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Cyclic scheduling in robotic �owshops

Abstract� Fully automated production cells consisting of �exible machines and a material
handling robot have become commonplace in contemporary manufacturing systems� Much
research on scheduling problems arising in such cells� in particular� in �owshop�like production
cells has been reported recently� Although there are many di�erences between the models�
they all explicitly incorporate the interaction between the materials handling and the classical
job processing decisions� since this interaction determines the e�ciency of the cell� This paper
surveys cyclic scheduling problems in robotic �owshops� models for such problems� and the
complexity of solving these problems� thereby bringing together several streams of research
that have by and large ignored one another� and describing and establishing links with other
scheduling problems and combinatorial topics�
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� Introduction

Over the last couple of decades� the automation of production technology� in combination
with advances in production management� has drastically changed the equipment used by
manufacturing companies as well as the issues arising in production planning and control�
Together� these changes have led to an enormous increase in e�ciency and �exibility� so that
progress in terms of automation has become a necessity to survive global competition� As a
consequence� highly automated or even unmanned manufacturing systems have become com�
monplace in several industrial sectors� especially in mechanical engineering and electronics�

Typically� automated manufacturing systems involve intelligent� �exible� machines� that
can be programmed to produce a variety of parts with little or no setup times� Often� these
�exible machines are grouped into cells in such a way that the entire production of each
part can be performed within one of the cells� One of the bene	ts of machine pooling is
the reduction in material handling activities that it entails� Within a cell� material handling
is usually performed by one 
or a few� robots or automatic guided vehicles 
AGVs�� When
this is the case� the performance of the cell becomes highly dependent on the interaction
between the automated material handling device
s� and the machines 
see e�g� Asfahl �����
pp� ���������

The relatively small number of machines and material handling device
s� in �exible cells�
as well as their high degree of automation� make them an ideal environment for automated
production scheduling� As a matter of fact� in several industrial applications� the use of
advanced planning software has been reported to improve substantially the performance of
the cells� Classical scheduling models however� as they have been developed until the late
seventies� appear to be unsuitable to incorporate the most important characteristics of �exible
manufacturing cells� such as the interaction between the material handling system and the
machines� Hence� a diverse lot of new and challenging scheduling problems has recently
appeared in the literature� In this survey� we attempt to take a systematic view on those
problems that speci	cally deal with the aforementioned interaction between the material
handling device
s� and the machines� In particular� we focus on a class of problems known
as robotic �owshop scheduling problems�

In spite of the fact that most of the research on this topic is quite recent� it is interesting
to remark that several important results date back more than three decades 
Suprunenko et
al� ������ Aizenshtat ����a� ���b� and Tanayev ������ and that� to date� a wide variety of
robotic cell scheduling problems have already been investigated� In this survey� we classify
and overview models� problems� algorithms and complexity results mentioned in the literature
and discuss their interrelationships� Our emphasis is on constructive and exact results in the
realm of deterministic scheduling� rather than empirical or simulations studies� Our contri�
bution lies in establishing and discussing the commonalities and di�erences between papers
that largely ignore one another� and in showing their relationship with other combinatorial
problems� As such� this survey on robotic scheduling is related and complementary to the
surveys of Sera	ni and Ukovich ���� on periodic scheduling� Blazewicz and Finke ����
on resource constrained scheduling in manufacturing systems� Hanen and Munier ���� on
cyclic scheduling for parallel processors� Hall and Sriskandarajah ���� on �owshop schedul�
ing� Crama ���� on combinatorial problems in automated manufacturing and Hall� Kamoun
and Sriskandarajah ���� on scheduling in small�scale robotic cells�

In Section �� we present various robotic cell layouts and scheduling problems as they
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have been described in the literature� This section does not attempt to give an exhaustive
overview of the area of robotic cell scheduling� As a matter of fact� as this research area
is moving and expanding rapidly� we do not even claim to give a complete overview of the
topics that we study at length in subsequent sections� We only pay attention to models and
issues which we believe to be particularly important and interesting� Our main focus is on
cyclic robotic �owshop scheduling problems without bu�ers 
see Figures � and ��� We note
that this emphasis on bu�erless systems is consistent with modern production philosophies
such as Just In Time or lean manufacturing�

A robotic �owshop consists of m machines M�� � � � �Mm� an input station M�� an output
station Mm�� and one 
or several� robot
s�� The robots perform all material handling op�
erations in the cell� i�e� the transportation of parts between the machines and the stations�
as well as the loading and unloading of parts onto and from the machines and stations� All
parts are initially available at the input station and must be sequentially processed on M��
M�� � � � �Mm� until they are 	nally unloaded from Mm and delivered at the output station�

A most general optimization problem for robotic �owshops asks to specify a sequence of

robot moves and a part input sequence 
i�e� the order in which the parts are to be taken from
the input station� as well as a schedule for the operations associated to these sequences� so as
to maximize a predetermined production performance measure 
for instance� the throughput
rate of the �owshop�� In Section �� we discuss sequences and schedules in more detail�
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In particular� we describe some of their desirable properties and their interrelationships�
Section � is devoted to a survey of the complexity of several variants of this general �owshop
scheduling problem� A number of variants� in which one of the two sequencing problems has
vanished or is treated as given� turn out to be particulary interesting� Section � deals with
problems that arise when both sequences are treated as given� More precisely� we discuss
the problem of computing the optimal cycle time of a production plan in which both the
robot move sequence and the part input sequence are given� We focus on the best available
algorithms and� in some occasions� we point out improvements and�or generalizations of
previously published results� In Section �� we comment on various other aspects of robotic
cell scheduling problems and we suggest a number of new research directions�

� Robotic �owshops� modeling the system

In this section� we provide a general description of 
a variety of� robotic cell models� The
emphasis lies here mostly on the data of the problems� i�e� on the way in which real�world
characteristics of robotic �owshops are captured by various models� In the next section� by
contrast� we shall focus on the description of the output� i�e� on the properties which can
be imposed on solutions of the problem� We start our discussion with the case of bu�erless
robotic �owshops�

��� Basic ingredients

Let us 	rst collect the basic constituents of a bu�erless robotic �owshop�

�� There are m machines denoted M�� � � � �Mm�

�� There is an input station denoted M� and an output station denoted Mm���

�� There is a set of parts J � Each part has prespeci	ed processing requirements on each
machine Mi� for i � �� � � � �m 
see below for a more precise statement of this assump�
tion�� The parts are initially available at the input station� must be processed on every
machine in increasing order of machine indices and must 	nally be delivered at the
output station�

�� There is a robot that performs the transportation of parts between the machines� The
loading and unloading of parts onto or from the machines also requires the attendance
of the robot�

�� The input and the output station have in	nite capacity� There are no other bu�ers in
the �owshop and the machines as well as the robot can only process one part at a time�
In particular� if a part is between the input and output station� then it is either on a
machine or being carried by the robot�

In general terms� the robotic �owshop scheduling problem is to determine an ordering of
the parts at the input station 
a part input sequence�� a sequence of the robot activities 
a
robot move sequence� and the start times and 	nish times of these activities 
a schedule� so
as to optimize production performance� We shall return to these issues in the next section
and we shall see that� in many cases� an optimal schedule can be e�ciently computed once
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the part input sequence and the robot move sequence are known� For this reason� the robotic
cell scheduling problem can often be seen as a double sequencing problem�

In the following subsections� we brie�y discuss the distinguishing features of various types
of �owshops�

��� Processing requirements

In very general form� the processing requirements of part j on machine Mi can be modeled by
means of a processing window �Lj

i � U
j
i �� The interpretation is that the time spent by part j on

machine Mi must be at least Lj
i and may not exceed U

j
i � Such processing requirements arise

for instance quite naturally in manufacturing processes observed in the electronics industry�
Here� printed circuit boards must be sucessively dipped into several chemical baths and the
duration of each chemical bath may be neither too short nor too long� Other applications
can be found in the food processing industry or in printed circuit board assembly� as well as
in medical laboratories 
see� among others� Livshits et al� ������ Phillips and Unger ������
Lei and Wang ����� Hertz et al� ����� Chu and Proth ������

Processing windows are general enough to contain many other speci	cations of the pro�
cessing requirements as special cases� For instance� the classical situation in which each part
has a precisely de	ned processing time on each machine and can wait on the machine indef�
initely long after it has been processed� arises by setting all upperbounds U j

i to ��� Such
problems have been investigated in several papers� see e�g� Sethi et al� �����Hall et al� �����
Crama and Van de Klundert ���a�� Sriskandarajah et al� ����� and the references therein�
In the remainder of this survey we will refer to this case as unbounded processing windows�
In the context of classical �owshop scheduling� analogous problems are known as problems
with blocking� Also� several authors consider a no�wait version of our basic model� in which
all parts must be unloaded as soon as they 	nish processing� This can be modeled by setting
L
j
i � U

j
i � see e�g� Aizenshtat������ Livshits et al������� Kats ������ Levner� Kats and Levit

����� We will refer to this case as zero�width processing windows�
In the same spirit as processing windows� production characteristics may also impose

lower and upper limits on the duration of material handling activities 
Livshits et al� ������
Ng and Leung ������ For instance� in certain environments� the robot may have to load each
part on Mi as soon as possible after unloading it from Mi��� Such a restriction is referred
to as loaded�robot no�wait� The alternative is� of course� that the robot may pause between
unloading a part from Mi�� and loading it on Mi� In the literature� loaded�robot no�wait
restrictions have only been considered in conjunction with zero�width processing windows� so
that we will restrict our discussion to this case 
although in practice� the two features need
not be combined��

��� Time models for the robot

In order to completely de	ne an instance of a robotic cell scheduling problem� we need to
further specify the behavior of the robot� Several authors 
see e�g� Kamoun et al� �����
Hall et al� ����� Sriskandarajah et al� ����� consider the duration of the load and unload
activities to be machine dependent� their models assume that it takes time �i to load a part
on machine Mi or to unload the part from this machine 
i � �� � � � �m � ��� Job dependent
models have been investigated in Levner� Kogan and Maimon ���� and Kogan and Levner
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����� Simpler models� in which all load and unload times are equal 
�i � � or even �i � ��
can for instance be found in Kise� Shioyama and Ibaraki �����

An important characteristic of the robot is its travel speed� We denote by �ij the time
needed for the robot to travel from machine Mi to machine Mj � The travel times are often
assumed to be symmetric 
�ij � �ji for all i� j� and to satisfy the triangle inequality 
for
i � j � k� �ij � �jk � �ik�� Alternatively� several authors have considered models in which
the travel times can di�er for loaded and unloaded robot moves 
see e�g� Phillips and Unger
������ Hertz et al� ����� etc�� Such variations in the robot time model may in�uence the
problem complexity 
see e�g� Levner� Kats and Levit ������ Simpler models� in which travel
times are assumed to be negligible when the robot is unloaded� have been studied by Song
et al� ���� and Chu and Proth �����

In a �owshop� the machines are often laid out in line 
see again Figures � and ��� When
this is the case� the travel times can be assumed to be symmetric and to satisfy the following
relation � for i � j � k� �ij � �jk � �ik� In the sequel� we refer to this equality as the triangle

equality� In case the triangle equality holds� a correction factor may be introduced to model
the fact that the robot is carrying a part�

��� Number of machines and parts

Obviously� the problem size depends� among other factors� on the number of machines� parts
and part types� The general robotic cell scheduling problem 
to be introduced shortly� is hard
to solve� so that special� more tractable cases of the problem have received much attention
in the literature�

First of all� in many practical instances� the number of machines is relatively small�
This justi	es the interest in cells consisting of only two or three machines� More generally�
regarding the number of machines as a constant� rather than as input data� yields interesting
algorithmic and theoretical insights�

Similar remarks hold for the number of distinct part types to be processed� Actually� a
fair deal of research has been devoted to problems in which all parts are identical� i�e� have the
same processing requirements� Notice that in this case� the part input sequencing problem
vanishes altogether�

More generally� the parts are often partitioned into a small number 
say� Q� of part types�
with the property that all parts of a same type possess exactly the same processing require�
ments� A minimal part set 
MPS� is then described by a vector of the form 
n�� n�� � � � � nQ�
where nq indicates the number of parts of type q contained in this set 
� � q � Q� and
n�� n�� � � � � nQ are relatively prime 
Hitz ������� The part set J consists of a number of
copies of the MPS 
possibly� in	nitely many copies� to be produced repeatedly� Very little
is known about the complexity of the problems arising in this setting when the number of
part types is regarded as a constant 
see e�g� Pinedo ����� Lee and Posner ������

��� Objective functions

The mainstream of research in robotic �owshop scheduling is devoted to only two classes
of production performance measures� In order to introduce them� let us denote by Sn 
n �
�� �� � � �� the completion time of the n�th part processed in a given schedule� that is the moment
at which the n�th part is unloaded at the output station� Then� one class of models addresses
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the case of a 	nite part set J with the objective of minimizing the makespan of the schedule�
viz� maxn�������jJj Sn 
see e�g� Kise ����� Kise et al� ����� Hertz et al� ����� Chu and Proth
������ Another class of models assumes that J is in	nite and attempts to minimize the long
run cycle time of the schedule� viz� lim supn��

Sn
n


see e�g� Sethi et al� ����� notice that
this objective is equivalent to maximizing the throughput rate��

��� Other types of robotic cells

Several interesting papers on robotic cell scheduling deal with variants of the bu�erless robotic
�owshop discussed above�

An important class of problems addresses robotic cells involving more than one robot�
Such multi�robot cells are common in contemporary manufacturing systems� However� we
have chosen not to treat them in great depth for two reasons� From the viewpoint of robot
move sequencing� these problems seem to be only remotely related to the problems that we
consider� and their complexity is as yet not very well understood� From the viewpoint of cycle
time computation� on the other hand� these problems can usually be solved by straightforward
generalizations of the techniques described in Section �� Problems of this type are described
in Karzanov and Livshitz ������ Liebermand and Turksen ������ Lei and Wang ����� Kats
and Levner ���b� and the references therein� When dealing with the design of robotic cells�
the number of robots is also sometimes treated as a decision variable 
see for instance Lei�
Armstrong and Gu ���� or Kats and Levner ���b�� see also Orlin ����� for a related
study��

Other authors have considered problems that optimize di�erent objective functions� For
instance� Song et al� ���� and Jeng et al� ���� try to minimize the sum of the completion
times� Levner and Vlach ���� consider a closely related problem in which the objective is
to minimize some penalty function on the maximum lateness�

Several authors study robotic cells in which the machines are equipped with 
input or
output� bu�ers where the parts can wait until the machine or the robot becomes available�
For instance� Park ���� uses simulation to investigate the e�ectiveness of various dispatching
rules in such an environment� King et al� ���� propose a branch and bround algorithm for
a similar problem� On the other hand� theoretical work has also been reported on questions
that parallel those encountered in the previous subsections� For instance� Finke et al� ����
identify optimal robot move sequences for a problem with single capacity bu�ers� Levner�
Kogan and Maimon ���� and Kogan and Levner ���� consider the two�machine problem
with in	nite intermediate bu�er� which can be solved using a polynomial�time Johnson�type
algorithm 
Johnson ������ when each machine is supplied with its own servicing robot� Kise
���� shows that minimizing the makespan is NP�hard for single�robot �owshops since in
this case the robot can be looked at as a third machine in the shop�

As a general rule� the additional freedom introduced by 	nite capacity bu�ers tends to
complicate scheduling problems 
see e�g� Papadimitriou and Kanellakis ������� Bu�ers may
allow� for example� to consider non�permutation schedules� i�e� schedules in which parts are
processed in di�erent orders on di�erent machines�

Finally� non �owshop variants of robotic cell problems have also been investigated� For
instance� re�entrant �owshops have been studied by Kats and Levner ���� and cells with
parallel machines have been considered in Hall� Potts� and Sriskandarajah ����� Glass et
al� ����� and Jeng et al� ����� Hertz et al� ����� consider a re�entrant �owshop in which
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some of the machines may handle more than one part at a time� and the time elapsed between
the end of an activity and the beginning of another one may be bounded� Actually� a robot
could theoretically be added to any shop layout� thus giving rise to further interesting models�

In order to better appreciate the practical relevance of the various robotic cell models
and the associated scheduling problems� a survey of case studies in an industrial framework
would be of much help� but currently appears to be lacking�

� Robotic �owshops� sequencing and scheduling

From now on� we focus on a version of the bu�erless robotic �owshop problem displaying the
following features 
some of which will be further restricted in subsequent discussions�� The
travel times �ij between machines 
i� j � �� � � � �m� �� are symmetric and satisfy the triangle
equalities� The loading and unloading time of machine Mi is equal to �i� for i � �� � � � �m� ��
The processing requirements of part j on machine Mi are de	ned by a processing window
�Lj

i � U
j
i � 
j � �� �� � � � � i � �� � � � �m�� The objective is to determine a schedule with minimum

long run cycle time� More formally� the problem can be stated as follows�

De�nition � Robotic Flowshop Scheduling Problem 
RFS��

INPUT � �ij � �i� �Lj
i � U

j
i � for i � �� � � � �m � � and j � �� �� � � ��

QUESTION � Find a part input sequence� a robot move sequence and a corresponding sched�
ule with minimum long run cycle time�

This de	nition emphasizes that a solution of the RFS problem actually involves sequencing
and scheduling issues� However� at this point� it is not at all clear how these issues relate
to each other� how do we determine a schedule that is consistent with a given part input
sequence and robot move sequence� how do we compute the corresponding long run cycle
time� etc� Further� we have assumed so far that every robot move sequence and every part
input sequence is allowed� In fact� from a practical point of view� this is usually far from
convenient or realistic 
especially when the number of parts is in	nite��� This explains that
most authors have found it desirable to impose restrictions on the type of solutions that are
allowed 
some of them will be examined below��

In the next subsections� we are going to discuss sequences� schedules and their special
properties in more detail�

��� Robot move sequences

In the sequel� we always assume that we are free to specify the initial state 
loaded or
unloaded� of the machines 
in particular� we do not assume that the cell is initially empty��
This assumption is reasonable as long as we concentrate� as we do� on a long run performance
measure�

Remember that the robot performs three kinds of operations� loading� unloading and
transportation of parts� Since the robot can only handle one part at a time� it must neces�
sarily unload machine Mi immediately before it loads machine Mi��� for i � �� � � � �m� This
observation motivates the following de	nition�
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De�nition � The sequence of robot moves

�� unload Mi�

�� travel from Mi to Mi���

�� load Mi��

is called �robot� activity Ai� for i � �� � � � �m�

Additional robot movement is of course required between the loading of a machine� i�e�
the completion of an activity� and the unloading of a next machine� i�e� the start of the
subsequent activity� Nevertheless� the sequence of moves and tasks performed by the robot
can always be described as a sequence of activities�

De�nition � A 
possibly in	nite� sequence � of robot activities is called a feasible robot

move sequence if� in the course of executing the sequence�

�� the robot is never required to unload an empty machine and

�� the robot is never required to load a loaded machine�

A more operational version of this de	nition can be stated as follows 
Crama and Van de
Klundert ������

Proposition � A 
possibly in	nite� sequence of activities � is feasible if and only if

a� for i � �� � � � �m � �� each of Ai�� and Ai�� occurs exactly once between any two
consecutive occurences of Ai in �� and

b� A� occurs exactly once between any two consecutive occurences of A� in �� and

c� Am�� occurs exactly once between any two consecutive occurences of Am in ��

Proof� See Appendix�

Example � For a ��machine robotic �owshop� the sequence

A�� A�� A�� A�� A�� A�� A�� A�� A�� A�

is feasible�

As already pointed out� describing an optimal robot move sequence may very well turn
out to be an untractable task� since such a sequence may � a priori � be in	nitely long�
It is therefore customary to restrict the solution set of the RFS problem analysis to those
in	nite sequences which arise by repeating a �short robot move sequences in	nitely many
times 
although this may potentially result in suboptimal schedules��

If � is a 	nite sequence of robot activities� let us denote by �� the sequence obtained
by repeating � inde	nitely� We say that � is repeatable if �� is feasible� Of course� it is
not the case that every sequence is repeatable� Example � provides a counter�example� As
an easy consequence of Proposition �� we obtain the following characterization of repeatable
sequences�





Proposition � A 	nite sequence � is repeatable if and only if� when � is regarded as a cyclic
sequence� each of Ai�� and Ai�� occurs exactly once between any two consecutive occurences
of Ai for i � �� � � � �m� ��

Observe that� in particular� every activity A�� A�� � � � � Am must occur the same number
of times in a repeatable sequence� A repeatable sequence in which each activity appears k
times is called a k�unit cycle 
the terminology k�unit sequence would probably be preferable�
but we abide here by an entrenched custom�� When the robot has 	nished executing a k�unit
cycle� exactly k parts have been produced 
i�e�� have been unloaded at the output station�
and the �owshop has returned to its original state 
since each machine has been loaded and
unloaded exactly k times��

Much of the literature on robotic �owshop scheduling has focused on the computation
of optimal ��unit cycles 
in spite of the fact that there are only very few cases in which
this restriction is known not to cause an increase in the minimum possible long run cycle
time�� In view of Proposition �� a ��unit cycle is nothing but a permutation of the activities
A�� A�� � � � � Am 
this has been observed by Lieberman and Turksen ����� and Sethi et al�
������ Thus� for a ��unit cycle� the order in which the robot activities are performed remains
constant for all parts� We will frequently return to ��unit cycles in subsequent sections�

��� Part input sequences

For the same reasons as in the case of robot move sequences� it can prove di�cult to solve the
RFS problem over the set of all possible sequences of parts� When the parts to be processed
are described by a minimal part set 
n�� n�� � � � � nQ� � it is therefore convenient 
both from
a theoretical and practical viewpoint� to restrict the search to those part input sequences
which consist in inde	nitely repeating the production of an MPS and to process each MPS
in the same order� Thus� if h �

PQ
q�� nq� then the part input sequence repeats after every h

parts� This restriction� which is common in JIT manufacturing� has been adopted in all the
investigations of which we are aware�

Example � If the part set J consists of 	

 parts of type A� 	

 parts of type B and �

 parts

of type C� then the MPS is 
�� �� �� and the complete part set can be processed by repeatedly

processing the MPS in the sequence ACBC �produce �rst a part of type A� then a part of

type C� etc���

��� Schedules

Let us now turn our attention from sequences to schedules�

De�nition � A schedule S is de	ned as a speci	cation of starting times for each load and
unload operation� More precisely� S
l� i� t� 
resp� S
u� i� t�� the time at which the t�th loading

resp� unloading� of machine Mi starts according to S 
i � �� � � � �m� t � lN��

In a feasible schedule� the start times S
u� i� t� and S
l� i� t� 
i � �� � � � �m� t � lN� can be
ordered chronologically� For a feasible schedule S� let �
S� � � be the unique feasible robot
move sequence in which the activities occur in the chronogical order de	ned by S� We say
that �
S� is the sequence implied by S� Observe that the converse relation must be more
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carefully de	ned� indeed� several schedules may very well imply the same sequence of moves�
Therefore� we simply say that S is a schedule for a robot move sequence � if S implies ��

Let us now study conditions under which a schedule S is feasible for a given robot move
sequence � and part input sequence� We must 	rst ensure that� between loading and un�
loading of a machine� the machine has enough time for processing� Let j be the part loaded
onto machine Mi in the t�th loading operation� If the t�th loading takes place before the t�th
unloading in �� then �

S
u� i� t� � S
l� i� t� � L
j
i � �i� 
��

and

S
u� i� t� � S
l� i� t� � U
j
i � �i� 
��

Otherwise� if the t�th unloading takes place before the t�th loading� then �

S
u� i� t � ��� S
l� i� t� � L
j
i � �i� 
��

and

S
u� i� t � ��� S
l� i� t� � U
j
i � �i� 
��

The schedule S must allow the robot enough travel time between consecutive load�unload
operations �

S
l� i � �� t� � S
u� i� t� � �i � �i�i��� 
��

Furthermore� if the t�th execution of Ak 
directly� succeeds the s�th execution of Ai in � then

S
u� k� t� � S
l� i � �� s� � �i�� � �i���k� 
��

If � is a feasible robot move sequence� conditions 
���
�� are necessary and su�cient
for the feasibility of any schedule S for �� the time intervals elapsing between loading and
unloading do not violate the processing windows� because of 
���
��� and the robot is allowed
enough time for travelling between load and unload operations� because of 
���
��� Moreover�
since � is a feasible robot move sequence� the robot does not unload any empty machines�
nor does it load any busy machine�

Let us now impose some additional structure on the schedules to be considered�

De�nition 	 A schedule S is said to be periodic if there exists a constant r � lN� called
the period of S� and a constant CS � lR� called the cycle time of S� such that S
l� i� t � r��
S
l� i� t� � r � CS and S
u� i� t � r�� S
u� i� t� � r � CS for all i � �� �� � � � �m and all t � lN�
We say that S is r�periodic if S is periodic with period r�

Obviously� the long run cycle time of a periodic schedule S is equal to CS � Hence� consid�
ering only periodic schedules provides a way to circumvent some of the di�culties encountered
in the computation of the long run cycle time for arbitrary schedules� In particular� for part
input sequences obtained by repetition of a same MPS 
see previous subsection�� it is quite
natural 
though not necessarily optimal� to restrict the attention to h�periodic schedules�
where h is the number of parts in each MPS� In Section �� we will discuss the complexity of
computing a periodic schedule when the robot move sequence and the part input sequence
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are 	xed� For now� let us simply show how the system of inequalities 
���
�� can be adapted
in order to compute a feasible ��periodic schedule associated to a given ��unit cycle in the
case where all parts are identical 
this is the case h � � in the foregoing discussion� the more
general problem of computing a h�periodic schedule associated with a given k�cycle could be
similarly modelled��

Since all parts have identical processing requirements� we write the processing windows
as �Li� Ui� for i � �� � � � �m� We denote by � the 
known� ��unit cycle� by S the 
unknown�
schedule and by CS its 
unknown� cycle time�

If Ai�� precedes Ai in �� then inequalities 
���
�� become�

S
u� i� t� � S
l� i� t� � Li � �i� 
��

S
u� i� t� � S
l� i� t� � Ui � �i� 
��

On the other hand� if Ai precedes Ai�� in �� then

S
u� i� t� � S
l� i� t� � Li � �i � CS � 
�

S
u� i� t� � S
l� i� t� � Ui � �i � CS � 
���

The robot must again be allowed enough time to perform each activity �

S
l� i � �� t� � S
u� i� t� � �i � �i�i�� 
���

Furthermore� if Ak is the activity succeeding Ai in �� then

S
u� k� t� � S
l� i � �� t� � �i�� � �i���k� 
���

If Ai is the last activity in � and Ak is the 	rst� then

S
u� k� t� � S
l� i � �� t� � �i�� � �i���k � CS� 
���

Notice that 
��� arises from 
�� because � is repeated in	nitely many times�
We will have several opportunities to return to this formulation in subsequent sections�

At this point however� we brie�y discuss the existence of l�periodic schedules for k�unit robot
move sequences� where k� l � lN� The above formulation contains two constraints for each of
the m activities and m � � constraints for the robot moves between consecutive activities�
Thus� in total the formulation contains �m�� constraints� Likewise� it is possible to formulate
a linear program consisting of �m� � constraints to compute the cycle time of a ��unit cycle�
According to De	nition �� the resulting schedule will be a ��periodic schedule� If the ��unit
cycle consists of two repetitions of the same ��unit cycle� we obtain in this way a ��periodic
schedule for a ��unit cycle� In subsequent sections we return to the question whether such a
��periodic schedule for a ��unit cycle may yield lower cycle times than ��periodic cycles for
the same ��unit cycle� Observe also that the reverse situation� namely a ��periodic schedule
for a ��unit cycle� can only arise if the ��unit cycle is obtained by repeating twice a same
��unit cycle� Indeed� the robot move sequence implied by ��periodic schedule necessarily
repeats itself after the execution of some initial ��unit cycle�
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� Optimization problems and models

In the current section� we discuss the complexity of� and algorithms for the robotic �owshop
scheduling 
RFS� problem when either the part input sequence or the robot move sequence is
not 	xed� To place the results in perspective� we start with a brief review of the complexity
of traditional bu�erless �owshop scheduling problems�

The best known result in bu�erless �owshop scheduling is probably the algorithm pro�
posed by Gilmore and Gomory ����� for makespan minimization in the two�machine case�
These authors showed that the two�machine problem can be modeled as a special kind of
traveling salesman problem 
TSP� and proved that this TSP can be solved in polynomial
time� By contrast� the decision version of the three�machine bu�erless �owshop problem
is strongly NP�complete� As observed by McCormick and Rao ����� this follows from a
result of Papadimitriou and Kanellakis ������ who proved that the decision version of the
two�machine �owshop problem with a unit capacity bu�er is strongly NP�complete�

The situation is quite similar for no�wait �owshop scheduling problems� In the two�
machine case� there is no di�erence between no�wait and no�bu�er and for three machines
the decision version of the no�wait problem is strongly NP�complete 
Rock ������� For any
number of machines� no�wait �owshop scheduling problems can be modeled as TSPs� More
details can be found in Levner ����� Kamoun and Sriskandarajah ����� and Hall and
Sriskandarajah ����� who discuss a variety of no�wait and no�bu�er �owshop scheduling
problems�

Finally� although this situation has not received much attention in the literature� let us
consider the case where the processing requirements of a traditional no�bu�er �owshop are
expressed by means of processing windows� In the two�machine case� the problem can be
solved by the Gilmore�Gomory algorithm� simply by setting the processing times equal to
the lowerbounds and solving as a no�wait scheduling problem thereafter� On the other hand�
since it contains the no�wait problem as a special case� the decision version of the problem
with processing windows is strongly NP�complete for three or more machines�

All the complexity results mentioned above concern the makespan minimization objec�
tive� McCormick and Rao ���� address the relation between makespan minimization and
cycle time minimization for traditional �owshop scheduling problems� They establish that
makespan minimization problems can be e�ciently transformed into cycle time minimization
problems� Thus� the latter model is more general than the former one� Striclty speaking how�
ever� their transformation assumes that the part input sequence must be the same for each
MPS produced� This requirement� which is appealing from a theoretical as well as practical
viewpoint� is widely accepted in the literature� In the remainder of this paper� we therefore
also assume that the part input sequence is the same for each MPS produced� Moreover� we
only consider the cycle time minimization objective 
thus re�ecting our conjecture that the
complexity of makespan and cycle time minimization problems are of the same order for the
RFS problem��

As a 	nal remark on ordinary �owshop scheduling problems� let us brie�y consider prob�
lems with few parts or few part types� When there are only few parts 
i�e�� when the number
of parts is bounded by a constant�� complete enumeration of all part input sequences yields
a polynomial�time solution strategy for the problem� On the other hand� when the number
of part types 
as opposed to the number of parts� is 	xed� then the total number of part
input sequences can be exponential in the length of the encoding of an instance and brute
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force enumeration becomes ine�cient� Therefore� such problems 
sometimes referred to as
high multiplicity problems� have their own interesting characteristics from the viewpoint of
algorithmic complexity� see e�g� Agnetis ���a� for a more detailed treatment�

By contrast with the above discussion� we shall see that� in robotic cells� nontrivial prob�
lems arise even when the number of parts in the minimal part set is small� Actually� even
when there is a unique part type 
a vacuous situation in traditional �owshops�� the question
remains of specifying an optimal 
or feasible� robot move sequence�

Let us now turn to the RFS problem� We organize our discussion into three separate
cases� depending on the width of the processing windows�

��� Arbitrary processing windows

In this section� we make no special assumption concerning the properties of the processing
windows� However� we restrict our discussion to the special case of the RFS problem where
all parts are identical and we want to compute a ��periodic schedule with minimum long run
cycle time� As before� we denote the processing windows as �Li� Ui� for i � �� � � � � n�

Observe that� for any given ��unit cycle �� the associated optimal ��periodic schedule can
be computed in polynomial time by solving the linear programming problem

minCS subject to 
���
���� 
���

Thus� the special case of 
RFS� under consideration essentially boils down to the following�

De�nition 
 Robotic Flowshop Scheduling for Identical Parts 
RFSI��

INPUT � �ij � �i� �Li� Ui� for i � �� � � � �m � � and j � �� �� � � ��

QUESTION � Find a ��unit cycle with minimum long run cycle time�

The complexity of this problem has been investigated in a series of papers� Using today s
terminology�the decision version of 
RFSI� 
with arbitrary robot travel times� has been proved
to be NP�complete by Livshits et al� ������ Crama and Van de Klundert ���c� established
that the decision version of 
RFSI� is strongly NP�complete even when the travel times
satisfy the triangle equality� Notice that the proof techniques are explicitly limited to the
determination of an optimal ��unit cycle so that� strictly speaking� the complexity of 
RFS�
remains open even in the case of identical parts 
as the optimal sequence may not arise from
a ��unit cycle��

Let us brie�y review the literature on solution methods for the 
RFSI� problem and
closely related variants� The problem� together with the LP formulation of the cycle time
subproblem� was introduced independently by Livshits et al� ����� and Phillips and Unger
������ Phillips and Unger formulate 
RFSI� as an integer linear program and solve some
instances using a commercial software package� Kats ������ Lei and Wang ����� Armstrong�
Lei and Gu ����� Chen et al� ���� and Hanen and Munier ���� propose branch and bound
procedures for 
RFSI� and various extensions� Hertz et al� ���� solve a related problem
using tabu search� Varnier et al� ���� attack the problem by constraint logic programming
techniques and Rochat ���� implements a genetic algorithm�
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��� Zero�width processing windows

In this subsection� we brie�y review the literature on the special case 
of RFS� where all
parts are identical and Ui � Li for i � �� � � � �m� Suprunenko et al� ������ Aizenshtat ����a�
���b� and Tanayev ����� were apparently the 	rst to consider this problem� more than
three decades ago� They developed mathematical models for constructing both ��unit and
multiple�unit schedules� Using the results of Aizenshtat ����a� ���b� and Livshits et al�
������ Kats and Mikhailetsky ����� determined that the total number of di�erent ��unit
cycles for a given instance is at most O
m��� They designed a polynomial�time algorithm to
compute an optimal ��unit schedule�

Levner� Kats and Levit ���� present an algorithm that re	nes Aizenshtat s �prohibited
interval rule and solves the problem in O
m� logm� time in the special case where the robot
travel times satisfy a version of the triangle inequality� Their approach is to identify a set
of �forbidden intervals for the cycle time� Based on these intervals� they are able to identify
a smallest attainable cycle time and a ��unit cycle that achieves this cycle time� Their
results have been extended in several directions� Kats and Levner ���a� propose strongly
polynomial algorithms for extensions to re�entrant �owshops� while Kats and Levner ���a�
do the same for problems involving more than one robot� Moreover� Kats ����� and Kats
and Levner ���b� develop an O
m�� algorithm to simultaneously optimize over the number
of robots and the cycle time� Recently� Kats and Levner ���a� improved their strongly
polynomial algorithm for the case where the triangle inequality is not required to hold�
They propose an O
m� logm� time algorithm exploiting a neighborhood structure on the m�

possible robot tours and show how to switch in O
logm� time from neighbor to neighbor�
In their study of the same problem� Song et al� ���� have noticed that a ��unit schedule
may provide a better cycle time than the best ��unit schedule and have derived an SPT�
type heuristic for solving the problem� The zero�width problem with multiple part types is
explored in Agnetis ���b�� Agnetis shows that the ��machine problem with h di�erent parts
can be solved in O
h log h� time� using a Gilmore�Gomory based algorithm 
cf� Hall et al�
������

��� Unbounded processing windows

In this subsection we consider the special case of GRFS where U
j
i � �� for all i� j� This

special case� in which the machines behave as is customary in classical scheduling problems�
has given rise to a very fruitful research area� In the production environments that originally
motivated this line of research� the machines are placed in a line or a circle and� therefore�
the robot travel times are usually assumed to satisfy the triangle equality� Throughout this
subsection� we shall again assume it to hold�

In a seminal paper� Sethi et al� ���� introduced the problem and studied special cases
involving only two or three machines� They showed that� in two�machine shops� the problem
of 	nding an optimal part input sequence corresponding to a 	xed ��unit cycle can be solved
in O
h log h� time� where h is the number of parts in an MPS� Their algorithm is an extension
of the Gilmore�Gomory algorithm for the classical two�machine bu�erless �owshop 
Gilmore
and Gomory ������� They also explain how the problem can be solved by enumeration when
there is only one part type and three machines� Moreover� they derive that� in the latter
case� two of the six possible ��unit cycles are always dominated by the remaining four ones�
These results have been extended in two directions�
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As shown in Crama and Van de Klundert ���a�� the results for identical parts can be
generalized� Indeed� in a robotic cell with m machines� there exists a set of ��unit cycles of
cardinality �m�� that necessarily contains an optimal solution� This is the set of so�called
�pyramidal permutations of the activities� Pyramidal permutations have previously been
investigated in the context of polynomially solvable cases of the traveling salesman problem�
in the same family that also contains the two�machine �owshop problem solvable by the
previously mentioned Gilmore Gomory algorithm �Gilmore et al� ����� Crama and Van
de Klundert ���a� give algorithms which compute an optimal ��unit cycle in O
m�� or
O
m� log
dm�� time� where d � maxi�j �ij � On the negative side� Brauner� Finke and Kubiak
���� established that the decision version of the problem becomes strongly NP�complete if
the travel times do not satisfy the triangle equality�

Hall et al� �������� Kamoun et al� ����� Sriskandarajah et al� ���� investigated
problems with multiple part types� Hall et al� ���� show that in a two�machine �owshop�
it is possible to simultaneously optimize the part input sequence and the h�unit cycle in
polynomial time� Their algorithm uses again the Gilmore�Gomory algorithm and identi	es
an optimal way to switch between the two possible ��unit cycles� This appears to be the 	rst
algorithm that simultaneously optimizes over part input and robot move sequences� These
authors also show that the problem is NP�hard for robotic �owshops with three or more
machines� More precisely� for each possible ��unit cycle in an m�machine �owshop� they
either give an algorithm which computes the optimal part input sequence in time polynomial
in m� or they show that it is NP�hard to 	nd the optimal part input sequence�

Finally� Chen et al� ���� describe and test a branch and bound algorithm based on the
Gilmore�Gomory algorithm for the multipart problem in three�machine �owshops�

� Cycle time computation

��� Introduction

This section studies the problem of computing the long run cycle time when both the part
input sequence and robot move sequence are 	xed� If the robot executes a k�unit cycle and h

is the number of parts in the MPS� we shall see that there exists a 
k � h��periodic schedule
that achieves the minimum long run cycle time� Thus� the problem of computing the long
run cycle time boils down to solving a linear programming problem similar to 
��� and we
conclude that the cycle time problem is polynomially solvable�

In many cases� however� the cycle time can be computed much more e�ciently than by
solving an LP model� To understand this� observe 	rst that� when the part input sequence
and the robot move sequence are speci	ed� all precedence relations become 	xed� In many
classical scheduling problems� the makespan can then be derived by performing a PERT�CPM
analysis or� more speci	cally� by calculating the length of a longest path in a directed graph�
Such graphs are usually acyclic since their arcs represent precedence relations�

In the same spirit� the cycle time of a cyclic scheduling problem 
not necessarily a robotic
�owshop problem� can be determined by analyzing a cyclic graph 
i�e�� a graph containing
at least one cycle� in which the cycles are created by precedence relations between tasks to
be performed in successive repetitions of the schedule 
see for instance McCormick et al�
������ In such cyclic graph models� the cycle time turns out to be equal to the weight
of a maximum weight cycle 
instead of the length of a longest path�� Since such cyclic
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PERT models are applicable to a variety of cyclic scheduling problems� they have been
studied by several authors� in other environments than robotic cells� We mention cyclic sta�
scheduling problem 
Bartholdi et al� ������� cyclic job shop scheduling 
Roundy����� Lee
and Posner ������ scheduling of MPSs through a �exible �owshop 
Matsuo et al� ������
scheduling problems arising in the optimization of compilers for parallel processors 
Hanen
and Munier ������ and of course robotic �owshop scheduling� Timkovsky ����� studies
cycle time minimization and schedule feasibility problems for re�entrant 
no�robot� �owshops
and derives a fast algorithm for minimizing the cycle time in a problem with unbounded
processing windows� His results are closely related to the cycle time minimization algorithm
in Pinedo ���� page ���� and the results mentioned in section ����

As is the case for the closely related min cost circulation �ow problem� there are many
solution methods available for the cyclic PERT problem and oftentimes di�erent authors
have taken di�erent routes� As already mentioned above� several authors use minimum mean
cycle based approaches 
Karp ������ Cohen et al� ����� Matsuo ���� and Van de Klundert
������ Karp and Orlin ������ Hartmann and Orlin ����� Kats and Levner ����� Lee
and Posner ���� use a parametric shortest path approach� Other solution techniques that
have been applied are Bellman�Ford node labeling approaches 
Chen et al� ����� Ioachim
and Soumis ����� Kats and Levner ������ a network simplex approach 
Roundy �����
binary search 
Gondran and Minoux ������ Lei ����� or special purpose algorithms 
Ng
and Lueng ������

The layout of this section will be somewhat di�erent from the layout of the previous one�
First of all� we do not consider the cycle time minimization problem in the case of zero�width
processing windows� for the following reason� In applications involving zero�width windows�
it is customary to simultaneously impose loaded�robot restrictions 
see Section ����� so that
all inequalities 
���
��� must be satis	ed at equality� The cycle time can then be easily
determined in quadratic time by solving a system of equations 
see Levner� Kats and Levit
������ Furthermore� we treat the special case of unbounded processing windows before the
more general case� since this facilitates the exposition� Finally� for the sake of simplicity
and without loss of generality� we assume in the remainder of this section that �i � � for
i � �� � � � �m � ��

��� Unbounded processing windows

Assume that all the processing windows have an in	nite upper�bound and let us 	rst consider
the simple case where all parts are identical and the robot repeatedly performs a ��unit cycle
�� Then� the system of inequalities 
���
��� describes the set of feasible ��periodic schedules�
In fact� since Ui � �� for i � �� � � � �m� the constraints 
�� and 
��� can even be eliminated
from this formulation�

Let us now select a tentative value CS for the cycle time and let us build a directed graph
G � 
V�A� as follows� The graph G has one vertex for each load operation and one vertex
for each unload operation� Moreover� each of the inequalities 
� �� 
� and 
����
��� gives rise
to an arc whose length corresponds to the right�hand side of the inequality 
observe that the
arc lengths depend on the value selected for CS��

Consider for example the case where the ��unit cycle is � � 
A�� A�� A�� A��� Then the
corresponding robot travel time constraints 
����
��� are represented in Figure ��

Notice that� except for the arc arising from constraint 
���� this graph is acyclic� Next�
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Figure �� cycle time computation graph� robot travel time

we add the arcs representing the constraints 
�� and 
�� where the latter may again induce
cycles 
see Figure ���

We will refer to the arcs associated to constraints 
� and 
��� as backward arcs� Let us
now consider any two vertices of G� say v and w� As the reader may check� the length of any
path from v to w that does not contain any backward arcs is a lowerbound on the time that
must elapse between the load�unload operations represented by v and w�

Consider next a simple cycle in G and let b be the number of backward arcs in this cycle�
Further� assume that the value of CS is such that the cycle has positive length� Then� as
observed by many authors� CS cannot be a feasible cycle time� Indeed� the length of the
cycle plus b� CS is a lowerbound on the amount of time that must elapse between the 	rst
and 
b � ���th execution of the operation corresponding to any vertex on the cycle� Thus�
there follows that CS cannot be feasible if the cycle has positive length� From the form of
inequalities 
� and 
���� it is clear that this infeasibility can only be remedied by increasing
the cycle time CS �

Reasoning along these lines� the following theorem can be formally established 
see for
instance Van de Klundert ������

Proposition � The minimum long run cycle time of a ��unit cycle � is equal to the minimum
value of CS for which the graph G contains no cycles of positive length� Moreover� there
always exists a ��periodic schedule whose cycle time achieves the minimum long run cycle
time of ��

As a consequence of this result� the computation of the optimal schedule essentially re�
duces to the computation of the minimum cycle time� Cohen et al� ����� and Carlier and
Chr!etienne ����� were apparently the 	rst who noticed that Karp s algorithm ����� for
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Figure �� cycle time computation graph� unbounded time windows

	nding a minimum mean�length cycle in a digraph can be used as a �blackbox for solving the
aforementioned problem� This approach leads to an O
m�� algorithm for the computation
of an optimal schedule� Similar observations were also exploited by Matsuo et al� ���� and
Van de Klundert �����

Another approach was developed by Ioachim and Soumis ����� It is based on iterative
use of the Bellman�Ford algorithm for computing the critical 
longest� path in a network and
leads again to O
m�� time complexity�

Kats and Levner ���� and Lee and Posner ���� have proposed yet another tool for
the same problem� they rely on the Karp�Orlin algorithm ����� for 	nding the parametric
shortest path in a graph� This allows them to compute an optimal schedule in O
m� logm�
time�

Roundy s approach ���� to cyclic job shop scheduling yields an O
m� logm logB� algo�
rithm for our problem� where B is a 
polynomial� upperbound on the value of the optimal
solution� This approach is based on the use of a network simplex algorithm� Finally� we
observe that a recent algorithm proposed by Hartmann and Orlin ���� 
in the context of
crew scheduling� translates into a current best O
m�� time algorithm for the computation of
the minimum cycle time in the case of unbounded windows�

So far in this section� we have concentrated on the situation where all parts are identical
and the robot executes a ��unit cycle� Let us now brie�y turn to the general formulation of
the problem�

First of all� the graph model presented above can be extended without di�culty to the
case where the robot repeatedly executes a k�part cycle and the MPS consists of h parts� In
this case� the graph contains k�h vertices for each load�un load operation� 
In fact� instead
of k � h� the smallest common multiple of k and h would su�ce�� Moreover� the previous
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Figure �� Cycle time computation graph� general case

analysis can be extended to show that there exists a k � h�periodic schedule that achieves
the minimum long run cycle time 
Van de Klundert ������

Matsuo et al� ���� showed that the dual of the LP formulation is a maximum cost
circulation problem with the additional constraint that the sum of the �ows over all backward
arcs equals one� Matsuo et al� ���� and Van de Klundert ���� described an O
hm��
algorithm for the special� but practically important� case where the MPS consists of h parts
and the robot performs a h�unit cycle� Ioachim and Soumis ���� proposed an O
h�m�� for
the same problem�

��� Arbitrary processing windows

The case of arbitrary processing windows di�ers from the case treated in the previous sub�
section in the sense that constraints 
�� and 
��� are now also in force� Therefore� the arcs
representing these constraints must also be added to the graph G introduced above� For the
example treated in Section ���� we obtain the graph of Figure ��

Notice that this graph does not only contain backward arcs� i�e� arcs whose length includes
a term ��CS � but also arcs that might be refered to as forward arcs� i�e� arcs whose length
includes a term ��CS � When all parts are identical and the robot performs a ��unit cycle�
it is again possible to prove that there exists a ��periodic schedule attaining the minimum
long run cycle time� Moreover� it can be shown that in the general case where the robot
repeatedly excutes a k�unit cycle and the MPS consists of h parts� there exists an optimal

k � h� periodic schedule�

Lei ���� described a linear programming formulation of the problem� similar to the one
given above� In the case of integer data� she also presented a 
weakly� polynomial algorithm
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based on binary search� The time complexity of this algorithm is O
m� logm logB�� where
B is an a priori bound on the range of possible cycle times such that logB depends linearly
on the size of the input� Chen� Chu and Proth ���� derived an O
m	� algorithm based on
a straighforward appliction of the Bellman�Ford longest path algorithm� Kats and Levner
���� proposed an O
m�� algorithm based on a parametric modi	cation of the Bellman�Ford
algorithm 
for 	nding the critical path� which can treat any real input data� Both these results
are only valid for the case of identical parts and ��unit cycles� but can be straightforwardly
generalized to deal with k�unit cycles� h�part MPSs and 
k�h��periodic schedules 
although
we could not 	nd this observation in the literature��

� Other topics and further research

This survey discusses cycle time minimization problems as they occur in robotic cells of
di�erent types� We have attempted to describe the state�of�the�art concerning various models
and to give a classi	cation of the problems� As yet� we can claim that the most basic and
important problems are relatively well understood� at least from a complexity viewpoint�
However� several interesting problems still remain open� In this section� we formulate what
we think to be the most tempting areas for further research�

The results in Section � leave open the complexity of robotic cell scheduling problems with
a constant number of part types� In such a case� the description of the input only requires an
amount of space that is logarithmic in the number of parts� Hence� any polynomial algorithm
for such problems should have running time that is only logarithmic in the number of parts�
At this moment� there are no specialized algorithms available for such problems� even if we
allow their running time to be polynomial in the number of parts� In practice� it may often
be the case that the number of parts in the minimal part set is small� Therefore� algorithms
whose complexity is exponential in the number of part types and polynomial in 
the logarithm
of� the number of parts may still be of practical interest�

The most severe restrictions we placed on 
certain� models consisted in considering only
��unit and ��periodic schedules� As we have seen� these restrictions often allowed for e�cient
solution strategies� but may have excluded better solutions beforehand� Moreover� even
though the description of sequences should preferably be short� there may be short sequences
that are not ��unit sequences and that are well worth considering in practical applications

see e�g� Song et al� ����� Lei and Wang ������ Kats� Levner and Meyzin ���� study
a mathematical model for obtaining optimal k�unit cyclic schedules and obtain provably
optimal solutions for some test and benchmark problems�

Let us return to results that justify restrictions of the aforementioned type� in the case of
unbounded processing windows� The strongest result in this area is probably the algorithm
due to Hall et al� ����� which computes simultaneously the optimal h�unit feasible robot
move sequence and the optimal part input sequence for two�machine �owshops� The results
in the previous section show that h�periodic schedules are optimal over all schedules for h�
unit cycles in the same environment� Sethi et al� ���� conjectured that� for three�machine
cells and identical parts� ��unit robot move sequences are always optimal in case the robot
travel times satisfy the triangle equality� Hall et al� ���� proved that the conjecture holds
in several special cases� More recently� Crama and Van de Klundert ���b� established the
validity of the conjecture� An alternative� more compact proof was obtained by Brauner and

��



Finke ���a�� Crama and Van de Klundert ���b� in turn conjectured that ��unit robot
move sequences are optimal when all parts are identical� whatever the number of machines is�
The validity of this conjecture would imply that the algorithm proposed by Crama and Van
de Klundert ���a� solves the robotic �owshop problem with identical parts and unbounded
time windows 
in which the triangle equality holds� to optimality� even if the ��unit cycle
restriction is relaxed� However� this conjecture was recently disproved by Brauner and Finke
���b� for the ��machine case�

Several other versions of the conjecture had already been previously disproved� For in�
stance� Hall et al� ���� showed that� in case of multiple part types� the set of ��unit robot
move cycles does not necessarily contain an optimal solution� Also� Hertz ���� observed
that the conjecture may fail when the triangle equality is violated�

In the case of 	nite upper bounds on the processing windows� we also restricted our
discussion to ��periodic schedules� It is known� however� that both in the general case 
Lei
����� and in the zero�width case 
Levner� Kats and Sriskandarajah ������ the set of ��unit
cycles does not necessarily contain an optimal solution� even for identical parts�

For ��machine cells with no�wait restrictions on the robot� zero�length processing windows
and identical parts� Agnetis ���b� showed that the optimal cycle is either a ��unit or a ��
unit cycle� Moreover� he conjectures that� for m�machine cells� the minimum cycle time can
be achieved by a k�unit cycle with k � m�

A number of open problems arise from this overview�

�� When ��unit cycles are not optimal� can one derive a tight upper bound c such that
there always exists an optimal k�unit cycle with k � c� Even for identical parts� when
the data are arbitrary real numbers� it is not known whether there always exists a 	nite
value of k such that some k�unit cycle achieves the minimum cycle time�

�� When ��unit cycles are not optimal� what is the complexity of 	nding the optimal k�
unit cycle� Currently� the complexity of 	nding the optimal ��unit cycle appears to be
open� even when all data are integer�

�� When ��unit cycles are not optimal� derive a tight bound on their relative performance�

�� Is the cycle time computation problem for general processing windows really harder than
for unbounded windows� or do both cases have the same time complexity� In particular�
is it possible to solve the general problem in O
m�� time� Is it possible to obtain more
e�cient algorihms for cycle time computation problems� e�g� by transforming the cycle
time computation problem to a 
maximum cost� network �ow problem�

	 Appendix

Proof of Proposition � The condition is clearly necessary� since between every two con�
secutive occurences of Ai� machine Mi must be loaded and machine Mi�� must be unloaded
exactly once�

In order to prove su�ciency� let us start by de	ning the initial state of the �owshop�
Without loss of generality� assume that� when the robot starts executing �� machine Mi

holds a part if and only if the 	rst occurrence of Ai precedes the 	rst occurrence of Ai�� in
�� for i � �� � � � �m 
such a machine must be unloaded before it is loaded��

��



A moment of re�ection then shows that� in the course of executing �� the robot only
unloads machines that actually contain a part and only loads machines that are empty 
for
the 	rst execution of each activity� this holds true by construction of the initial state� for
subsequent activities� it holds true by the property of ��� �
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