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Abstract

Due to their high complexity, compliant mechanisms require high-fidelity mechanical models to reach a
detailed understanding of their characteristics and predict their actual behaviour in various situations. This
work focuses on tape springs which are used as an alternative to common mechanisms composed of kinematic
joints. They present several assets such as, among others, passive deployment and self-locking, but they are
characterised by a highly nonlinear behaviour including buckling, the formation of folds and hysteresis. An
experimental set-up is then designed to gather information on these phenomena, while in parallel an equivalent
finite element model is developed. Quasi-static and dynamic tests are performed, as well as small amplitude
vibration tests and large amplitude deployments in order to collect data in a broad variety of cases. The post-
processing of the numerous raw data shows, with the help of statistical considerations, the good quality of the
acquisitions. Finally, the finite element model proves to be fairly well correlated to the experimental results.

1 INTRODUCTION

The development of low cost missions requires the
use of simple, robust and easy-to-integrate compo-
nents in order to reduce both the time-consuming pe-
riod of numerical and experimental tests and the sub-
sequent manufacturing cost of spacecraft. In order
to meet these objectives in the domain of space de-
ployable structures, the common mechanisms, usu-
ally composed of several kinematic joints which are
set into motion by the means of motors, can be re-
placed by autonomous compliant elements. In this
work, the characteristics of tape springs, belonging
to the second category of mechanisms, will be anal-
ysed through the design of an experimental set-up.

Tape springs have already been successfully used
in several space missions such as the six MYRI-
ADE micro-satellites for the deployment of solar ar-
rays, antennas and masts [1] or the MARS EXPRESS

spacecraft for the deployment of a long wavelength
antenna [2] and will be used in future missions such
as SOLAR ORBITER for the deployment of a radio
and plasma wave antenna or NORSAT-1 for the de-
ployment of an AIS receiver. Indeed, the inherent
characteristics of tape springs turn out to show many
advantages for space deployable structures. First of
all, when a tape spring is deformed to reach its folded
configuration, the deformations stay in the elastic
regime, provided that the geometric and material pa-
rameters satisfy a design constraint [3]. The stored

elastic energy is then responsible for a residual mo-
ment that leads to a passive and self-actuated de-
ployment until the tape spring reaches its equilibrium
state which, in the context of this work, is the straight
configuration, even though another one may exist [4].
Furthermore, compared to kinematic joints which
usually imply some sliding between contact surfaces
while in motion, the deployment of tape springs only
leads to the deformation of structural elements. The
use of lubricant is then irrelevant in this case and the
risks of outgassing or contamination are limited. Fi-
nally, several tape springs can easily be combined
to form a hinge with characteristics specific to the
application at hand, showing thus the versatility of
these mechanisms. For example, the MAEVA hinge
is composed of three tape springs with alternate ori-
entations [5], Boesch et al. designed a hinge with
four pairs of tape springs, each composed of a long
and a short element [6]. The assets of tape springs
can also be found in hinges consisting of thin walled
tubes with two symmetric longitudinal holes along
a chosen region which results in two superimposed
tape springs with opposite curvatures also called in-
tegral slotted hinges [2, 7].

The advantageous characteristics of tape springs
result from their highly nonlinear mechanical be-
haviour which is theoretically illustrated in Fig. 1 and
describes the evolution of the bending moment M
measured at the clamped extremity of the tape spring
when the bending angle θ is controlled at the other
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end. First of all, the sense of bending has a signif-
icant impact on the behaviour and on the deformed
configuration of the tape spring. The two senses of
bending are called and described as follows: the op-
posite sense bending (M,θ > 0) leads to longitudinal
and transverse curvatures in opposite sense, while the
equal sense bending (M,θ < 0) leads to longitudinal
and transverse curvatures in the same sense. In op-
posite sense, after first increasing linearly and reach-
ing a maximum Mmax

+ , the loading curve undergoes a
sharp drop which is due to the buckling of the struc-
ture and leads to the formation of a fold in the middle
of the tape spring. In this configuration, the regions
away from the fold remain straight and can easily
be moved until they are parallel to each other since
the residual moment M∗+ is much smaller than the
maximum Mmax

+ . Furthermore, in the case where the
two extreme regions are parallel, the gap between the
two sides reaches approximately twice the transverse
radius of the tape spring in its equilibrium state [8]
and shows that a compact folded configuration can
be achieved. During the unloading stage, the fold
disappears for an angle θheel

+ smaller than the one
associated to buckling. This non-superposition of
the loading and unloading paths is responsible for
an hysteresis phenomenon which leads to a dissipa-
tion of energy and, in the end, to the self-locking of
the structure in its deployed configuration. On the
other hand, the equal sense bending is also charac-
terised by the formation of a transverse fold which
results from the combination of torsion folds start-
ing from the extremities and converging to the mid-
dle as the amplitude of the bending angle increases.
This evolution being more progressive than in oppo-
site sense, the maximum and residual moments are
smaller in amplitude than their opposite sense coun-
terparts (|Mmax

− | < Mmax
+ , |M∗−| < M∗+). Finally, it

is commonly accepted in theory that the cycles of
loading-unloading are superimposed in equal sense
bending even though it is not exactly the case in prac-
tice [9].

Due to the high complexity of the tape spring
behaviour, high-fidelity mechanical models are re-
quired to accurately predict their evolution in var-
ious applications. To this end, analytical develop-
ment, finite element analyses and experimental tests
are performed. The theoretical relationship illus-
trated in Fig. 1 was first derived by Wüst [10], Rim-
rott [11] and Mansfield [12]. Analytically, the de-
ployment of tape springs is usually described with
the help of simplifying assumptions. For example,
since the fold after buckling is localised and the re-
gions near the extremities remain straight, a tape
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Figure 1: Theoretical evolution of the bending mo-
ment M with respect to the bending angle θ in pure
bending (inspired from [3]).

spring can be represented by a mobile hinge con-
necting two rigid bodies of variable length [9] or
by a one-dimensional planar rod with flexible cross-
sections [13]. Regarding finite element models, com-
prehensive quasi-static analyses were performed in
order to understand the impact of the geometric and
material parameters on the relationship linking the
bending moment M and the bending angle θ in the
case of a single tape spring [3, 14] or integral slot-
ted hinges [17] and nonlinear dynamic analyses were
performed to capture the phenomena (buckling, hys-
teresis, self-locking) characterising the deployment
of tape springs [15, 16].

Experimental tests, usually combined to finite ele-
ment models used for the initial design or the correla-
tion of the full deployment simulation, can be found
in [9, 19] for single tape springs, in [5, 6, 20] for
hinges composed of multiple tape springs, in [2, 17]
for the deployment of integral slotted hinges and
in [18] where tape springs are used as structural stiff-
eners for inflatable structures. With current finite
element software, fair correlations are obtained be-
tween the experimental and numerical results. How-
ever, one parameter remains challenging to experi-
mentally determine and integrate in a finite element
model: the structural damping. A previous work [16]
showed that this physical property is required to en-
sure a correct representation of the damping of the
oscillations after deployment and of the self-locking
phenomenon of the tape springs in their equilibrium
state, and led to more robust simulations by reducing
the sensitivity of the numerical models to the numer-
ical dissipation of the transient solver. Some works
already integrate structural damping in their finite el-
ement models by the means of proportional damp-
ing with either constant damping factors [21] or vari-
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able ones based on the natural frequency of the tape
spring hinge [2] or by fitting Prony series [22]. In this
work, an experimental set-up is designed in order to
gather information on the structural damping by sub-
mitting the structure to small amplitude vibrations,
the decrease of which allows completing and veri-
fying the numerical results obtained in [16] where
the structural damping was represented by a Kelvin-
Voigt model. Furthermore, quasi-static and passive
deployment tests are performed on this experimental
set-up to collect data in the case of large amplitude
motions. Finally, in parallel to these tests, a finite el-
ement model is correlated to the experimental results
in order to ensure the reliability of the numerical re-
sults in further applications.

The layout of this paper is as follows. The design
of the experimental set-up is described in Section 2.
Then, in Section 3, three points bending tests are per-
formed in order to reduce the uncertainties affecting
the values of the Young’s modulus E and the thick-
ness t. The last unknown parameter, the structural
damping ε, is experimentally evaluated by the means
of small amplitude vibration tests in Section 4. In
Section 5, deployment tests are performed in order
to collect data on large amplitude motions. Finally,
the conclusions of this work are drawn in Section 6.

2 EXPERIMENTAL SET-UP

The experimental set-up is schematically illustrated
in Fig. 2. The hinge is composed of two tape springs
cut out at the required length from a common mea-
suring tape as the one visible in Fig. 1. They have
the same orientation so that the initial bending prior
to deployment can be performed in opposite or equal
sense by turning upside down the whole block com-
posed of the tape springs, the interfaces and the
dummy appendix. Each extremity of the tape springs
is clamped by interfaces (Fig. 2c) composed of two
complementary parts with curved regions fitting the
geometry of the tape springs.

The different parameters of this latter are given in
Tab. 1 and illustrated in Fig. 2c. Only the length L,
the thickness t, the width w and the height h were
physically measured using a calliper, while the sub-
tended angle α and the radius of curvature R were
calculated based on these parameters with the help
of simple trigonometric equations. Regarding the
length L, the given value corresponds to the distance
between the two faces of the interfaces facing each
other (Fig. 2b), that is without the parts of the tape
springs clamped in the interfaces.

Some uncertainties affect the value of the thick-
ness t. Indeed, its size is one to three orders of mag-

L [mm] t [mm] w [mm] h [mm] α [◦] R [mm]

100 ∼ 0.14 17.8 2.8 69.85 15.545

Table 1: Geometric characteristics of the tape springs
used in the experimental set-up.

nitude smaller than all the other dimensions of the
tape springs, which makes it more complex to accu-
rately measure. Furthermore, since the tape springs
are parts of a common measuring tape, they consist
of a metallic layer covered by a wear resistant coating
and surrounded on both faces by protective layers of
transparent plastic. It can then be expected from this
that the distribution of the thickness is not constant
along the length and the width of the tape spring. A
measurement of an uneven distribution of thickness
can be found in [22] even though the tape springs
were manufactured with a single polymeric material.
All these elements lead to an approximated value of
thickness t given in Tab. 1, but also to an unknown
value for the Young’s modulus E. In order to de-
termine these two parameters, specific experimental
tests are performed further in this work.

The interfaces clamping the tape springs are con-
nected on one side to a fixation support considered
as clamped to the ground due to its own weight and
to a dummy appendix on the other one. One objec-
tive is to study an autonomous deployment of the
appendix despite the presence of the gravity field.
It implies that when designing the experimental set-
up, one must ensure that the weight at the free end
(the combination of two interfaces and the dummy
appendix) is limited in order to respect two con-
straints. First of all, the structure cannot buckle under
its own weight, and secondly, when initially folded
downwards, the residual moment in the tape springs
must be able to passively deploy the structure until
the equilibrium state is recovered. As it can be de-
duced from the quasi-static relationship between the
bending angle θ and the resulting bending moment
M (Fig. 1), the second constraint is the most restric-
tive one since the residual moment M∗ is smaller than
the maximum moment Mmax right before buckling,
whatever the sense of folding. Furthermore, as ex-
plained previously, the amplitude of the residual mo-
ment is smaller in equal sense. It implies then that in
order to use the same set-up in both senses, the max-
imum weight is fixed by the behaviour in equal sense
bending.

Taking into account these restrictions regarding
the mass, the designed experimental set-up is given
in Fig. 3. In total, the two interfaces, the rod and the
dummy appendix have a mass of ∼ 77 g. Notice that
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Figure 2: Schematic representation of the experimental set-up.

to achieve this low mass, it was necessary to clamp
the interfaces around the tape springs free ends by the
means of only one screw, which implies that it goes
through the tape springs, and to drill additional holes
in the rod and the dummy appendix. In the case of
the interfaces connecting the tape springs to the fix-
ation support, larger ones are used since their weight
does not affect the deployment.

Figure 3: Experimental set-up.

3 THREE POINTS BENDING TESTS

In order to reduce the uncertainties on the Young’s
modulus E and the thickness t, three points bending
tests are performed. The test consists of a loading
head coming into contact with a tape spring sam-
ple positioned on two supports separated by a chosen
span (Fig. 4). The machine used is a MTS CRITE-
RION with a load cell of 1 kN, the tip of the loading
head and the corners of the supports have a radius of
2 mm, and the span is set to 60 mm.

For each tape spring, ten tests are performed in the
two senses of bending. The results obtained on one

Span

Tape spring
sample

Load cell

Loading head

Support

Support

Figure 4: Experimental three points bending test.

sample are illustrated in Fig. 5 where the 20 curves
(10 in opposite sense and 10 in equal sense) are su-
perimposed and show a good reproducibility. No-
tice that this evolution is different from the theoreti-
cal one described in Fig. 1, since three points bend-
ing tests give the relationship between the load and
the displacement of the head, instead of the bending
moment with respect to the bending angle. Nonethe-
less, the same main characteristics are identified: for
small displacements, the evolution is first linear; then
a maximum is reached, the amplitude being smaller
in equal sense; it is followed by buckling which is
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sharper in opposite sense; and finally large displace-
ments are associated to a residual load.
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Figure 5: Experimental results of the three points
bending tests for a single tape spring (10 curves in
opposite sense and 10 curves in equal sense).

Regarding the reproducibility of the tests for dif-
ferent tape springs, the results are given in Tabs. 2
and 3 where three features are considered: the maxi-
mum load, the associated displacement of the loading
head and the slope for small displacements. In each
case, the mean value of all the tests (in total, 6 tape
springs were used, so that each mean is computed on
60 values) is given, along with the largest difference
noticed within the results and the associated varia-
tion coefficient. This latter, also called relative stan-
dard deviation, measures the dispersion of the results
and is defined as the ratio between the standard de-
viation and the mean. It is used here to evaluate the
accuracy and the repeatability of the measures and is
expressed as a percentage. As the variation coeffi-
cient remains below 5 % for each feature, it can be
concluded that these experimental tests also show a
good reproducibility from one tape spring to another.
The only noticeable sources of errors during the tests
came from a bad alignment of the tape spring with
respect to the loading head and the supports or a bad
tightening of the loading head in the load cell, which
can be both easily avoided by carefully preparing the
set-up.

Opposite sense
Mean Max. diff. Variation coeff.

Max. load [N] 17.46 0.97 1.77 %
Disp. [mm] 2.04 0.32 4.04 %

Slope [N/mm] 12.76 0.96 1.86 %

Table 2: Experimental results from the three points
bending tests in opposite sense.

Equal sense
Mean Max. diff. Variation coeff.

Max. load [N] 5.53 0.36 1.46 %
Disp. [mm] 2.17 0.33 3.72 %

Slope [N/mm] 6.94 1.25 4.85 %

Table 3: Experimental results from the three points
bending tests in equal sense.

In order to determine the values of the Young’s
modulus E and the thickness t which lead to these ex-
perimental results, finite element models reproducing
the three points bending tests are used. In this work,
all the finite element models are developed in the
commercial software SAMCEF [23]. More precisely,
the tape springs are represented by flexible shell ele-
ments base on the Mindlin-Reissner theory, since as
already mentioned their thickness is several orders of
magnitude smaller than their other dimensions. The
loading head and the supports are simplified as cylin-
ders with a radius of 2 mm, since contact only occurs
on the tip and the corners of these elements. Fur-
thermore, they are all three considered as rigid, while
the tape spring is obviously flexible. Regarding con-
tact, a coupled iterations method is exploited, mean-
ing that contact is treated as a nonlinearity and a kine-
matic constraint is active when contact occurs and in-
active otherwise. Finally, the supports are considered
as fixed, while the displacement of the loading head
is controlled. The resulting deformed configurations
in both senses obtained with these models are given
in Fig. 6 where the Newmark method [24] was ex-
ploited to solve this nonlinear problem with an adap-
tive time stepping procedure. In opposite sense, the
model stops converging right after reaching the max-
imum load and is unable to capture buckling, while
in equal sense it succeeds since this phenomenon is
less sharp.

Support

Loading
head

Support

Equal sense

bending

Opposite sense

bending

Figure 6: Finite element models for the three points
bending tests (deformed configurations).

The finite element models are integrated in an op-
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timisation procedure that will lead to the Young’s
modulus E and the thickness t fitting at best the pre-
vious experimental results. The generic form of an
optimisation problem is expressed as:

min
x

f (x) such that
{

c(x)≤ 0
lb≤ x≤ ub

(1)

where f (x) is the objective function to be minimised
with respect to the vector of design variables x, c(x)
represents the nonlinear inequality constraints, and
lb and ub are vectors defining respectively the lower
and upper bounds of the design variables.

In this case, the design variables are the Young’s
modulus E, the thickness t and the friction coef-
ficient µ between the tape spring and the loading
head and supports. This latter is not required for the
small amplitude vibration tests or deployment tests,
nonetheless it affects the results of the three points
bending tests as it can be seen in Fig. 7. To sim-
plify the problem, it is assumed that the friction co-
efficient µ is the same at the three contact locations.
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Figure 7: Impact of the friction coefficient µ on the
three points bending tests.

The function to be minimised quantifies the cor-
relation between the numerical and the mean exper-
imental results. To this end, the loads are compared
at four specific displacements: the ones associated to
the maximum loads and at a displacement of 1 mm in
both senses. The objective function f (x) is then the
sum of the differences, each term being divided by
the corresponding mean experimental value in order
to sum terms with the same order of magnitude.

Regarding the constraints, only bounds limit the
values of the design variables and are defined in
Tab. 4. For the Young’s modulus E and the thick-
ness t, ranges of values allowing a passive deploy-
ment of the mass at the free extremities of the tape

springs determined in Section 2 are used, while lim-
itations concerning the convergence of the finite ele-
ment models lead to the bounds of the friction coef-
ficient µ. For information, an optimisation procedure
using nonlinear inequality constraints can be found
in [14].

Bounds E [MPa] t [mm] µ[−]
lb 100000 0.12 0
ub 220000 0.2 0.8

Table 4: Lower and upper bounds of the design vari-
ables in the three points bending tests.

The problem is solved by the means of the interior-
point algorithm available through the fmincon(...)
function in MATLAB which solves large, sparse mul-
tivariable problems, as well as small dense ones [25].
The termination tolerance on the objective function
and the design variables, and the tolerance on the
constraint violation are all set to 10−3. The result
of such optimisation procedure is a local minimum
of the objective function. It is then dependent on the
initial guess and usually several tests have to be per-
formed before finding a global solution.

The optimisation procedure is as follows (Fig. 8).
Starting from an initial guess (E0, t0,µ0), the three
points bending tests are numerically performed in
both senses by the means of the finite element mod-
els described in Fig. 6. The results are post-treated
in order to extract the evolution of the load with re-
spect to the displacement of the loading head. Then,
the objective function is computed and the validity of
the constraints is checked in the optimisation routine.
If the value of the objective function is minimised,
the solution of the problem (Eend , tend ,µend) is found,
otherwise the algorithm determines automatically the
next set of design variables (Ek, tk,µk) and a new cy-
cle of analyses is carried out.

The results of the optimisation procedure regard-
ing the Young’s modulus E, the thickness t and the
friction coefficient µ are given in Tab. 5. A com-
parison with the experimental results is illustrated in
Fig. 9 where it can be seen that visually the main dif-
ference comes from the amplitude of the maximum
load in opposite sense. Nonetheless, by compar-
ing quantitatively the four loads defining the objec-
tive function, Tabs. 6 and 7 show a good agreement
between the numerical and experimental results, a
larger difference being notice at the maximum load
in opposite sense, while it is for a displacement of
−1 mm in equal sense.

For information, tensile tests were also attempted
to determine the values of the Young’s modulus E
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Figure 8: Optimisation procedure to correlate the re-
sults from the three points bending tests.

E [MPa] t [mm] µ[−]
187812 0.132 0.218

Table 5: Results of the optimisation procedure for the
three points bending tests.
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Figure 9: Graphical comparison between the results
of the optimisation procedure for the three points
bending tests and one experimental curve.

and the thickness t, but were inconclusive. In order to
keep the geometry of the tape springs unconstrained,
mechanical interfaces were used at each of their ex-
tremities and the grips of the machine were clamping
these interfaces. However, they were either slipping
between the grips or the tape springs were breaking
inside the interfaces with the crack starting at the hole
dedicated to the screw.

Opposite sense
Max. load [N] Load at 1 mm [N]

Exp. 17.46 12.38
Num. 15.61 12.02

∆ 10.60 % 2.91 %

Table 6: Comparison between the experimental re-
sults and the optimisation procedure for the three
points bending tests in opposite sense.

Equal sense
Max. load [N] Load at −1 mm [N]

Exp. 5.53 4.34
Num. 5.55 4.94

∆ 0.36 % 13.82 %

Table 7: Comparison between the experimental re-
sults and the optimisation procedure for the three
points bending tests in equal sense.

4 SMALL AMPLITUDE VIBRATION TESTS

Now that the uncertainties on the Young’s modulus E
and the thickness t are reduced, the next physical
parameter to determine is the structural damping ε.
As mentioned in the introduction, it was shown in
a previous work [16] that the structural damping ε

only affects the low frequency domain of a struc-
ture, while the numerical damping is used to filter
the high frequency modes poorly represented in the
discretised finite element models. It improves thus
the convergence of the solver, especially for non-
linear structures. Furthermore, the structural damp-
ing ε is required to capture the damping of the small
amplitude oscillations after deployment and the self-
locking of the tape springs in their deployed state.
Finally, more robust simulations are obtained since
introducing some structural damping in the models
reduces the sensitivity of the results to the amount of
numerical damping.

The structural damping is a physical property of
the material composing the tape springs. However,
additional sources of damping are present in the ex-
perimental set-up due to loses at the connections be-
tween each element, to the flexibility of other com-
ponents which are also characterised by a certain
amount of structural damping, to the air resistance
as the tests are not performed in vacuum or to acous-
tic effects which can be heard every time a fold is
formed or disappears. Thus, the structural damping
coming from the tape springs cannot be easily iso-
lated from all the other sources of dissipation and the
experimental measures give only general information
on the behaviour of the whole structure.
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In order to evaluate the value of this global struc-
tural damping ε, the experimental set-up is submitted
to small amplitude vibrations at its free end. The dis-
placements of the extremity are limited to small val-
ues to ensure that during the tests no fold is formed
in the tape springs and their behaviour remains in the
quasi-linear part described in Fig. 1. Compared to the
experimental set-up in Fig. 3, the dummy appendix
was replaced by an additional weight (Fig. 10) in or-
der to reduce the frequency of these vibrations and
improve the accuracy of the collected data.

Figure 10: Experimental set-up used to perform
small amplitude vibration tests and position of the
markers.

The acquisition equipment consists of a 3D mo-
tion analysis system from CODAMOTION. For the
small amplitude vibration tests, four active markers
are placed on the set-up (Fig. 10) and four scanners
from the CX1 series are located around the set-up.
Each unit combines three motion sensing arrays and
is then able to triangulate precisely the position of
each marker (Fig. 11). The acquisition frequency of
this system reaches 800 Hz when less than six mark-
ers are used at the same time. This equipment is nor-
mally devoted to human motion analysis at the Uni-
versity of Liège, but is used here in a different context
(see for example [26] for a more detailed description
of the equipment and the analyses performed in the
lab).

The results obtained with the small amplitude vi-
bration tests are illustrated in Fig. 12 in terms of dis-
placements around the equilibrium configuration. It
can be seen that the damping of the oscillations tends
to follow an exponential decay, which can be ex-
plained by the fact that the motion is dominated by
the first bending mode in the case of small amplitude
vibrations. Indeed, a modal analysis performed on
the finite element model of the set-up shows that the
structure is characterised by this first mode with an

Sensing
arrays

Figure 11: CODAMOTION CX1 unit.

eigenvalue of 10.52 Hz. The finite element model
used here is more thoroughly described later in this
section.
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Figure 12: Experimental result of the small ampli-
tude vibration tests.

Assuming then that the small amplitude vibrations
follow an exponential decay, their theoretical evolu-
tion is illustrated in Fig. 13. The decay coefficient
−εω0 is determined by fitting an exponential on the
envelope of the curve defined by its maximum and
minimum peaks, however, both the structural damp-
ing ε and the natural pulsation ω0 are unknown. An
additional equation is then required and is obtained
by using the oscillation period ∆t which can be linked
to the two previous variables:

∆t =
2π

ω0
√

1− ε2
(2)

Experimentally, the tests are performed with an
initial vertical displacement around −8 mm reached
by applying a vertical load on the additional weight,
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Figure 13: Theoretical evolution of the small ampli-
tude vibrations in the case of an exponential decay.

nevertheless, only the peaks belonging to the inter-
vals ±[4− 0.4] mm are exploited. Indeed, displace-
ments larger than 4 mm are too close from buckling
and it cannot be assumed that the behaviour of the
tape springs is still linear, while for displacements
smaller than 0.4 mm, the experimental data are too
altered by noise. The maximum and minimum peaks
used to fit the exponentials and respecting these con-
ditions are highlighted in Fig. 12.

In total, 510 small amplitude vibration tests were
performed on 4 different pairs of tape springs dur-
ing 11 sessions of tests. After each session, mean
values were determined for both the structural damp-
ing ε and the oscillation period ∆t. For information,
it was not always possible to perform the same num-
ber of tests per session. The general mean on all the
sessions are given in Tab. 8, along with the maxi-
mum difference noticed between sessions and the as-
sociated variation coefficient (relative standard devi-
ation).

Mean Max. diff. Variation coeff.
ε 0.509 % 0.288 % 20.67 %
∆t 0.100 s 0.003 s 0.919 %

Table 8: Experimental results from the small ampli-
tude vibration tests with ε the structural damping and
∆t the oscillation period (510 tests on 4 pairs of tape
springs).

It can be concluded from Tab. 8 that the experi-
mental measure of the structural damping ε is chal-
lenging, its value experiencing significant changes
from one session of tests to another. Several elements
were identified to explain this behaviour. First of all,
the structural damping is sensitive to the assembly of
the set-up. Indeed, between sessions, disassembling
and re-building the set-up with the same tape springs
showed variations in the mean structural damping.
Furthermore, changing the tape springs also impacts
that parameter since the measuring tape from which

they are cut out is probably not perfectly uniform.
Finally, within a session of tests, the value of the
structural damping tends to decrease as the number
of tests increases as it can be seen in Fig. 14. This be-
haviour is most likely due to thermal effects, whose
impact increases as the structure is more and more
excited.
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Figure 14: Thermal effects affecting the structural
damping ε during the third session of small ampli-
tude vibration tests.

Regarding the oscillation period ∆t, this parameter
is much less sensitive to all the disruptive elements
mentioned previously and remains fairly stable be-
tween each session of tests.

Numerically, the small amplitude vibration tests
are performed on the finite element model illustrated
in Fig. 15 where the tape springs and the rod are rep-
resented with shell elements, while all the interfaces
and the additional weight are considered as rigid vol-
umes with the appropriate masses. The fixation sup-
port is not integrated in the model and the two big
interfaces are then considered as clamped. As it
was done experimentally, a vertical load is applied
on the additional weight to reach the initial vertical
displacement, then the structure is left free to oscil-
late. The solver used in this case is the generalised-α
method of second order accuracy with low numerical
damping [27].

To take into account the exponential decay of the
small amplitude oscillations, the tape spring mate-
rial is considered as a viscoelastic material in which
the structural damping is defined by a Kelvin-Voigt
model. This simple rheological model consists of a
spring characterised by a stiffness k and a damper
characterised by a viscosity η connected in parallel.
Furthermore, in theory, the viscosity parameter η is
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Figure 15: Finite element model used for the small
amplitude vibration tests.

linearly related to the structural damping ε as:

ε =
η

2ω0m
(3)

where ω0 =
√

k/m is the natural pulsation and m the
mass.

In the case of the finite element model in Fig. 15,
the linear relationship is preserved as illustrated in
Fig. 16. Based on the linear interpolation and know-
ing the value of the structural damping ε, it is then
possible to recover the equivalent viscosity parame-
ter η to be used in the finite element model. The final
numerical results are given in Tab. 9 and compared
to the experimental ones. It can be seen that there
is good agreement for both the structural damping ε

and the oscillation period ∆t.
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Figure 16: Relationship between the structural
damping ε and the viscosity parameter η in the
Kelvin-Voigt model.

Exp. Num. ∆

ε 0.509 % 0.508 % 0.20 %
∆t 0.100 s 0.101 s 1.00 %
η – 1.56e−4 s –

Table 9: Experimental and numerical results from the
small amplitude vibration tests.

5 DEPLOYMENT TESTS

After having identified the parameters of the sys-
tem, deployment tests are used to characterise the
behaviour of the set-up in the case of large ampli-
tude motion submitted to gravity. Initially, the tape
springs are folded downwards in opposite sense as
illustrated in Fig. 17 with an initial measured angle
of 96.09◦ with respect to the horizontal. The mech-
anism is then set free by cutting a rope and left free
to oscillate. In total, 170 deployment tests were per-
formed on 4 pairs of tape springs during 4 sessions
of tests. The acquisition equipment is the same as
the one used for small amplitude vibration tests.

Figure 17: Initial folded configuration of the experi-
mental set-up before deployment.

The results in terms of displacements along the x
and z-axes obtained in the last session of tests are
given in Figs. 18 and 19 respectively with the ori-
gin defined at the initial folded configuration. In this
case, the displacements are measured in the middle
of the rod and 50 curves are superimposed. It can
be seen that the reproducibility of the tests is good
for the first large peaks, but tends to deteriorate when
the motion reaches smaller amplitudes.

In order to assess the quality of these experimen-
tal results, the variation coefficients (relative standard
deviation) of the peak amplitude and the peak time
are computed along each axis, x and z, for the ten
first maximum and minimum peaks. It can be seen
in Fig. 20 that the variation coefficient of the ampli-
tude remains below 1 % for each peak, but as it was
deduced from Figs. 18 and 19, that the variation co-
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Figure 18: Experimental displacements from the de-
ployment tests along the x-axis.
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Figure 19: Experimental displacements from the de-
ployment tests along the z-axis.

efficient of the time at which a peak occurs increases
with the peak number. Notice that that time is defined
as the elapsed time with respect to the instant of the
first maximum peak, which explains why there is no
value of variation coefficient at the peak number 1 for
the blue (−◦−) and green (−�−) curves. In the end,
the results shown in Fig. 20 allow then to validate the
quality of the experimental measures. Furthermore,
the lateral perturbations along the y-axis remain be-
low 5.5 mm throughout the tests, showing that the
use of a hinge composed of two tape springs limits
torsion phenomena.
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Figure 20: Variation coefficients of the ten first ex-
perimental peaks in amplitude and time.

Numerically, the finite element model is folded in
order for the middle of the rod to reach the same
initial position than the one obtained experimentally,
without any constraint on the folding angle as it was
done on the set-up. This angle is measured after-
wards at a value of 95.67◦, that is a difference of
.0.94 % with respect to the experimental one. The
displacements along the x and z-axes are superim-
posed on the experimental results as dashed curves
in Figs. 21 and 22 respectively. Qualitatively, it can
be seen that the correlation is good along the z-axis
except regarding the maximum peaks of small am-
plitude (Fig. 22). The same tendency is also noticed
along the x-axis, but more importantly there is a large
discrepancy on the amplitude of the first minimum
peak (Fig. 21).

Quantitatively, the percentage of difference be-
tween the numerical and the mean experimental
peaks in terms of amplitude and time is given in
Fig. 23. As it was the case for the variation coeffi-
cients, there is no computed value regarding the dif-
ference of time for the first maximum peaks since
they are used as references for all the others. Fur-
thermore, the difference of amplitude in the case of
the first minimum peaks is out of the visible range.

It can be concluded from these comparisons that
the current finite element model gives fair results
as their differences with respect to the experimen-
tal ones remain mostly below 15 %. Furthermore,
as a reminder, the quasi-static results from the three
points bending tests that allowed to determine the
Young’s modulus and the thickness were also in the
same range of accuracy (see Section 3) with respect
to the experimental data. It shows thus that extrapo-
lating quasi-static results to perform dynamic analy-
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Figure 21: Comparison between the experimental
and the numerical displacements during deployment
along the x-axis.
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Figure 22: Comparison between the experimental
and the numerical displacements during deployment
along the z-axis.

ses is legitimate and is expected to be valid in simu-
lation of deployments in space environment.

6 CONCLUSIONS

The purpose of this work is to collect experimen-
tal data on the highly nonlinear behaviour of tape
springs in order to develop and validate an equivalent
finite element model. To reach these objectives, an
experimental set-up is first designed. This one con-
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Figure 23: Percentage of difference between the am-
plitude and the time of the experimental and numeri-
cal peaks during deployment.

sists of two tape springs connected on one side to a
fixation support and on the other one to a dummy
appendix by the means of interfaces. Regarding the
geometry and the material of the tape springs, uncer-
tainties exist on the thickness and the Young’s mod-
ulus. It limits then the acceptable mass at the free
end of the set-up that leads to a passive deployment
in both senses of bending.

To reduce the uncertainties on these two param-
eters, three points bending tests are performed on
tape spring samples. The experimental results show
a good reproducibility with a variation coefficient of
less than 5 %. In order to determine the values of
thickness and Young’s modulus that fit at best the ex-
perimental data, the finite element model reproduc-
ing the three points bending tests is integrated in an
optimisation procedure that leads, in the end, to nu-
merical results deviating of less than 14 % from the
experimental ones.

The next physical parameter to be determined is
the structural damping of the whole structure, for
which several sources are identified such as the flex-
ibility of the tape springs, the connections between
the different components or the air resistance. To
quantify this parameter, small amplitude vibration
tests are performed and captured by the means of a
motion analysis system giving the evolution of the
position of markers in real time. The experimen-
tal results show that the structural damping can ex-
perience relatively large changes from one session
of tests to another, the global variation coefficient
reaching 20 %. Several elements are identified to ex-
plain this behaviour: the sensitivity of the results to
the assembly of the set-up and to the non-uniformity
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of the measuring tape from which the tape springs are
extracted, and thermal effects which tend to induce a
decrease in the structural damping value as the struc-
ture is more and more excited. On the other hand,
the oscillation period characterising the small ampli-
tude vibrations remains stable throughout the differ-
ent tests with a variation coefficient of less than 1 %.
Numerically, the finite element model leads to results
within 1 % of difference with respect to the exper-
imental ones when a simple Kelvin-Voigt model is
used to represent the structural damping in the tape
springs.

Finally, the validity of the results is confirmed in
deployment tests implying large amplitude motions.
The experimental data still show a good reproducibil-
ity with a variation coefficient of less than 4 % on the
analysed features, while the finite element model is
able to reproduce them with differences mainly be-
low 15 %, except for a limited number of points.

In future works, it would be interesting to fur-
ther improve the correlation between the numerical
and experimental results by, for example, exploit-
ing more complex structural damping models. The
experimental tests could also be completed by per-
forming deployments with an initial bending in equal
sense.
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