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Abstract
Nonlinear system identification is a vast research field, today attracting a great deal of attention in the struc-
tural dynamics community. Ten years ago, an MSSP paper reviewing the progress achieved until then [1] 
concluded that the identification of simple continuous structures with localised nonlinearities was within 
reach. The past decade witnessed a shift in emphasis, accommodating the growing industrial need for a first 
generation of tools capable of addressing complex nonlinearities in larger-scale structures. The objective of 
the present paper is to survey the key developments which arose in the field since 2006 towards developing 
these tools.

1 Introduction

To address the demand for structures and devices with ever-increasing technological and environmental per-
formances, researchers in academia try more and more regularly to take advantage of nonlinear phenomena 
to outperform linear designs. For instance, Ref. [2] demonstrated a new mechanism for tunable rectification 
that uses bifurcations and chaos. In Ref. [3], a new strategy for engineering low-frequency noise oscilla-
tors was developed through the coupling of modes in internal resonance conditions. Another example is the 
cascade of parametric resonances proposed by Strachan et al. as a basis for the development of passive fre-
quency dividers [4]. Nonlinearity is also increasingly exploited for vibration absorption [5, 6, 7] and energy 
harvesting [8, 9, 10].

If attempts to utilise nonlinearity are today frequent in the technical literature, current designs and models 
in industry predominantly remain linear. However, nonlinearity is often encountered during the tests per-
formed on the first prototype of a structure. In addition to distorted resonances and jumps between high-
and low-amplitude responses, nonlinearity can generate complex dynamic phenomena, such as subharmonic 
and superharmonic resonances, modal interactions, quasiperiodicity and chaos, with the consequence that 
essentially-linear models may fail to predict the structural response within the necessary level of reliabil-
ity [11].

Two examples taken from the aerospace sector and for which nonlinearities were detected during ground 
vibration test campaigns are the Cassini-Huygens spacecraft [12] and the Airbus A400M aircraft [13]. In the 
former example, distorted frequency responses and jump phenomena around a critical mode were reported. 
Because this nonlinear behaviour was an important concern as for the integrity of the spacecraft, additional 
tests were conducted, and revealed that nonlinearity was caused by the appearance of gaps in the support 
of the Huygens probe. In the latter example, structural resonances showing significant peak skewness were 
incorrectly fitted by a linear modal analysis software. Different sources of nonlinearity, including elastomeric 
mounts and hydraulic actuators, were ascertained after careful analysis. As evidenced by these two examples,



nonlinear phenomena complicate vibration test campaigns, and usually require profound investigations for
which nonlinearity must first be identified.

In 1998 and 2000, the developments in nonlinear system identification in structural dynamics conducted until
the end of the 20th century were reviewed by Adams and Allemang [14] and Worden [15], respectively. The
first book on the topic was published a couple of years later [16]. In 2006, a great many existing methods
to tackle nonlinearity detection, characterisation and parameter estimation weresurveyed [1]. The need for
a new review paper arises from the progress made during the last 10 years, which substantially advanced
the available capabilities in the identification of nonlinear mechanical systems. Specifically, even if there are
still significant challenges ahead of us, the first methods that can potentiallyaddress large-scale structures
vibrating in strongly nonlinear regimes were developed. In addition, researchers recognised the importance
of quantifying uncertainties in nonlinear system identification, which led to a change of paradigm within the
community.

The paper starts in Section 2 with a discussion on the factors which have driven the recent progress achieved
in nonlinear system identification in structural dynamics. It is explained that advances in nonlinear theory,
computation and testing have largely contributed to this progress. In Section 3, a review of the key develop-
ments which arose during the 2006 – 2016 decade is conducted. The main focus of this literature survey is
on parameter estimation methods, classified into seven categories as suggested in Ref. [1], namely linearisa-
tion, time- and frequency-domain methods, time-frequency analysis, modal methods, black-box modelling
and numerical model updating. Finally, concluding remarks are drawn in Section 4 and directions for future
research are suggested.

2 A perspective on the global progress in nonlinear mechanical vi-
brations

Two facts have arguably acted as catalysts for the progress across thenonlinear system identification field.
First, nonlinearity manifestations have been increasingly encountered by engineers during vibration tests [11].
For instance, the linear modal analysis of two aircraft of the Airbus family, namely the A400M and the
A350XWB, was experimentally confronted with nonlinearities in elastomeric engine mounts and hydraulic
actuators [13], in landing gears [17] and in the auxiliary power unit of theairframe tail-cone [18]. Second, the
pressure faced in industry to devise environment-friendly structures has greatly escalated. As an illustration,
the report of theHigh Level Group on Aviation Research in Europe[19] deems necessary to achieve by 2050
reductions of 75 % in CO2 emission and 90 % in NOx emission per passenger kilometre. This ambitious
goal necessarily entails the design of lighter aircraft structures featuring new technologies,e.g., composite
materials, which inevitably makes nonlinear behaviours more significant [20].

These two facts have motivated researchers in academia to make the first attempts to apply nonlinear system
identification to real structures. These contributions mostly featuread hocapproaches derived to solve
specific nonlinearity modelling problems. As examples, experimental modal analysis of an engine casing
assembly and nonlinear finite element model updating of a complete aircraft engine model were carried
out in Refs. [21] and [22], respectively. The nonlinearities of structural prototypes of full-scale satellites
were identified in Refs. [23, 24] based on typical qualification test campaign data. Ref. [25] estimated the
variation of the natural frequencies and damping ratios of an Agusta-Westland helicopter as a function of
the response level. The performance of nonlinear devices embedded in large structures was also examined,
as in Ref. [26], where a nonlinear vibration absorber was used to mitigate the high response levels of an
eleven-ton, nine-storey building subject to blast events.

Adopting a wider perspective, important advances have been achievedsince the beginning of the 2000s in
the three facets of the analysis of nonlinear mechanical vibrations, namely theory, computation and testing.
We provide in what follows a brief review of this global progress, which has clearly contributed to push the
envelope in nonlinear system identification.
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Theory

The theory of nonlinear dynamic systems was developed by pure mathematicians based on the seminal work
of Poincaŕe. A couple of decades ago, this theory spread across the engineeringfield thanks to a series of ref-
erence monographs, thoroughly characterising the different phenomena and attractors nonlinear mechanical
systems can exhibit. Nayfeh and Mook [27] applied perturbation methods to study nonlinear phenomena in
single- and multi-degree-of-freedom systems. Guckenheimer and Holmes [28] adopted a different, geomet-
ric viewpoint, appearing as an ideal companion to the perturbation approach, and Kuznetsov [29] published a
complete treatise on bifurcations. It is only recently that theories describedin there have been fully embraced
by the structural dynamics community. For instance, for aircraft ground dynamics in Fig. 1 [30], bifurcation
theory provides valuable insight into the overall behaviour and complexity of the system. Another example
is isolated response curves, illustrated in Fig. 2 [31], which have received increasing attention during the past
few years.

Figure 1: Single-aisle aircraft bifurcation diagram [30]. Courtesy of Bernd Krauskopf, University of Auck-
land, Auckland, New Zealand.

In view of the importance of modal analysis in structural dynamics, attempts to complete the nonlinear nor-
mal mode (NNM) theory, put forward by Rosenberg [32], Vakakis [33] and Shaw and Pierre [34], have also
been made since the 2000s. Major developments include the concept of complex nonlinear modes based on
a generalized Fourier series, the energy balance criterion linking NNMs and nonlinear frequency responses,
and the nonlinear phase lag quadrature criterion which indicates when an NNM vibrates in isolation.

Computation

In the era of computational mechanics, commercial finite element software caneffectively integrate in time
the governing equations of motion of nonlinear structures using,e.g., the Newmark’s method. However, the
resulting transient time series convey little information about the underlying structural behaviour and do not
provide a global picture of the possible regimes of motion.

By revealing competing attractors together with their nature, bifurcation analysis offers a much better un-
derstanding of the dynamics. Two popular software, MATCONT [35] andAUTO [36], have enriched the
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Figure 2: Isolated response curve situated inside the nonlinear frequency response [31]. Courtesy of Gianluca
Gatti, University of Calabria, Rende, Italy.

nonlinear structural dynamicist’s toolbox, allowing a shift in emphasis from the analytical analysis of low-
dimensional systems to the numerical analysis of moderately-complex systems. Further efforts have been
undertaken to progress towards large-scale and real-world structures. Specifically, tailored harmonic bal-
ance, shooting and collocation algorithms have been proposed for rigorously computing intrinsic dynamic
features, in particular NNMs and nonlinear frequency responses. This is illustrated in Figs. 3 and 4, where
the dynamics of a vibro-impact system [37] and of a compressor blade [38], respectively, is studied using
the harmonic balance method. Both applications gave rise to large computationalproblems. In the former
example, 200 harmonics were utilised to model accurately the nonsmooth natureof the system, whereas, in
the latter example, NNMs were calculated from a detailed finite element model.

Recent computational developments concern the calculation of branches of quasiperiodic motion [39], the
effective computation of basins of attraction [40, 41], and the tracking ofbifurcations [42]. Noteworthy are
also the advances in the area of nonlinear model reduction, with the generalisation of the Craig-Bampton
substructuring technique to nonlinear systems [43, 44].
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Figure 3: Phase diagram of a vibro-impact system given by the harmonic balance method for different
numbers of harmonicsNh (blue: Nh = 20; green:Nh = 50; red: Nh = 200) [37]. Courtesy of Bruno
Cochelin, Ecole Centrale de Marseille, Marseille, France.
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Figure 4: Compressor blade with friction [38]. (a) Finite element model and deformed shape; (b) changes in
the natural frequency and modal damping depending on modal amplitude fordifferent numbers of harmonics
Nh (circles: Nh = 1; squares:Nh = 3; triangles:Nh = 5; diamonds:Nh = 7). Courtesy of Fabrice
Thouverez, Ecole Centrale de Lyon, Lyon, France.
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Testing

Nonlinear testing demands more data and efforts than linear testing,e.g., the measurement sampling rate
should be significantly increased to account for harmonics. Experimentalists have had increasingly recourse
to full-field measurement methodologies (e.g., scanning laser vibrometry and digital image correlation) as an
aid to rapidly and very accurately capture operational deformation shapes and identify resonances exhibiting
nonlinear distortions [21, 45].

However, the challenges brought by nonlinear testing go largely beyonddata acquisition issues and instru-
mentation. Indeed, since solutions of nonlinear systems are nonunique andmay be unstable, new method-
ologies that can experimentally characterise competing attractors,i.e. periodic, quasiperiodic and chaotic
attractors, and that can cope with stability changes should be devised. In this respect, the stochastic inter-
rogation method, proposed in Ref. [46], offers a systematic approach tomap basins of attraction [47, 48],
as depicted in Fig. 6. Experimental continuation, the physical realisation of numerical continuation, ele-
gantly addresses instability issues. It exploits feedback control strategies to stabilise the measured response,
enabling both stable and unstable branches to be measured, as illustrated in Fig. 5 [49].

Figure 5: Experimental bifurcation diagram of an impact oscillator [49] with acontinuous measure of stabil-
ity plotted in grey-scale. Dark tones denote a stable state; lighter tones denotean unstable state. Courtesy of
Jon-Juel Thomsen, Danmarks Tekniske Universitet, Lyngby, Denmark.
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Figure 6: Initial condition plots for a frequency range during the transitioninto cross-well motion [47]. Left
column: numerical simulation from a regular grid; centre column: numerically simulated results mimicking
the experimental stochastic interrogation; right column: experimental data. Courtesy of Lawrence N. Virgin,
Duke University, Durham, NC, USA.
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3 Review of the literature on nonlinear system identification in struc-
tural dynamics over the past 10 years

It was proposed in Ref. [1] to regard the identification of nonlinear structural models as a progression through
three steps, namely detection, characterisation and parameter estimation, as outlined in Fig. 7. An important
change of paradigm has blossomed over the past few years in the third step of this process, as researchers
have progressively recognised the importance of quantifying uncertainties in nonlinear system identification.
This has given rise to methods estimating parameters together with,e.g., confidence bounds or distributions.
In this context, the Bayesian framework put forward by Jim Beck and his collaborators [50, 51] is currently
drawing noticeable attention in the community [52, 53, 54]. This class of methods isappealing since it can
facilitate the characterisation step by finding the optimum model within a set of competing model struc-
tures [55]. Other approaches, including nonparametric probabilistic [56] and nonprobabilistic [57] methods,
have also been considered for uncertainty analysis of nonlinear mechanical systems.

1. Detection:Is there?

Ascertain if nonlinearity exists in the structural behaviour,e.g., yes.

2. Characterisation:Where? What? How?

(a) Localise the nonlinearity,e.g., at the joint;

(b) determine the type of nonlinearity,e.g., Coulomb friction;

(c) select the functional form of the nonlinearity,e.g., g(q, q̇) = c sign(q̇).

3. Parameter estimation:How much?

Calculate the coefficients of the nonlinearity model and quantify their uncertainty, e.g., in a prob-
abilistic sense,c ∼ N (5.47, 1).

Figure 7: Identification process for nonlinear structural models.

The aim of the present section is to review the key developments which aroseduring the 2006 – 2016 decade
towards applying nonlinear system identification to complex structures. The main focus of this literature
survey is on parameter estimation methods. Their classification into seven categories, namely linearisation,
time- and frequency-domain methods, time-frequency analysis, modal methods, black-box modelling and
numerical model updating, is adopted following Ref. [1]. The subject of nonlinear system identification in
structural dynamics is vast, and we stress that this paper is inevitably biasedtowards those areas which the
authors are most familiar with, and this of course means those areas which theauthors and colleagues have
conducted research in.

3.1 Linearisation methods

There are, at least, two good reasons not to linearise the behaviour of anonlinear vibrating structure around
its operating point. First, linearised models are essentially valid for a unique set of excitation parameters,
preventing them from being interpolated,i.e. used to predict the structural response at lower forcing levels.
Second, they fail to predict intrinsically nonlinear phenomena, including harmonics, jumps or modal inter-
actions. Yet, using linear system identification to model nonlinear structures has persisted to be a popular
solution. The reason for this is probably the maturity of linear techniques [58, 59, 60, 61], and the fact
that most standardised design and certification procedures followed in industry still rely on linear structural
models,e.g., flutter prediction of aircraft [17] or load analysis of coupled launcher-satellite systems [62].
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In the case of random vibrations, the contributions of Schoukens and co-workers provide a solid theoretical
framework to derive the best possible linear model of a nonlinear system, ina least-squares optimality sense,
termed best linear approximation (BLA) [63]. The calculation of the BLA is performed in the frequency
domain, and most frequently takes advantage of periodic excitations, though nonstationary signals can also
be addressed [64]. An appealing asset of this approach is that the level of nonlinear distortions which is not
captured by the linear model can be assessed. Using a carefully-selected set of input frequencies, distortions
originating from odd and even nonlinearities can also be distinguished. TheBLA of a wet-clutch test rig was
analysed in Ref. [65]. Fig. 8 shows another application to an F-16 fighteraircraft [66], where the BLA is
represented in black. The levels of odd and even nonlinearities plotted in red and blue, respectively, are seen
to be substantially larger than the noise level displayed in green. We remark that another frequency-domain
linearisation method applicable to random data was introduced in 2009 by Grangeet al. [67]. In this latter
paper, the nonlinear dynamics of break squeal was studied by seeking alinear model which synthesises at
best the measured power spectral density of the nonlinear system output.
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Figure 8: Best linear approximation (BLA) of an F-16 fighter aircraft (inblack), odd (in red) and even (in
blue) nonlinear distortions, and noise level (in green) [66]. Courtesy of Johan Schoukens, Vrije Universiteit
Brussel, Brussels, Belgium.

In the case of harmonic vibrations, a classical linearisation methodology consists in assuming that the system
of interest only responds at the excitation frequency. This single-component harmonic balance simplifica-
tion procedure is referred to as the describing function method in the literature [68], and has enjoyed some
progress since 2006 [69, 70]. Recently, Wang followed a similar reasoning to propose the equivalent dy-
namic stiffness mapping technique [71], and tackled the experimental identification of a metal mesh damper
element.

Finally, some authors have considered the use of time-varying models as linearisation tools, suggesting
that, by analysing nonlinear vibrations over small portions of time, linear system identification may reason-
ably well apply. Sracic and Allen pursued that idea by fitting linear time-periodic models to transient data
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recorded in response to slight perturbations superposed to sustained periodic excitations [72]. The method
was originally demonstrated using single-degree-of-freedom systems, but its application to multiple degrees
of freedom followed in 2014 [73]. In Ref. [74], linear subspace identification was exploited to represent
the time-varying modal properties of various nonlinear systems through an ensemble of linear state-space
models. In particular, the behaviour of a seven-storey building subject tothree historical earthquake base
excitations was studied. Fig. 9 shows the time evolution of the first linearised natural frequency of the struc-
ture (left column) and of a measure of its global stiffness (right column). The severe decrease in the two
quantities over time resulting from damaged structural members is clearly visible.

Figure 9: First linearised natural frequency (left column) and global stiffness measure (right column) of a
seven-storey building subject to three historical earthquake base excitations [74]. Circle and point markers
correspond to divisions of the measured time histories into windows of 1 and 2s, respectively. Courtesy of
Babak Moaveni, Tufts University, Medford, MA, USA.
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3.2 Time-domain methods

The time-domain identification of nonlinear structural models exclusively relieson processing time series,
e.g., impedance head and accelerometer raw records. In 2006, a substantial body of literature concern-
ing time-domain identification was surveyed [1]. Three major identification methods were distinguished,
namely restoring force surface (RFS) analysis, nonlinear autoregressive moving average with exogenous
inputs (NARMAX) modelling, and Hilbert transform-based data decomposition(progress in this latter re-
search direction is reviewed in Section 3.4). Recent publications identifyingNARMAX models are mostly
due to Worden and co-workers [75, 76, 77, 78]. In general terms, itis admitted that applying the NARMAX
framework to large-scale structures is a difficult endeavour, as it suffers from a rapid explosion in the number
of parameters, even in the case of systems with reasonable dimension.

The RFS method, which constitutes one of the earliest identification methodologies [79], has continued to
attract attention during the past decade. Parameter estimation based on the RFS method is commonly re-
stricted to systems with a few degrees of freedom since it consists in the direct fitting of Newton’s second
law. Nevertheless, the method can still be exploited to visualise qualitatively nonlinear restoring forces in
complex structures [80]. The simplicity of the RFS method and its intuitive outcome certainly explain its
success in the community. Applications of the RFS method to the identification of nonlinear stiffness mech-
anisms have been numerous. In Ref. [81], the prediction capabilities of a nonlinear restoring force model of
two elastomer specimens were compared to rheological equations based on traction-compression and shear
test data. The hardening-softening behaviour of an elastomagnetic suspension was studied in Ref. [82], and
hardening, smooth nonlinearities in a leaf-spring-based tuned mass damperand in a robot arm were identi-
fied in Refs. [83] and [84], respectively. Piecewise characteristics were also estimated experimentally in a
micro-beam system [85] and a satellite structural prototype [23].

Complex damping nonlinearities have equally been addressed in the technicalliterature. For example, the
RFS and the nonlinear identification through feedback of the outputs (NIFO) methods were assessed in
the identification of an automotive damper [86]. The hysteresis loops of a Bouc-Wen oscillator undergoing a
stiffness degradation over time and of a shear building structure equippedwith a shape memory alloy damper
were characterised in Refs. [87] and [88], respectively. Hysteresis dynamics in a frictional contact boundary
support was also analysed by Ahmadian and co-authors [89], as seenin Fig. 10 (a), where an hysteretic
restoring force calculated experimentally (in red) is compared with the prediction of a Valanis model (in
blue). Finally, attention has been given to the identification of combined elastic-dissipative nonlinearities,
e.g., in Refs. [80, 90, 91]. In Ref. [80], discontinuous softening stiffness and Coulomb friction were shown
to affect the mounting interface of a payload in an F-16 fighter. Fig. 10 (b)depicts the identified restoring
force versus the relative velocity measured across the interface, and displays a Coulomb-type of behaviour,
including hysteresis at low velocity and stiction for negative force values.

Nonlinear subspace methods, originally proposed in the control literature [92], were first applied to mechan-
ical systems by Marchesiello and Garibaldi in 2008 [93]. The time-domain nonlinear subspace identification
(TNSI) method they introduced represents a major advance across the field. TNSI is a nonlinear generali-
sation of the classical time-domain linear subspace identification algorithms [94]. It relies on the feedback
interpretation of nonlinear structural dynamics discussed earlier by Adamsand Allemang [95, 96], which
views nonlinearities as additional forces applied to the underlying linear structure. The implementation of
the TNSI method builds on robust numerical tools, such as the QR and singular value decompositions, yield-
ing superior accuracy compared to competing approaches like the NIFO [96] and the conditioned reverse
path (CRP) [97] techniques.

Demonstration of the TNSI method on academic structures possessing smooth and nonsmooth nonlinearities
was achieved in Refs. [93] and [98], respectively. The identification of a complete spacecraft structure based
on numerical data was also discussed in Ref. [99], where the concept of stabilisation diagram was extended
to nonlinear system identification. In a recent effort, the influence of nonphysical poles on the TNSI method
was analysed [100]. By interpreting nonlinear coefficients as the ratio oftwo so-called extended frequency
response functions and performing truncated modal expansions of its numerator and denominator, nonphys-
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Figure 10: Restoring force surface (RFS) method applied to complex damping nonlinearities. (a) Hysteretic
restoring force in a frictional contact boundary support calculated experimentally using the RFS method (in
red) and corresponding prediction of a Valanis model (in blue) [89]. Courtesy of Hamid Ahmadian, Iran
University of Science and Technology, Tehran, Iran. (b) Coulomb-type restoring force, including hysteresis
at low velocity and stiction for negative force values, identified in the mountinginterface of a payload in an
F-16 fighter [80].
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ical modes were successfully eliminated. Fig. 11 shows the nonlinear stabilisation diagram computed in the
identification of an experimental multi-storey structure affected by a cubic nonlinearity. Nonphysical poles,
which appear in black, are discriminated from physical structural modes emerging as stabilised columns of
poles.

The TNSI method is, to date, a very promising approach. Assuming an accurate characterisation of non-
linear behaviour, it can potentially tackle complex structures involving multiple inputs and outputs, strong
nonlinearities, and closely-spaced and highly-damped modes, as numerically proven in Ref. [99].
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Figure 11: Nonlinear stabilisation diagram computed using the time-domain nonlinear subspace identifica-
tion (TNSI) method, where nonphysical poles (in black) are discriminated from physical structural modes
emerging as stabilised columns (in colour) [100]. Courtesy of Stefano Marchesiello, Politecnico di Torino,
Turin, Italy.
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3.3 Frequency-domain methods

Data processed in frequency-domain identification are more varied than in the time domain, and can take
the form of Fourier spectra, frequency response and transmissibility functions, or power spectral densities.
In Ref. [1], two methods were pointed out as promising frequency-domainapproaches, namely the nonlin-
ear identification through feedback of the outputs (NIFO) [96] and the conditioned reverse path (CRP) [97]
methods. In Ref. [101], a modifiedH2 estimator of frequency response functions (FRFs) was introduced
to enhance the performance of NIFO in the presence of process and measurement noise. Estimates of un-
derlying linear and nonlinear parameters of different simple numerical systems were shown to benefit from
this improvedH2 algorithm. Parameter estimation using the NIFO method in a reduced-order space was
also attempted in Ref. [102] and demonstrated experimentally on a clamped-clamped beam structure. Re-
cent developments in reverse path identification include the possibility to use unconditioned spectra in the
single-input case [103], and to locate nonlinear degrees of freedom [104, 105]. Besides the NIFO and reverse
path techniques, the harmonic balance method was also utilised for nonlinear system identification based on
multiharmonic [106] and multiple test [107] data.

The use of functional series, and in particular of the Volterra series [108], is another traditional way of ad-
dressing system identification in the frequency domain. The multi-dimensional kernels of Volterra series are
the nonlinear generalisation of the classical impulse response of linear systems, and the Fourier transform of
the kernels are most often referred to as higher-order FRFs (HOFRFs) or generalised FRFs (GFRFs). The
typical hindrance to Volterra identification of high-dimensional systems is the very high number of parame-
ters to be estimated. In Ref. [109], orthogonalised Volterra series associated with Kautz filters were exploited
to moderate this number in the numerical identification of a beam. HOFRFs were estimated in Ref. [110] in
the special case of a bilinear nonlinearity representing a breathing crack. Volterra series have also formed
the basis of the new concept of nonlinear output frequency responsefunctions (NOFRFs) developed during
the last 10 years or so by Billings and co-workers [111, 112]. NOFRFsfound application in linear [113]
and nonlinear [114] system identification, though their complete potential towards identifying real structures
has not been fully revealed yet. We finally mention the introduction in 2010 of amulti-degree-of-freedom
extension [115] of the associated linear equations models [116], which are related to Volterra operators.

A frequency-domain counterpart to the time-domain nonlinear subspace identification (TNSI) method dis-
cussed in Section 3.2 was proposed in 2013 in Ref. [117]. The frequency-domain nonlinear subspace iden-
tification (FNSI) method generalises existing linear frequency-domain subspace techniques [118, 119] to
nonlinear mechanical systems. It possesses the same foundations as TNSI, i.e. the feedback interpretation of
nonlinear structural dynamics and the use of linear algebra decompositions. Processing data in the frequency
domain offers the possibility to focus on specific frequency ranges. Thisallows to substantially reduce
the computational burden involved in the identification and, in turn, to calculate accurately a great number
of nonlinear parameters. The FNSI method was applied to simple numerical andexperimental systems in
Ref. [117] and to a numerical benchmark beam structure in Ref. [120].An academic experimental solar
panel assembly featuring nonlinear bolted connections and impacts was alsoaddressed in Ref. [121], where
cubic splines were utilised as nonlinear basis functions. The TNSI and FNSI methods were compared in
the identification of a spacecraft structure in Ref. [99], both in terms of estimation accuracy and parameter
dispersion.

3.4 Time-frequency methods

Because nonlinear oscillations are inherently frequency-energy dependent, time-frequency transformations
generally offer useful insight into the dynamics of nonlinear systems. Well-established methods, such as
the wavelet and Hilbert transforms, have continued to be used during the last 10 years as nonlinear system
identification tools, and, in particular, in the identification of backbone curves, as in Refs. [122, 123, 124,
125]. Moreover, two new techniques for the decomposition of multicomponent signals emerged during this
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period, namely the empirical mode decomposition (EMD) [126] and the Hilbert vibration decomposition
(HVD) [127, 128].

The basic idea of EMD is to decompose the original signal into a sum of elemental components, the intrinsic
mode functions (IMFs). The extraction process, termed sifting process,relies on a spline approximation
of the lower and upper envelopes of the signal based on its extrema. To beamenable to the Hilbert trans-
form, each IMF must satisfy two properties,i.e. the number of extrema and zero-crossings can differ by
no more than one, and, at any point, the mean value of the envelopes defined by the local maxima and
minima should be zero. It follows that an IMF is a monochromatic signal, the amplitude and frequency of
which can be modulated. Taken collectively, the Hilbert spectra of the IMFsgive a complete characterisa-
tion of a multicomponent signal in terms of amplitudes and instantaneous frequencies. A first effort to gain
fundamental understanding of EMD in nonlinear structural dynamics was made in Refs. [129, 130]. More
specifically, a one-to-one relationship between the analytically-realised slow-flow dynamics of a nonlinear
system and the IMFs derived from measured time series was demonstrated.Based on this theoretical link,
the slow-flow model identification method, a linear-in-the-parameters identification approach applicable to
multi-degree-of-freedom nonlinear systems, was developed [129]. Asdiscussed in Section 3.5, the corre-
spondence between theoretical and empirical slow flow analyses was further utilised for modal identification
using the concept of intrinsic modal oscillators (IMOs). EMD was also usedin conjunction with perturbation
analysis for nonlinear system identification in Ref. [131].

Although similar in spirit to EMD, the HVD method is a distinct approach towards decomposing a vibra-
tion signal into a series of monocomponents. HVD is based on the assumptions that the original signal is
formed of a superposition of quasiharmonic functions, and that the envelopes of each vibration component
differ. Ref. [127] proved that the instantaneous frequency of a multicomponent signal can be split into a
slowly-varying part related to the instantaneous frequency of the monocomponent with the greatest ampli-
tude, and a rapidly-varying asymmetric part. Thus, the frequency of the dominant monocomponent can be
directly estimated through low-pass filtering of the instantaneous frequencyof the complete signal. The
other monocomponents can be extracted by recursively applying this process to the residual signal. As an
illustration, the HVD analysis of the free response of a Duffing oscillator is shown in Fig. 12. The three ex-
tracted components represent the fundamental, third and fifth harmonic components. The HVD method was
exploited for the identification of nonlinear systems with two degrees of freedom in Ref. [132], but has not
yet been applied to larger-scale structures. It found other applicationsin structural dynamics,e.g., in the de-
sign of nonlinear vibration absorbers [133] and the analysis of linear [134] and nonlinear [135] time-varying
systems.

The EMD and HVD methods possess their own limitations and should be used with great care [136, 137],
but they nonetheless represent important additions to the nonlinear structural dynamicist’s toolbox.
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Figure 12: First three harmonic components of the free response of a Duffing oscillator as decomposed by
the Hilbert vibration decomposition (HVD) method [127]. Courtesy of Michael Feldman, Technion – Israel
Institute of Technology, Haifa, Israel.

3.5 Modal methods

Modal features,i.e. natural frequencies, damping ratios and mode shapes, form the basis ofclassical linear
design strategies in engineering dynamics. They provide an effective and intuitive way to study the structural
behaviour around resonances, which is one of the prime limiting factors as for integrity and certification.
Experimental modal analysis of linear structures is now certainly mature [138]. Conversely, nonlinear modal
identification is a quite recent research field, as confirmed by the very fewrelated methods surveyed in 2006
in Ref. [1]. It is today a very active area of investigation, which has witnessed important progress during
the last 10 years. This progress has been accompanied by the emergence of efficient algorithms to carry out
theoretical nonlinear modal analysis, as reviewed in Ref. [139]. The combination of these experimental and
numerical efforts has paved the way for innovative model updating methods, as discussed in Section 3.7.

The code for nonlinear identification from measured response to vibration(CONCERTO), proposed in
Ref. [25], identifies an isolated nonlinear resonance based on stepped-sine data. Since CONCERTO relies
on a single-harmonic assumption, it adopts a linearised view of nonlinear modalidentification, and yields
equivalent natural frequencies and damping ratios which vary with the amplitude of motion. The method was
applied to an helicopter in Ref. [25] and to anti-vibration mounts using measured transmissibility functions
in Ref. [140]. Another single-mode method, closely related to CONCERTO, was presented in Ref. [24]. In-
spired by the notching procedures applied in space industry [62], it builds on the idea of keeping the response
amplitude constant in the vicinity of a nonlinear resonance to compute equivalent modal properties function

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



of the excitation level.

Unlike CONCERTO, the nonlinear resonant decay method (NLRDM) can perform multiple-mode identi-
fication by introducing nonlinear coupling terms in an otherwise linear modal-space model of the tested
structure [141]. This method was recognised as one of the most promising nonlinear modal identification
approaches in the early 2000s [1]. If no further developments of the theoretical foundations of NLRDM
were brought during the last 10 years, the method was successfully validated using structures of increasing
complexity, namely a two-degree-of-freedom system with freeplay [142], a single-bay panel structure [143],
a wing with two stores connected by means of nonlinear pylons [144], a geometrically nonlinear joined-wing
structure [145] and a complete transport aircraft [146].

The solid framework offered by the theory of nonlinear normal modes (NNMs) [32, 33, 34] has motivated
throughout the last 10 years the development of rigorous nonlinear modal identification methodologies. Lin-
ear phase resonance testing, which consists in exciting the modes of interest one at a time using a multipoint,
monoharmonic forcing at the corresponding natural frequency [147], was first extended to nonlinear systems
in Ref. [148] following a two-step procedure. During the first step, a multipoint, multiharmonic excitation is
applied to isolate an individual NNM with the aid of a nonlinear phase lag quadrature criterion [148] and of
a nonlinear mode indicator function [149]. In particular, the quadrature criterion ascertains that a nonlinear
structure vibrates according to one of its underlying conservative NNMsif every harmonic of the measured
excitations and responses are 90 degree phase-lagged. In a secondstep, the excitation is turned off, and
the complete frequency-energy dependence of the targeted mode is extracted by processing free-decay data.
Fig. 13 illustrates the experimental identification of the first NNM of a nonlinearbeam structure at five dif-
ferent forcing levels [149]. Modal curves are represented in Fig. 13 (a) in a two-dimensional space spanned
by two acceleration signals. The associated modal shapes discretised at seven measurement locations along
the beam are plotted in Fig. 13 (b). The highest excitation level in the two plots corresponds to a modification
of the natural frequency from around 30 to 40 Hz. Applications of nonlinear phase resonance testing to other
moderately complex structures were recently reported in the technical literature, in the case of a steel frame
in Ref. [150], of a circular perforated plate in Refs. [45, 151, 152],and of a sliding mass with transverse
springs and dry friction in Ref. [153].

An alternative to nonlinear phase resonance, which is potentially more robust to changes of stability and
bifurcations, is discussed in Ref. [154]. This paper exploited a control-based continuation scheme to trace
out the NNM backbone of the same sliding-mass setup as in Ref. [153]. Stephanet al. also performed
the tracking of nonlinear modal parameters during free-decay responses [155]. To this end, they estimated
discrete-time nonlinear state-space models by combining Bayesian smoother and expectation maximisation
algorithms. Other valuable additions to the nonlinear phase resonance approach are the energy balance
technique developed in Ref. [156], which allows to calculate the forcing amplitude necessary to excite an
NNM at a given frequency, and the concept of phase-locked loop borrowed from the control literature [157].
Finally, we note that exciting nonlinear resonances opens interesting prospects in nonlinear boundary identi-
fication [158] and damage detection [159, 160, 161].

The simultaneous identification of multiple NNMs under broadband forcing wasfirst attempted in Ref. [162],
providing a generalisation of linear phase separation techniques [94, 163] to nonlinear systems. The proposed
methodology integrates nonlinear system identification and numerical continuation. More specifically, ac-
quired input and output data are first processed to derive an experimental state-space model of the tested
structure. This state-space model is next converted into a modal-space model from which NNMs are com-
puted using shooting and pseudo-arclength continuation. Ref. [162] compared this nonlinear phase separa-
tion technique to nonlinear phase resonance testing [148] based on numerical nonlinear beam data. Clearly,
multimodal nonlinear identification enables the experimentalist to save measurement time, which, in view of
the current pressure to accelerate testing campaigns, represents a significant advantage.

Multimodal nonlinear identification has also been studied in a number of papersthrough the direct decompo-
sition of experimental measurements into a reduced set of low-dimensional intrinsic system features. These
features do not generally correspond to NNMs because of the absence of superposition principle in non-
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Figure 13: Experimental extraction of the first nonlinear normal mode (NNM) of a nonlinear beam structure
at five different forcing levels using nonlinear phase resonance testing [149]. (a) Modal curves represented in
a two-dimensional space spanned by two acceleration signals; (b) associated modal shapes featuring seven
measurement locations along the beam.
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linear dynamics, though they constitute some approximations of them. The strength of these approaches
is that they require no characterisation of the observed nonlinearities. Inthe publications of Vakakis and
co-workers, the so-called intrinsic modal oscillators (IMOs) are computedby applying the empirical mode
decomposition (EMD) to data [164]. These oscillators synthesise by superposition the measured time series
over different time scales, and may account for mode interactions via their forcing terms. The suppression
of aeroelastic instabilities was addressed in Ref. [165] using this approach. Beam systems exhibiting friction
and vibro-impacts were also successfully identified in Refs. [166] and [167], respectively. Fig. 14 displays
the first ten intrinsic mode functions (IMFs) resulting from applying EMD to acceleration data measured on
a vibro-impact beam [167]. Impact locations are specified using verticaldashed lines and the frequencies of
the different IMFs are obtained by analysing wavelet transform plots.

EMD was similarly exploited by Poon and Chang to numerically identify a two-degree-of-freedom shear-
beam building system [168]. A comparison between EMD and the zeroed-early time fast Fourier transform
is to be found in Ref. [169]. Other contributions to multimodal nonlinear identification by means of advanced
signal processing tools include the use of the Hilbert-Huang transform combined with a conjugate-pair de-
composition [170], the so-called smooth decomposition [171], and the sliding window proper orthogonal
decomposition (POD) [172]. An attempt to generalise the POD towards nonlinear modal analysis is finally
reported in Ref. [173], where the transformation from data to approximations of NNMs is realised in a
machine learning context.

3.6 Black-box methods

Solving a nonlinear system identification problem essentially involves selectinga model structure based on
available prior knowledge, and processing data to estimate its parameters. Accessing prior knowledge,i.e.
performing nonlinearity characterisation, may however prove difficult in many circumstances owing to the
highly individualistic nature of real nonlinearities. For instance, common jointsbetween substructures most
often feature very complex physics, including heterogeneous stick-slip behaviour at the microscopic level,
hysteresis, Hertzian contact and local concentrations of stresses andstrains. This renders virtually impossible
the specification of an accurate, physically-motivated model in terms of macroscopic nonlinear stiffness and
damping lumped elements. Black-box models, which incorporate no prior knowledge but take advantage of
a sufficiently rich and flexible mathematical structure to capture all relevant physics in measured data, may
prove useful in these situations [174]. Typical black-box identification approaches comprise nonlinear au-
toregressive moving average with exogenous inputs (NARMAX) models (discussed in Section 3.2), artificial
neural networks, fuzzy networks, statistical learning theory and kernel methods. The tutorial on natural com-
puting in Ref. [175] provides an overview of most of these different approaches together with an exhaustive
list of, or links to, useful references in the field.

Over the past decade, neural network-based identification has clearlyremained the most popular black-box
modelling technique within the structural dynamics community. Combined use of a nonlinear autoregressive
with exogenous inputs (NARX) model and a neural network to identify geometrically nonlinear steel plates
was discussed in Ref. [176]. Ref. [177] proposed an efficient strategy for selecting the control points, or
knots, in B-spline neural network identification. Initialisation issues of neural networks were also addressed
by Pei and Masri in Refs. [178, 179]. In terms of applications, neuralnetworks have been mostly exploited
to address dissipative systems. In Ref. [90], an experimental, two-degree-of-freedom joint element was iden-
tified using a two-layer feedforward network. A neural network-based output error model of a continuously
variable, electrohydraulic semi-active damper for a passenger car wasderived in Ref. [180]. Magnetorheo-
logical dampers were also studied using feedforward and recurrent networks in Ref. [181] and using radial
basis functions networks in Ref. [182]. Finally, we note the identification ofan experimental turbojet en-
gine carried out in Ref. [183] considering fuel flow rate and rotationalspeed as input and output quantities,
respectively.

Recently, a new black-box model structure based on a state-space representation of measured data was pro-
posed [184]. It builds on nonlinear model terms constructed as a multivariate polynomial combination of
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Figure 14: First ten intrinsic mode functions (IMFs) resulting from applyingthe empirical mode decomposi-
tion (EMD) to acceleration data measured on a vibro-impact beam [167]. Impact locations are specified using
vertical dashed lines and the frequencies of the different IMFs are obtained by analysing wavelet transform
plots. Courtesy of Alexander F. Vakakis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
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the state and input variables. This approach proved successful in the identification of very diverse nonlinear
systems, including a magnetorheological damper [184], a wet-clutch device[65], and a Li-Ion battery [185].
However, as usual in black-box identification, it suffers from a combinatorial increase in the number of pa-
rameters because of the multivariate nature of the representation. Attempts to improve the parsimony of
nonlinear state-space models by employing tensor decomposition techniques are reported in Ref. [186].

3.7 Model updating methods

Despite the ever-increasing sophistication of computer-aided techniques and, in particular, of the finite ele-
ment method, numerical models must still be confronted with experimental data and subsequently updated
to improve their fidelity. Joints and interfaces between substructures are probably the best example where a
purely numerical modelling approach is bound to failure [11].

During the last decade, there has been significant progress in the definition of nonlinearity-sensitive fea-
tures for model updating. Building upon the work of Meyer and Link [187], who defined single-harmonic
frequency residuals, several researchers have developed a multiharmonic comparison between simulation
predictions and test results. The multiharmonic balance method, which calculates the response of a non-
linear system to a periodic excitation, was combined with the extended constitutive relation error method
for establishing a well-behaved metric for test-analysis correlation in Ref. [188]. The performance of the
proposed metric was compared with that of other metrics in Ref. [189]. Multiharmonic balance was also
coupled with a signal processing tool which extracts multiharmonic frequency responses from experimental
data in Ref. [190]. Fig. 15 illustrates this latter approach by comparing the experimental and simulated har-
monic responses of a clamped-clamped beam undergoing large displacements. An alternative methodology
to numerically calculate nonlinear frequency response curves exploits shooting and pseudo-arclength con-
tinuation, as achieved in Ref. [191]. Finally, the time-domain counterpart ofnonlinear frequency responses,
i.e. Volterra kernels, was exploited for finite element model updating in Ref. [192].
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Figure 15: Comparison at three excitation levels between the simulated multiharmonic balance response
(dashed curves) of a clamped-clamped beam undergoing large displacements and the corresponding experi-
mental response (cross markers). Courtesy of Jean-Jacques Sinou, Ecole Centrale de Lyon, Lyon, France.

In view of the effectiveness of modal parameters for linear model updating, metrics relying upon nonlinear
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modes and frequencies have been developed. If empirical modes, suchas proper orthogonal modes, were
used for test-analysis correlation in the early 2000s [193, 194], nonlinear normal modes (NNMs) have re-
cently been proposed as a more rigorous dynamic feature [195, 196]. In Ref. [195], experimental plots of
the frequency-energy dependence of NNMs were extracted from measured multimodal responses using the
wavelet transform. Assuming that the system of interest is weakly damped and that the effect of damping is
purely parasitic, model updating was performed through the comparison withnumerical frequency-energy
plots constructed from the periodic orbits of the underlying conservativesystem. Ref. [196] followed a simi-
lar philosophy, but undamped NNMs were excited in isolation using nonlinearphase resonance testing [148].
Other residuals utilising modal information were suggested in the civil engineering community, such as the
modal flexibility residual [197] and time-varying modal parameters [198].

Even if it complicates the model updating process significantly, the departurefrom the traditional paradigm
to modelling systems in a deterministic manner has gained a lot of attention during the past 10 years. There
exists a myriad of probabilistic and nonprobabilistic methods for characterising and propagating uncertainty
in structural dynamics,e.g., Refs. [199, 200, 201]; their description is clearly beyond the scope of this re-
view paper. From our perspective, the stochastic framework based onBayes’ theorem has emerged in the
community as the most prevalent approach to performing model updating of nonlinear systems [53]. In
Bayesian inference, the probability distribution of the uncertain parameterscan be updated using, for ex-
ample, efficient Markov Chain Monte Carlo (MCMC) simulation techniques [202, 203]. One of the first
contributions dealing with Bayesian updating of nonlinear structural models isdue to Yuen and Beck [204].
To resolve the limitations inherent to extended Kalman filtering [205] and address strongly nonlinear systems
with non-Gaussian uncertainty, unscented Kalman [206] and particle [52,207, 208, 209, 210] filters were ex-
ploited later for nonlinear system identification. Recent developments includethe use of Gaussian processes
as emulators to greatly accelerate Bayesian sensitivity analysis [211], novel MCMC algorithms [212, 213],
model selection [214], online estimation [215], identification under changingambient conditions [216] and
large-scale parallelisation [217].

4 Conclusions and future research directions

This survey paper reviewed the developments in the area of nonlinear system identification in structural
dynamics achieved during the past 10 years, and emphasised the progress realised over that period of time.
If the overview paper published in 2006 [1] concluded that the identification of simple continuous structures
with localised nonlinearity was a reality, we can affirm today that the identification of higher-dimensional
models of structures vibrating in strongly nonlinear regimes is within reach. This significant progression in
the state of the art is certainly to be attributed to the better understanding of nonlinear vibrations gained by
the structural dynamics community, to the utilisation of more rigorous theoretical concepts and tools, to the
increased maturity of numerical algorithms, and to the emergence of advanced testing strategies.

New nonlinear system identification methods have been developed, consolidating the progress and address-
ing some of the challenges raised in 2006:

• building upon the nonlinear resonant decay method (NLRDM), nonlinear modal testing has seen sub-
stantial improvement. Although it still relies on careful and time-consuming experimental procedures,
the identification of nonlinear modes under stepped-sine and broadband forcing can now be performed.

• new approaches for the decomposition of multicomponent signals, including theempirical mode and
Hilbert vibration decompositions, were proposed, facilitating time-frequency analysis of nonlinear
systems of moderate to high modal density.

• nonlinear subspace identification was introduced, thereby extending the concept of stabilisation di-
agram to nonlinear systems. Nonlinear subspace algorithms outperform thenonlinear identification
through feedback of the outputs (NIFO) and conditioned reverse path (CRP) methods, which were
viewed as two of the most effective nonlinear system identification techniques in 2006.
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• model updating based on Bayesian inference has been increasingly exploited to quantify uncertainty
in nonlinear mechanical systems.

Interestingly enough, modal testing, time-frequency analysis, subspaceidentification and Bayesian inference
are commonly-used tools for linear system identification. Their nonlinear generalisations have therefore the
potential to be understood by practising engineers, which paves the way for their transfer into an industrial
context. It is also clear from this discussion that nonlinear system identification in structural dynamics has
retained its toolbox philosophy. In view of the highly individualistic nature of nonlinear mechanical systems,
we do not see any compelling evidence why this would change in the years to come.

Despite this evident progress, nonlinear system identification remains a difficult exercise, and several impor-
tant challenges are still ahead of us:

• a number of applications require additional attention and developments. This is, for instance, the case
of composite materials and micro-electromechanical systems. However, the most pressing need prob-
ably concerns the accurate modelling and robust identification of joints interfacing subcomponents. It
is a subject of recent focus in the structural dynamics community [218, 219, 220], not least because
of the growing impact of different types of nonlinearities on their dynamics,including friction, micro-
and macro-slip, and gaps [166, 221, 222, 223, 224, 225].

• nonlinear structures are rarely identifiedin situ. Practical constraints such as the absence of excitation
measurement, the time-varying nature of the problem and the estimation of parameters in real time
have barely been addressed in the literature.

• the additional burden brought by nonlinear analysis and identification canbe substantial. The resulting
efforts should therefore be carefully traded against the impact of nonlinearity in the decision process.

Besides pushing the capabilities of existing methods further and addressingever more complex applications,
future efforts should also consider investigating the state of the art in connected research fields.

The electrical and control community has for a very long time driven the progress in system identifica-
tion [226]. Traditionally, this community has concentrated its efforts on developing black-box models. For
linear systems, models based on impulse responses [61] and transfer functions [58] have become standards.
In the presence of nonlinear distortions, the nonlinear state-space modelling framework [184, 186] has shown
great promise both in terms of flexibility and interpretability of representation. The adoption of this frame-
work in structural dynamics requires our community to abandon the classicalwhite-box modelling paradigm,
undoubtedly successful for modal analysis, but too limiting for nonlinear system identification. An attractive
compromise that should certainly deserve attention in the years to come is the emergence of grey-box state-
space models, incorporating prior knowledge and engineering insight to moderate the number of parameters
to estimate.

Similarly, the reward for venturing into the recent developments of the machinelearning community is po-
tentially considerable. The excellent review paper by Wordenet al.[175] argues for this research investment.
Among the different concepts familiar to machine learning researchers, theGaussian process model struc-
ture [227] and the estimation of parameters through Bayesian marginalisation [53] are probably those which
should be embraced by our community in the first place.
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[121] J.P. Nöel, G. Kerschen, E. Foltête, and S. Cogan. Grey-box identification of a nonlinear solar array
structure using cubic splines.International Journal of Non-linear Mechanics, 67:106–119, 2014.

[122] R. Porwal and N.S. Vyas. Nonlinear damping estimation of self-excited system using wavelet trans-
form. In Proceedings of the 27th International Modal Analysis Conference (IMAC), Orlando, FL,
USA, 2009.

[123] L. Heller, E. Folt̂ete, and J. Piranda. Experimental identification of nonlinear dynamics properties of
built-up structures.Journal of Sound and Vibration, 327:183–196, 2009.

[124] G.V. Demarie, R. Ceravolo, D. Sabia, and P. Argoul. Experimentalidentification of beams with
localized nonlinearities.Journal of Vibration and Control, 17:1721–1732, 2011.

[125] M. Feldman.Hilbert Transform Applications in Mechanical Vibration. John Wiley & Sons, Chich-
ester, UK, 2011.

[126] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu.
The empirical mode decomposition and the Hilbert spectrum for nonlinear andnon-stationary time
series analysis.Proceedings of the Royal Society of London A, 454:903–995, 1998.

[127] M. Feldman. Time-varying vibration decomposition and analysis basedon the Hilbert transform.
Journal of Sound and Vibration, 295:518–530, 2006.

[128] M. Feldman. Considering high harmonics for identification of non-linear system by Hilbert transform.
Mechanical Systems and Signal Processing, 21:943–958, 2007.

[129] G. Kerschen, A.F. Vakakis, Y.S. Lee, D.M. McFarland, and L.A.Bergman. Toward a fundamental un-
derstanding of the Hilbert-Huang transform in nonlinear dynamics.Journal of Vibration and Control,
14:77–105, 2008.

[130] Y.S. Lee, S. Tsakirtzis, A.F. Vakakis, D.M. McFarland, and L.A. Bergman. Physics-based foundation
for Empirical Model Decomposition: Correspondence between intrinsic mode functions and slow
flows. AIAA Journal, 47:2938–2963, 2009.

NON-LINEARITIES: IDENTIFICATION AND MODELLING



[131] P.F. Pai and A.N. Palazotto. Detection and identification of nonlinearities by amplitude and frequency
modulation analysis.Mechanical Systems and Signal Processing, 22:1107–1132, 2008.

[132] M. Feldman. Identification of weakly nonlinearities in multiple coupled oscillators. Journal of Sound
and Vibration, 303:357–370, 2007.

[133] O.V. Gendelman, Y. Starosvetsky, and M. Feldman. Attractors of harmonically forced linear oscillator
with attached nonlinear energy sink I: Description of response regimes.Nonlinear Dynamics, 51:31–
46, 2008.

[134] M. Bertha and J.C. Golinval. Identification of a time-varying beam using Hilbert Vibration Decom-
position. InProceedings of the 32nd International Modal Analysis Conference (IMAC), Orlando, FL,
USA, 2014.

[135] M. Feldman. Hilbert transform methods for nonparametric identification of nonlinear time varying
vibration systems.Mechanical Systems and Signal Processing, 47:66–77, 2014.

[136] S. Braun and M. Feldman. Decomposition of non-stationary signals into varying time scales: Some
aspects of the EMD and HVD methods.Mechanical Systems and Signal Processing, 25(7):2608–
2630, 2011.

[137] Y. Huang, C.J. Yan, and Q. Xu. On the difference between empirical mode decomposition and Hilbert
vibration decomposition for earthquake motion records. InProceedings of the 15th World Conference
of Earthquake Engineering (WCEE), Lisbon, Portugal, 2012.

[138] D.J. Ewins. A future for experimental structural dynamics. InProceedings of the International Con-
ference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, 2006.

[139] L. Renson, G. Kerschen, and B. Cochelin. Numerical computationof nonlinear normal modes in
mechanical engineering.Journal of Sound and Vibration, 364:177–206, 2016.

[140] A. Carrella. Nonlinear identifications using transmissibility: Dynamic characterisation of Anti Vibra-
tion Mounts (AVMs) with standard approach.International Journal of Mechanical Sciences, 63:74–
85, 2012.

[141] J.R. Wright, M.F. Platten, J.E. Cooper, and M. Sarmast. Identificationof multi-degree-of-freedom
weakly non-linear systems using a model based in modal space. InProceedings of the International
Conference on Structural System Identification, Kassel, Germany, 2001.

[142] Z. Yang, G. Dimitriadis, G.A. Vio, J.E. Cooper, and J.R. Wright. Identification of structural free-
play non-linearities using the non-linear resonant decay method. InProceedings of the International
Seminar on Modal Analysis (ISMA), Leuven, Belgium, 2006.

[143] M.F. Platten, J.R. Wright, G. Dimitriadis, and J.E. Cooper. Identificationof multi-degree of freedom
non-linear system using an extended modal space model.Mechanical Systems and Signal Processing,
23:8–29, 2009.

[144] M.F. Platten, J.R. Wright, J.E. Cooper, and G. Dimitriadis. Identificationof a nonlinear wing structure
using an extended modal model.AIAA Journal of Aircraft, 46(5):1614–1626, 2009.

[145] J.M. Londono and J.E. Cooper. Experimental identification of a system containing geometric nonlin-
earities. InProceedings of the 32th International Modal Analysis Conference (IMAC), Orlando, FL,
USA, 2014.

[146] U. Fuellekrug and D. Goege. Identification of weak non-linearitieswithin complex aerospace struc-
tures.Aerospace Science and Technology, 23:53–62, 2012.

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



[147] J.R. Wright, J.E. Cooper, and M. Desforges. Normal mode forceappropriation - theory and applica-
tion. Mechanical Systems and Signal Processing, 13:217–240, 1999.

[148] M. Peeters, G. Kerschen, and J.C. Golinval. Dynamic testing of nonlinear vibrating structures using
nonlinear normal modes.Journal of Sound and Vibration, 330:486–509, 2011.

[149] M. Peeters, G. Kerschen, and J.C. Golinval. Modal testing of nonlinear vibrating structures based on
nonlinear normal modes: Experimental demonstration.Mechanical Systems and Signal Processing,
25:1227–1247, 2011.

[150] J.L. Zapico-Valle, M. Garcia-Dieguez, and R. Alonso-Camblor. Nonlinear modal identification of a
steel frame.Engineering Structures, 56:246–259, 2013.

[151] D.A. Ehrhardt, R.B. Harris, and M.S. Allen. Numerical and experimental determination of nonlinear
normal modes of a circular perforated plate. InProceedings of the 32nd International Modal Analysis
Conference (IMAC), Orlando, FL, USA, 2014.

[152] D.A. Ehrhardt and M.S. Allen. Measurement of nonlinear normal modes using multi-harmonic
stepped force appropriation and free decay.Mechanical Systems and Signal Processing, 76-77:612–
633, 2016.

[153] J.M. Londono, S.A. Neild, and J.E. Cooper. Identification of backbone curves of nonlinear systems
from resonance decay responses.Journal of Sound and Vibration, 348:224–238, 2015.

[154] L. Renson, A. Gonzalez-Buelga, D.A.W. Barton, and S.A. Neild. Robust identification of backbone
curves using control-based continuation.Journal of Sound and Vibration, 367:145–158, 2016.

[155] C. Stephan, H. Festjens, F. Renaud, and J.L. Dion. Poles tracking of weakly nonlinear structures using
a Bayesian smoothing method.Mechanical Systems and Signal Processing, In press, 2015.

[156] T.L. Hill, A. Cammarano, S.A. Neild, and D.J. Wagg. Interpreting the forced responses of a two-
degree-of-freedom nonlinear oscillator using backbone curves.Journal of Sound and Vibration,
349:276–288, 2015.

[157] S. Peter, R. Riethm̈uller, and R.I. Leine. Tracking of backbone curves of nonlinear systems using
Phase-Locked-Loops. InProceedings of the 34th International Modal Analysis Conference (IMAC),
Orlando, FL, USA, 2016.

[158] H. Ahmadian and A. Zamani. Identification of nonlinear boundary effects using nonlinear normal
modes.Mechanical Systems and Signal Processing, 23:2008–2018, 2009.

[159] O. Giannini, P. Casini, and F. Vestroni. Nonlinear harmonic identification of breathing creack in
beams.Computers and Structures, 129:166–177, 2013.
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