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Abstract 1	

Root	system	analysis	is	a	complex	task,	often	performed	using	fully	automated	image	analysis	2	

pipelines.	However,	these	pipelines	are	usually	evaluated	with	a	limited	number	of	ground-truthed	3	

root	images,	most	likely	of	limited	size	and	complexity.		4	

	5	

We	have	used	a	root	model,	ArchiSimple	to	create	a	large	and	diverse	library	of	ground-truthed	6	

root	system	images	(10.000).	This	library	was	used	to	evaluate	the	accuracy	and	usefulness	of	7	

several	image	descriptors	classicaly	used	in	root	image	analysis	pipelines.		8	

	9	

Our	analysis	highlighted	that	the	accuracy	of	the	different	metrics	is	strongly	linked	to	the	type	of	10	

root	system	analysed	(e.g.	dicot	or	monocot)	as	well	as	their	size	and	complexity.	Metrics	that	have	11	

been	shown	to	be	accurate	for	small	dicot	root	systems	might	fail	for	large	dicots	root	systems	or	12	

small	monocot	root	systems.	Our	study	also	demonstrated	that	the	usefulness	of	the	different	13	

metrics	when	trying	to	discriminate	genotypes	or	experimental	conditions	may	vary.		14	

	15	

Overall,	our	analysis	is	a	call	to	caution	when	automatically	analysing	root	images.	If	a	thorough	16	

calibration	is	not	performed	on	the	dataset	of	interest,	unexpected	errors	might	arise,	especially	for	17	

large	and	complex	root	images.	To	facilitate	such	calibration,	both	the	image	library	and	the	18	

different	codes	used	in	the	study	have	been	made	available	to	the	community.	19	

20	
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Introduction 21	

Roots	are	of	outmost	importance	in	the	life	of	plants	and	hence	selection	on	root	systems	22	

represents	great	promise	for	improving	crop	tolerance	(as	reviewed	in	(Koevoets	et	al.,	2016)).	As	23	

such,	their	quantification	is	a	challenge	in	a	multitude	of	research	projects.	This	quantification	is	24	

usually	twofold.	The	first	step	consists	in	acquiring	an	image	of	the	root	system,	either	using	classic	25	

image	techniques	(CCD	cameras)	or	more	specialized	ones	(microCT,	X-Ray,	fluorescence,	...).	The	26	

next	step	is	to	analyse	the	picture	in	order	to	extract	meaningful	descriptors	of	the	root	system.	27	

	28	

To	paraphrase	the	famous	belgian	surrealist	painter,	René	Magritte,	figure	1A	is	not	a	root	system.	29	

Figure	1A	is	an	image	of	a	root	system	and	that	distinction	is	important.	Such	an	image	is	indeed	a	30	

two	dimensional	representation	of	a	root	system,	which	is	usually	a	three	dimensional	object.	Until	31	

now,	measurements	are	generally	not	performed	on	the	root	systems	themselves,	but	on	the	images	32	

and	this	raises	some	issues.		33	

	34	

Image	analysis	is,	by	definition,	the	obtention	of	metrics	(or	descriptors)	describing	the	objects	35	

contained	in	a	particular	image	.	In	a	perfect	situation,	these	descriptors	would	accurately	represent	36	

the	biological	object	of	the	image	with	negligible	deviation	from	the	biological	truth	(or	data).	37	

However,	in	many	cases,	artefacts	might	be	present	in	the	images	so	that	the	representation	of	the	38	

biological	object	is	not	accurate	anymore.	These	artefacts	might	be	due	to	the	conditions	in	which	39	

the	images	were	taken	or	to	the	object	itself.	Mature	root	systems,	for	instance,	are	complex	40	

branched	structure,	composed	of	thousands	of	overlapping	(fig.	1B)	and	crossing	linear	segments	41	

(fig.	1C).	These	features	are	likely	to	impede	image	analysis	and	create	a	gap	between	the	42	

descriptors	and	the	data.		43	

44	
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	45	

	46	

Root	image	descriptors	can	be	separated	into	two	main	categories:	morphological	and	geometrical	47	

descriptors.	Morphological	descriptors	refer	to	the	shape	of	the	different	root	segments	forming	the	48	

root	system	(table	1).	They	include,	among	others,	the	length	and	diameter	of	the	different	roots.	49	

For	complex	root	system	images,	morphological	descriptors	are	difficult	to	obtain	and	are	prone	to	50	

error	as	mentioned	above.		51	

	52	

Geometrical	descriptors	give	the	position	of	the	different	root	segments	in	space.	They	summarize	53	

the	shape	of	the	root	system	as	a	whole.	The	simplest	geometrical	descriptors	are	the	width	and	54	

depth	of	the	root	system.	Since	these	descriptors	are	mostly	defined	by	the	outside	envelope	of	the	55	
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root	system,	crossing	and	overlapping	roots	have	little	impact	on	their	estimation	and	they	can	be	56	

considered	as	relatively	errorless.	Geometrical	descriptors	are	expected	to	be	loosely	linked	to	the	57	

actual	root	system	topology,	as	identical	shapes	could	be	reached	by	different	root	systems	(the	58	

opposite	is	true	as	well).	They	are	usually	used	in	genetic	studies,	to	identify	genetic	bases	of	root	59	

system	shape	and	soil	exploration.		60	

	61	

Several	automated	analysis	tools	were	designed	in	the	last	few	years	to	extract	both	type	of	62	

descriptors	from	root	images	(Armengaud	et	al.,	2009;	Bucksch	et	al.,	2014;	Galkovskyi	et	al.,	2012;	63	

Pierret	et	al.,	2013).	However,	the	validation	of	such	tools	is	often	incomplete	and/or	error	prone.	64	

Indeed,	for	technical	reasons,	the	validation	is	usually	performed	on	a	small	number	of	ground-65	

truthed	images	of	young	root	systems	for	which	most	analysis	tools	were	actually	designed	.	In	the	66	

few	cases	where	validation	is	performed	on	large	and	complex	root	systems,	it	is	usually	not	on	67	

ground-truthed	images,	but	in	comparison	with	previously	published	tools	(measurement	of	X	with	68	

tool	A	compared	with	the	same	measurement	with	tool	B).	This	might	seem	reasonable	approach	69	

regarding	the	scarcity	of	ground-truthed	images	of	large	root	systems.	However,	the	inherent	70	

limitations	of	these	tools,	such	as	scale	or	plant	type	(monocot,	dicot)	are	often	not	known.	Users	71	

might	not	even	be	aware	that	such	limitations	exist	and	apply	the	provided	algorithm	without	72	

further	validation	on	their	own	images.	This	can	lead	to	unsuspected	errors	in	the	final	73	

measurements.	74	

	75	

One	strategy	to	address	the	lack	of	in-depth	validation	of	image	analysis	pipeline	would	be	to	use	76	

synthetic	images	generated	by	structural	root	models	(models	designed	to	recreate	the	physical	77	

structure	and	shape	of	root	systems).	Many	structural	root	models	have	been	developed,	either	to	78	

model	specific	plant	species	(Pagès	et	al.,	1989),	or	to	be	generic	(Pagès	et	al.,	2004;	2013).	These	79	

models	have	been	repeatedly	shown	to	faithfully	represent	the	root	system	structure	(Pagès	and	80	
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Pellerin,	1996).	In	addition,	they	can	provide	the	ground-truth	data	for	each	synthetic	root	system	81	

generated,	independently	of	its	complexity.	However,	except	one	recent	tool	designed	for	young	82	

seedlings	with	no	lateral	roots	(Benoit	et	al.,	2014).	they	have	almost	never	been	used	for	validation	83	

of	image	analysis	tools	(Rellán-Álvarez	et	al.,	2015).	A		84	

	85	

Here	we	(i)	illustrate	the	use	of	a	structural	root	model,	Archisimple,	to	systematically	analyse	and	86	

evaluate	an	image	analysis	pipeline	and	(ii)	evaluate	the	usefulness	of	different	root	metrics	87	

commonly	used	in	plant	root	research.		88	

89	
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Material and methods 90	

Nomenclature used in the paper 91	

	92	

Ground-truth	data:	The	real	(geometric	and	morphometric)	properties	of	the	root	system	as	a	93	

biological	object.	Determined	by	either	manual	tracing	of	roots	or	by	using	the	output	of	modelled	94	

root	systems.	95	

(Image)	Descriptor:	Property	of	the	root	image.	Does	not	necessarily	have	a	biological	meaning.	96	

Synthetype:	For	each	simulation,	a	parameter	set	is	defined	randomly.	Then,	10	root	systems	are	97	

created.	Since	the	model	has	an	intrinsic	variability,	each	of	these	root	system	is	slightly	different	98	

from	the	others,	although	similar,	forming	what	we	called	a	synthetic	genotype,	or	synthetype.	99	

Root	axes:	first	order	roots,	directly	attached	to	the	shoot	100	

Lateral	root:	second	(or	lower)	order	roots,	attached	to	an	other	root	101	

Creation of a root system library 102	

We	used	the	model	ArchiSimple,	which	was	shown	to	allow	generating	a	large	diversity	of	root	103	

systems	with	a	minimal	amount	of	parameters	(Pagès	et	al.,	2013).	In	order	to	produce	a	large	104	

library	of	root	systems	,	we	ran	the	model	10.000	times,	each	time	with	a	random	set	of	parameters.	105	

 106	

The	simulations	were	divided	in	two	main	groups:	monocots	and	dicots.	For	the	monocot	107	

simulations,	the	model	generated	a	random	number	of	first-order	axes	and	secondary	(radial)	108	

growth	was	disabled.	For	dicot	simulations,	only	one	primary	axis	was	produced	and	secondary	109	
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growth	was	enabled	(the	extend	of	which	was	determined	by	a	random	parameter)	.	For	all	110	

simulation,	only	first	order	laterals	were	created,	to	limit	complexity.		111	

	112	

The	root	system	created	from	each	simulation	was	stored	in	an	RSML	file.	Each	RSML	file	was	then	113	

read	by	the	RSML	Reader	plugin	from	ImageJ	to	extract	metrics	and	generate	ground-truth	data	for	114	

the	library	(Lobet	et	al.,	2015).	These	ground-truth	data	included	geometrical,morphological	and	115	

topological	parameters	(table	1).	For	each	RSML	data	file,	the	RSML	Reader	plugin	also	created	a	116	

PNG	image	(at	a	resolution	of	300	DPI)	of	the	root	system.		117	

	118	

Table	1:	Root	system	parameters	used	as	ground-truth	data	119	

Name	 Description	 Unit	

tot_root_length	 The	cumulative	length	of	all	roots	 mm	

tot_prim_length	 The	cumulative	length	of	all	root	axes	 mm	

tot_lat_length	 The	cumulative	length	of	all	lateral	roots	 mm	

mean_prim_length	 The	mean	first-order	roots	length	 mm	

mean_lat_length	 The	mean	lateral	root	length	 mm	

n_primary	 The	total	number	of	first	order	roots	 -	

n_laterals	 The	total	number	of	lateral	roots	 -	

mean_lat_density	

The	mean	lateral	root	density:	for	each	first-orde	root,	

the	number	of	lateral	roots	divided	by	the	axis	length	

(total	length).	 mm-1	

mean_prim_diam	 The	mean	diameter	of	the	first-order	roots	 mm	

mean_lat_diam	 The	mean	diameter	of	the	lateral	roots	 mm	

mean_lat_angle	 The	mean	insertion	angle	of	the	lateral	roots	 °	

	120	
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Root image analysis 121	

Each	generated	image	was	analysed	using	a	custom-made	ImageJ	plugin,	Root	Image	Analysis-J	(or	122	

RIA-J).	The	source	code	of	RIA-J,	as	well	as	a	compiled	version	is	available	at	the	address:	123	

https://zenodo.org/record/61509.	124	

	125	

For	each	image,	we	extracted	a	set	of	classical	root	image	descriptors,	such	as	the	total	root	length,	126	

the	projected	area	or	the	number	of	visible	root	tips.	In	addition,	we	included	shape	descriptors,	127	

such	as	pseudo-landmarks,	or	a-dimensional	metrics	such	as	the	exploration	ratio,	of	the	width	128	

proportion	at	50%	depth	(see	Supplemental	file	1	for	details	about	the	shape	descriptors).	The	list	129	

of	metrics	and	algorithms	used	by	our	pipeline	is	listed	in	the	table	2.		130	

Data analysis 131	

Data	analysis	was	performed	in	R	(R	Core	Team).	Morphometric	analyses	were	performed	using	the	132	

momocs	(Bonhomme	et	al.,	2014)	and	shapes	(Dryden,	2015)packages.	Plots	were	created	using	133	

ggplot2	(Wickham,	2009)	and	lattice	(Sarkar,	2008).		134	

The	Relative	Root	Square	Mean	Errors	(RRSME)	were	estimated	using	the	equation:	135	

𝑅𝑅𝑀𝑆𝐸 =  

(𝑦𝚤 − 𝑦𝑖)
𝑦𝚤

!

𝑛
 

where	𝑛	is	the	number	of	observations,	𝑦𝚤	is	the	mean	and 𝑦𝑖 is	the	estimated	mean.	136	

The	Linear	Discriminant	Analysis	(LDA)	was	performed	using	the	lda	function	from	the	MASS	137	

package	(M	and	D,	2002).	For	each	analysis,	we	used	the	synthetype	information	as	grouping	factor.	138	

We	used	half	of	the	samples	(5)	of	each	synthetype	to	build	the	model	and	the	other	half	to	assess	139	

the	discriminant	power	of	the	each	class	of	metrics	(morphology	and	shape).	140	
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Data availability 141	

All	data	used	in	this	paper	(including	the	image	and	RSML	libraries)	are	available	at	the	address	142	

https://zenodo.org/record/61739	143	

	An	archived	version	of	the	codes	used	in	this	paper	is	available	at	the	address	144	

https://zenodo.org/record/152083	145	

146	
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Results and discussions 147	

Production of a large library of ground-truthed root system images 148	

We	combined	existing	tools	into	a	single	pipeline	to	produce	a	large	library	of	ground-truthed	root	149	

system	images.	The	pipeline	combines	a	root	model	(ArchiSimple	(Pagès	et	al.,	2013)),	the	Root	150	

System	Markup	Language	(RSML)	and	the	RSML	Reader	plugin	from	ImageJ	(Lobet	et	al.,	2015).	In	151	

short,	ArchiSimple	was	used	to	create	a	large	number	of	root	systems,	based	on	random	input	152	

parameter	sets.	Each	output	was	stored	as	an	RSML	file	(fig.	2A),	which	was	then	used	by	the	RSML	153	

Reader	plugin	to	create	a	graphical	representation	of	the	root	system	(as	a	.jpeg	file)	and	a	ground-154	

truth	dataset	(fig.	2B).	Details	about	the	different	steps	are	presented	in	the	Materials	and	Methods	155	

section.		156	

	157	

	158	
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We	used	the	pipeline	to	create	a	library	of	10,000	root	system	images,	separated	into	monocots	159	

(multiple	first	order	roots	and	no	secondary	growth)	and	dicots	(one	first	order	root	and	secondary	160	

growth).	For	each	input	parameter-set	used	for	ArchiSimple	(1.000	different	ones),	10	repetitions	161	

were	performed	to	create	synthetic	genotypes,	or	synthetypes	(fig.	2A).	The	synthetype	repetitions	162	

were	done	such	as	the	structure	of	the	final	dataset	would	mimic	the	structure	of	a	dataset	163	

containing	phenotypic	data	of	different	genotypes.	The	ranges	of	the	different	ground-truth	data	are	164	

shown	in	table	2	and	their	distribution	is	shown	in	the	Supplemental	Figure	1.	The	pipeline	165	

produced	perfectly	thresholded	black	and	white	images	and	hence	the	following	analyses	were	166	

focused	on	the	characterisation	of	the	root	objects	themselves.	167	

	168	

We	started	by	evaluating	whether	monocots	and	dicots	should	be	separated	during	the	analysis.	We	169	

performed	a	Principal	Component	Analysis	on	the	ground-truthed	dataset	to	assess	if	the	species	170	

grouping	had	an	effect	on	the	overall	dataset	structure	(fig.	3A).	Monocots	and	dicots	formed	171	

distinct	groups	(MANOVA	p-value	<	0.001),	with	only	minimal	overlap.	The	first	principal	172	

component,	that	represented	33.2%	of	the	variation	within	the	dataset,	was	mostly	influenced	by	173	

the	number	of	primary	axes.	The	second	principal	component	(19.6%	of	the	variation)	was	174	

influenced,	in	part,	by	the	root	diameters.	These	two	effects	were	consistent	with	the	clear	grouping	175	

of	monocots	and	dicots,	since	they	expressed	the	main	difference	between	the	two	species.	176	

Therefore,	since	the	species	grouping	had	such	a	strong	effect	on	the	overall	structure,	we	decided	177	

to	analyse	them	separately	rather	than	together	for	the	following	analyses.	178	

179	
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Table	3:	Ranges	of	the	different	ground-truth	data	from	the	root	systems	generated	using	180	

ArchiSimple	181	

variable	 minimum	value	 maximum	value	 unit	

MONOCOTS	

tot_root_length	 8.36	 2455.03	 cm	

width	 0.25	 33.21	 cm	

depth	 5.49	 37.5	 cm	

n_primary	 1	 20	 -	

tot_prim_length	 6	 327	 cm	

mean_prim_length	 3.22	 38	 cm	

mean_prim_diameter	 0.02	 0.04	 cm	

mean_lat_density	 0	 100.88	 cm	

n_laterals	 0	 1378	 -	

tot_lat_length	 0	 1630	 cm	

mean_lat_length	 0	 4.44	 cm	

mean_lat_diameter	 0	 0.03	 cm	

mean_lat_angle	 0	 97.74	 °	

DICOTS	

tot_root_length	 6.91	 585.05	 cm	

width	 0.01	 15.05	 cm	

depth	 3.89	 36.99	 cm	

n_primary	 1	 1	 -	

tot_prim_length	 4	 37	 cm	

mean_prim_length	 4.4	 37.5	 cm	

mean_prim_diameter	 0.02	 1.13	 cm	

mean_lat_density	 0	 494.54	 cm	

n_laterals	 0	 277	 -	

tot_lat_length	 0	 437	 cm	

mean_lat_length	 0	 5.48	 cm	

mean_lat_diameter	 0	 0.23	 cm	
mean_lat_angle	 0	 87.63	 °	
	182	
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Systematic evaluation of root image descriptors 184	

In	order	to	demonstrate	the	utility	of	a	synthetic	library	of	ground-truthed	root	systems,	we	185	

analysed	every	image	of	the	library	using	a	custom-built	root	image	analysis	tool,	RIA-J.	We	decided	186	

to	do	so	because	our	purpose	was	to	test	the	usefulness	of	the	synthetic	analysis	and	not	to	assess	187	

the	accuracy	of	existing	tools.	Nonetheless,	RIA-J	was	designed	using	known	and	published	188	

algorithms,	often	used	in	root	system	quantification.	A	detailed	description	of	RIA-J	can	be	found	in	189	

the	Materials	and	Methods	section.		190	

	191	

Table 3: Root image descriptors extracted by RIA-J 192	

Name	 Description	 Unit	 Reference	

area	 Projected	area	of	the	root	system	 mm2	 (Galkovskyi	et	al.,	2012)	

length	 Length	of	the	skeleton	of	the	root	system	image	 mm	 (Galkovskyi	et	al.,	2012)	

tip_count	 Number	of	end	branches	in	the	root	system	skeleton	 -	 	

diam_mean	 Mean	diameter	of	the	root	object	in	the	image	 mm	 	

width	 The	maximal	width	of	the	root	system	 mm	 -	

depth	 The	maximal	depth	of	the	root	system	 mm	 -	

width_depth	 Ratio	between	the	width	and	the	depth	of	the	root	system	 -	 (Galkovskyi	et	al.,	2012)	

com_x	-	com_y	 Relative	coordinates	of	the	center	of	mass	of	the	root	system	 -	 (Galkovskyi	et	al.,	2012)	

convexhull	 Area	of	the	smallest	convex	shape	around	the	root	system	 mm2	 (Galkovskyi	et	al.,	2012)	

exploration	 Ratio	between	the	convex	hull	area	and	the	projected	area	 -	 (Galkovskyi	et	al.,	2012)	

PL.PC1-3	
First	three	Principal	Components	of	the	morphometric	analysis	

using	pseudo-landmarks	(see	Supplemental	file	1	for	details)	 -	

(Chitwood	and	Otoni,	

2016;	Rellán-Álvarez	et	al.,	

2015;	Ristova	et	al.,	2013)	

width50	
Relative	depth	at	which	50%	of	the	cumulative	width	of	the	

root	system	is	reached	(see	Supplemental	file	1	for	details)	 -	 (Bucksch	et	al.,	2014)	

count50	
Relative	depth	at	which	50%	of	the	total	number	of	roots	is	

reached	 -	 (Bucksch	et	al.,	2014)	

	193	
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We	extracted	16	descriptors	from	each	root	system	image	(Table	3)	and	compared	them	with	their	194	

own	ground-truth	data.	For	each	pair	of	descriptor/data,	we	performed	a	linear	regression	and	195	

computed	its	r-squared	value.	Figure	4	shows	the	results	from	the	different	combinations	for	both	196	

monocots	and	dicots.	We	can	observe	that,	as	a	general	rule,	good	correlations	were	rare,	with	only	197	

3%	of	the	combinations	having	an	r-squared	above	0.8.	In	addition,	even	a	good	correlation	is	not	198	

necessarily	directly	useful	as	the	relationship	between	the	two	variables	might	not	follow	a	1:1	rule	199	

(fig.	4B-C).	In	such	case,	an	additional	validation	might	be	needed	to	define	the	relation	between	200	

both	variables.	201	

	202	

It	also	has	to	be	noted	that	the	correlations	were	different	between	species.	As	an	example,	within	203	

the	dicot	dataset,	no	good	correlation	was	found	between	the	tip_count	and	diam_mean	estimators	204	

while	better	correlation	was	found	for	the	monocots.	As	a	consequence,	validation	of	the	different	205	

image	analysis	algorithms	should	be	performed,	at	least,	for	each	group	of	species.	An	algorithm	206	

giving	good	results	for	a	monocot	might	fail	when	applied	on	dicot	root	system	analysis.	207	
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Errors from image descriptors are likely to be non linear 209	

In	addition	to	being	related	to	the	species	of	study,	estimation	errors	are	likely	to	increase	with	the	210	

root	system	size.	As	the	root	system	grows	and	develops,	the	crossing	and	overlapping	segments	211	

increase,	making	the	subsequent	image	analysis	potentially	more	difficult	and	prone	to	error.	212	

However,	a	systematic	analysis	of	such	error	is	seldom	performed.		213	

	214	

Figure	5	shows	the	relationship	between	the	ground-truth	and	descriptor	values	for	three	215	

parameters:	the	total	root	length	(fig.	5A),	the	number	of	roots	(fig.	5B)	and	the	root	system	depth	216	

(fig.	5C).	For	each	of	these	variables,	we	quantified	the	Relative	Root	Mean	Square	Error	(see	217	

Materials	and	Methods	for	details)	as	a	function	of	the	total	root	length.	We	can	observe	that	for	the	218	

estimation	of	both	the	total	root	length	and	the	number	of	lateral	roots,	the	Relative	Root	Square	219	

Mean	Error	increased	with	the	size	of	the	root	system	(fig.	5A-B).	As	stated	above,	such	increase	of	220	

the	error	was	somehow	expected	with	increasing	complexity.	For	other	metrics,	such	as	the	root	221	

system	depth,	no	errors	were	expected	(depth	is	supposedly	an	error-less	variable)	and	the	Relative	222	

Root	Mean	Square	Error	was	close	to	0	whatever	the	size	of	the	root	system.		223	

	224	

Such	results	are	a	call	to	caution	when	analysing	root	images	as	unexpected	errors	in	descriptors	225	

estimation	can	arise.	This	is	probably	even	more	true	with	real	images,	that	are	susceptible	to	226	

contain	non-root	objects	(e.g.	dirt)	and	lower	order	laterals	roots	(as	stated	above,	simulations	used	227	

here	were	limited	to	first	order	laterals).	228	
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Differentiation power differs between metrics 232	

Finally,	we	wanted	to	evaluate	which	metrics	were	the	most	useful	to	discriminate	between	root	233	

systems	of	different	genotypes	or	experimental	series	(control	vs	treatment).	As	explained	above,	234	

for	each	parameter	set	used	in	the	ArchiSimple	run	for	library	construction,	we	generated	10	root	235	

systems.	Given	the	intrinsic	variability	existing	in	the	model,	each	of	these	10	root	systems	were	236	

similar	although	different,	as	could	be	expected	from	plants	of	the	same	genotype.	These	so-called	237	

synthetypes,	were	then	used	to	evaluate	how	efficient	were	the	different	metrics	to	discriminate	238	

them.		239	

	240	

To	estimate	the	differentiation	of	the	image	metrics,	we	used	a	Linear	Discriminant	Analysis	(LDA)	241	

prediction	model.	For	each	synthetype,	half	of	the	plants	were	used	to	create	the	LDA	model.	The	242	

model	was	then	used	to	predict	a	synthetype	for	the	remaining	half	of	the	plants.	This	approach	243	

allowed	us	to	evaluate	the	prediction	accuracy,	or	differentiation	power,	of	the	different	metrics.	A	244	

prediction	accuracy	of	100%	means	that	all	plants	were	correctly	assigned	to	their	synthetype.	To	245	

evaluate	the	differentiation	power	of	single	metrics,	we	used	an	approach	in	which	each	metric	was	246	

iteratively	added	to	the	model,	based	on	the	model	global	prediction	power	(see	Supplemental	247	

Figure	3	for	details	about	the	procedure)	.	We	performed	the	analysis	either	on	a	full	dataset	(fig.	248	

6D-E),	or	on	a	data	restrictedto	the	smallest	plants	(fig.	6A),	in	order	to	test	the	influence	of	the	249	

underlying	data	structure.		250	

	251	

Two	main	observations	can	be	made	on	the	figure	6.	First,	for	three	out	of	four	scenarios,	only	5	(or	252	

less)	descriptors	were	needed	to	achieve	a	differentiation	accuracy	of	90%.	Depth,	area	and	length	253	

were	the	most	important	descriptors	in	almost	all	scenarios.	The	remaining	descriptors	did	not	254	

increase	significantly	the	accuracy	(some	might	even	decrease	it).	This	might	be	interpreted	as	a	255	
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handful	of	variables	were	sufficient	to	distinguish	synthetypes,	and	by	extension	genotypes	or	256	

treated	plants.	However,	we	can	also	observe	that	the	most	important	parameters	changed	257	

depending	on	the	underlying	data	structure	(either	due	to	species	or	the	size	of	the	dataset).	This	258	

indicates	that	it	is	difficult	to	have	an	a	priori	evaluation	of	the	important	variables.	Keeping	as	259	

many	variable	a	possible	might	always	be	the	most	efficient	solution.		260	

261	
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Conclusions 263	

The	automated	analysis	of	root	system	images	is	routinely	performed	in	many	research	projects.	264	

Here	we	used	a	library	of	10.000	modelled	images	to	estimate	the	accuracy	and	usefulness	of	265	

different	image	descriptors	extracted	with	an	home-made	root	image	analysis	pipeline.	The	analysis	266	

highlighted	some	important	limitations	during	the	image	analysis	process.		267	

	268	

Firstly,	general	structure	of	the	root	system	(e.g	monocot	vs	dicots)	can	have	a	strong	influence	on	269	

the	descriptors	accuracy.	Descriptors	that	have	been	shown	to	be	good	predictors	for	one	type	of	270	

root	systems	might	fail	for	another	type.		In	some	cases,	the	calibration	and	the	combination	of	271	

different	descriptors	might	improve	the	accuracy	of	the	predictions,	but	this	needs	to	be	assessed	272	

for	each	analysis.		273	

	274	

A	second	factor	influencing	strongly	the	accuracy	of	the	analysis	is	the	root	system	size	and	275	

complexity.	As	a	general	rule,	for	morphological	descriptors,	the	larger	the	root	system,	the	larger	276	

the	error	is.	So	far,	a	large	proportion	of	the	root	research	has	been	focused	on	seedlings	with	small	277	

root	systems	and	have	de	facto	avoided	such	errors.	However,	as	the	research	questions	are	likely	278	

to	focus	more	on	mature	root	system	in	the	future,	these	limitations	will	become	critical.	279	

	280	

Finally	we	have	shown	that	not	all	metrics	have	the	same	benefit	when	comparing	genotype	or	281	

treatments.	Again,	depending	on	the	root	system	type	or	size,	different	metrics	will	have	different	282	

differentiation	powers.		283	

	284	

It	is	important	to	highlight	that	the	images	used	in	our	analysis	were	perfectly	thresholded,	without	285	

any	degradation	in	the	image	quality.	Therefore,	the	errors	computed	in	our	analysis	are	likely	286	
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under-estimated	compared	to	real	images	(with	additional	background	noise	and	lesser	quality).		287	

Since	the	quality	of	the	images	is	dependent	on	the	underlying	experimental	setup,	artificial	noise	288	

could	be	added	to	the	generated	images	in	order	to	mimic	any	experimentally	induced	artifact	and	289	

to	improve	the	analysis	pipeline	evaluation,	as	proposed	by	(Benoit	et	al.,	2014).	290	

	291	

To	conclude,	our	study	is	a	reminder	that	thorough	calibrations	are	needed	for	root	image	analysis	292	

pipelines.	Here	we	have	used	a	large	library	of	simulated	root	images,	that	we	hope	will	be	helpful	293	

for	the	root	research	community	to	evaluate	current	and	future	image	analysis	pipelines.	294	

 295	

296	
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