the virtual power principle to provide a global framework
for the microstructure continuum formulation. This principle states that, by equilib-
rium, the virtual power of all forces acting on a mechanical system is null. In the
following, materials with microstructure defined by [Min64] and [Ger73] will be con-
sidered.
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A large panel of models are developed in the litterature by adding mathematical con-
straints to microstructure media. Among them, the second gradient model developed
in Grenoble [CCH98, CCMO01] will be most particularly developed hereafter. Yet, the
following conclusions can be generalised to other regularisation techniques.

4 Coupled local second gradient model for microstruc-
ture saturated media

The coupled local second gradient model is developed for enriched continua includ-
ing microstructure effects [CCMO1]. This model was extended from monophasic to
biphasic porous media (solid and fluid) by [CCCO06] to highlight the possible inter-
actions of the fluid (liquid water) with the strain localisation process and with the
internal length introduced by the model. The developments proposed by [CCCO06] are
recalled in this section. They account for a medium with incompressible solid grains,
under saturated and isothermal conditions. The solid and fluid phases are considered
as immiscible and phase changes, like evaporation and dissolution, are therefore not
taken into account.

As for a classical continuum, the material is considered as a porous medium and the
balance equations are based on mixture theories. The unknowns of the coupled prob-
lem are the macro-displacement u;, the micro-deformation field v;; (or the micro-
displacement field «" by Eq. 18), and the pore water pressure p,,. An additional
unknown field of Lagrange multipliers A;; will be added for the finite element method
implementation.

Figure 4: Material system with current configuration (2 and boundary conditions for
the second gradient model.
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4.1 Balance equations for microstructure poromechanics

4.1.1 Local second gradient model for a monophasic medium

The class of virtual kinematics introduced in the virtual work principle for the classi-
cal kinematic theory can be extended in the framework of a microstructure continuum
theory, by adding a description of the microstructure kinematics to the classical dis-
placement field. According to Eq. 18, the kinematics at microscale are described by
a microkinematic gradient field v;;. With respect to classical continuum mechanics,
additional terms are added in the internal virtual work of a given body [Ger73]. The
following expression holds for any virtual quantities:

i;kll = / (Gij sz —Tij E;'kj + Zijk h;'kjk) ag (23)
)

where g;; is the virtual relative deformation of the microstructure:
E;‘j = Fl-’; — D,*fj 24)
T;j is an additional stress associated to the microstructure also called the microstress,

hj.‘jk = W: is the virtual micro second gradient, and X is the double stress dual of

h; > which needs an additional constitutive law introducing the internal length scale.
The external virtual work can be defined as follows:

Wiy = [pgiui d2+ [ (5w +Pyvjy)ar (5)
n Is

where P; ; is an additional external double surface traction acting on a part I'’r of the
boundary I"(Fig. 4) and I's = {I; U I'r} regroups the classical and additional external
solicitations. The virtual work principle assumes the equality between internal and
external virtual works and leads to the weak form of the momentum balance equation:

/ (Gl‘j Ej —Tij (sz —‘D?j) + Eijk h?jk) d = /p 8i M;( a2+ / (fi u;‘ +F,'j D:fj) dl’
9] 2 I

(26)
The local equilibrium equations are formulated for the macro and the micro quantities;
the local momentum balance equations are:

A(0;; —T;

—(Gé T’)+pg,-=0 @7
%)
e _
=0 (28)
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and the boundary conditions are:
1 = (0ij —Tij)n; 29
f’ij = Eijk ny (30)

The boundary conditions for the mixture are also enriched with microstructure effects
which leads to non-classical boundary conditions.

In the specific case of local second gradient model used in the following, a kinematic
constraint is added in order to obtain a local second gradient continuum medium.
No relative deformation of the microstructure is assumed €;; = 0, meaning that the
microkinematic gradient is equal to the macro-deformation:

v;j = Fj 3D
As a consequence:
v =F; (32)

for the virtual fields. Therefore, the principle of virtual work can be rewritten as
follows:

au* azu* * by * T *
(/2<6,] o, + Xijk D0k )d()—épgi u; d.(?—l—/(ti u; —i—T,-Dui)dF (33)

c

where T; is the additional external double force per unit area on I 7 (Fig. 4) and the
notation Da denotes the normal derivative of any quantity a:

da
Da = 5_M n; (34)
with: 8 .
* Lt *
The local momentum balance equatlon reads:
aGij 622,']'](
=y _ =0 36
6Xj ax]'axk +pgl ( )

and the boundary conditions are:

Ei=6ij nj—ng njDEijk_

DE,-jk DZijk Dnl Dn;
. —yonin——L X (37
Dx, "7 Dx; " Dy Tk Dy Sk G7)

T»:Fijnj:&-iknjnk (38)
where 24 D is the tangential derivative of any quantity a:

Da Oa Oa
D_x,-_ﬁ_xi_[?Tjnjni (39)
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The local second gradient possesses the advantage that the constitutive equations re-
main local, with the stress fields ¢;; and X being local quantities. A second gradi-
ent extension can thenceforward be formulated for any classical continuum mechanics
constitutive law.

4.1.2 Second gradient constitutive equation

Similarly to classical media for which a constitutive equation links the stress to the
kinematic history, an additional constitutive law has to be defined between the double
stress and the microkinematics. The latter is assumed to be decoupled of the classical
first gradient part. However, only a little information is available on the relation exist-
ing between the double stress and the micro-deformation. A linear elastic mechanical
law is chosen for simplicity reasons with the purpose of introducing as few additional
parameters as possible. It consists in an isotropic linear relationship involving five
independent parameters derived by [Min65]:

- o,
2iik = Dijkimn 8Tm (40)
n
giving the Jaumann double stress rate:
ik = Zijk+ ik O+ ik Omj+ Zijp Opi (41)

as a function of the micro second gradient rate 7; k- Because the physical meaning of
the material parameters composing D; jxi, is not well established, a simplified version
introducing only one parameter has been proposed [MCCO02]. For two-dimensional
problems, it reads:

- - - - -00“-
S Lo o 0 0o 3 g 0]|f
Lo o 4+ 4+ 0o -1 o o 1 gdox_z
S o 5 3 0o —F 0o o ¥|o
S ) oo o 1 o -3 -1o0 %f )
Sul 7o =5 =L 0 1 0 0 o0 %ﬁl
5o 7 0 0o -+ o 4 L1 o0 %\)u
S o o -1 o L1 L ofl|p
S o 3 1 o o o0 o0 1 %Z
- ) ey

The constitutive elastic parameter D represents the physical microstructure and the
internal length scale relevant for the shear band width is related to this parameter
[CCH98, KCB*07, CCC09].
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4.1.3 Coupled local second gradient model

The second gradient theory was extended from monophasic to biphasic medium by
[CCCO06]. As for a monophasic medium, microstructure effects have to be introduced
in the balance equations of classical poromechanics.

The linear momentum balance equation is identical to Eq. 33:

ou’ Pur N kL o
[/2<6,']’ 0_)C;+Eijk m) dQ:épgi u; d.Q-l—Zf (Z‘i U; -l-TiDui)dF 43)

The water mass balance equation is written, in a weak form, in a similar way as the
momentum balance equation. A kinematically admissible virtual pore water pressure
field pj, is considered and is involved, as well as its first derivative, in the internal and
external virtual quantities. The water mass balance equation reads:

o o . o

/<Mw pw_fW«,i %) dQ:/Qw Pw ds?— /QW Pw ar (44)
i

04 0

qw

where M,, is the water mass inside 2, f;,; is the water mass flow, Q,, is a sink term of
water mass, and g,, is the input water mass (positive for inflow) per unit area on a part
Iy, of I'(Fig. 4).

According to the previous assumptions, the momentum balance equation Eq. 33 re-
mains valid provided p and o;; are defined, knowing that the medium is a mixture of
a solid phase and one fluid.

The mixture homogenised mass density is given by:
P =1Ps (1_45)4‘[)\4)45 (45)
and the effective stress is defined according to the Terzaghi’s postulate:

Gij = 6;; + Pw ij (46)

Furthermore, it is assumed that the pore fluid does not have an influence at microscale;
therefore, pore water pressure variations do not generate microkinematic gradients.
Such additional hypothesis was formulated by Ehlers [EV98] on a Cosserat model for
a biphasic medium. Second gradient effects are only assumed for the solid phase and
the water mass balance equation Eq. 44 of classical poromechanics is conserved. The
governing equations of the coupled problem are therefore Eqs. 33 and 44.

As already mentioned for the classical poromechanics, the effect of water on the to-
tal stress is defined according to the effective stress postulate (Eq. 46) while on the
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contrary the double stress X; ; is independent of the pore water pressure. The double
stress is only related to the solid phase.

The water mass M,, inside {2 and the water mass flow f,,; are defined in the following
equations:

M, =py® 0 A7)
ky [ Opw

Fui = =P (i +Pu gl-) (48)
Hw Ox;

The definitions of the phase density variations and of the porosity evolution are:

Pw _ Pw (49)
Pw  Aw
ps=0 (50
. 02
O=(1-9)— 51
(1-975 51)
The latter lead to the time derivative of the water mass per unit mixture volume:
My =y (;’— o+ 5) (52)

4.2 Coupled finite element formulation

4.2.1 Numerical implementation

The virtual work formulation of second gradient models can be implemented in a
finite element code. To implement the momentum balance equation of Eq. 33, the
displacement field has to be a continuously differentiable function because second
order derivatives of the displacement field are involved [ZPVO1b]. To avoid the use
of C1 function, the kinematic restrictions v;; = Fj; and v;; = F; are introduced in the
momentum balance equation through a field of Lagrange multipliers A;; related to a
weak form of the constraint [CCH98]. The field equations of the numerical coupled
problem are:

/(G@'W”@'k sz)m_/xgj (W_u,.j>m:/prg,.u,. a2+ [ (7 +Ti i) ar’
fod ! @ ! fod I
(53)
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* Bbti 1 _
/k,.j (a—x,j—u,.j> a2 =0 (54)
94
gt % t % _ '3 * _ —t *
/<Mw pw_fw,i (9)5; dﬁ_/Qw Pw d'Qt /qw Py d[i (55)
04 04 I

qw

where the notation a’ corresponds to the current value of any quantity a for a given
time ¢. For boundary conditions problems, the virtual quantities included in the above
equations depend on the boundary conditions history. Thus, the governing equations
and the constitutive equations have to hold at any time 7.

4.2.2 Linearisation of the field equations

Solving the loading process of a boundary conditions problem consists in determining
the unknown fields u;, v;;, A j» and p,, for which the equilibrium equations 53, 54, and
55 are valid. Since this system of non-linear equations is a priori not verified for any
instant ¢, the problem is numerically solved by iterative procedure. It involves a time
discretisation over finite time steps At:

T=t+At (56)
and an implicit scheme of finite differences for the rate of any quantity a:
at—d
i* = 57
a A (57)

A full Newton-Raphson method is used to find a solution for the new fields u;, v;;,
Aij, and p,, at the end of each time step which is in equilibrium with the boundary
conditions.

Following the approach of [BA95], the method aims to define a linear auxiliary prob-
lem deriving from the continuum one. A first configuration (2 in equilibrium with
the boundary conditions at a given time ¢ is assumed to be known and another 2* in
equilibrium at the end of the time step T = ¢+ Ar has to be found. The aim of the
iterative numerical procedure is to determine this new configuration at the end of the
time step. Firstly, a configuration which is close to the solution but not at equilibrium
is guessed and denoted as 2*'. Both configurations at time 7 and 1 are assumed to be
known and non-equilibrium forces for the three considered equations, i.e. the resid-
uals A™, AT and Afl, are defined. The objective is to find another configuration
2% close to £2°! for which the non-equilibrium forces vanish. To obtain the linear
auxiliary problem, the field equations for 2% are subtracted from the field equations
in configuration £2°!, after being rewritten in configuration £2°! by using the Jacobian
matrix of the transformation between the two configurations:

(9xf2
ij = Tl
Ox f

|

(58)
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and its Jacobian determinant:
T2
Ox;
Tl
Ox E

det(F) =

(59)

Assuming that g;, 7, g,,, and Q,, are independent of the different unknown fields
(displacement and pore water pressure), and that 7'; vanishes give:

. * Tl ovr. Tl
/ Bu, <GT-2 axl det(F)_G;_cll> + ij <2‘CZ axl det(F)—EE}]) dﬂﬂ

1 ! iJ ijz ! ik P
Q‘E
ou; oxt! .
- / axfl (7»?} axi.z det(F)_x}}) —vj; (A7 det(F) = Af}) a2 (60)
Q’Cl J
- / ut (p% det(F) —p™) g; d(F! = — AT
Qtl

o™ OxF! ou’!
/ Aij ((axlzl ax_% det(F) — axIﬂ) — (0} det(F) —n}'})) do™ =A% (61)
Q‘L’l J J

* M‘C2 d F _M‘Cl _ ap::/ T2 ax}tl d F _ Tl dQTl _ _A‘Cl 62
PW( w et( ) w) axﬂ w,i ax»cz Et( ) w,l - 3 (62)

: 1 i

Qﬂ

By making the two configurations tend towards each other, the variations between
them can be defined for any quantity « as:

da’tl — a’tz _a"Cl (63)

The balance equations can be rewritten by taking into account these variations. The
complete development of the linearisation of the field equation system and of the
resulting linear auxiliary problem is exposed by [CCCO06].

4.2.3 Spatial discretisation

In finite element methods, each continuum body is discretised by finite elements and
the above field equations are spatially discretised. For the second gradient model,
the discretisation is realised by two-dimensional plane-strain isoparametric finite ele-
ments. These elements are composed of eight nodes for the displacement field u; and
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the pore water pressure p,,, four nodes for the microkinematic gradient field v;;, and
one node for the Lagrange multiplier field A;; (Fig. 5). Quadratic serendipity shape
functions [ZT00] are used for the u; and p,, interpolations, linear shape functions are
used for v;;, whereas A j is assumed constant.

(b)

Figure 5: Finite element used for the spatial discretisation of the coupled local second
gradient model: (a) current quadrilateral element and (b) parent element [CCCO6].

The balance equations of the coupled finite element problem (linear auxiliary problem)
have to be rewritten in matricial form to define the local stiffness matrix of an element:

T
[ i) B [avg a2 = —ap - a3 - af (64)
Qﬂ

where [d Ul

(x1.x%2)
current element configuration:

] is the vector of the unknown increments of nodal variables in the

Tl 8dpfvl 3de3 d Tl 8d1)11:11 8d‘l)11:11

[ - ] odu§" odu' ddus' ddus! ' d
= u u
@) bsa ot ot o and T T ad ag T il o
advt,  8dvl) !
Sl ot dVi) dvl dv3; dvly dAfy dATy dAS) dA
1 2
(65)
[U(:flxz)] is a vector having the same structure with the corresponding virtual quanti-

ties:
el _ | 0w Owy Oy Ouy . . Opy Opy . OO} OV

[ (XI’XZ)]1X25_ |:ax'i:1 3)651 ax? BXEI Z5%) 3)6}1 ax12;1 Pw 8x}1 3)652

B 0o,

ol o)

(66)

* * * * * * * *
V] Uz V31 V3p Afy Alp A5y Ay

ALERT Doctoral School 2016



264 Numerical modelling of multiphysics couplings and strain localization

and [E “] is the current element stiffness (tangent) matrix defined as follows:

1 1 i
T O4x2  Kiyy O4x8  Osxa  —Iaxs
4x3

lyxa
‘ﬂxzt 022 5;3 O2x8  Oax4 0244
[Erl] rsas = K;{"I’SM 032 K;’EVleX_} Oi>1<8 034 0344 7
E28><4 082 Ogx3 Dg ¢ 084 Ogx4
§:X4 O4x2 Osx3  Osxg  Oaxa  lyxa
‘Em O4x2 04x3 Osxg  —laxa  Ogxa

The matrices [ET'], [E3'], [EF'], [Ef']. and [D'] are the same as the ones used in the
local second gradient model for monophasic medium by [CMO04] ([D™] = Djjjmn in
Eqgs. 40 and 42). [K}}, ] is the classical stiffness matrix of a flow problem, [Ky, ] and
[K‘}}M] are matrices of the coupling between the flow and the mechanical problems
detailed by [CCCO6]. Moreover, [G'] and [G}!] are related to the contribution of
gravity volume force.

The finite element spatial discretisation of the linear auxiliary problem is introduced in
Eq. 64 by using transformation matrices [T ”] and [B] that connect the current element

vector [dU (Txl )] to the parent element vector [dU ( and to the nodal variables

[dUIﬁ\%de] :

K1,K2)

[avg )] = 17 [aUE, )] = (7711 18] [aUFhe.] (68)

The matrices [B] and [T*'] contain the interpolation functions and their derivatives.

*,T1

Moreover, the vector [U<
X1,X2

)] is related to [U ;‘E e] in the same manner.
The integration in Eq. 64 can be expressed for each parent element as follows:
*,T1 T * 1
/ [U(x;xz)] [Eﬂ] [dU (x1 xz)] a2 = |: N;de] [kn] [dU oa'e] (69)
Q’Cl

where [k“] is the local element stiffness matrix:
1] / / (7" [E%] [17] (Bl det(J*™) dx; diy (70)

with det(J*') the determinant of the Jacobian matrix of the transformation between
the parent (K;,%) and the current (x),x;) elements:

rl
O}

det(JV) = T
J

(71)
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The residual terms are also computed locally for each element and define the elemen-
tary out of balance force vector [ jBIB] :

T
_A‘fl — A;l — A?l = I:U;’(;C(;():I [f(":)}g] 72)

4.2.4 Global solution

Once the elementary stiffness matrices and out of balance force vectors are computed,
they are assembled to obtain the global stiffness matrix [K™] and the global out of
balance force vector [Fg};] of the whole continuum. The linear auxiliary system is

solved by computing:
K] [8UFoae] = — [F35] (73)

where [8UF! | is the global correction vector of the nodal degrees of freedom. The
current configuration is actualised by adding the corrections to their respective current
values. The new current configuration is closer to the well-balanced configuration and
its equilibrium is checked, leading to a new iteration or to the end of the loading step
of the iterative procedure.

4.3 Two-dimensional specimen under compression

A finite element modelling of two-dimensional plane-strain compression tests is first
considered. These tests have been widely reproduced on small-scale specimens to
emphasise the strain localisation effects.

Among various authors, the results obtained by [CLCO09] for a uniaxial compression
are principally developed hereafter. A sketch of the boundary value problem in plane-
strain state is illustrated in Fig. 6. The vertical displacement u, of the sample upper
surface (smooth and rigid boundary) is progressively increased during the test with a
constant loading strain rate to model the vertical compression. The vertical displace-
ment of the bottom surface is blocked (rigid boundary) and the displacement of the
central node is blocked in both directions to avoid rigid body displacement.

4.3.1 Classical medium

A mechanical modelling is presetned hereafter for a classical medium (without a reg-
ularization method). The (first gradient) constitutive law is an elastoplastic strain-
softening model in an associated softening plasticity framework (¢ =y, F? = GP): a
Drucker-Prager yield criterion is considered with no hardening of the friction angle,
and a cohesion softening function [CLCO09].

A homogeneous response of the specimen is first studied. The global response is de-
tailed in Fig. 7 (a) where one can observe a linear elastic behaviour, then a non-linear
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Figure 6: Sketch of the plane-strain compression test.

plastic behaviour before the peak stress including cohesion softening, and finally a
plastic behaviour with decrease of the global load response. Concerning the orienta-
tion of the shear band, the Rice criterion gives the orientation of the first possible shear
band occurrence [RR75],[Ric76]. This criterion can be used for a single-mechanism
elastoplastic model such as the studied problem. The Rice criterion det(A j) evolu-
tion is presented during the increasing loading history in Fig. 7 (b) as a function of
tan®, A\ jk 1s the Acoustic tensor and © is the orientation of the shear band normal to
the loading vertical axis, i.e. the shear band orientation with the horizontal direction.
The criterion is positive det(A j > 0) as long as the behaviour is elastic and even for
an elastoplastic loading until the first bifurcation is predicted (det(Ajx) = 0). For a
certain load, the bifurcation criterion is met at every material point and two symmetric
(conjugate) bifurcation directions are predicted with an orientation of © = +60°. This
bifurcation point corresponds to the peak stress on the global response curve and to
the start of the load response reduction in associated plasticity. A range of possible
orientations is predicted for an increasing load corresponding toa multitude of possible
solutions (det(Ajx) <=0).

For a perfect sample, although softening plasticity is considered, the strain localisation
is not automatically triggered and the numerical solution may remain homogeneous
even after the bifurcation criterion is met. In reality, the localisation process is gen-
erated because geomaterials exhibit heterogeneities. Different numerical procedures
are available to force the occurrence of strain localisation. The most used one is the
introduction of an imperfection, such as disturbing force, material imperfection, or
geometrical defect [CRB97, MCC02, ZSS01]. The modification of numerical param-
eters, such as time step size and sequences can also be performed [MSC14, SaHC09].
A third method that will be discussed later is a random initialisation of variables
[CCCO1].

Among these procedures, [CLC09] introduced a material imperfection in the bottom
left finite element of the sample under compression. Initially the strain field in the
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Figure 7: Uniaxial compression: (a) global specimen response curves and (b) Rice
criterion at several loading steps for the homogeneous solution [CLCO09].

sample is homogeneous, and once the bifurcation criterion is met, the imperfection
instigates the development of a shear band across the specimen. The strain localisa-
tion as well as its dependency to the mesh size is illustrated in Fig. 8 for a classical
medium. The localised solution is therefore non-homogeneous, with the shear band
under plastic loading and the outer material under elastic unloading. The global sam-
ple response is detailed in Fig. 7 (a) where a rapid decrease of the global reaction is
observed once the shear band establishes. The shear band appearance corresponds
therefore to the curve peak load (or peak stress) as concluded from laboratory evi-
dences in section 2. The latter also indicate that a material inclusion can act as a
strain localisation attractor, which is confirmed by the numerical results. The non-
uniqueness issue of the problem after the bifurcation point has consequently been
addressed by the imperfection inclusion which leads to one post-bifurcation solution.

() (b)

Figure 8: Localised patterns represented by the deviatoric deformation for classical
medium: finite element meshes of (a) 50, (b) 190, and (c) 325 elements.

ALERT Doctoral School 2016



268 Numerical modelling of multiphysics couplings and strain localization

4.3.2 Microstructure enhanced medium

To fix the pathological mesh sensitivity, an enhanced microstructure medium is used.
More specifically, the local second gradient medium is adopted, with the second gra-
dient constitutive law given by Eq. 42. The strain localisation pattern induced by the
imperfection is illustrated in Fig. 9 with the Gauss integration points under softening
plastic loading shown as red squares. This representation permits to measure the shear
band width and to notice that it stays constant no matter the element size, implying
that the shear strain localisation is mesh-independent. Thus, the strain localisation is
correctly regularised thanks to the internal length scale introduced by the second grade
model. This is also the case for unstructured mesh [BCCO06] and for a biphasic porous
medium under saturated conditions, using the coupled local second gradient model
[CCCO6].

O

() (b) (©

Figure 9: Localised patterns represented by the plastic zone for a second gradient
medium: finite element meshes of (a) 200, (b) 450, and (c) 800 elements.

However, the regularisation of the strain localisation process is satisfactory, provided
that the second gradient elastic modulus D is calibrated properly to represent the shear
bands properly. As already mentioned, the internal length scale inherent to the sec-
ond gradient mechanical law is related to this constitutive parameter. The value of
D should be therefore evaluated based on experimental measurements of shear band
thickness for the considered material. From a modelling point of view, a better numer-
ical prediction of the post-localisation plastic behaviour within the bands is obtained
if at least three elements compose the shear band width [BCCO06]. This remark is valid
for any regularisation technique including the second gradient model but also gradient
plasticity and non-local models.

4.3.3 Non-uniqueness of the solution

The non-uniqueness of the post-peak solution of an initial boundary value problem
can be studied using special numerical techniques. In fact, instead of using a material
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imperfection, localised solutions can be found for a homogeneous material using a
random initialisation of the strain rate field (nodal velocities) or of material character-
istics at the beginning of the iterative procedure. This technique has been mainly pro-
posed by Chambon and co-workers [CCCO1] who developed an algorithm to search
several possible localised solutions by random initialisation. This algorithm has been
adapted to the second-gradient models by [CMO04].

Numerical modelling of compression tests performed with the second gradient model
illustrates the non-uniqueness of localised solutions of the same initial boundary value
problem [BCCO06]. The random initialisation is adopted for the increment of nodal
quantities [dUS! . | (Eq. 68) related to the values obtained at the end of the preceding
time step. The obtained non-homogeneous solutions are detailed in Fig. 10 (a) where
the different solutions exhibit one to three bands with a possible reflection on the top
and bottom faces of the sample because of the imposed vertical displacement. The
results indicate that the band thickness is reproducible even if the localisation pattern
is different in terms of bands position and number.

As before, the strain localisation occurring at the bifurcation point is due to the strain
softening behaviour and possible elastic unloading. Fig. 10 (b) illustrates the global
response curves that are different of those in Fig. 7 because a different first gradient
law is used. These curves are grouped in packages characterised by the number of
deformation bands. It is evident that the higher the band number, the closer the curves
are to the homogeneous plastic case. A similar conclusion was drawn from the bar in
traction studied by [CCH98], [JKC14].

4.3.4 Bifurcation criterion for the second gradient model

A bifurcation analysis applied to the second gradient model is proposed by [BCCO06].
The authors indicate that the bifurcation criterion of the second gradient model is, as
for a classical medium, a necessary but not sufficient condition for the localisation
onset and that it is met after the bifurcation criterion of the classical medium is veri-
fied. Thus, the bifurcation analysis reduces to an analysis on the classical part of the
constitutive model.

5 Coupled local second gradient model for an unsatu-
rated medium

The procedure to extend the local second gradient model in saturated conditions to
other multiphysical contexts is more or less the same: additional balance equations
have to be considered to model the other processes. The main issue is not a numerical
one but rather a physical one. What are the possible interactions between the second
gradient model and the thermal diffusion, the suction or the chemical reaction? These
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Figure 10: Example of localised solutions for a compression test obtained after a
random initialisation: (a) plastic zone and (b) global response curve [BCCO06].

questions should be first addressed by experimental campaigns. Concerning the in-
ternal length introduced by the second gradient model, it comes as the ratio of two
constitutive moduli: the one related to the second gradient constitutive law and the
one related to the classical law [CCH98]. Considering that the classical constitutive
moduli are influenced by the different processes (chemical, thermal, suction ...), the
conclusions should be that the internal length scale should be modified by these lat-
ter processes (under the condition that second gradient law is not influenced by the
processes). This should be again confirmed by some experimental evidences!
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The coupled local second gradient model developed by [CCCO06] for a biphasic porous
medium can be extended to unsaturated materials with compressible solid grains.
Hereafter, the unsaturated conditions are taken into account and the compressibility
of the solid grains is introduced through the Biot’s coefficient. Additionally, the per-
meability anisotropy is incorporated in the model to better represent the water flows,
even if the mechanical behaviour remains isotropic.

5.1 Partial saturation conditions

For unsaturated conditions the water mass inside a porous material volume {2 corre-
sponds to:
M, =pyw @ Sy 2 (74)

and its time derivative corresponds to:
My =Py @ Srpe 24P @ Sy 24w D S 24P @ Sy 2 (75)

This amount of water, which depends on the degree of water saturation S, leads to
the following mixture homogenised mass density:

P =Ps (l —P)+ Srw Pw P (76)
and the water advective flow for anisotropic hydraulic permeability is given by Darcy’s

law: P o
g e (ﬂ + Pw gj) (77)
My

Ox j
where k;,, is the water relative permeability.

fw,i = —Pw

The fluid mass and fluid flows are mostly governed by the water retention property
of the material and by its hydraulic permeability. Both of them are related to the
partial water saturation and a relative permeability coefficient is introduced in the
generalised Darcy’s law. Among various possible analytical expressions, the water
retention and relative permeability curves are given by van Genuchten’s and Mualem’s
models [Mua76, vG80]:

—-M
P\ T
Srw = Sres + (Smax - Sres) 1+ F (78)

L AMN\ 2
k,,wz\/m<1—(1—sm ) > (79)

where P, is the air entry pressure, S, and S, are the maximum and residual water
degrees of saturation, M is a model coefficient, and p, is the capillary pressure.
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5.2 Anisotropy of the intrinsic permeability

The advective flow of water (Eq. 77) depends on the anisotropic characteristics of the
material through the anisotropic intrinsic permeability. For anisotropic materials and
by symmetry of the tensor, the intrinsic permeability tensor k,,;; requires six com-
ponents to describe the flow characteristics. However, materials commonly exhibit
limited forms of anisotropy and stratified geomaterials require only two parameters
for the description of the water flow. For horizontal layering in the plane (x;,x3),
the intrinsic hydraulic permeability tensor is defined with the horizontal and vertical
permeabilities, k., and k,,,, as follows:

kwp 0 0
kw,ij = 0 kw,v 0 (80)
0 0 kg

5.3 Compressibility of the solid grains

The material compressibility is defined within the scope of poroelasticity [DC93] and
is based on the different compressibilities of a porous material. Those are: the com-
pressibility of the bulk material C (solid skeleton), the compressibility of the pores C,,
and the compressibility of the solid phase C (rock matrix) with Cs < C. The differ-
ent types of compressibility induce different behaviours of the rock matrix and of the
porous material. They can deform differently and the porous material may enter plas-
tic state while the solid grains remain elastic. In the general Biot framework [Bio41],
the Biot’s coefficient is expressed by:
®C, K

[ (81)

b
C K

as a function of the drained bulk modulus of the material K and the bulk modulus
of the solid phase K;. This coefficient represents the relative deformability of the
solid grains with regard to the solid skeleton [Bio41, BW57, Ske60]. Biot proposed
for the effective stress definition to use b as a scaling factor that reduces the effect
of p,, on G;; due to a reduction of pore compressibility. The Biot’s stress definition
can be formulated under unsaturated conditions presuming that the assumptions on
compressibility hold under these conditions [NLO8]:

Gij = Gi’j —b Srfw Pw Bij (82)

The latter expression includes the effect of partial saturation on the effective stress
field (tensile stress is positive).

For the solid phase behaviour, the isotropic solid density variation is linked to the
variations of pore water pressure and mean effective stress by [DC93, Cou04]:

& _ (b B @) Sr,w pw B 6/

b (1-9)K (83)
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The time derivative of the porosity is obtained by solid mass conservation M, = 0 and
reads:

. ps 02 (b=®)Sppy pu—6 02
@:(1—@)<E+5):(1—¢)< T-0 K +§> (84)

Furthermore, the time derivative of the water mass in Eq. 75 becomes by including
the fluid compressibility, the porosity variation, and by considering a unit mixture
volume:

. p p (o] .
Mw = Pw (X_:: ] Sr,w + ?v: (b_é) Siw + (5 - Z) Sr,w +9 Sr,w) (85)

The above expressions can be rewritten under poroelastic assumption:

_, , 2

6 =K¢, =K 17 (86)
and using the Biot’s coefficient expression of Eq. 81. The equations become:

02
(b - Qi) Sr,w pw -K -

Ps (0]
Ps (1 _QS) K ®D
3 Sr,w . Q
b= (b—) ( o ot Q) (88)
M, =p Pr g g Jr@(b—gﬁ)s2 +bQS< +& 8 (89)
w w Yow rw Ks rw 9} rw nw

Biot’s theory and the equations of poroelasticity are valid only for an elastic behaviour.
Extending these equations to poroplasticity [Cou95] with permanent changes in fluid
mass content and in porosity requires to include the plastic material behaviour, which
is complex to implement and is not included in this chapter.

According to the previous assumptions, the momentum balance equation Eq. 33 and
the water mass balance equation Eq.44 remain valid provided that the different vari-
ables included in these two equations are adapted to unsaturated conditions (p, G;j,
M, ...).

6 Modelling of a gallery excavation

The processes of underground drilling and induced shear strain localisation are inves-
tigated at large scale. [PV92] were the first to present a numerical analysis of progres-
sive localisation around an excavated cavity in rock with a Cosserat microstructure. In
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the following, a gallery excavation is considered in a clayey rock. In the rock mass, the
fractured structure around the galleries develops preferentially in the horizontal or ver-
tical direction depending on the anisotropy of both stress state and material properties
[ALNT14]. As a first large-scale approach including strain localisation, an isotropic
mechanical model is used with the objective of analysing if the appearance of fractures
during the drilling of galleries is governed by the anisotropy of the in situ stress state
[PLC15]. So far, the numerical modelling of gallery drilling with the second gradi-
ent model has highlighted strain localisation but was essentially limited to mechanical
analyses with isotropic initial stress state [Fer09, SaHCO09].

Moreover, during the operational phases of underground openings, an air ventilation
is performed inside the galleries to control the air relative humidity and temperature.
This ventilation induces fluid transfers and a desaturation of the rock that must be
taken into account in the coupled second gradient model.

Many studies have been performed with two-dimensional isotropic mechanical mod-
els. Our purpose is to investigate if this type of model can reproduce the in situ
observations and measurements by incorporating the fracture modelling with strain
localisation. The zone that develops around the gallery is called excavation fractured
zone, and it is related to the irreversible hydro-mechanical property changes.

It should be pointed out that regularisation techniques have already been used for this
type of problem. They generate results that are mesh-independent but these theories do
not restore the uniqueness of the solution for the gallery excavation problem [Fer(9,
SaHCO09]. These remarks are valid for all regularisation methods.

6.1 Numerical model

A hydro-mechanical modelling of a gallery excavation is performed in two-dimensional
plane strain state. The modelled gallery corresponds to the GED gallery of the An-
dra’s URL oriented parallel to the minor horizontal principal total stress 6;, and having
aradius of 2.3 m. The initial pore water pressure and anisotropic stress state are:

60 =0y =130,=15.6 MPa

Gy,0 =0, =12MPa
6,0=0,=12MPa
Pwo = 4.5 MPa

A schematic representation of the models, the meshes, and the boundary conditions
is detailed in Fig. 11. Two meshes are used: a full gallery and a quarter of a gallery.
The mesh extension of the full gallery is 120 m, both horizontally and vertically, and
the spatial discretisation is performed with a total of 29040 nodes and 7440 elements.
Assuming symmetry along the x and y-axes, only one quarter of the gallery can be
discretised. In this case, the mesh extension is 60 m, both horizontally and vertically,
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and the discretisation is performed with a total of 9801 nodes and 2480 elements. For
both meshes, the initial stresses and pore water pressure are imposed at the mesh ex-
ternal boundary (drained boundary) and the meshes have a more refined discretisation
close to the gallery. To establish the symmetry, the normal displacements and the nor-
mal water flows are blocked to a value of zero along the symmetry axes, which are
therefore impervious. Nonetheless, as mentioned by [ZPVO0la], a special care must
be brought to the kinematic boundary conditions required to establish the symmetry.
Due to the existence of gradient terms in the equilibrium equations, higher order con-
straints have to be characterised in addition to the classical boundary condition on the
normal displacements. This second kinematic condition requires that the radial dis-
placement u, must be symmetric on both sides of the symmetry axes. This implies
that the normal derivative of u,, with respect to the tangential (orthoradial) direction
0, has to cancel:

ou,
— =0 90
9 (90)
which is equivalent to:
Oty
X — axis : — =0 (C2Y)]
a}?
Outy
y—axis: Xy _ 0 92)
ox

Furthermore, natural boundary conditions for the double forces, T,; =0, are assumed
on the different boundaries and gravity is not taken into account.

The gallery excavation can now be considered. It is modelled by decreasing during 5
days the total stresses and the pore water pressure at the gallery wall from their initial
values to the atmospheric pressure of 100 kPa. After the excavation, the calculation
is extended to 1000 days under constant total radial stress, to highlight possible long-
term effects (Fig. 12). This stress imposition is representative of unsupported galleries.

To model the air ventilation inside the gallery, a classical flow boundary condition is
assumed and imposes the suction corresponding to the relative humidity of the cavity
air at the tunnel wall. Two cases are considered for the air inside the gallery (Fig. 12).
In the first case, there is no ventilation inside the gallery; thus, the air is saturated
with water vapour and this maximum concentration corresponds to RH = 100 %. Ac-
cording to Kelvin’s law, the corresponding pore water pressure at the gallery wall is
the atmospheric pressure p,, = 100 kPa. The pore water pressure is then maintained
constant after the end of the excavation and the rock mass remains almost saturated.
In the second case, air ventilation is taken into account, since ventilation is usually re-
alised in the galleries composing underground structures. It may drain the water from
the rock, desaturate it, and modify the structure, the fracturing pattern, as well as the
size of the fractured zone. Air ventilation can thus be modelled in order to observe its
effects on the rock material. A theoretical ventilation, with constant air relative hu-
midity, is envisaged to obtain a first outlook of the ventilation effect on shear banding.
The air which is injected in the gallery is dryer than previously and a lower relative
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Figure 11: Schematic representation of the models used for the modelling of a gallery
excavation: (a) full gallery and (b) quarter of a gallery.

humidity of 80 % with a temperature of 25 °C (T =298.15 K) are considered. Follow-
ing Kelvin’s law, this humidity corresponds to a pore water pressure at gallery wall of
pw = —30.7 MPa. To reach this value, the decrease of p,, is performed in two steps:
firstly, it decreases from its initial value to the atmospheric pressure during the exca-
vation (5 days), and then an initiation phase of ventilation is considered (5 days) to
reach the final value. After this initiation phase, a constant ventilation is maintained.

The imposed boundary conditions at gallery wall, for total stresses and pore water
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pressure evolutions, are presented in Fig. 12 for the two considered cases. It is worth
mentioning that the ventilation effect on the shear banding is therefore represented
by the hydro-mechanical model. In fact, the ventilation influences the pore water
pressures and the effective stresses, which then influence the shear strain localisation
structure and behaviour.

20
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_ RH=100% ~"Pw
FO0 T Neeeomem s e 1
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% _ i \
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\\ — 0
_30 | N _%I:I_ ?Q 4) _____
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Figure 12: Imposed total stresses and pore water pressure at the gallery wall for the
modelling of a gallery excavation with and without air ventilation.

The main purpose of this numerical modelling is to represent the fractures with shear
strain localisation and to reproduce, as well as possible, the in situ measurements and
observations with an isotropic mechanical model.

6.2 Influence of in situ stress and permeability anisotropies

Creation and evolution of the fractured zone can be observed through the evolution of
shear strain localisation. The latter is not a priori assured to be symmetric around the
gallery and many solutions could emerge [SaHCO09]. To avoid any early symmetry as-
sumption, the excavation of a full gallery is firstly modelled with incompressible solid
grains b = 1 and no ventilation. With a circular gallery and an isotropic state, it is not
possible to trigger the shear strain localisation and the deformation remains diffuse.
Strain localisation can be triggered through the introduction of an imperfection in the
material.

However, in case of anisotropic stress state of the rock with 6,9 = 15.6 MPa and
Gy,0 = G0 = 12 MPa, the shear strain localisation appears without adding an imper-
fection in the rock. Fig. 13 illustrates the evolution of the strain localisation around
the gallery, during and after drilling. The numerical results presented are the total de-
viatoric strain, the plastic zone, and the deviatoric strain increment which represents
the band activity:
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A 2, .
€eq = § €;j €;j 93)
where &;; is the deviatoric total strain field calculated from the total strain tensor €;;:

A Exk

&j =&j— = d;j 94
&0y dt

Keg = —— (95)

[ &g dt

The modelling exhibits a symmetric chevron fracture pattern around the gallery sim-
ilar to in situ observations for galleries parallel to 6. The chevron fractures appear
during the excavation and are mainly concentrated above the gallery because of the
material anisotropic stress state. On the contrary, introducing only the anisotropy of
the intrinsic water permeability with k,,;, = 4 x 10729 m? and ky,y = 1.33 % 10720 pi?
does not lead to strain localisation unless an imperfection is introduced. It means
that the appearance and shape of the strain localisation are mainly due to mechan-
ical effects linked to the anisotropic stress state. The shear banding zone develops
preferentially in the direction of the minor principal stress in the gallery section.

6.3 Influence of second gradient boundary condition

The previous modelling highlights that the anisotropic stress state is at the origin of a
symmetry in the localisation pattern around the gallery. Then, it would be convenient,
in the following, to consider only a quarter of a gallery. However, in the context of
second gradient theory, a boundary condition of higher order should be considered in
addition to the classical boundary condition of constrained displacement perpendic-
ular to the boundary [ZPVO0la]. This second kinematic condition specifies that the
normal derivative of the radial displacement has to cancel on the symmetry axes.

To illustrate the necessity of this second gradient boundary condition, the strain local-
isation pattern of Fig. 13 is compared to the pattern obtained on a quarter of a gallery.
The modelling on a quarter of a gallery is computed with the specific second gradient
boundary condition, and with » = 1 and no ventilation as previously. In Fig. 14, one
can observe that using the second gradient boundary condition produces a shear strain
localisation pattern that is similar to the full-gallery results. Thus, it is confirmed that,
for calculation simplicity and symmetry reasons, a quarter of a gallery can be adopted
for future modelling, provided that the specific second gradient boundary condition is
used.

6.4 Influence of Biot’s coefficient

Even if strain localisation seems to be mainly controlled by mechanical effects, hy-
draulic conditions can also impact the shear banding pattern. Here, the focus is on the
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Figure 14: Comparison of the strain localisation pattern at the end of the calculation
for the modelling of: (a) a full gallery and (b) a quarter of a gallery with the second
gradient boundary condition.

influence of Biot’s coefficient for the case without ventilation. In the first calculation,
it is assumed that the solid grains are incompressible, which implies b = 1 (Fig. 15).
In the second calculation, a value of b = 0.6 is used (Fig. 16). Comparison of Figs. 15
and 16 indicates that the Biot’s coefficient significantly influences the shear band pat-
tern. With a value of 0.6, less bands appear and the shear strain localisation is delayed.
In fact, the strain remains diffuse until the fourth day of the excavation; nonetheless,
the localisation appears before the end of the excavation. This can be explained by
examining the stresses close to the gallery. At the gallery wall, the total stresses and
the pore water pressure are imposed. Consequently, following the Biot’s effective
stress definition for unsaturated materials of Eq. 82, the lower the Biot’s coefficient,
the higher the effective compressive stress at the gallery wall. This implies that the
rock close to the gallery wall is more resistant and that the shear strain localisation
appears later.

6.5 Influence of gallery ventilation

The modelling presented hereafter includes the initial anisotropies, a Biot’s coefficient
value of 0.6, and the gallery ventilation. The drilling phase is not influenced by the
ventilation, and the same results as in Fig. 16 are obtained until 5 days of computation.
The results obtained after the excavation, displayed in Fig. 17, indicate that the suction
imposed at the wall strongly influences the results. Following the effective stress
definition, the higher the suction, the higher the effective stress (Fig. 20). As noted
before, this involves that the material is more resistant, and in this case, becomes
elastic again close to the gallery. This inhibits the shear strain localisation around the

gallery.
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Figure 15: Evolution of strain localisation during and after gallery excavation (5 days

of excavation), without gallery ventilation and for a Biot’s coefficient value of 1.
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Figure 16: Evolution of strain localisation during and after gallery excavation (5 days
of excavation), without gallery ventilation and for a Biot’s coefficient value of 0.6.
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Figure 17: Evolution of strain localisation after gallery excavation, with gallery venti-
lation and for a Biot’s coefficient value of 0.6.

Various numerical results, coming from the gallery wall and the rock mass, are inter-
preted hereafter in order to emphasize the influence of the gallery air ventilation. The
results come from the selected cross-sections and observation points on gallery wall
that are presented in Fig. 18. The vertical cross-section goes through the shear bands
and the results along it highlights the effects of strain localisation, which is not the
case for the horizontal cross-section. Furthermore, the results are compared for the
cases considering (RH = 80 %) or not (RH = 100 %) the ventilation.
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Figure 18: Positions of cross-sections and gallery wall observation points.

The evolution of pore water pressure for the vertical and horizontal cross-sections is
detailed in Fig. 19. In the rock mass, an increase of pressure is observed in the vertical
direction and a decrease in the horizontal direction up to a radial distance of about 30
m. These overpressures are related to the hydro-mechanical coupling induced by the
anisotropy of the initial stress state. The influence of the strain localisation bands is
visible vertically but not horizontally. It is illustrated by the fluctuations of the pore
water pressure in limited zones, with a decrease in the shear band. The influence of
the shear band can be mostly observed during the first 50 days of calculation then it
tends to vanish. This is due to the strain increment inside the bands (band activity)
and the hydro-mechanical coupling. As expected, the influence of the ventilation is
marked close to the gallery wall, but tends to disappear deeper in the rock.

The stress paths at the gallery wall are detailed in Fig. 20 where ¢ is the deviatoric
stress:
q=V3Ily (96)

and p/ is the mean effective stress. As mentioned before, in the case of ventilation,
the effective stresses are much higher due to suction. This explains the difference
between the stress paths of the modelling with and without ventilation, after the end
of the drilling phase.

All these results are evidences that noticeable differences exist whether ventilation is
applied or not. For the modelling with ventilation, p,, remains negative close to the
gallery (Fig. 19), the effective stresses increase after the excavation (Fig. 20) and the
material becomes elastic again. Consequently, the desaturation of the rock close to the
gallery inhibits the shear strain localisation (Fig. 17), which has the effect of restricting
further deformation. On the contrary, without ventilation, p,, close to the gallery wall
increases after the excavation (Fig. 19), the effective stresses reduce (Fig. 20) and
the material remains partly plastic close to the gallery (Fig. 16). This increases the
deformation and the gallery convergence.

If the problem is studied with an isotropic model, without considering strain locali-

ALERT Doctoral School 2016



10

Collin, Kotronis, Pardoen

285

p,, [MPa]
p. [MPa]

Radial distance [m]

(2)

Radial distance [m]

(b)

—RH=100%,
5 days
—RH=100%,
100 days
—RH=100%,
1000 days
- -RH=80%,
100 days
--RH=80%,
1000 days
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sation but modelling the gallery ventilation, then the horizontal and vertical conver-
gences are more or less equal. Only the fracturing and strain localisation processes
permit to produce the convergence anisotropy. In fact, neither the fracturing pattern
nor the gallery convergence can be well reproduced with classical approach [PC16].
The creation of fractures, globally above the gallery due to the material anisotropic
stress state, increases both the vertical and the horizontal convergences. In that latter
direction, the proximity of the shear bands induces excessive deformations. In the
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long term, the delayed deformations that are observed in saturated conditions are ex-
plained by consolidation. In contrast to this, when gallery ventilation is reproduced,
the material close to the gallery wall becomes elastic again which restricts the plastic
deformation and convergence in the long term. The performed numerical modelling
highlights the effect of gallery ventilation on the hydraulic transfer and progressive
drainage of the surrounding rock. However, the considered air ventilation is theo-
retical and a real ventilation could be considered [CCP*13], [PTC16]. Moreover,
the water transfer and its kinetics close to the gallery are mainly conditioned by the
hydro-mechanical property changes inside the excavation damaged zone. In fact, the
damaged zone developing around galleries due to the drilling processis composed of
fractures having a significant irreversible impact on flow and transport characteristics
[TBDOS]. For a shear banding approach, the impact of fracturing on the transport
properties can be addressed by associating the intrinsic permeability increase with
mechanical deformation [PTC16], which is amplified in the strain localisation discon-
tinuities. Such dependence permits to reproduce a significant permeability increase of
several orders of magnitude in the excavation damaged zone [PTC16], in agreement
with available experimental measurements [ALN™" 14].

7 Conclusions

Rupture in geomaterials is often preceded by a localization of the deformations within
thin bands. The strain localization is thus an important process, which has been stud-
ied both experimentally and theoretically. The developments of geomechanics in the
field of coupled multiphysic processes impose the study of strain localization to these
new conditions. Interactions between the different processes can indeed occur. Fur-
thermore, the numerical modelling of shear bands with classical finite element suffers
of a mesh dependency problem. An internal length scale has to be introduced in the
model. Among the different regularization techniques, we propose a second gradient
coupled model for an application to gallery excavation. It has been shown that the
model regularizes the solution but does not restore its uniqueness. The extension of
such theories to other multiphysic context is more an experimental problem than a nu-
merical one. Experiments still have to exhibit the influence of temperature, suction or
chemical concentration on the occurrence and the thickness of the strain localization!
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