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Kinet Romain (2016): Management of microbial communities on the 
basis of single cell technologies: application to cellulose degradation 
and biofilm formation 

Thesis summary 

Bioprocess technologies involving mixed culture display, high socio-economic 

interest. From the production of various chemicals, biological compounds to several 

environmental applications, such bioprocesses are implemented in many ways. However, 

despite widely use, complexity of the biological mechanisms involved in is still not 

unresolved. Nowadays, most of the biotechnological processes involving microorganisms are 

controlled and steer based on the monitoring of physico-chemical parameters. Microbial 

communities and underlying biological reactions, main actors of the processes, are 

considered as a “black box”. In order to improve the management of such bioprocesses, it is 

necessary to elucidate these biological “black boxes”. Particularly, key questions such as 

“Who is there?”, “Who is doing what?” and “Who is doing what with whom?” should be 

answered for better understanding of communities’ activities. Microbial resource 

management, a concept previously developed by Verstraete et al. (2007), aims to control 

and/or steer microbial community capacities through answering these questions. 

In this work, microbial resource management has been considered for improving 

cellulose anaerobic digestion capacities of communities involved in industrial/environmental 

bioprocesses. Bioaugmentation of two communities with a cellulolytic community isolated 

from compost has been carried out. Hydrolysis step is indeed recognized as the limiting step 

in global anaerobic digestion process of cellulosic substrates.  For both cases, management 

of the microbial communities led to an increase of biogas production from (ligno-)cellulosic 



 
 

 
 

substrates. Furthermore, two culture independent techniques have been considered for the 

assessment of the bioaugmentation treatment applied to leachate communities. Community 

structure has been monitored through 16s rRNA gene sequencing and flow cytometry. Flow 

cytometry fits particularly well for a fast and routine monitoring of microbial communities. 

However, data treatment/transformation is required for an efficient comparison of flow 

cytometric patterns. Based on this statement, we developed a flow cytometric fingerprinting 

method allowing the transformation of cytogram into vector of values for further statistical 

analyses. Both implemented fingerprinting methods give same evidence about microbial 

dynamics throughout cellulose anaerobic digestion assay. There are however a lack of 

significant correlation between cytometric and amplicon sequencing fingerprint at the genus 

or species level. Same phenotypic profiling of microbiota during assays matched to several 

16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a 

promising routine on-site method, suitable for the detection of 

stability/variation/disturbance of complex microbial communities involved in bioprocesses. 

Finally, flow cytometry fingerprinting has been applied for the monitoring of 

metabolic heterogeneities among monospecies biofilm. Indeed, biofilm is the main form of 

microbial communities encountered in natural and engineered environment. The 

development of specific technique aiming at analyzing function of microbial population must 

then take into account this kind of structure. High degree of specialization can be observed 

among the cells embedded in biofilm. In order to simplify the approach, the efforts have 

been focused on single species biofilm in the context of this thesis. Indeed, even isogenic 

population of cells can take advantage from phenotypic heterogeneities through a division 

of labor strategy.  Such multicellular communities must be considered as a heterogeneous, 

“multi phenotypes”, communities and not anymore as a homogeneous community. 



 
 

 
 

Therefore, similar key questions than for multispecies communities must be answered for 

elucidating their organization and allowing further efficient management/steering of biofilm 

based bioprocesses. The efficiency of flow cytometry fingerprint for monitoring metabolic 

heterogeneities has been proved through a set of experimentations carried out with Bacillus 

amyloliquefaciens as reference organism. Metabolic flow cytometry fingerprinting allows for 

evaluating the impact of genetic mutation (B. amyloliquefaciens mutants were constructed 

in order to obtain strains with deficient in lipopeptide synthesis) on metabolic profiles. 

In conclusion, the management of microbial communities, through bioaugmentation 

treatment, leads to an improvement of the performances of anaerobic digestion 

bioprocesses. Moreover, a fast, cheap, culture and operator independent monitoring 

technique, able to provide crucial information about dynamics of heterogeneous microbial 

communities has been developed. Efficient for the monitoring of multispecies communities 

such as the ones involved in anaerobic digestion processes, this approach also reveals its 

potentialities for the monitoring of phenotypic heterogeneities among isogenic biofilm 

communities.  
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1 Introduction 

1.1 Monitoring of microbial population involved in bioprocesses 

Microbial biotechnologies have a strong socio-economical potential. From the production of 

various fine chemicals, enzymes and therapeutically compounds to several environmental 

“application”, bioprocesses can be implemented in many ways. However, despite widely use, 

complexity of the biological mechanisms involved in these processes is still not unraveled. 

The microorganisms and underlying biological reactions, main actors of the processes, are 

considered as a “black box”. Most of the biotechnological processes involving 

microorganisms are controlled and steer based on the monitoring of bulk physico-chemical 

parameters. In order to achieve optimal exploitation of the particular microorganisms, it is 

necessary to elucidate these biological “black boxes”. Particularly, the structure of microbial 

communities should be deeply characterized. Improving monitoring capabilities is thus 

crucial to optimize bioprocesses. 

Traditionally, culture dependent methods, such as heterotrophic plate count, were used for 

controlling performance of biotechnological processes or for investigating microbial 

population diversity. However, as well for natural samples and axenic cultures monitoring, 

these techniques exhibit several drawbacks: 

- Incubation periods are unavoidable, leading to a significant lag time between the 

analysis and the delivery of the results. 

- Majority of bacterial species are uncultivable. 99% of microorganisms observable in 

nature typically are not cultivated using standard techniques (Amann et al., 1995). 
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- Cellular viability assessment is uncertain. Species in a viable but non cultivable state 

are ignored. 

- Single-cell analysis is not possible, observation are done at colonies level. Genotypic 

and/or phenotypic variability affecting cells forming a colony are not considered 

- Metabolic network studies are restricted to the observation of “On/Off” responses. 

In order to cope with these restrictions, culture independent methods, such as “-Omics 

techniques” and flow cytometry, have been largely developed during the last years. Omics 

techniques provide deep understanding of biological mechanisms through the monitoring of 

the diverse molecular intermediates involved in (proteins, DNA, RNA, …) (Zhang et al., 2010). 

On the other hand, flow cytometry allows highlighting microbial heterogeneity at single cell 

level in a very short time through the measurement of a set of optical parameters (Delvigne 

et al., 2014; Delvigne and Goffin, 2014; Koch et al., 2013). Flow cytometry allows on-site 

routine microbial communities analyses required for efficient pro-active management of 

bioprocess while “-Omics” allows detailed analysis. Based on the efficiency of culture 

independent methods for elucidating communities’ complexity, Verstraete et al. (2007) 

developed the concept of Microbial Resource Management (MRM). MRM aims to solve 

practical problem through the use of microorganisms (Read et al., 2011). More particularly, 

solutions are supplied through control and/or steer of microbial community capacities. 

Especially, bioaugmentation technology, in a microbial resource management view, consists 

in adding an exogenous microbial community with specific activity in order to improve the 

performance of the in-situ biological processes, and facilitate the establishment of specific 

species in microbial communities (Bouchez et al., 2000). 
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In the environment, many microbial communities exhibit biofilm organization. The 

development of monitoring technique aiming at improving the management of microbial 

populations must then take into account this kind of structure. Actually biofilm communities 

are largely investigated with advanced imaging approach (e.g. confocal laser scanning 

microscopy) and microfluidic devices (Bruchmann et al., 2015; Morgenroth and Milferstedt, 

2009). However, these techniques only evaluate the biofilm structure at microscale. Efforts 

still must be done for linking these microscales investigations with meso/macroscale 

observations. This link is crucial as mechanisms and processes at the microscale depend on 

and influence interactions on larger spatial scales (Morgenroth and Milferstedt, 2009). 

1.2 Objectives of the thesis      

The objective of the thesis is the elucidating of microbial complexity associated to the 

anaerobic digestion of cellulose in order to improve process efficiency. Elucidating microbial 

communities’ complexity is crucial for their efficient management. “-Omics” techniques are 

suitable for this purpose. However, these techniques are time consuming and required 

expensive and sophisticated materials. On the opposite, flow cytometry displays 

prerequisites for a routine communities’ structure analysis: cheap, fast and simple 

implementation. Based on this statement, we will tackle on the development of a flow 

cytometry based operator-independent method allowing high densities communities 

monitoring. Moreover, as many microbial communities involved in environmental 

biotechnologies form biofilm structure, efforts will be done for developing a similar flow 

cytometry monitoring approach taking into account the particularity of such multicellular 

communities.  
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2 State of the art 

2.1 Mixed culture biotechnology 

Nowadays, most of biotechnological industrial processes are based on pure culture of 

isolated microorganisms. However such strategy is contradictory with strategy involved in 

the majority of biogeochemical processes led by microorganisms on Earth. Microorganisms 

generally exist in association (e.g. with other microbes or other type of organisms) and 

implement cooperative strategies (cross feeding, aggregation and adhesion).  

Mixed culture biotechnology (MCB) exploits such highly organized natural microbial 

communities for bioprocesses fitting in very wide field of applications (e.g. energy 

production, wastewater treatment, sustainable recovery of resource, biobased chemicals …). 

Positive interaction between members of consortia allows accomplishing impossible tasks 

for isolated strains. Moreover, in some cases, MCB could overcome traditional pure culture 

based bioprocesses thanks to several specific advantages such as (1) no sterilization 

requirements, (2) adaptive capacity owing to microbial diversity, (3) the capacity to use 

mixed substrates, and (4) the possibility of a continuous process (Kleerebezem and van 

Loosdrecht, 2007). 

Anaerobic digestion is a perfect example of the usefulness of natural microbial communities 

for facing different industrial and environmental challenges. Coordinated action of manifold 

different species, displaying specific metabolic activities, allows valorization of complex 

substrates (usually considered as waste products) as a source of energy as well as a source 

for building block molecules production.  
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However, efficient management of processes involving consortia is not easy which restrains 

an expanded use of MCB. The complexity of metabolic network and relationships between 

members induces difficulty in controlling/steering of the community. Actually, the majority 

of processes involving microbiome are operated according to the measurement of bulk 

chemical, physical and biological parameters (temperature, enzymatic activity, substrate and 

products concentrations, …) (Koch et al., 2014b). A posteriori regulation is implemented 

during processes. Conditions adjustment follows detection of bulk parameters disturbance. 

These parameters do not allow proactive management as no information are available for 

segregated analysis of the respective actors’ performances which is necessary for predicting 

performance of microbiome reactor. 

Hence development of a methodology for direct monitoring of bioprocesses actors and for 

elucidating their respective participation to overall performance is necessary.       

2.1.1 Elucidating microbiome blackbox – Technical requirements 

Based on the statement that domesticated natural communities can provide great services 

in different context, Verstraete et al. (2007) developed the concept of microbial resource 

management. Microbial resource management (MRM) concept aims to solve practical 

problem through use of microorganisms (Read et al., 2011). More particularly, solutions are 

supplied through the control and/or steering of microbial community capacities. However, in 

order to provide these solutions, MRM must include tools for elucidating microbiome 

blackbox. 

In this context, three key questions must be answered: 

(1) Who is there? 

(2) Who is doing what? 
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(3) Who is doing what with whom? 

2.1.1.1 Who is there? 

2.1.1.1.1 Molecular approaches  

Molecular fingerprinting techniques 

Widely used in microbial ecology, molecular fingerprinting techniques are perfect to unravel 

complexity of communities and to answer above mentioned key questions (Verstraete et al., 

2007). They provide a pattern or profile of the genetic diversity in a microbial community.  

DNA extracted from samples is involved as it is for these techniques. However, only a part of 

the total genetic information is analyzed. Classically, genome sequences of interest 

correspond to the genes of the ribosomal operon, and particularly the rrs gene (16S rDNA) 

(Ranjard et al., 2000).  Genetic fingerprint is obtained after Polymerase in Chain Reaction 

(PCR) which is applied for amplification of the targeted regions. According to the technique 

applied, diversity of amplified sequences is resolved by differential electrophoretic migration 

on agarose or polyacrylamide gels, based on their size (ARDRA, t-RFLP, RISA, RAPD) or their 

sequence (DGGE,TGGE) (Ranjard et al., 2000). 

However, such techniques display some drawbacks. One of the most preoccupant is their 

lack of sensitivity (e.g. detection limit of DGGE technique is 1% of the total DNA (Marzorati et 

al., 2008)). Another limitation is relative to the resolution of the bands constituting the 

patterns. Normally, a particular species can be associated to each band of the pattern as it 

corresponds to a particular sequence. However, particularly with ribosomal sequences, one 

band can be associated to several species and inversely. So interpretation of the diversity 

can be biased. 
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Next generation sequencing techniques  

Recent development of high-throughput sequencing techniques provides new tools to 

overcome limitations associated to molecular fingerprinting techniques and to investigate 

more deeply the structure and the functionality of complex communities. Most of these 

techniques rely on sequencing-by-synthesis design and require preliminary DNA 

amplification step (PCR) (Di Bella et al., 2013). Previously, first generation sequencing relied 

on Sanger sequencing method (chain termination method) (Sanger et al., 1977).   

When applied in order to elucidate the composition of a microbial community, sequencing 

techniques target only a part of genetic information extracted from the sample, usually 

corresponding to one or more fragment of 16S rRNA gene. Amplicon sequencing is the term 

used to express such approach. Choice of the variable region(s) of 16S rRNA gene to analyze 

is not easy as inter-species variability appears in different ways for these regions. Choice 

among nine variable regions must take into account information specific to samples. 

Notably, species diversity targeted and level of resolution affect this choice (Di Bella et al., 

2013). Despite efficiency of 16s rDNA sequencing for elucidating structure of a microbiome, 

it is important to be aware of several limitations inherent to the use of this ribosomal gene. 

Due to a high level of sequence divergence between multiple copies of the gene, different 

16S rDNA sequences from a given bacterium can result in two or more distinct Operational 

Taxonomic Units (OTUs) what induces overestimation of microbial diversity in a sample. 

Moreover, multiple copies of the rrn operon, which contains the 16S rRNA gene, displayed 

by some bacteria induce over-representation of these bacteria when investigating 

abundances. Lastly, some 16S rDNA primers, although considered universal, preferentially 

bind to some taxa over others, thus over-representing those taxa in experiments (Di Bella et 

al., 2013). Hence, if next generation sequencing also provides quantitative information 
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through relative abundance of different OTUs, it must be considered with caution as 

different steps of the protocol can induce bias in analysis.  

Logically first step of high-throughput methods is the microbial genomic DNA extraction-

purification. As microbes can display wide range of structure and composition according to 

their environments, DNA extraction protocol must be judiciously selected (Di Bella et al., 

2013). This step is potentially a source of bias for quantitative analyses as preferential DNA 

extraction occurred according to the microbe’s structure. 

Following extraction, DNA samples are prepared for ulterior steps. Despite dissimilarity 

according to the type of sequencing techniques, this preparation includes three similar 

steps: (1) fragmentation of DNA molecules for providing sequences that can be further 

analyzed, (2) addition of blunt ends to aid further processing and (3) ligation of adaptors 

(platform-specific) to the fragments for acting as amplification primers and for allowing the 

fragments to be attached to solid surface for sequencing (Di Bella et al., 2013). 

When attached to solid surface, DNA sequences are amplified to form clone libraries. The 

solid surface, where clone libraries are formed, differs according to the system employed. 

Some involve microbeads as PCR support (Roche 454, Ion Torrent PGM) whereas flow cell 

are implemented in other system (Illumina platform). These supports lead respectively to 

microbeads covered of identical DNA fragment after emulsion PCR and to clusters of 

identical DNA fragments after “PCR bridge”. Once clone libraries are formed, they can be 

sequenced. Again, sequencing protocol vary according to respective systems. Some rely on 

optical signals for evidencing the incorporation of respective nucleic bases (454 Roche and 

Illumina) while Ion Torrent platform is based on direct detection of protons released linked 

to base incorporations.    
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High throughput sequencing produces very large amount of data. Computational analysis 

with different informatics tools is necessary to get any useful information from these data. In 

term of targeted amplicon sequencing, comparison of acquired sequences with existing 

databases results in identifying who is there and in which proportion. However, preliminary 

treatment steps must be applied to raw sequencing data. Typically, required bioinformatics 

tools are grouped together into packages. Among these ones, MOTHUR (Schloss et al., 2009) 

is one of the most popular. This package aligns and clusters the sequences while algorithms 

such as Pyronoise and UCHIME (Edgar et al., 2011) are used for denoising and chimera 

detection. After data treatment, comparison with existing database such as SILVA or 

Ribosomal Database Project (RDP) provides taxonomical assignation. 

MRM parameters extracted from genetics analyses 

Interpretation of data resulting from these different methods is quiet ambiguous. Based on 

this statement, practical tools (MRM parameters) have been designed (Marzorati et al., 

2008; Read et al., 2011). They allow for quantitative and universal description of community 

structure. Originally, tools have been designed to fit with DGGE patterns processing but 

rapidly their use has been extrapolated to other classical fingerprinting molecular techniques 

(LH-PCR, tRFLP, TGGE, SSCP, and Clone Libraries). Furthermore, recent development and 

widespread use of high throughput methods require the adaptation of originally designed 

parameters and even the design of new ones.  

Read et al. (2011) give non exhaustive list of studies in which MRM tool set successfully 

describe structure of community in different environments and through use of these 

molecular fingerprinting methods.  
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Range-weighted richness (Rr) 

The range-weighted richness (Rr) reflects the microbial diversity of a communities and is 

originally calculated according to the following formula (1) for DGGE analysis: 

𝑅𝑟 = (𝑁2 ×  𝐷𝑔)   (1) 

Where N represents the total number of bands in DGGE pattern and Dg the denaturing 

gradient comprised between the first and the last band of the pattern (Marzorati et al., 

2008). The denaturing gradient value is the percentage needed to represent the total 

variability of the genetic content present in the sample. This value is directly linked to the 

nature of the analyzed environment. More an environment is able to host microorganisms 

(i.e. more environment display favorable conditions), more required gradient is wide (i.e. 

more genetic diversity is wide).  

The observations of values calculated for different environments (referenced by Marzorati et 

al. (2008)) put Rr values in perspective. The environments displaying unfavorable conditions 

(e.g. polluted soil (Marzorati et al., 2005), deep sea hydrothermal site (Postec et al., 2005)) 

are characterized by Rr value <10; they present low diversity. Intermediate values, i.e. 

between 10 and 30, can be considered as medium range-weighted richness while values 

superior 30 correspond to high range-weighted richness, characteristic of environment such 

as garden soil (Edenborn and Sexstone, 2007) able to host several species with wide range of 

genetic content. In these cases, Rr parameter established with classical molecular 

fingerprinting methods quantifies richness and genetic diversity of diverse communities. 

However, values are dependent towards technique applied and its detection threshold. Bent 

et al. (2007) highlighted while classical fingerprinting methods are useful for comparative 

analyses, they strongly underestimate richness of complex communities.  
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New 16S rDNA based sequencing methods successfully highlight previously unseen bacterial 

species as they are more sensitive and they cover more completely taxonomic diversity. In 

respect to this, Read et al. (2011) redefined the way to calculate Rr parameter when 

sequencing method is carried out. The value should include both the number of unique 

OTUs, estimated by rarefaction curves analyses, and phylogenetic broadness of the present 

OTUs on family, class or order level. Rarefaction curves are constructed by plotting the 

number of OTUs (y-axis) against the corresponding number of sequence analyzed (to obtain 

this number of OTU). The asymptote of the curve provides estimated maximal number of 

OTU present in the sample.   

Community organization (Co) 

After elucidating the extent of the biodiversity reservoir, it is necessary to highlight the 

respective participation of each member to community functionality. In its definition of 

MRM, Verstraete et al. (2007) maintain that Pareto principle, which in respect to market 

economy tables that 80% of the “goods” are in the hands of 20% of the concerned 

population, is applicable to microbial ecology. Among overall species distribution, 20% of the 

species control 80% of the energy flux (Verstraete et al., 2007). With this in mind, functional 

organization (Fo) parameter was designed in order to characterize the ability of a community 

to organize in a such way that functionality is ensured. Structure and functionality of the 

community are correlated through this parameter. However, it rapidly appears that a link 

between a given functionality and a respective group of microorganisms cannot always be 

established. Based on this statement, Fo parameter has been renamed as Community 

organization (Co), a parameter which only describes the microbial community in terms of 

evenness degrees (Read et al., 2011).    
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Species distribution inside a community at a given time (i.e. in given environmental 

conditions), is graphically represent through the construction of Pareto-Lorenz evenness 

curves. These curves are constructed by plotting cumulative proportion of OTUs (x-axis) 

against cumulative proportion of OTU abundances (y-axis) (Figure 1).  

 

Figure 1 Pareto-Lorenz curves derived from three hypothetical DGGE patterns. The 25%, the 45% and the 80% curves 
refer to a low, medium and high functional organization respectively. The 45° diagonal represents the perfect evenness 
of a community. (Marzorati et al., 2008) 

On such representation, 45° diagonal represents a perfect evenness, i.e. each member of the 

community displays the same relative abundance. Contrary, more a curve differs from this 

reference line, less this equitable distribution is respected. In such case of weak evenness, 

communities are dominated by a small fraction of the detected species while the rest of the 

population, displaying weak relative abundance, is waiting for more favorable conditions. 

Figure 1 displays three theoretical community organizations. The percent values associated 

to each curve do not represent Co value but the score from the y-axis projection of curve 

interception with vertical 20% x-axis line. Attributing these scores to curves was suggested 

by Wittebolle et al. (2008) for more easy interpretation and comparison. More this value is 

high, more community is uneven. 25%, 45% and 80% curves represent community with 

respectively low, medium and high unevenness. 
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Co parameter is calculated as the Gini coefficient times 100 with Gini coefficient expressing 

the normalized area between distribution curve and perfect evenness diagonal. Co has a 

percent value varying from 0 to 100. Furthermore, as Gini coefficient is inversely 

proportional to degree of evenness, high Co values correspond to high unevenness (i.e. 

0=even community, 100 =uneven community).  

As previously mentioned, amplicon sequencing highlights all species from a community, 

even those displaying very weak relative abundance. This previous unseen majority alters 

the shape of Lorenz curve and thus Gini coefficient. Consequently, new way to graphically 

express the evenness of a community is necessary when sequencing methods are used (Read 

et al. (2011)). Consider a dataset of N OTU classes:  

1° OTU classes are sorted from high to low abundances (with OTU-1 the most abundant 

and OTU-N the less) 

2° Co values (Coi, with i=1 to N) are calculated for a progressing window of OTUs from 1 

to N 

3° Coi are plotted against the amount of classes (i) to obtain the descriptive curves. 

Thanks to these curves, it is possible to determine when microbial community is reaching its 

maximum Co value which represents its degree of evenness.  

In relation with Pareto law, it is possible for determining the optimal Co value for a given 

ecosystem. This value is called Ecological Pareto (Ep) and corresponds to the optimal 

community organization in a given environment (Read et al., 2011). Furthermore, 

Community distortion (Cd) parameter has been created for assessing deviation of a 

community from the optimal structure. Absolute values describe the severity of distortion 

while +/- indicates, respectively, a too uneven or a too even population (Read et al., 2011).       
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Dynamics (Dy) 

To maintain functionality, communities must adapt in response to environmental 

modifications. Consortia must be considered as a continuum of cooperative communities 

succeeding each other in case of unregulated environments. Based on this statement, 

dynamics (Dy) parameter has been created (Marzorati et al., 2008). It describes to what 

extent a community is able to change its structure in a given time period. Practically, it 

represents the number of species which can be detected during a given laps of time. More 

species can be detected; more the community is dynamics and more the original community 

may evolve (Marzorati et al., 2008). Consequently, this parameter is highly technique 

dependent. Comparison of Dy values resulting from studies involving different methods is 

not possible. To overcome this drawback, it is preferable to deal with the rate of change 

affecting a community during a given period. The rate of change averages the degree of 

change between successive fingerprints of a community over a fixed time interval (Marzorati 

et al., 2008). In the case of DGGE fingerprinting, % of change between samples are 

calculated according to equation (2):  

% 𝑐ℎ𝑎𝑛𝑔𝑒 = 100 − % 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦   (2) 

Where % of similarity result from Pearson product-moment correlation coefficients 

calculated on basis of densiometric curves of different patterns.  

Logically, a high rate of change corresponds to a community displaying a high level of 

dynamics while a low rate is linked to a nearly stable community. For example, Wittebolle et 

al. (2005, 2008) highlight different levels of dynamics in several ammonia-oxidizing bacterial 

communities from different reactors (based on DGGE patterns). First community, 

characterized by a rate of change of 3% (Wittebolle et al., 2005), can be considered as 
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weakly dynamic. Community from the second reactor, displaying a rate of change of about 

12% is assumed to be moderately dynamics. Finally, a highly dynamic population is observed 

in the last reactor in which rate of change of approximatively 25% is calculated. 

Contrary to previous parameters, Dy does not need adaptation to be compatible with 

sequencing methods. As for DGGE patterns, differences between samples are easily 

evaluated thanks to Pearson product-moment correlation coefficients. 

Alternative parameters 

In parallel to MRM parameters, alternative parameters can be calculated based on 

sequencing data for evaluating the richness and the diversity of a community (Di Bella et al., 

2013). Richness and more precisely the minimum number of OTU present in a community 

can be estimated by Chao1 (Chao, 1984) and ACE (Chao and Lee, 1992) parameters. 

Furthermore, community diversity which combines richness and evenness is traditionally 

expressed through alpha-diversity indices and more precisely the Shannon or Simpson 

diversity indexes (see Li et al. (2012) for more a detailed description). 

2.1.1.1.2 Flow cytometry for routine analysis of microbial communities in bioprocesses 

Above described molecular techniques are powerful methods for elucidating natural 

communities in term of composition. Nonetheless, several drawbacks are still inherent to 

these ones. In term of bioprocesses monitoring, major disadvantage is the incompatibility of 

such techniques with on-site routine analysis as they require expensive specialized 

equipment and are relatively high time-consuming for data acquisition and interpretation. As 

some bacterial species are characterized by generation times of minute and so can rapidly 

evolve in response to environmental modifications, a dense population sampling and 

analysis is required for an efficient community monitoring.  Flow cytometry combined with 
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biostatistics based tools (flow cytometry fingerprinting) is a promising approach to achieve 

this goal and so enabling efficient process control/steering. 

Flow cytometry 

Flow cytometry (FCM) is a high throughput technique for single-cell analysis. The analysis is 

based on measurement of cellular optical characteristics.  

 

Figure 2 Flow cytometry measurement principle (Díaz et al., 2010) 

FCM measuring principle can be divided in five steps: 

(1) Cells are organized into a single stream of particles thanks to hydrodynamic focusing. 

(2) Single cells pass successively through laser beam what induces emission of signals 

related to cells’ optical characteristics. When crossing cells, laser induces two types 

of interaction: (1) light scattering resulting from cellular intrinsic characteristics (size, 

internal organization, and granularity) and (2) emission of fluorescence which can 

result either from cell auto-fluorescence either from fluorochromes (fluorescent dyes 

or fluorescent tag such as GFP or FISH approach).    

(3) Scattered and fluorescent signals are separated thanks to a set of filters and mirrors. 
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(4)  Detection of different signals by photodiodes. Two are attributed for the 

measurement of scattered signals; low angle (below 10°) deviation from incident 

light is called Forward Scatter (FSC) while Sideward Scatter (SSC) is associated to 

perpendicular deviation. The numbers of fluorescent detectors vary according the to 

complexity of material and the related working wavelength spectrum (FL-1, FL-2, FL-3 

on figure above). 

(5) Optical signals are transformed into electronical signals enable to be digitalized and 

finally analyzed by software.   

Through the measurement of a set of optical parameters, FCM is so able to characterize cell 

population at single-cell level in a very short time. The characterization is based as well on 

intrinsic as on extrinsic optical parameters that can be related to structural and/or functional 

cell properties. FSC and SSC typically give structural information about respectively cell size 

(light deviation increases with cell size increase) and about internal cell organization. 

Nevertheless, these information are generally not enough powerful for efficient 

subpopulation discrimination among a global population. Contrary, through highlighting 

supplemental physiological or functional cell’s properties, fluorescent labelling allow for 

achieving this goal. According to cell target sites, different probes are used. These probes 

can be of different nature: (1) fluorescent dyes which increase fluorescence after specific 

binding to cellular molecules or components, (2) fluorescent dyes which accumulate in 

specific compartment of cells, (3) fluorescent dyes whose fluorescence is modulated through 

environmental conditions or enzymatic activity, (4) Green Fluorescent Protein (GFP) 

genetically-encoded in cells or (5) fluorochromes conjugated to antibodies or oligonucleotide 

(FISH). Membrane integrity is for example easily estimated thanks to propidium iodide (PI) 

staining. Dye penetrates and links to DNA of cells displaying damaged membrane while it 
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cannot penetrate cell with intact membrane (Díaz et al., 2010). For their part, Redox Sensor 

Green (RSG) dye highlights actively metabolizing microorganisms (Kalyuzhnaya et al., 2008) 

and tetracycline hydrochloride highlights poly-phosphate accumulation in cell (Günther et 

al., 2012) . Cellular DNA content is also a suitable target for community analysis and cell 

cycle study. Sybr Green I and Syto9, who stain indifferently entire nucleic acid content, and 

4',6'-diamidino-2-phénylindole (DAPI), who links specifically to adenine and thymine nucleic 

bases, segregate subcommunities according to their respective DNA content (or A/T 

content). For more examples and a detailed reviewed of fluorescent staining techniques, see 

Díaz et al. (2010). 

Flow cytometry fingerprinting of microbial communities 

The resulting sets of optical parameters acquired for each cell during FCM measurement are 

usually represented through biparametric cytometric histograms (cytogram) (figure 3). Such 

representation induces the formation of different clusters containing cells displaying similar 

characteristics for the chosen parameters. Similarly to DGGE patterns, these histograms can 

be considered as fingerprints of a microbial population at a given moment after 

mathematical data treatment (figure 3B). Fingerprinting approach facilitate the 

interpretation of cytometric histograms and more particularly for parametrizing differences 

between samples (Kinet et al., 2016). Informatics tools have been developed for constructing 

these fingerprints. Koch et al. (2014) compare the different tools available for interpretation 

of communities cytogram: Dalmatian Plot, Cytometric Histogram Image Comparison (CHIC), 

Cytometric Barcoding (CyBar) and FlowFP. Each of these tools displays specific way to work. 
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Figure 3 Analysis of raw biparametric cytometric histograms (FSC-A/FL1-A). A vector of values describing raw flow 
cytometry pattern is obtained through either (A) a manual gating procedure or (B) an automated gating procedure 
(FlowFP fingerprinting). The automated gating procedure depicted here involved the establishment of a grid composed 
of 64 bins. The structure of this grid depends on the structure of the raw biparametric cytometric histograms studied. 
Contrary to procedures involving manual gating, this fingerprinting technique is operator-independent. 

Dalmatian Plot  

Bombach et al. (2011) were the firsts to describe this technique involving simplified black-

and-white images for representing communities’ cytogram. First step of the method consists 

in gating (with circle) the most abundant subsets of cells for each compared 2D histogram. 

For each cytogram, this results in black circles, representing the different observed cell 

clusters, over white back ground. Consequently, only presence/absence information result 

from this black/white gating. Interestingly, cell abundancies can be evaluated through 

insertion of a grey scale in circled gates (Bombach et al., 2011; Müller et al., 2012). Then, an 

image analysis is performed thanks to adequate software and related macros. The gates’ 

areas are determined through the count of contained black pixels. Finally, images from two 
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samples are overlapped and area corresponding to overlapping gates is quantified. 

Dissimilarity values result from each paired comparison and are the basis for the 

construction of a dissimilarity matrix for further statistical analysis.  

Cytometric Histogram Image Comparison (CHIC)  

Similarly to Dalmatian Plot, CHIC involves image analysis (Koch et al., 2013a). However, it 

does not require operator gating. Cytometric histograms are directly converted to gray 

scaled images thanks to adequate cytometric software. Image resolution used to represent 

histogram varies according to desired precision. Logically, resolution must be similar when 

comparing samples. Then, images paired comparison is realized thanks to software 

(construction of overlap and XOR images to measure dissimilarity between images) and 

matrix dissimilarity is constructed. 

Cytometric Barcoding (CyBar)  

First step corresponds to a gating step, every cell clusters are marked in each cytogram 

thanks to ellipsoid gates. Secondly, a gate template is created by combination of all 

previously designed gates. Finally, this gate template is applied to all samples and number of 

cells in each gate is calculated for each sample. A matrix with the respective cell abundancies 

per gate for each sample is obtained (Koch et al., 2013). 

FlowFP 

FlowFP is a software package developed by Rogers and Holyst (2009) and available at open 

source Bioconductor platform (Gentleman et al., 2004). It consists in creating a n-

dimensional quantitative fingerprint of each sample from bivariate flow cytometry (FCM) 

distributions using the recursive probability binning (PB) algorithm implemented in the 

Bioconductor package FlowFP (figure 3B)  (Rogers and Holyst, 2009). In a first time, a model, 
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composed of hyper-rectangular regions (bins) of varying sizes and shapes, is established. 

From superposed FCM distribution (i.e. data from all samples are pooled together) and 

thanks to PB algorithm (Rogers et al., 2008), bivariate data space is divided in hyper-

rectangular regions in such way that each contains similar number of events (one event 

corresponding to one cell). The first step of the algorithm consists in the division of space 

into two bins containing similar number of events. Afterwards, each of these bins is again 

divided into two bins with equal number of events, and so forth. Therefore the regions of 

bivariate FCM histogram displaying high density of events are characterized by bins of small 

area whereas larger bins characterized regions of weak density. Moreover, the final number 

of bins (n) is arbitrary set and correspond to 2i with i the number of recursive subdivisions. 

The obtained model is then applied to each sample and number of cells per bin is 

determined, creating a feature vector of counts (n-dimensional) for each sample. The latter 

is also referred to as the fingerprint. 

Comparison of the fingerprinting methodologies  

As underlined above, the different analytical protocols results in different outcomes. 

Dalmatian plot and CHIC provide dissimilarity matrix based on paired samples comparison 

while CyBar and FlowFP provide vectors with number of cells per gate/bin for each sample. 

The two first methods provide trends about population dynamics at whole community level 

whereas others provide a segregated approach according to gates or bins. Such individual 

change detection is advantageous as simple statistical tools like principal component 

analysis can transform segregated vision into whole community approach while the inverse 

is not possible.  
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Operator dependency is another important feature. Indeed, operator depending steps, such 

as gating in Dalmatian Plot and CyBar, induce subjectivity in interpretation and so do not 

allow comparison of results treated by different operators. Contrary, CHIC and FlowFP are 

not operator dependent. But these techniques require the adjustment of some options, 

respectively the cytogram imaging resolution and the number of recursion for template 

construction. Differently, drawback of FlowFP is the absence of biological meaning in binning 

procedure contrary to Dalmatian Plot and CyBar whose subcommunities are considered for 

gating. Consequently, FlowFP is less compatible with cell sorting than CyBar.  

Each tool displays advantage and disadvantage. However, according to above mentioned 

advantages of FlowFP and its ease of use (open source R package), this approach has been 

considered in the context of this work for the analysis of flow cytometry data. 

2.1.1.2 Who is doing what? Who is doing what with whom?  

Once the structure of a community is established, it is useful to understand the way it works. 

Different molecular techniques can provide required information to reach this goal.  

First we can cite methods based on the analysis of communities’ metagenome. Metagenome 

term was proposed first time by Handelsman et al. (1998) to describe “genome of total 

microbial resources found in nature”. In other terms, the metagenome represents total 

genomic information from all microorganisms in a given environment. Differently from 

amplicon sequencing, metagenome sequencing investigates all genomic information from 

the population so that all genes and associated potential functionalities are highlighted.  

Metatransciptomics, metaproteomics and metabolomics are other useful molecular 

methods for elucidating complex mechanisms involved in a community. Contrary to genome 

based approach which provides non dynamic information about potential functionalities, 
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these techniques allow dynamic analysis of functionalities involved by a community at a 

given moment. Thanks to these methods, the link between genomic information and 

functionalities of a community should be established. Indeed all these methods monitor 

molecular species directly involved in (metatranscriptome and metaproteome) or resulting 

from (metabolome) the different cellular mechanisms and whose concentrations vary along 

time according to different factors. For instance, physiological adaptation resulting from 

various environmental conditions can be highlighted. More than segregated approach, 

integrated multi-omics approach would be beneficial for an efficient comprehension of 

communities’ molecular biology (Hettich et al., 2013; Muller et al., 2013; Zhang et al., 2010).     

2.1.1.2.1 Metatransciptomics  

Metatransciptomics provide information about functionalities involved in the community 

through global transcriptome analysis. All ARNm from a community at a given moment are 

highlighted by metatransciptomics analysis. Gene translation is qualitatively (total genomic 

information is not necessary translated) and quantitatively (number of simultaneous 

transcript of a gene can vary) modulated according to different factors. However, due to the 

very short lifetime of ARNm molecules, such approach is not always easy to implement. 

Transcriptomics techniques are based either on direct analysis of ARNm sequences either on 

sequencing of complementary cDNA. 

2.1.1.2.2 Metaproteomics  

Metaproteomics provides a global view of the functional gene products in a community at a 

given moment. Contrary to metagenomics which provide functional potentialities, 

metaproteomics provides information about real functional activity. Metabolic activities 

implemented by community at a given moment can be established. Moreover, elucidating 
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metaproteome should also provide primordial information about interaction (competition as 

well as cooperation) occurring between the different actors of a community (Hettich et al., 

2012).  

Success of a metaproteome measurement relies on three factors: unbiased protein 

extraction from complex environmental matrix, efficient peptide/protein fractionation 

before detection and subsequent high-throughput peptide/protein identification (Hettich et 

al., 2012).  

Separation and identification of proteins rely on two major strategies: either (1) gel 

electrophoresis based approach (i.e. 2D-GE and DIGE) which consists in separating proteins 

according to their isoelectric point and mass, and further MS identification; or (2) gel free 

methods which rely on coupling multidimensional liquid chromatography separation to 

automated tandem MS (LC-MS/MS). Compare to gel based methods, latter enable analysis 

of more complex proteomes so that they are more suitable for complex metaproteome 

analysis.  

Hettich et al. (2013) and Lacerda and Reardon (2009) review several metaproteome 

measurements applied to environmental microbiology and biotechnology.  

2.1.1.2.3 Metabolomics 

Metabolomics aims for identifying and quantifying metabolites in biological system at a 

given time. When applied for characterizing overall metabolome from a community, 

“community metabolomics” term is proposed (Jones et al., 2014).  Metabolites are products 

of metabolic pathway and final output of biological functions. They translate the activities of 

proteins and so determined final phenotypic properties (Washio et al., 2010). As proteins, 

metabolites can influence previous steps of cellular mechanism (metabolic regulation) 
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(Takahashi et al., 2012; Zhang et al., 2010) and their concentrations vary with physiological 

changes. Moreover metabolites directly affect cellular environment (e.g. increase of acidity).   

Jones et al. (2014) applied such approach to soil communities living in contaminated sites. 

They apply 1H Nucleic Magnetic Resonance to assess the metabolic profiles of the 

community after modified methanol-chloroform-water extraction (focus on aqueous-phase 

metabolites). Otherwise, chromatographic techniques coupled to mass spectrometry (GC-

MS, LC-MS, CE-MS) are implemented. Moreover, such as interactomics for proteins 

interactions, specific omics field is dedicated to studies of metabolic fluxes. More precisely, 

fluxomics is the term associated to dynamic metabolic fluxes modelling which can be useful 

for investigation of complex large-scale metabolic systems (Zhang et al., 2010).       

2.1.1.2.4 Combined approach: cytomics coupled with further molecular “-omics” 

techniques 

Cytomics consider complex microbial communities at a single-cell level through flow 

cytometry analyses. On one hand, it works to provide structural as well as functional 

features for each cell and on the other hand it works to elucidate single-cell contribution to 

the overall community state.  However, despite wide diversity of staining techniques, flow 

cytometry is not able to lead to a full understanding of complex microbial mechanisms. 

Therefore, cytomics is usually combined with other molecular “-Omics” such as proteomics 

(Jehmlich et al., 2010). Subpopulations of cells sorted thanks to flow cytometry 

measurement of cellular parameters are submitted to further molecular analyses for a deep 

understanding of cellular mechanisms involved in this particular subpopulation. Combined 

approach allows bypassing limitations inherent to both methods.  
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However, if this strategy is well established for eukaryote cell, its application to bacterial 

population is still restrained by several parameters. Major drawback is the limiting size of 

bacteria and the resulting low amount of intracellular species (i.e. volume of bacteria is 

approximately a thousand-fold smaller compared with blood cells, meaning that the protein 

content is reduced to the same degree (Jehmlich et al., 2010)). This weak cellular content is 

an issue for molecular analyses carried out on sorted subpopulation; especially for 

transcriptome analysis due to low half-time of bacterial mRNA (i.e. more time is necessary 

for sorting sufficient cell content for transcriptome analysis)  (Müller and Nebe-von-Caron, 

2010). In the case of proteome analysis, development of gel-free techniques decrease the 

number of required sorted cells for efficient proteome analysis; 106 cell against 109 for 

traditional gel based techniques (Müller and Nebe-von-Caron, 2010). Another limitation of 

this combined approach is the necessity of adequate staining for sorting bacterial 

subcommunities. Indeed, contrary to eukaryote cell, intrinsic characteristic of bacteria is not 

sufficient for efficient population segregation.   

Despite these drawbacks, Jehmlich et al. (2010) highlighted that a combined approach (flow 

cytometry sorting with further proteomics analysis) is suitable for a segregated 

characterization of the different members from a microbial community. They considered 

artificial mixed culture composed of 2 types of microbial strains for validating their method. 

By comparing proteomes from sorted subpopulations (thought to each corresponds to one 

of the strains) with proteomes of strains obtained by pure culture, they confirmed the 

efficiency of this combined approach for the individual study of the different members of a 

community.  Müller et al. (2012) also highlighted the efficiency of a combined approach for 

improving the comprehension of communities’ structure and functionalities. They underline 

two main advantages of a preliminary cell sorting step: (1) cell abundancy measured by flow 
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cytometry provides quantitative information, (2) focusing on subcommunities decreases 

background information from molecular analyses and increase their resolution. In their case, 

T-RFLP profiling of sorted subcommunities provides phylogenetic affiliations (based on 16S 

rDNA profiling and clone library previously constructed for similar samples) and specific 

metabolic capacities (based on the use of gene as functional markers) of the different 

members of the sorted subcommunities.      

2.1.2 Case study: management of anaerobic digester communities  

 

Figure 4 Anaerobic digestion metabolic pathways  

Anaerobic digestion of organic matter is recognized as an attractive and commercially viable 

option as source of alternative energy. Methane can be obtained from the anaerobic 

digestion of different organic matters such as industrial residues, agricultural wastes, 

industrial wastewaters and municipal solid wastes. The anaerobic degradation process 

involves synergistic interactions among the various bacteria and methanogenic archea 

existing as a complex consortium. Four biochemical steps are involved: (1) hydrolysis of 

substrate polymers to monomers; (2) acidogenesis (i.e. conversion of monomers to volatile 

fatty acids, carbon dioxide, and hydrogen); (3) acetogenesis (i.e. production of acetate from 
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the intermediate metabolites); and finally (4) methanogenesis (i.e. conversion of acetate and 

carbon dioxide to methane). 

2.1.2.1 Who is there? 

As described above, anaerobic digestion involves complex microbial communities. Due to 

incomplete understanding of microbiome complexity, anaerobic digesters management is 

mainly based on process parameters and empirical knowledge rather than on microbial 

parameters. Improving the comprehension of the structure and functionalities of microbial 

communities would give a better perspective for the optimization of processes as it would 

allow an efficient control/steering of microbial population. Main required information to 

reach this goal, and notably to establish microbial based performance parameters, deal with 

the diversity, the evenness and the dynamics over time of microbial community (Carballa et 

al., 2015) (see section 2.1.1.1 for a description of MRM parameters).  

Typically, molecular fingerprinting techniques are applied for the monitoring of microbial 

communities in bioreactors. de Araújo and Schneider (2008) confirm the reliability of 

sequencing segregated DNA bands from DGGE patterns for the identification of the major 

actors from a bioreactor community whereas Carballa et al. (2010) and Pycke et al. (2011) 

confirm suitability of the technique for the monitoring of population’s dynamics. Particularly, 

Carballa et al. (2010) underline the highly dynamic behavior of communities from 

thermophilic and mesophilic digester for both Bacteria and Archaea (rate of change between 

30% and 75% per 18 days which correspond to hydraulic retention time) even in stable 

performing periods. The DGGE analyses also provide information about communities’ 

richness. As well in thermophilic as in mesophilic conditions, richness is higher for bacterial 

population than for archaeal population. Moreover, mesophilic conditions induce higher 
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diversity than thermophilic. Finally, the results of the molecular fingerprinting allow 

determining community organization. In both temperature conditions, a higher evenness is 

measured for bacteria than archaea. Furthermore, mesophilic conditions result in 

communities displaying higher evenness than communities shaped by thermophilic 

conditions for both bacteria and archaea. Interestingly, despite variability in term of absolute 

values, similar trends are depicted by different molecular fingerprinting techniques involving 

the three parameters.  

However, over last years, with drawbacks inherent to molecular fingerprinting techniques  in 

mind (exposed in previous sections), next generation sequencing methods have been 

applied by several authors in order to deeply characterize microbial population from 

anaerobic digester. Sundberg et al. (2013) highlight major bacterial and archaeal phylum 

involved in 21 anaerobic digesters fed with different type of solid waste. Proteobacteria, 

Firmicutes, Bacteroidetes and Chloroflexi were the four major phyla in the bacterial domain 

whereas Methanosaeta was shown to be dominant in term of archaeal genus diversity. 

Moreover, it has been shown that populations from 21 studied bioreactors are mostly 

composed of microorganisms from the Clostridia bacterial class (Sundberg et al., 2013). This 

suggests this type of microorganisms play a key role during anaerobic digestion. Especially, 

Kinet et al. (2015) highlight this type of microorganisms are key player for cellulose 

anaerobic digestion. The study led by Sundberg et al. (2013) also underlines the relationship 

existing between communities composition and (1) the nature of the substrate; and (2) the 

process temperature. These correlations are respectively confirmed by Ziganshin et al. 

(2013) and by Tian et al. (2015). Substrate nature and operational conditions (temperature 

and organic loading rates) dependencies are especially true for bacteria, whereas archaeal 

population is more affected by reactor environment (VFA concentrations, ammonium 
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concentration or even reactor design) (Carballa et al., 2015). Razaviarani and Buchanan 

(2014) also implemented next generation sequencing method for elucidating the 

mechanisms underlying population dynamics in bioreactor so that a link between population 

dynamics and reactor performance can be established. Parameters such as pH, alkalinity and 

particularly VFA concentrations were proved to be major factors shaping microbial 

community dynamics.  

Flow cytometric monitoring has recently been considered as an alternative for elucidating 

complex microbial communities. On the basis of flow cytometry fingerprinting (CyBar 

method, see section 2.1.1.1.2 for a description of the method), Koch et al. (2013) highlighted 

adaptations of subcommunities towards artificial disturbances during a continuous digesting 

process. Further DNA based analyses underline subcommunities’ phylogenetic compositions 

remain pretty stable whereas significant changes affect cell abundancies. Moreover, 

functionalities were attributed to several specific subcommunities through the 

establishment of statistical correlation between abiotic parameters and fingerprinting data.    

2.1.2.2 Who is doing what? 

Correlating populations’ composition and dynamics resulting from molecular and cytometric 

techniques with operational conditions and performance parameters allows for functional 

insights. Especially, functional redundancy is thought to be beneficial for insuring digester 

performances in case of unpredictable stressful conditions. However these hypotheses are 

only based on statistical observations and need to be confirmed by molecular based proofs. 

Meta-omics techniques are suitable to provide such information and to clarify interspecies 

relationships. Complementary to metagenome analysis, Zakrzewski et al. (2012) applied 

metatranscriptomics for highlighting active microbial fraction involved in a full-scale 
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anaerobic digestion process and for identifying the most abundant enzymatic activities. As 

expected, transcripts corresponding to enzymes involved in the four different steps of the 

anaerobic digestion (substrate hydrolysis, acidogenesis, acetogenesis and methanogenesis) 

were the most abundant. Interestingly, it was also evidenced that most abundant species are 

responsible of majority of the community activity. With the same idea of elucidating 

metabolic pathways involved in anaerobic digestion in mind, metaproteomics approach was 

carried out in several studies. Heyer et al. (2015) reviewed some of these studies and 

highlight improvement of bioprocesses efficiency enabled by a such approach. Especially, the 

metaproteome of a community acting in an anaerobic digester fed with cellulosic substrate 

was investigated by Lü et al. (2014) complementary to its metagenome. Results from 

metaproteomics and further metagenomics suggest that cellulose and hemicellulose 

hydrolysis and fermentation results from the cooperative action of Caldicellulosiruptor spp. 

and Clostridium thermocellum species. Indeed several proteins thought taking part in 

cellulose and hemicellulose metabolism were identified and linked to these species. More 

precisely, proteome analysis suggests both bacteria are involved in cellulose degradation 

whereas hemicellulose is only degraded by Clostridium thermocellum. Other remarkable 

result is the absence of enzymes involved in acetoclastic methanogenesis, suggesting other 

pathway for acetate metabolism such as syntrophic acetate oxidation. Contrary, 

hydrogenotrophic methanogen pathway is clearly evidenced and can be linked to 

Methanothermobacter. This is in opposition with the habitual postulate attributing most of 

the methane formation to the acetoclastic pathway (Cabezas et al., 2015).                

2.1.2.3 Microbial based disturbance indicators 

As mentioned previously, environmental disturbances deeply affect microbiome structure. 

High attention must be paid to this issue in order to prevent the decrease of anaerobic 
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digester performances. Unfortunately, weak environmental modifications cannot always be 

highlighted by classical techniques dealing with measurement of bulk parameters. 

Therefore, alternative indicator must be implemented. Based on this statement and as 

change in microbiome structure is indicative of evolving conditions, population (in)stability 

assessment is considered as a promising alternative for early indication of processes 

disturbance.  

As flow cytometry has been proved to be powerful for highlighting subcommunities 

disturbances towards operational conditions evolution (Koch et al., 2013b) and as this 

technique complies with several criteria such as (1) no impact of sampling and data 

acquisition; (2) dense sampling analysis (time required for analysis inferior to 

microorganisms generation time); (3) relatively low cost; (4) ease of manipulation and data 

interpretation (weak operator dependency); Koch et al. (2014b) suggest flow cytometry as 

routine approach for digester microbiome monitoring and more precisely (in)stability 

measurement. 

Moreover, Carballa et al. (2015) proposed some microbial-based warning indicators based 

either on bacterial or archaeal communities. The first one is based on the monitoring of 

bacterial population evenness; a decrease from intermediate evenness (consider as 

optimum based on studies reviewing by Carballa et al., 2015) is considered as warning 

signals for anaerobic digester dysfunction. The second one is based on phylogenetic analysis 

of archaeal population; specific decrease in Methanosaeta population and/or active 

methanogen population highlight potential malfunction of the system.   
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2.1.2.4 Shaping reactor microbiome 

Once information about microbiome structure is available, adequate microbial-based 

strategy can be applied for improving anaerobic digestion efficiency. First of all, a judicious 

inoculum selection is primordial to avoid long adaptation period. Inoculum diversity and 

structure, elucidated thanks to different previous mentioned methods, must be in 

agreement with the different operational conditions (T°, type of substrate …). However, 

despite a rational inoculum choice, degradation of recalcitrant substrates can be problematic 

and thus bioaugmentation treatment with specific population can be required. 

Lignocellulosic biomass is a typical recalcitrant substrate whose degradation is recognized as 

a limiting step during anaerobic digestion (Adney et al., 1991; Vavilin et al., 2008). Addition 

of a highly active cellulosic population has been proved for enhancing performance of 

digester dealing with such substrates (Hu et al., 2016; Martin-Ryals et al., 2015; Peng et al., 

2014). Assessment of the establishment of the exogenous population among endogenous 

community informs about the efficiency of the treatment. For instance, Scherer and 

Neumann (2013) monitored the impact of compost addition on the distribution of different 

hydrolytic and methanogenic phylum in anaerobic digester on the basis of FISH analyses. 

They highlighted no increase of microbial count but important change affecting population 

structure, especially hydrogenotrophic methanogens. However, they were unable to affirm 

that positive effect on biogas production induced by compost addition is only due the 

increase of hydrogenotrophic methanogens. A positive impact of the hydrolytic bacteria, 

potentially brought with compost but not detected by the method implemented, cannot be 

excluded.  
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2.2 Phenotypic heterogeneity 

Despite an homogeneous DNA content, isogenic bacterial populations display phenotypic 

heterogeneities during bioprocesses (Müller et al., 2010). Stochasticity affecting cellular 

biochemical reactions and epigenetics mechanisms are considered as the major contributors 

to phenotypic heterogeneity in bioprocess conditions (Delvigne et al., 2014). Cell cycle and 

cellular division induce heterogeneities at lower extent. Contrary to mutations affecting 

genetic information and only becoming an issue on timescales longer than typical timescales 

processes, all these traits are non-heritable and only have short term effects (Figure 5).  

 

Figure 5  Different sources of heterogeneity involved in microbial phenotypic diversification under bioprocessing 
conditions (Delvigne et al., 2014). 

As mentioned at Figure 5, stochasticity impacts two types of biochemical reactions: (1) 

stochasticity affects genes expression and further protein synthesis and (2) stochasticity 

affects metabolic network. This stochasticity results as well from internal noise as from 

external noise. Moreover, intrinsic and extrinsic noise can be distinguished among internal 

noise. Difference between these two kinds of noise is more easily comprehensive through 

their experimental measurement. Experimentations are led with two forms of GFP gene 
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reporter under the control of promoters regulated by same repressor. The two GFP present 

different emission wavelengths and are quantified thanks to fluorescence intensity. Intrinsic 

noise induces, in a same cell, unequal fluorescent intensity at respective wavelength 

mirroring differentiated gene expression. While extrinsic noise similarly affects both reporter 

genes in a same cell but induces inter-cellular differences. Variable content of proteins 

(influencing GFP gene expression) are responsible of these differences (Patnaik, 2006). In 

respect to experimental data obtained with Escherichia coli, Bacillus subtilis and 

Saccharomyces cerevisiae, among the two type of intra-cellular noises, extrinsic noise is 

majoritarian contributor to gene expression stochasticity (Patnaik, 2006). 

As metabolic networks actors are modulated by gene expression, variability affecting this 

process results in heterogeneous metabolic activities. However, stochasticity affecting 

metabolic reactions cannot be only attributed to the stochastic nature of gene expression. 

ATP imbalance and molecular crowding can also be advanced as responsible for metabolic 

pathways heterogeneities (Delvigne et al., 2014). Furthermore, it is important to note that 

interactions between these two types of reactions are reciprocal. Indeed, if stochasticity in 

gene expression affects metabolic network through heterogeneous expression of metabolic 

enzymes, metabolic reactions in turn impact gene expression as some metabolites are key 

players of  gene expression regulatory networks (de Lorenzo, 2014). 

Finally, in large-scale bioprocess conditions, inherent heterogeneous micro-environmental 

conditions (e.g. emergence of temperature gradients, spatial heterogeneities in substrate 

distribution) reinforced stochasticity of cellular biochemical reactions. Fluctuating 

environment induce specific response at different levels of microbial physiology 

(transcriptional, translational and metabolic) (Delvigne et al., 2014). Particularly, chemical 
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heterogeneities such as concentration gradients of substrate, metabolites or dissolved 

oxygen take great part in physiological heterogeneities displayed by biofilm communities 

(Stewart and Franklin, 2008). Cells respond adaptively to local environment by turning on or 

off certain genes. Therefore, a wide range of distinct localized adaptations results from 

heterogeneous microenvironmental conditions in biofilm.    

2.2.1 Impact of Phenotypic heterogeneities – Bet-hedging and division of labor 

strategies 

Typically, phenotypic heterogeneities are recognized for negatively impacting global 

productivity of a process through the emergence of subpopulation exhibiting ‘non-producer’ 

or ‘low-producer’ phenotype (Figure 6) (Delvigne et al., 2014). However, phenotypical 

diversification, through bet-hedging and division of labor strategies, can also be beneficial 

for process robustness. 

 

Figure 6 The accepted picture of the negative impact of microbial phenotypic heterogeneity on process performance. In 
the scheme a subpopulation with reduced protein synthesis capacity is shown that lowers the global yield of the 
bioprocess (F. Delvigne et al., 2014). 
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2.2.1.1 Bet-hedging strategy 

In the environment, microbial populations exploit phenotypical diversification for facing 

adverse and fluctuating conditions. Thanks to random switch between phenotypes 

appropriate to each environment, cells are able to overcome more easily an environmental 

change (Martins and Locke, 2015). Such survival strategy, exploiting phenotypic variation, is 

proposed by some authors as bet hedging strategy (Martins and Locke, 2015; Veening et al., 

2008). Among several co-existing phenotypes, only one is adapted to the environmental 

conditions encountered at a particular time so that long term population survival is ensured 

(figure 7). 

 

Figure 7 Cell-to-cell heterogeneity often reflects collective strategies, so one must ‘zoom out’ back to the level of 
populations to understand it. (c–g) The strategy of bet hedging copes with unpredictable environmental change. Often, a 
fraction of bacterial cells growing in rich media displays a phenotype that is not adequate for that particular environment 
(dark green cells) (c). These cells can, however, survive an unpredictable stress (e.g., antibiotic exposure) (d,e), thus 
allowing the population to survive and thrive again in the future (f,g). (h–j) Many microbes form multicellular aggregates 
and implement a strategy of division of labour, which allows the population to endure stress and activate developmental 
programmes. In microbial biofilms, the colony grows from a small aggregate (h) to a large sized community. Biofilms 
accommodate significant cell-to-cell heterogeneity. The growth of the structure relies on spatial and temporal regulation 
of apoptotic programmes (orange cells with dashed lines) (i), while the survival of the colony (j) is dependent on the 
successful sporulation, dispersal and future germination of a sub fraction of cells (dark blue spores) (Martins and Locke, 
2015). 
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2.2.1.2 Division of labor 

Phenotypic heterogeneities observed in an isogenic population can also result from a 

division of labor strategy. Especially, in single species biofilm communities, bacteria exploit 

stochastic gene expression (cells switching randomly between discrete physiological states 

by differentiating gene expression) in order to divide labor required for biofilm formation 

(Figure 7). Specialized subpopulations have been demonstrated in B. subtilis biofilm. Only a 

small proportion of cells has been evidenced for expressing gene encoding matrix 

components (Chai et al., 2008). The energy cost, inherent to the synthesis of these 

molecules, is saved by non-producing cells which benefit from matrix components produced 

by others. Similarly, biofilm maintenance and community survival/dispersion is ensured 

through functional specialization in mature communities (Figure 7). A part of the community 

multiply while others differentiate into several phenotypes such as matrix producer, spore 

former or competent cell through complex regulatory pathways (Stewart and Franklin, 

2008). More than co-existence of specialized groups, division of labor strategy imply positive 

interactions between different groups. A colony formed of multiple cell types is assumed 

preforming better than a colony that consists solely of any one of them. Cooperative 

interactions of specialized sub-populations yield ecological benefit for the community. 

Therefore, similarly to bet-hedging strategy, division of labor increases population 

robustness and allows community to overcome environmental stresses.        

2.2.2 Harnessing phenotypic heterogeneities in biofilm bioreactor 

Recently, potential of biofilm has been pointed out for fine chemical/biological synthesis 

(Cheng et al., 2010). Division of labor (see section 2.2.1.2. for details) occurring in 

monospecies biofilm improves the robustness and the productivity of processes when 

comparing with planktonic cell strategy. In a process optimization perspective, such biofilm 
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microbiota cannot be considered as a ‘blackbox’. The behavior of these “multi-phenotypes” 

multicellular communities should be deeply understood for the efficient management of 

biofilm reactors. Particularly, physiological heterogeneities and related underlying molecular 

mechanisms involved in biofilm formation and maintenance must be deeply understood for 

process optimization. Moreover, spatial heterogeneities should be taken into account.  

2.2.2.1 Highlighting physiologic heterogeneities in single species biofilm 

Stewart and Franklin (2008) report advantages and limitations of several experimental 

techniques which allow mapping physiological activities in biofilm. Among these ones, the 

most popular approach for characterizing localized levels of gene expression and resulting 

heterogeneities is probably the use of reporter genes fused to promoter regions of interest 

(Stewart and Franklin, 2008). Garcia-Betancur et al. (2012) applied this approach in order to 

analyze subpopulations responsible for matrix and surfactin production among B. subtilis 

biofilms. Fluorescent reporters are inserted into chromosome under the control of 

promoters related to the expression of the genes of interest; resulting fluorescence is then 

monitored either by fluorescence microscopy or flow cytometry. Such approach provides 

spatial and/or quantitative information about subpopulations expressing investigated genes. 

Moreover, coordination between cell differentiation pathways can also be highlighted 

through cells incorporating several reporters. It was notably shown for differentiation of B. 

subtilis biofilm subpopulations into matrix producers and cannibal phenotypes (López et al., 

2009). 

Fluorescent stains are also useful for discriminating differentiated subpopulations based on 

their physiological features. Used in combination, Syto9 (a permeable membrane stain which 

should penetrate and stain all cells) and propidium iodide (a dye which only stains cells 
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displaying compromised membrane) allows determining cell-membrane permeability. In this 

way, distinct resistance of subpopulations against antimicrobial treatment can be highlighted 

among biofilm subpopulatitons. Similarly, sporulating population can be evidenced thanks to 

Acridine Orange (AO) staining. Florescence intensity resulting from stain binding differs 

according to dye is bind to spore or vegetative cells. 

Moreover, these techniques that allow evidencing different specialized subpopulations can 

be a basis for a cell sorting approach. Using selective GFP labelling of active and dormant 

subpopulations and cell sorting, Williamson and co-workers (2012) highlight differentiated 

tolerance of subpopulations face to antibiotics according to their growth state. Moreover, 

the different level of resistance can be related to the spatial localization of the 

subpopulation in the biofilm as this position has been evidenced for impacting their growth 

behavior. Cells located deeper in the biofilm matrix, displaying a viable but slow-growth 

state, has been proved as antibiotic-tolerant contrary to actively dividing cells from the top 

of the biofilm. As for multispecies microbial communities, subsequent physiological and/or 

molecular analyses (e.g. transcriptome or proteome analysis could be considered) can 

provide specific information about sorted subpopulations so that further management of 

the subpopulations is facilitate. By promoting given subpopulations and controlling/steering 

microbial heterogeneities in biofilm, overall efficiency of processes could be improved (MRM 

concept (Verstraete et al., 2007)).  

2.3 Concluding remarks 

The recent advances in culture-independent techniques, particularly in the field of “-Omics” 

based and flow cytometry technologies, allow for identifying the different actors of 

heterogeneous microbial communities. Sequencing of the gene coding for 16s rRNA allows 
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the identification of the different type of bacteria involved in multispecies communities 

while flow cytometry is proved for identifying the different phenotype present in an isogenic 

community. Given to the fast dynamics of microbial communities, advanced monitoring is 

required for ensuring efficient control/steering of bioprocess. Flow cytometry, fits well with 

such advanced analysis of the communities’ structure whereas molecular techniques are not 

compatible with a routine implementation due to its cost and time requirement.  

On another hand, there are still difficulties for explaining the role of each 

phenotype/genotype among multicellular communities. “Who is doing what?" key question 

is still only partially answered. Approaches combining the advantages of both flow cytometry 

and “-omics” techniques aims to elucidate community behavior at single-cell level. 

Nevertheless, despite recent development, several factors are still restricting for the 

implementation of such approach to bacterial communities. Particularly, weak concentration 

of intracellular molecular species targeted by “-omics” techniques in bacteria limits their 

efficient analysis (e.g. metabolites concentration in E. coli is equal to ~ 3 × 108 copies/cell 

(http://bionumbers.hms.harvard.edu)).     
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3 Scientific strategy and thesis structure 

3.1 Scientific strategy 

Anaerobic digestion is an interesting way for valorizing organic wastes such as ligno-

cellulosic biomass. However, an optimization of the anaerobic digestion processes involving 

such substrates is still required. By these works, we try to bring some elements for improving 

the performances of these bioprocesses and more generally for improving performances of 

bioprocesses involving complex microbial communities.    

In a first time, the negative impact of cellulose hydrolysis on the global performance of 

anaerobic digestion of (ligno-)cellulosic substrates is investigated. Particularly, an efficient 

mean of intervention for overcoming the limitation inherent to this step of the anaerobic 

digestion process is sought. Due to its relatively low cost and its simplicity of 

implementation, management of microbial resources involved in the bioprocess is an 

interesting option. Bioaugmentation treatment with cellulolytic bacterial strains adapted to 

environmental conditions encountered during anaerobic digestion is considered in this 

section for improving bioprocess performances. 

In order to optimize the management of the microbial resources involved in bioprocceses, 

an efficient monitoring approach is required. Based on this statement, the second part of the 

works is devoted to the development of an efficient method for the monitoring of 

multispecies microbial communities during bioprocesses. Due to several limitations, classical 

culture-dependent techniques are non-adapted for this purpose. Therefore, culture-

independent techniques must be taken into account. Particularly, displaying characteristics 
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required for a routine on-site implementation, flow cytometry is a promising option for the 

analysis of microbial communities. Therefore, the monitoring approach developed in this 

section integrates flow cytometry for the characterization of bacterial cells. Moreover, 

further bioinformatics approaches are integrated for obtaining operator independent 

fingerprint of the investigated communities. 16S rRNA gene sequencing is considered for 

validating data obtained through the designed flow cytometry based approach.  

Many microbial communities involved in environmental biotechnologies form biofilm 

structure. Therefore, a monitoring technique adapted to such particular multicellular 

structures is required for elucidating and improving bioprocesses in which they are involved 

in. However, due to genotypic and phenotypic heterogeneity, functional monitoring of 

complex multispecies biofilm communities remain very tricky (Røder et al., 2016). In order to 

simplify the approach, our works will deal with monospecies biofilm communities. As for 

planktonic multispecies communities, efforts will be done for developing an efficient flow 

cytometry technique allowing fingerprinting of these “multi-phenotypes” communities. 
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3.2 Thesis structure 

The body of the thesis which presents the more relevant results of the experimentations is 

divided into 3 chapters. The two first chapters address the management of complex 

multispecies communities while the third one deals with the monitoring of heterogeneities 

displayed by isogenic biofilm communities. Each chapter has been written in the format of a 

scientific publication. 

In the first chapter, we describe the relevance of bioaugmentation treatment as an efficient 

way to improve the efficiency of cellulose anaerobic digestion. Moreover, the efficiency of 

16S rRNA gene sequencing for describing complex communities during bioprocess is also 

depicted.     

In the second chapter, we describe how flow cytometry fingerprinting approach can be 

considered as an efficient alternative to sequencing techniques for the routine monitoring of 

complex microbial communities in bioprocess conditions.  

The third chapter focuses on the monitoring of metabolic heterogeneities among 

multicellular singlespecies biofilm communities.  Particularly, the extension of the flow 

cytometry fingerprinting approach for the monitoring of metabolic heterogeneities during 

biofilm formation is considered in this chapter.   

Finally, the last section is devoted to the general discussion of the results. Results from the 

three chapters are discussed globally and perspectives are proposed for overcoming the 

limitations encountered during the works.   
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4  Results 

 

 

CHAPTER I: 

IMPROVING ANAEROBIC DIGESTION OF CELLULOSIC 

BIOMASS: TOWARD A MICROBIAL RESOURCE 

MANAGEMENT APPROACH 

 

 

 

 

This chapter corresponds to the article entitled "Thermophilic and cellulolytic consortium 

isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward 

a microbial resource management approach" (Kinet Romain, J. Destain, S. Hiligsmann, P. 

Thonart, L.Delhalle, B.Taminiau, G.Daube, F. Delvigne) published in Bioresource Technology, 

Volume 189, August 2015, Pages 138-144. 
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Abstract 

A cellulolytic consortium was isolated from a composting plant in order to boost the initial 

hydrolysis step encountered in anaerobic digestion. Significant improvement of the cellulose 

degradation, as well as biogas production, was observed for the cultures inoculated with the 

exogenous consortium. 16S rRNA gene sequencing analyses pointed out a weak richness 

(related to the number of OTUs) of the exogenous consortium induced by the selective 

pressure (cellulose as sole carbon source) met during the initial isolation steps. Main 

microbial strains determined were strictly anaerobic and belong to the Clostridia class. 

During cellulose anaerobic degradation, pH drop induced a strong modification of the 

microbial population. Despite the fact that richness and evenness were very weak, the 

exogenous consortium was able to adapt and to maintain the cellulolytic degradation 

potential. This important result point out the fact that simplified microbial communities 

could be used in order to increase the robustness of mixed cultures involved in 

environmental biotechnology. 

 

Keywords : microbial communities, pyrosequencing, anaerobic digestion, composting, process 

engineering 
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1 Introduction 

Anaerobic digestion of organic matter is recognized as an attractive and commercially viable 

option as a source of alternative energy. Methane can be obtained by anaerobic digestion of 

different organic matters including industrial residues, agricultural wastes, industrial 

wastewaters and municipal solid wastes. The anaerobic degradation process involves 

synergistic interactions among various bacteria and methanogenic archea existing as a 

complex consortium. Four biochemical steps are involved, i.e. hydrolysis of substrate 

polymers to monomers, acidogenesis and conversion of monomers to volatile fatty acids, 

carbon dioxide, and hydrogen, acetogenesis and production of acetate from the 

intermediate metabolites, and finally methanogenesis with the conversion of acetate and 

carbon dioxide to methane. Lignocellulosic biomass represents an important part of the 

different reusable matter sources. This biomass is mainly composed of three different 

polymers i.e. cellulose, hemicellulose and lignin. Vavilin et al. (2008) highlighted the fact that 

the hydrolysis of lignocellulosic substrate is the rate-limiting step during biogas production 

from wastes rich in lignocellulosic plant fiber. Thus, effective hydrolysis of recalcitrant 

substrate is necessary for a profitable biogas production from fiber-rich wastes. 

Degradability improvement can be achieved by different physical (Pommier et al., 2010), 

chemical (Monlau et al., 2012) or biological (Zhang et al., 2011) pretreatments. However, 

pretreatments increase the cost of the global process and can generate various compounds 

interfering with microbial activities (Palmqvist & Hahn-Hägerdal, 2000). Therefore, a direct 

efficient bioconversion of raw lignocellulosic waste during anaerobic digestion process is 

more favorable.  
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As efficient lignocellulosic biomass degradation occurs in many kinds of natural 

environments by means of cooperative action of many microorganisms (cellulolytic and non-

cellulolytic), management of consortia involved in these natural processes can be a source of 

sustainable solution. On the basis of this hypothesis,  the “Microbial Resource Management” 

concept was developed by Verstraete et al. (2007). In order to efficiently manage 

endogenous microbial populations, three key questions must be answered, i.e. “Who is 

there?”, “Who is doing what?”, and  “Who is doing what with whom?”(Verstraete et al., 

2007). Marzorati et al. (2008) propose three parameters, based on molecular tools, to 

answer these questions: (i) the range-weighted richness (Rr) reflecting the carrying capacity 

of the system, (ii) the dynamics (Dy) reflecting the specific rate of species coming to 

significance, and (iii) functional organization (Fo), defined through a relation between the 

structure of a microbial community and its functionality (Marzorati et al., 2008). 

Moreover, the integration of this concept to the enrichment culture techniques could be a 

powerful tool in order to engineer microbial consortia with given properties.  Zuroff and 

Curtis (2012), reviewed some works about enriched cellulolytic natural consortia. However, 

only few works have emphasized on strict anaerobic enrichment. To date, most of the works 

have been focused on enrichment culture under aerobic or facultative anaerobic conditions. 

As well in aerobic conditions (Wongwilaiwalin et al., 2010) as in anaerobic conditions 

(Izquierdo et al., 2010) compost is a frequent microbial resource for enrichment culture. 

Nevertheless, other types of inocula have been tested for the development of efficient 

microbial cellulolytic communities, such as forest soil (Feng et al., 2011), or anaerobic 

digester sludge (Yan et al., 2012). Accordingly, based on enrichment method from compost 

samples, the present work has led to the design of an anaerobic thermophilic cellulolytic 
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microbial consortium able to degrade cellulose under conditions related to anaerobic 

digestion process.   

2 Materials and methods 

2.1 Biological Materials 

Compost 

Compost samples were collected from a composting center in Naninne, Belgium, exclusively 

supplied with green lignocellulosic waste. Sampling was realized during thermophilic phase 

of composting process at a temperature of 73.2°C. 

Anaerobic sludge 

Anaerobic sludge used as inoculum for BMP test originates from a full-scale anaerobic 

digester fed with agro-food organic waste and agricultural waste. 

2.2 Cellulolytic microbial consortium preparation 

BMP assay medium (Wang et al., 1994)  supplemented with 10 g/l of cellulose (Whatman 

filter paper) is used as enrichment medium. Five grams of compost samples are inoculated in 

125 ml bottles containing 45 ml of sterilized medium with a filter paper strip as an indicator 

for cellulase activity. Cultures are incubated at 37°C and 55°C under anaerobic conditions 

and without stirring. To establish anaerobic conditions, headspace of bottles, tightly capped 

with rubber septa and sealed with aluminum seals, is first flushed with carbon dioxide and 

after with  oxygen-free nitrogen gas. Once the strip of filter paper begins to be degraded, 5 

ml of culture are transferred into fresh enrichment medium. This process is repeated several 

times.  
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In parallel of this anaerobic enrichment, aerobic tests are led according to the procedure 

employed by Wongwilaiwalin et al. (2010). Five grams of compost samples are inoculated in 

flask containing 45 ml of PCS medium (0.1% yeast extract, 0.5% peptone, 0.5% CaCO3, 0.5% 

NaCl, 1% filter paper, pH 8.0) with a filter paper strip as an indicator for cellulase activity. 

Cultures are incubated at 37°C and 55°C under aerobic conditions and without stirring.    

2.3 Cellulose degradation capacity test 

The cellulose degradation tests are led in BMP medium supplemented with 10 g/l of 

cellulosic material (filter paper and Avicell) for 7 days at 55°C under anaerobic conditions 

without stirring and with uninoculated medium as a control. At the end of the culture, 

centrifugation (8000 x g) allows separation of supernatant and pellet which includes residual 

substrate and microbial biomass. Pellet is then suspended in 100 ml acetic acid/nitric acid 

reagent (Feng et al., 2011) and heated at 100 °C for 30 min to remove the biological cells. 

Then, acetic acid/nitric acid treated suspension is filtered. The remaining cellulosic material 

is washed three times using 100 ml of distilled water each time. After washing and filtration, 

filtered solids are dried at 105 °C and determined gravimetrically (Feng et al., 2011).The 

weight loss of cellulosic materials is calculated by subtracting the weight of  residual 

substrates from the total weight of cellulosic materials before degradation. Degradation 

ratio is calculated according to the equation: 

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (%) =  
𝑀𝑡− 𝑀𝑟

𝑀𝑡
 × 100        (eq.1)  

where  𝑀𝑡 is total weight of the cellulosic materials before degradation and  𝑀𝑟 is the weight 

of the residual substrates after degradation. All experiments were performed in triplicate 

and the average values were reported.  
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2.4 Anaerobic digestion test (Biochemical Methane Potential assay) 

BMP assay medium (Wang et al., 1994) is used. Experiments are performed according to the 

procedure published by Wang et al. (1994) and all experiments are carried out in triplicate in 

125 ml sterile glass serum bottles. 0.5 g of filter paper, as cellulosic substrate, or 0.5g of 

mechanically treated paper paste (composition:  53% of holocellulose, 32% of lignin and 15% 

of others compounds) , as lignocellulosic substrate, are introduced into bottles containing 45 

ml of BMP medium, and 5 ml of inocula. Inocula consisted of either only anaerobic sludge or 

a mix 50:50 of anaerobic sludge and isolated cellulolytic consortium. pH is adjusted with a 

0.5 M KOH solution to achieve an initial pH of 7.3 in each sample, and a maximum variation 

during the culture period of pH ±1 is maintained. The sample bottles are capped tightly with 

rubber septa and sealed with aluminum seals. Nitrogen is passed into the bottles to flush out 

air and other gases before incubation at 55°C.  

The biogas productions and the composition of produced biogas are monitored for 90 days. 

Biogas production are regularly collected using a syringe fitted with a needle and the 

composition is monitored according to procedures described in section 2.7 (gas phase 

analysis). First, collected biogas (or a fraction of collected biogas) is injected in 100 ml gas 

replacement equipment containing a 9 M KOH solution. This KOH procedure allows for a fast 

determination of carbon dioxide concentration in gas phase. In a second time, CH4 and H2 

concentration are determined. To do this, 25 µl of bottles’ gas phase are analyzed by 

chromatography. During this second analysis, CO2 concentration determined by KOH 

procedure is confirmed. 

Blank samples are realized to highlight the impact of organic matter introduced with the two 

different inocula. Blank samples consist of 5 ml of inocula and 45 ml of BMP medium. No 
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energetic substrate is added to blank samples. Blank samples’ biogas productions are 

subtracted from samples’ production inoculated with the corresponding inocula.    

2.5 Cellulose degradation kinetics 

Independent bottles are prepared in triplicate for each sampling time. Growth conditions 

similar to 2.4 but without pH adjustment are used. For each sampling time, cellulose 

degradation ratio, metabolites accumulation and population composition are analyzed.  

Method presented in section 2.3 is used for the determination of cellulose degradation 

ratios. Volatile Fatty Acids (VFA), ethanol and glucose concentration in liquid phase are 

analyzed according to procedure described in section 2.7 (Liquid phase analysis). For each 

sampling time, bacteria identifications are realized on the sample presenting the highest 

degradation ratio and according to method developed by Delcenserie et al. (2014) described 

in section 2.6 (16S rDNA sequencing)  

2.6 16S rDNA sequencing 

 Total DNA extraction 

Total DNA is isolated from each primary suspension using the DNeasy Blood & Tissue DNA 

extraction kit (Qiagen Benelux B.V., Venlo, the Netherlands), following the manufacturer’s 

extraction for gram-positive bacteria. Briefly, the bacteria present in the suspension are 

lysed for 1 hour at 37°C in a lysis buffer (Tris-HCL 20mM, sodium EDTA 2mM, triton x-100 

1.2% and lysozyme 20mgml-1.  The suspension is then treated with proteinase K for 1 hour at 

56°C.  The resulting suspension is mixed with ethanol and loaded on a Dneasy Mini-spin 

column. The DNA is then washed 2 times with QIAgen buffers and eluated into 

DNase/RNase-free water and its concentration and purity are evaluated by optical density 

using the NanoDrop ND-1000 spectrophotometer (Isogen Life Science NV, Sint-Pieters-
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Leeuw, Belgium). The DNA samples are stored at −20°C until use in 16S rDNA amplicon 

pyrosequencing analysis. 

16S rDNA Gene Library Construction and Pyrosequencing 

The 16S PCR libraries were generated for the 5 samples. The primers E9-29 and E514-530 

(Brosius et al., 1981), specific to bacteria, were selected for their theoretical ability to 

generate the least bias of amplification capability among the various bacterial phyla (Wang & 

Qian, 2009). The oligonucleotide design included 454 Life Sciences A or B sequencing 

titanium adapters (Roche Diagnostics Belgium NV, Vilvoorde, Belgium) and multiplex 

identifiers fused to the 5’ end of each primer. The amplification mix contained 5 U of 

FastStart highfidelity polymerase (Roche Diagnostics Belgium NV), 1× enzyme reaction 

buffer, 200 μM deoxynucleotide triphosphates (dNTP; Eurogentec SA, Liege, Belgium), 0.2 

μM concentration of each primer, and 100 ng of genomic DNA in a volume of 100 μL. 

Thermocycling conditions consisted of a denaturation step at 94 °C for 15 min, followed by 

25 cycles of 94 °C for 40 s, 56 °C for 40 s, 72 °C for 1 min, and a final elongation step of 7 min 

at 72 °C. These amplifications were performed on an EP Master system gradient apparatus 

(Eppendorf AG, Hamburg, Germany). The PCR products were run on a 1 % agarose 

electrophoresis gel and the DNA fragments were extracted and purified using an SV PCR 

purification kit (Promega Benelux B.V., Leiden, the Netherlands). The quality and quantity of 

the products were assessed using a PicoGreen double-stranded DNA (dsDNA) quantitation 

assay (Isogen Life Science NV). All libraries were run in the same titanium pyrosequencing 

reaction using Roche multiplex identifiers. All amplicons were sequenced using the Roche 

GS-Junior Genome Sequencer instrument (Roche Diagnostics Belgium NV). 
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16S rDNA Data Processing 

The 16S rDNA sequence reads were processed using the MOTHUR software package (Schloss 

et al., 2009). The quality of all the sequence reads was assessed by using the PyroNoise 

algorithm implemented in MOTHUR and filtered according to the following criteria: minimal 

length of 425 bp, an exact match to the barcode, and 1 mismatch allowed to the proximal 

primer. The sequences were checked for the presence of chimeric amplifications using the 

UCHIME algorithm(Edgar et al., 2011). The resultant read sets were compared with a 

reference data set of aligned sequences of the corresponding region derived from the SILVA 

database of full-length rDNA sequences (http://www.arb-silva.de/) implemented in 

MOTHUR (Pruesse et al., 2007). The final reads were clustered into operational taxonomic 

units (OTU) with the nearest neighbor algorithm using MOTHUR with a 0.03 distance unit 

cutoff. A taxonomic identity was attributed to each OTU by comparison with the SILVA 

database (80 % homogeneity cutoff). As MOTHUR is not dedicated to taxonomic assignment 

beyond the genus level, all unique sequences for each OTU were compared with the SILVA 

data set (version 111), using the BLASTN algorithm 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_

LOC=blasthome(Altschul et al., 1990)). For each OTU, a consensus detailed taxonomic 

identification was given based upon the identity (less than 1 % of mismatches with the 

aligned sequence) and the metadata associated with the most frequent hits (validated 

bacterial species or not). 

  

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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BioSample Accession Numbers 

All the BioSample sequences were deposited at the National Center for Biotechnology 

Information (NCBI; http://www.ncbi.nlm.nih.gov) and are available under the BioProject ID 

PRJNA273787 

2.7 Analytical methods 

Gas phase analysis 

KOH operating procedure 

Water containing 9 M KOH in 100 ml gas replacement equipment is used to monitor the 

carbon dioxide concentration in gas phase. The absorption potential of the KOH solution is 

regularly measured using gas mixtures containing 0, 20, 35, 80, and 100 % CO2. 

Gas phase chromatography 

Hewlett Packard 5890 Series II gas chromatograph (GC; Agilent Technologies, Santa Clara, 

CA, USA) equipped with a 30 m long, 0.32 mm id Alltech GAS PRO GSC column (Grace, 

Deerfield, IL, USA) in series with a 20 m long, 0.25 mm id Chrompack CARBOPLOT P7 column 

(Agilent Technologies) and a thermal conductivity detector allows H2, CH4, and CO2 

separation and detection. The carrier and reference gas for determining the proportions of 

CH4 and CO2 in the biogas is He. A mixture of N2 (15 %), CO2 (35 %), and CH4 (50 %) is used as 

standard. For H2 analysis, carrier and reference gas is N2. A mixture of H2 (80 %) and CO2 (20 

%) is used as standard. The GC injection port, the thermal conductivity detector chamber, 

and the oven are maintained at 90, 110, and 55 °C, respectively.  

As well for samples analysis as for standardization, 25 µl of gas are injected on-column. 



Results Chapter I 

64 
 

Liquid phase analysis 

Volatile fatty acid (VFA) concentrations in the culture medium were determined using an 

Agilent 1110 series high performance liquid chromatograph (HPLC; Agilent Technologies) 

equipped with a Supelcogel C-610H column (Sigma-Aldrich, St Louis, MO, USA) preceded by 

a Supelguard H precolumn (Sigma-Aldrich). The columns were kept at a temperature of 40 

°C, and the isocratic mobile phase was 0.1 % H3PO4 (in ultrapure, ‘‘milliQ’’, water), at a flow 

rate of 0.5 ml min-1. A differential refraction index detector, kept at 35 °C, was used. This 

analysis took 35 min at a maximum pressure of 60 bar.   

2.8 Ecological parameters calculation 

Inspired by resource management indices (Marzorati et al., 2008) and based on amplicon 

sequencing results, ecological parameters are calculated. Richness parameter corresponds 

to the number of observed OTUs at species level for each sample. Population evenness is 

expressed by the Shannon equitability (EH) parameter calculated according to the following 

formula (eq.2): 

𝐸𝐻 =  𝐻 𝐻𝑚𝑎𝑥⁄    (eq.2) 

where H represents the Shannon’s diversity index, calculated according to (eq.3) : 

𝐻 =  − ∑ 𝑝𝑖
𝑆
𝑖=1 ln 𝑝𝑖    (eq.3) 

where S represents the total number of observed species in the sample and 𝑝𝑖 the 

proportion of S made up of the ith species. Equitability assumes a value between 0 and 1 

with 1 being complete evenness.  
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The community dynamics is evaluated via two parameters: change (%) and rate of change 

(%.h-1). % of change is calculated for each sampling time compared to inoculum (time = 0h) 

in accordance to the formula (eq.4):  

% 𝑐ℎ𝑎𝑛𝑔𝑒 = 100 % − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  (eq.4)  

where similarity values are based on the Pearson product-moment correlation (Marzorati et 

al., 2008). The rate of change expresses how rapidly the population evolves between two 

samples according to the formula (eq.5): 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒(𝑥,𝑦) (%. ℎ−1) =  
% 𝑐ℎ𝑎𝑛𝑔𝑒(𝑥,𝑦)

ℎ𝑦−ℎ𝑥
   (eq.5) 

where h represents the number of hours between sampling and inoculation.       

3 Results and discussion 

3.1 Consortium isolation  

Efficient thermophilic cellulose-degrading microbial community is obtained after successive 

subcultivations of compost, as microbial inocula, under specific conditions. The consortium is 

able, in seven days, at high temperature (55°C) and in anaerobic conditions with pH control 

and without stirring, to degrade filter paper extensively. 98.7 % ±0.3 of maximal weight loss, 

equivalent to a global degradation rate of 0.06 g.l-1.h-1, is obtained. In comparison, in the 

same conditions, consortia isolated by Izquierdo et al. (2010) display a global degradation 

rate of 0.05 g.l-1.h-1. The degradation capacity of the consortium is also similar to the one 

obtained by Tachaapaikoon et al. (2012) with pure cultures of Clostridium thermocellum, an 

anaerobic thermophilic species recognized for its high cellulose-degrading capacity. Filter 
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paper is not the only cellulosic substrate efficiently degraded by the consortium. Contrary to 

Viravaidya et al. (2011), high level of crystallinity has no negative impact on substrate 

degradation. Isolated microorganisms can degrade, with high efficiency and the same 

degradation rate (0.06 g.l-1.h-1), crystalline cellulose (98.4 %  ±0.2 maximal weight loss). 

Isolated consortium seems to have a complete set of efficient cellulolytic enzymes to 

degrade different forms of cellulose.     

Surprisingly, no growth was recorded in aerobic conditions. Consortium presents exclusive 

strict anaerobic characteristics. Based on compost samples were taken during aeration step 

and at low depth in the greenwaste mass, this property is unexpected. Previous consortia 

enriched from compost were, mostly, composed of aerobic and anaerobic species 

((Wongwilaiwalin et al., 2010), (Feng et al., 2011)). Aerobes probably eliminating oxygen 

before anaerobic cellulolytic bacteria degrade substrate under anaerobic conditions.  

The thermophilic nature of the consortium is more comprehensive as inocula come from 

compost with a recorded temperature of 73°C. 

3.2 Impact of cellulolytic microbial consortium on biogas production 

The impact of consortium on biogas production is evaluated under thermophilic conditions 

during biochemical methane potential tests (adapted method from Wang et al. (1994)). 

Experiments are led at 55°C under anaerobic conditions with pH adjustment on cellulosic 

and lignocellulosic substrates, respectively filter paper and mechanically treated paper past. 

For both inoculums (i.e. untreated anaerobic sludge and bioaugmented sludge), the values 

discussed below express the productions measured for the replicates displaying the highest 

final cumulative volume.  
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Figure 1 presents the evolution of cumulated volumes of biogas and methane generated 

from substrates during 90 days by industrial sludge alone and a mix 50:50 of this sludge and 

consortium. For all the experiments, H2 concentrations are negligible. CO2 and CH4 are the 

sole components present in significant proportion in produced biogas. For the filter paper 

digestion, the results highlight a positive effect of the isolated consortium on biogas and 

methane production all along the process (90 days). Mix inoculum induces higher biogas and 

methane production than digester sludge (table 1). These increases represent gains of 14% 

for biogas production and 15% for accumulated methane. The addition of consortium allows 

increasing bioconversion rates of cellulosic substrate into biogas. By comparison with the 

theoretical yield of biogas production from carbohydrates (746 ml.g-1, calculated according 

to Buswell equation (Buswell & Mueller, 1952)), our experiments point out bioconversion 

rates of 85% and 97%, respectively when the industrial sludge is used alone and when the 

consortium is added. The addition of an efficient cellulolytic population offsets the lack of 

efficiency of industrial sludge.      

Consortium addition also provides positive effect during lignocellulosic substrate anaerobic 

digestion. Total biogas and methane production increase (table 1). After the addition of the 

cellulolytic population, respective gains of 15% and 12% are obtained. Despite positive 

impact of the cellulolytic microorganisms, substrate structure still induces high recalcitrance 

to bioconversion. High lignin content of wood, unaffected by mechanical process applied to 

obtain paper paste, is probably responsible of this recalcitrance. Indeed, hardly degraded 

anaerobically, lignin protects cellulose fibers from anaerobic digestion. Accordingly, Salehian 

et al. (2013) highlighted untreated wood substrate are not easily converted to methane.  
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Figure 1 Evolution of total biogas and methane production (ml.g cellulose
-1

) during anaerobic and thermophilic (55°C) 
digestion of  (A)  cellulosic substrate (10 g.l

-1
 filter paper) (B) lignocellulosic substrate (10 g.l

-1
 mechanically treated paper 

paste) by (1) industrial digester sludge (10% v/v) and (2) mix 50:50 of digester sludge and isolated consortium (10% v/v). 
For both inoculums, the values express the productions measured for the replicates displaying the highest final 
cumulative volume.  

Table 1 Total biogas and methane production during anaerobic and thermophilic (55°C) digestion of  cellulosic substrate 
(10 g.l

-1
 filter paper) and lignocellulosic substrate (10 g.l

-1
 mechanically treated paper paste) by industrial anaerobic 

digester sludge (10% v/v) and mix 50:50 of digester sludge and isolated consortium (10% v/v). Bioconversion rate of 
cellulosic substrate calculated according to Buswell equation. For both inoculums, the values express the productions 
measured for the replicates displaying the highest final cumulative volume. 

 Cellulosic substrate Lignocellulosic substrate 
 

Anaerobic 
digester sludge 

Digester sludge 
and consortium 

mix 

Anaerobic 
digester sludge 

Digester sludge 
and consortium 

mix 

Biogas production 
(ml.g cellulose-1) 

633 720 227 260 

Methane production 
(ml.g cellulose-1) 

395 463 90 101 

Methane proportion 
(%) 

62 64 40 39 

Bioconversion rate (%) 85 97 - - 
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3.3 Characterization of anaerobic cellulose degradation by a cellulolytic 

consortium isolated from composting plant 

For the characterization of the anaerobic degradation of cellulose by the isolated cellulolytic 

consortium in thermophilic conditions, tests are performed at 55°C in minimal cellulosic 

medium with filter paper as only energetic source and without pH correction. Substrate 

degradation (figure 2), fermentation products (figure 3 A), pH (figure 3 B) and microbial 

community structure (Figure 4) are analyzed until stabilization. 

Figure 2 shows the kinetic of filter paper degradation by the microbial community in 

anaerobic and thermophilic conditions. Degradation kinetics curve displays a typical 

sigmoidal growth curve shape, divided in three distinct phases. No degradation is observed 

during the first 19 hours, pointing out a possible adaptation mechanism of the consortium. 

Accordingly, no metabolites production is observed during this lag phase. A period of 

significant degradation follows this first period. Over a period of three days (between the 

19th and the 91st hours of incubation), 40% of the total filter paper is degraded. Maximum 

cellulolytic potential of the microbial community is reached during this phase.  

 

Figure 2 Filter paper (1% DM) degradation kinetics by isolated consortium (10% inoculum). Tests realized in triplicate at 
55°C and in anaerobic conditions. 
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Figure 3 Evolution of (A) VFA's concentration (g.l
-1

) and (B) pH during anaerobic thermophilic (55°C) cellulose (filter paper 
10 g.l

-1
) degradation by isolated consortium (10% v/v). 

Between the 19th hour and the 67th hour of incubation, degradation ratio of 1.32 g.l-1.h-1 

±0.02 is obtained. Furthermore, during this second phase, different metabolites are 

produced in significant quantity. Acetate is the main volatile fatty acid released. Ethanol and 

glucose are the other metabolites present in the liquid phase. The accumulation of glucose 

(0.63 g.l-1), only component of cellulose, is weaker than acetate (2.21 g.l-1) and ethanol (0.66 

g.l-1). Sugars released after cellulose degradation by the cellulolytic consortium are directly 

metabolized. This efficient cellulose degradation in neutral and weak acid pH growth 

conditions results from the synergistic metabolic activities exhibited by the different 

phylotypes present in the consortium. During the nineteen first hours, bacterium belonging 

to Defluviitalea genus is largely predominant with relative abundances of 74.5% and 70.2% 

respectively just after the inoculation and after nineteen hours of process. Defluviitalea 

genus is composed of only one species named Defluviitalea saccharophila. Strains belonging 
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to this genus was previously isolated by Jabari et al. (2012) and exhibited optimal growth 

parameters in an environment similar to our experimental conditions and was able to 

metabolize cellobiose, as well as acetate.  

 

Figure 4 Population structure dynamic during anaerobic thermophilic (55°C) degradation of cellulose (filter paper 10 g.l
-1

) 
by isolated consortium (10% v/v). 

During this first step, Clostridium thermocellum and species belonging to Fervidobacterium 

genus are the two others main phylotypes (Figure 4). After 43 hours, the relative abundance 

of Clostridium thermocellum increases threefold (8.76% to 24.7%). This increase is 

proportional to the decrease observed for the Defluviitalea (74.5% to 63.5%). Whereas 

Clostridium thermocellum is very efficient for cellulose hydrolysis, this microbial strain 

cannot completely utilize the degradation products, cellobiose and glucose (Liu et al., 2008). 

However, the presence of other phylotypes, able to utilize these products, allows avoiding 

high accumulation and the resulting inhibition of cellulase activity. Furthermore, in 
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agreement with Liu et al. (2008), the presence of other species allows for the metabolization 

of lactate, one the main end-products of cellulose fermentation by Clostridium 

thermocellum. The accumulation of organic acids induces a significant decrease of the pH 

value during our cultivation tests (Figure 3B). At the end of this first phase of intensive 

cellulose digestion, a pH value of 5.05 is observed. During the last hours of this first period, 

acidic conditions favor the development of Caloramator boliviensis (21.6%), a thermophilic 

ethanol producing bacterium able to utilize (hemi-)cellulosic substrate (cellobiose, 

carboxymethylcellulose, xylan) (Crespo et al., 2012). During the second phase, acidification 

(pH under 5) leads to a global slowdown of the degradation process. Important shift in 

volatile fatty acid production and microbial population evolution are also recorded. Between 

the 91st and the 211th hours, the degradation process slowed-down (0.01 g.l-1.h-1) to finally 

attain 53% of degradation. Butyrate is released and attains a final concentration of 0.34 g.l-1. 

Contrary to acetate, which is consumed (final concentration of 1.69 g.l-1), ethanol 

concentration still rise during this period to attain final value of 0.90 g.l-1. Acidic conditions 

promote the development of totally different species. Indeed, acidic conditions lead to the 

disappearance of almost all species except Thermoanaerobacterium thermosaccharolyticum, 

which is becoming largely predominant with 80.8% of the total population.  

Thermoanaerobacterium thermosaccharolyticum is also able to utilize cellulose and 

cellobiose with butyrate as one of the main metabolite (Ren et al., 2008).  

With four representatives among five successively majority species, Firmicutes phylum is 

largely dominant. Moreover, these four species belong to Clostridia class and three of them 

to Clostridiales order. The isolation of these strict anaerobic microorganisms from 

composting is in agreement with Martins et al. (2013) and emphasizes the fact that 
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anaerobic species play a key role in biomass degradation (Schloss et al., 2003) even in 

aerobic composting process. 

Moreover, different parameters were calculated (Table 2) in order to provide more insights 

at the level of the ecological interpretation of the sequencing results. The number of 

observed OTUs is directly proportional to community richness. Starting from an initial value 

of 29, richness declines during the 43 first hours to attain a minimal value of 19. Afterwards, 

richness increases and reaches a final maximal value of 30 observed OTUs. By comparison 

with microbial communities typically found in compost, presenting high complexity with a 

large number of different taxa (Gladden et al., 2011), our consortium richness is very weak, 

suggesting that adaptation to selective conditions found in our experimental procedures 

induces a significant decrease of microbial diversity. The community isolated from our 

growth conditions is also characterized by its high level of unevenness expressed by 

Shannon’s equitability index. Only few phylotypes among all observed OTUs are successively 

present in significant relative abundance. During the whole process, species distribution is 

relatively uneven with values between 0.26 and 0.58. The evolution of the environmental 

conditions induces a strong modification of population evenness. Indeed, its initial value is 

equal to 0.33, and the first 43 hours of growth are characterized by a slight increase of this 

parameter, the maximal value of the Shannon’s equitability value being reached after 91 

hours of growth. Then, evenness significantly decreases and reached its minimal value at the 

end of the process. From a theoretical point of view, evenness strongly influences the 

stability of the ecosystem, and is a very important parameter to be taken into account in 

order to microbial resource management (Wittebolle et al., 2009). High evenness provides 

higher probability that a species tolerant to perturbation is present in significant proportion, 

leading to an increase of the process robustness. However, despite the low evenness value 
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observed in our operating conditions, the consortium is able to display adaptation to the 

environmental fluctuations met during the cultivation tests (mainly due to pH variation). 

Deep modifications in community structure allow conserving cellulose degradation ability. 

These modifications, in terms of phylotypes’ relative abundance, are quantified by means of 

Pearson product-moment correlation. The values (i.e., change in microbial composition) are 

calculated for each sampling time by comparison with the state observed at the inoculation 

(time = 0h), while rate of change expresses how rapidly the population evolves between two 

samples. Total change occurring between the beginning and the end of the process is equal 

to 96.0%. However, “change” and “rate of change” values show that modification does not 

occur uniformly during the process. During the first 43 hours, low change (3.4% after 43 

hours) and weak rates of change are measured (0.01%.h-1 and 0.17%.h-1). Fifty hours later, 

change is equal to 40.6% and a rate of change of 0.76%.h-1 is calculated for the period 

between 43 hours and 91 hours of growth. Finally, period between 91 hours and 211 hours 

presents similar rate of change (0.70%.h-1). 

Table 2 Ecological parameters values during anaerobic thermophilic (55°C) degradation of cellulose (filter paper 10 g.l
-1

) 
by isolated consortium (10% v/v). Data for the observed OTUs, Shannon's equitability, Change (%) and Rate of change 
(%.h

-1
). 

Sampling (hours) 0 19 43 91 211 

Observed OTUs 29 25 19 24 30 

Shannon's equitability 0.33 0.39 0.38 0.58 0.26 

Change (%) 0.0 0.2 3.4 40.6 96.0 

Rate of change (%.h-1) 0.01                0.17              0.76              0.70 
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4 Conclusion 

Based on microbial resource management, present work led to the isolation of a cellulolytic 

consortium able to boost anaerobic digestion. Important question behind this approach is 

the fate of exogenous microbial community during process. 16S rDNA sequencing pointed 

out weak richness of community. During cellulose anaerobic degradation, pH drop induced 

strong modification of microbial population. Despite weak richness and evenness, the 

consortium was able to adapt and to maintain cellulolytic potential. This important result 

point out the fact that simplified or synthetic microbial communities (De Roy et al., 2014) 

could be used in order to increase process robustness. 
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CHAPTER II:  

FLOW CYTOMETRY FINGERPRINTING – AN EFFICIENT 

LINK WITH MRM PARAMETERS 

 

 

 

 

 

 

 

 

This chapter corresponds to the article entitled "Flow cytometry community fingerprinting 

and amplicon sequencing for the assessment of landfill leachate cellulolytic 

bioaugmentation" (Kinet Romain, P. Dzaomuho, J.Baert, B.Taminiau, G.Daube, C.Nezer, Y. 

Brostaux, F. Nguyen, G. Dumont, P. Thonart, F. Delvigne) published in Bioresource 

Technology, Volume 214, August 2016, Pages 450-459.  
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Abstract 

Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming 

widely used for studying phenotypic and genotypic diversity among microbial communities. 

This technology is considered in this work for the assessment of a bioaugmentation 

treatment in order to enhance cellulolytic potential of landfill leachate. The experimental 

results reveal the relevant increase of leachate cellulolytic potential due to 

bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then 

realized. The Flow FP package is used to establish microbial samples fingerprint from initial 

2D cytometry histograms. This procedure allows highlighting microbial communities' 

variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting 

methods are then compared. The two approaches give same evidence about microbial 

dynamics throughout digestion assay. There are however a lack of significant correlation 

between cytometric and amplicon sequencing fingerprint at genus or species level. Same 

phenotypical profiles of microbiota during assays matched to several 16S rRNA gene 

sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising 

routine on-site method suitable for the detection of stability/variation/disturbance of 

complex microbial communities involved in bioprocesses. 

Key-words: flow cytometry, leachate, landfill, cellulose, anaerobic digestion, 

bioaugmentation, amplicon sequencing.  
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1 Introduction 

During the last decades, sanitary landfilling was the main technology used for the disposal of 

municipal solid waste (MSW) in Belgium. The sanitary landfills are designed for limiting the 

rainfall infiltration through the waste mass and collecting liquid and gaseous emissions from 

it (Benbelkacem et al., 2010). The low initial water content of MSW (20-25 %) and the low 

rate of rainfall infiltration within the landfill lead to relatively low biodegradation processes 

and an extended time for achieving long term stabilization of the MSW (Benbelkacem et al., 

2010).  

In order to accelerate the stabilization of the landfill, the idea of an ‘anaerobic bioreactor 

landfill’ was expressed 30 years ago (Hettiaratchi et al., 2015). This approach consists in the 

recirculation of leachate and the increase of MSW moisture for promoting the microbial 

activities and the biodegradation of organic materials. It has been shown that this approach 

improves methane production and enhance the MSW stabilization by comparison with 

“sanitary landfills” technology (Pohland and Kang, 1975). The anaerobic digestion assays 

performed by Gurijala and Sulfita (1993), for example, showed a faster methanization (3-4 

fold), with MSW samples whose water content is close to 50 % than those whose moisture 

content were 20-30 %. At this level, an extensive review of scientific, technical and economic 

considerations related to “bioreactor landfills” are proposed by Reinhart et al. (2002), Sethi 

et al. (2013) and Hettiaratchi et al. (2015).  

However, even in optimal conditions, hydrolysis of lignocellulosic substrate is the rate-

limiting step during anaerobic digestion of wastes characterized by high lignocellulosic plant 

fiber content (Vavilin et al., 2008). Consequently, as lignocellulosic materials constitute 
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between 40 % and 70 % of MSW in developing countries (Li et al., 2009), a significant part of 

the landfill content is not accessible to biodegradation. According to Barlaz et al. (1989), 

between 23 and 29 % of lignocellulose is not degraded. This recalcitrance to degradation 

induces a progressive decrease of biogas production rate and an increase of landfill post-

closure care period.  

Bioaugmentation technology, in a microbial resource management view, by adding an 

exogenous cellulolytic microbial community isolated from compost, has been considered in 

this work. Indeed, addition of a microbial community with specific activity can potentially 

improve the performance of the in-situ biological processes, and facilitate the establishment 

of specific species in microbial communities (Bouchez et al., 2000). Frequently used to speed 

up the removal of undesirable molecules from environment, bioaugmentation induces also 

positive impact on anaerobic digestion of lignocellulosic substrate. Kinet et al. (2015) and 

Peng et al. (2014) highlight an increase of methane production from lignocellulosic 

substrates after the complementation of anaerobic digester sludge with cellulose degrading 

microbial agents. The bioaugmentation agents comprised either single cellulolytic species 

(Peng et al., 2014) or enriched cellulolytic community originally isolated from compost (Kinet 

et al., 2015).  Furthermore, in their studies, Scherer and Neumann also highlighted an  

improvement of anaerobic digester performance through supplementation with compost 

(Neumann and Scherer, 2011; Scherer and Neumann, 2013). Additionally to degradation and 

fermentative activities improvement, these authors underlie that compost community 

addition enhances hydrogenotroph methanogen activity which in turn improves global 

performance of anaerobic digester.  
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A fast and efficient monitoring of the microbial communities is crucial for an efficient 

management of the bioprocesses. The impact of adding exogenous microbiota on global 

community and its persistence in the environment have to be assessed. Molecular tools, 

such as denaturing gradient gel electrophoresis (DGGE), are powerful for obtaining 

fingerprints of complex microbial communities (Marzorati et al., 2008). Moreover, next-

generation sequencing methods, based on 16S rRNA gene sequencing, can provide 

information about the composition of complex microbial communities from various 

environments in a short time (Vanwonterghem et al., 2014). However, despite progresses in 

sequencing technologies have dramatically decreased the cost and increased the yield of 

sequence data generated (Vanwonterghem et al., 2014), 16S rRNA gene sequencing cannot 

be considered as a suitable solution for routine analysis of microbial communities. As a 

microbial community can rapidly adapt in response to environmental fluctuations, a 

reproducible sampling and fast analysis are required for managing community dynamics. 

Flow cytometry (FCM) is actually becoming widely used for studying phenotypic 

diversification among microbial isogenic communities (Delvigne et al., 2014; Delvigne and 

Goffin, 2014),  and has been adapted here for the analysis of communities. Through the 

measurement of a set of optical parameters, FCM is able to characterize cellular populations 

at single-cell level in a very short time. Typically, intrinsic optical parameters give structural 

information about cells size and their internal organization whereas extrinsic parameters, 

resulting from a fluorescent labelling, provide supplementary physiological or functional cell 

properties. Particularly, cellular DNA content is a suitable target for analysis of complex 

communities. Sybr ® Green I and Syto9 ® dyes stain indifferently entire nucleic acid content 

whereas 4',6'-diamidino-2-phénylindole (DAPI) links specifically to adenine (A) and thymine 

(T) nucleic bases. Therefore, these dyes discriminate subcommunities according to their 
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respective DNA content (or A/T content). Moreover, several informatics tools (reviewed by 

Koch et al., 2014) have been developed for facilitating the interpretation of flow cytometric 

data. The establishment of flow cytometric fingerprints simplifies subsequent statistical 

analysis and particularly quantification of differences between samples. Koch and co-

workers proposed a full flow cytometric workflow procedure (from sampling to data 

interpretation) for analyzing microbial intracommunity structure variation (Koch et al., 

2013). This procedure, implemented with single dye staining (DAPI), has been used for the 

analysis of structural variations among a microbial community present in a biogas reactor 

(Koch et al., 2013b).  

To our knowledge, only few publications deal with bioaugmentation for enhancing anaerobic 

digestion in landfill (Liu et al., 2013). The impact of the addition of a consortium, isolated 

from compostable matters, on leachate cellulolytic potential is assessed in this work. 

Furthermore, combination of 16S rRNA gene sequencing and flow cytometry approaches has 

been considered for monitoring microbial communities’ dynamics throughout anaerobic 

digestion assays. More precisely, flow cytometry fingerprinting has been successfully used 

for assessing the stability of the complex microbial communities involved in anaerobic 

digestion. 
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2 Materials and methods 

2.1 Biological matters 

2.1.1 Compost 

Approximatively 5 kg of composting matter are collected from a composting plant in 

Naninne, Belgium (50°25’37.7’’ N, 4°54’27.7’’ E), exclusively supplied with green 

lignocellulosic waste (30 000 ton treated per year). After grinding, rough ligneous fraction is 

separated from the fine fraction. Only this fine fraction is valorized through composting 

treatment. After moisture increasing, organic matters are aerated during four to six weeks 

using a blower to supply air from the bottom of the pile. Continuous monitoring of the 

oxygen concentration into pile ensures maintaining optimal conditions. Finally, transformed 

organic matters are matured during six to eight weeks. Matters are sampled at the end of 

forced aeration procedure before the maturation step. Temperature of  ~70°C is recorded in 

pile during sampling.  

2.1.2 Leachate 

Leachate, used as inoculum for different tests, originates from landfill “CETeM” located in 

Mont-Saint-Guibert, Belgium (50°38’55.6’’ N, 4°36’37.5’’ E). Exploitation of this sanitary 

landfill began  55 years ago. 5.5 millions of tons of industrial and Municipal Solid Wastes 

(MSW) were buried there. Landfill gas has been valorized through electricity production 

since 1996. The leachates are collected at the bottom of the landfill and then treated in a 

Waste Water Treatment Plant (WWTP) for lowering Chemical Oxygen Demand (COD). 

Leachates from the WWTP are then re-injected into the landfill through an injection drain in 

order to increase the moisture of superficial MSW layers. Leachate sampling (10 L) is carried 
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out after the treatment step in WWTP. The dry matter content, total Kjedhal nitrogen 

concentration and COD of the leachate sample are respectively inferior to 1 g.L-1, 0.5 g.L-1 

and 20 g.L-1. Volatile Fatty Acids (VFA) represent a minor part of COD content (<1 %).    

2.1.3 Compost microbial consortium preparation 

400 grams of fresh composting matters, packed in a nylon bag, are immerged in 10 L of pH 7 

phosphate buffered saline (NaCl, 8 g.L-1; KCl, 0.2 g.L-1; Na2HPO4, 1.44 g.L-1; KH2PO4 0.24 g.L-1) 

during 4 hours in a sterilized reactor (12 L) continuously stirred and flushed with oxygen-free 

nitrogen gas to install anaerobic atmosphere at room temperature. After four hours, the 

liquid phase containing biomass extracted from compost, is collected and concentrated ten 

times by centrifugation carried out at 4000.g.    

2.2 Anaerobic digestion test 

The cellulose digestion tests are carried out in triplicate for each type of inoculum in 

Biochemical Methane Potential (BMP) assay medium (Wang et al., 1994) supplemented with 

10 g.L-1 of cellulosic material (Whatman filter paper) for 34 days at 55 °C under anaerobic 

condition in 125 ml sterile glass serum bottles without stirring.  

Substrates are introduced into bottles containing 90 ml of BMP medium, and 10 ml of 

inocula. Inocula consist of either only leachate, extracted compost consortium or a mix 1:1 

(vol:vol) of leachate and compost consortium. pH is adjusted with a 0.5 M KOH solution to 

achieve an initial pH of 7.3 in each sample, and a maximum variation during the culture 

period of pH ±1 is maintained. The sample bottles are capped tightly with rubber septa and 

sealed with aluminum seals. Nitrogen is passed into the bottles to flush out air and other 

gases before incubation.  



Results Chapter II 
 

87 
 

The biogas productions are regularly collected using a syringe fitted with a needle. At these 

times, 5 ml of liquid phase are also collected for, metabolites (section 2.3), microbiota 

(section 2.4) and pH analysis.  

Blank samples are realized to highlight the impact of organic matter introduced with the 

different inocula. Blank samples consist of 10 ml of inocula and 90 ml of BMP medium. No 

energetic substrate is added to the blank samples. Blank samples’ biogas productions are 

subtracted from samples’ production inoculated with the corresponding inoculum 

At the end of the test, degradation ratios are calculated. Centrifugation (8000.g) allows the 

separation of supernatant and pellet which includes residual substrate and microbial 

biomass. Pellet is then suspended in 100 ml acetic acid/nitric acid reagent and heated at 100 

°C for 30 min to remove the biological cells. Then, acetic acid/nitric acid treated suspension 

is filtered. The remaining cellulosic material is washed three times using 100 ml of distilled 

water each time. After washing and filtration, filtered solids are dried at 105 °C and 

determined gravimetrically.The weight loss of cellulosic materials is calculated by subtracting 

the weight of residual substrates from the total weight of cellulosic materials before 

degradation. The degradation ratio is calculated according to the equation: 

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (%) =  
𝑀𝑡− 𝑀𝑟

𝑀𝑡
 × 100        (eq.1)  

where  𝑀𝑡 is the total weight of the cellulosic materials before the degradation and  𝑀𝑟 is 

the weight of residual substrates after the degradation.    

2.3 Metabolites analysis 

Volatile fatty acids, ethanol and glucose concentrations in liquid phase are determined using 

an Agilent 1110 series high performance liquid chromatograph (HPLC; Agilent Technologies) 
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equipped with a Supelcogel C-610H column (Sigma-Aldrich, St Louis, MO, USA) preceded by 

a Supelguard H precolumn (Sigma-Aldrich). The columns are kept at a temperature of 40 °C, 

and the isocratic mobile phase is 0.1 % H3PO4 (in ultrapure, ‘‘milliQ’’, water), at a flow rate 

of 0.5 ml.min-1. A differential refraction index detector, kept at 35 °C, is used. This analysis 

takes 35 min at a maximum pressure of 60 bars.   

2.4 Microbial communities analysis 

2.4.1 Molecular analysis of microbial communities 

Total DNA extraction 

Total DNA is isolated from each primary suspension using the DNeasy Blood & Tissue DNA 

extraction kit (Qiagen Benelux B.V., Venlo, the Netherlands), following the manufacturer’s 

extraction for gram-positive bacteria. Briefly, the bacteria present in the suspension are 

lysed for 1 hour at 37 °C in a lysis buffer (Tris-HCL 20 mM, sodium EDTA 2 mM, triton x-100 

1.2 % and lysozyme 20 mg.ml-1). The suspension is then treated with proteinase K for 1 hour 

at 56 °C.  The resulting suspension is mixed with ethanol and loaded on a Dneasy Mini-spin 

column. The DNA is then washed 2 times with QIAgen buffers and eluated into 

DNase/RNase-free water and its concentration and purity are evaluated by optical density 

using the NanoDrop ND-1000 spectrophotometer (Isogen Life Science NV, Sint-Pieters-

Leeuw, Belgium). The DNA samples are stored at −20 °C until use in 16S rRNA gene amplicon 

pyrosequencing analysis. 

16S rRNA Gene Library Construction and Pyrosequencing 

16S rRNA Gene PCR libraries are generated for the samples using 16S rRNA gene universal 

primers with Illumina overhand adapters targeting V1-V3 hypervariable regions, forward (5’-
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TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) and reverse (5’-

GTVTVGTGGGCTCGGAGATGTGTATAAGAGACAG-3’). Each PCR product is purified with the 

Agencourt AMPure XP beads kit (Beckman Coulter, Pasadena, USA) and submitted to a 

second PCR round for indexing, using the Nextera XT index primers 1 and 2. After 

purification, PCR products are quantified using the Quant-IT PicoGreen (ThermoFisher 

Scientific, Waltham, USA) and diluted to 10 ng.µL-1. A final quantification, by qPCR, of each 

sample in the library is performed using the KAPA SYBR® FAST qPCR Kit (KapaBiosystems, 

Wilmington, USA) before normalization, pooling and sequencing on a MiSeq sequencer using 

v3 reagents (ILLUMINA, USA). 

16S rRNA gene Data Processing 

Sequence reads processing are used as previously described (Rodriguez et al., 2015) using 

respectively MOTHUR software package v1.35 (Schloss et al., 2009), Pyronoise algorithm and 

UCHIME algorithm (Edgar et al., 2011) for alignment and clustering, denoising and chimera 

detection. 16S Reference alignment and taxonomical assignation are based upon the SILVA 

database (v1.15) of full-length 16S rRNA gene sequences. The final reads are clustered into 

operational taxonomic units (OTUs) with the nearest neighbor algorithm using MOTHUR 

with a 0.03 distance unit cutoff. A taxonomic identity is attributed to each OTU by 

comparison with the SILVA database (80% homogeneity cutoff) (Delcenserie et al., 2014). 

When taxonomic identification fell below the 80 % threshold, the taxonomic level was 

labelled with the first defined level from higher level followed by the term “_unclassified”. 

All unique sequences for each OTU were further compared with the SILVA data set version 

v1.15 using the BLASTN algorithm 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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LOC=blasthome (Altschul et al., 1990), as MOTHUR is not suitable to taxonomic assignment 

beyond the genus level. For each OTU, a consensus detailed taxonomic identification is given 

based upon the identity (less than 1% of mismatches with the aligned sequence) and the 

metadata associates with the most frequent hits (validated bacterial species or not).  

All the biosample raw reads have been deposited at the National Center for Biotechnology 

Information (NCBI) and are available under de Bioproject ID PRJNA315623. 

Ecological parameters calculation 

Relative abundance of every OTUs (at genus level) detected in different samples have been 

determined for each samples. This results for each sample in a vector of values. Based on 

these vectors of values, inter-samples Pearson's product moment correlation coefficients 

have been calculated. 

2.4.2 Flow cytometry fingerprinting 

Flow cytometry analysis 

FCM analyses are realized directly after sampling to avoid community evolution. They are 

carried out on BD Accuri C6 flow cytometer equipped with 20 mW Solid State Blue Laser 

(488 nm) and 14.7 mW Diode Red Laser (640 nm). Prior to analysis, the samples are filtered 

with 30 µm cut-off filter paper in order to eliminate insoluble particles. After filtration, the 

microbial biomass is suspended in pH 7 phosphate buffered saline (NaCl, 8 g.L-1; KCl, 0.2 g.L-

1; Na2HPO4, 1.44 g.L-1; KH2PO4 0.24 g.L-1) and the biomass concentration is adjusted to reach 

approximatively 106 cells per ml. All-cell labeling approach based on DNA labelling is then 

realized by using SYBR® Green I. SYBR® Green I stock solution (10,000 times concentrate, Life 

Technologies) is diluted 100 times in dimethyl sulfoxide (DMSO) and filtered on 0.22 µm. 1 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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ml of cell suspension is supplemented with 10 µl of stain solution and incubated 30 minutes 

at room temperature. Forward light Scatter (FSC), Side light Scatter (SSC) are collected with a 

488/10 bandpass filter and green fluorescence (FL1 channel) is collected with 

photomultiplier tubes using 533/30 bandpass filter. For each sample run, data for 40 000 

events are collected with a flow rate of 14 µl.min-1. 

Data analysis 

The raw data are extracted from the CFlow software (Accuri, BD Bioscience) as .fcs files and 

loaded into R software. Data analysis pipeline (supplementary file 1) is adapted from the 

version developed by De Roy et al. (2012) and consists in three principal steps. (1) Creating a 

n-dimensional quantitative fingerprint of each sample from their respective bivariate (SSC – 

FL1) FCM distribution using the recursive probability binning (PB) algorithm for flow 

cytometry data, implemented in the Bioconductor package FlowFP (Rogers and Holyst, 

2009). In a first time, a model, composed of hyper-rectangular regions (bins) of varying size 

and shape, is established. From superimposed FCM distribution (i.e. data from all samples 

are pooled together) and thanks to Probability Binning (PB) algorithm (Rogers et al., 2008), 

bivariate data space is divided in hyper-rectangular regions in such way that each contains 

similar number of events (one event corresponding to one cell). First step of the algorithm 

consists in the division of space into two bins containing similar number of events. 

Afterwards, each of these bins is again divided into two bins with equal number of events, 

and so forth. Therefore region of bivariate FCM space displaying high density of events are 

characterized by bins of small area whereas larger bins characterized regions of weak 

density. Moreover, the final number of bins (n) is arbitrary set and correspond to 2i with i 

the number of recursive subdivisions. In our case, 6 recursive subdivisions are applied and 

therefore model is composed of 64 bins. The obtained model is then applied to each sample 
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and number of cells per bin is determined, creating feature vector of counts (n-dimensional) 

for each sample. The latter will be used as a fingerprint of the microbial community at a 

given time and under given conditions. (2) Principal component analysis of the different 

fingerprints. The 64 bins are considered as the variables described for each sample by the 

number of cells per bin determined previously. The dimension reduction is established by 

selecting number of principal components so that 96 % of the initial variance is explained. (3) 

Calculation of Pearson's product moment correlation coefficients between samples 

according to their coordinates in principal components referential.  

3 Results and Discussion 

3.1 Bioaugmentation of leachate leads to the enhancement of cellulolytic 

potential of microbial communities 

Bioaugmentation have been applied to leachate in order to enhance its cellulolytic potential. 

The addition of a microbial consortium isolated from composting plant is considered for this 

purpose. Assays of anaerobic digestion of cellulose have been carried out in order to assess 

the efficiency of this treatment. Three kinds of inocula have been used: (i) leachate from 

landfill, (ii) consortium isolated from compost and (iii) bioaugmented leachate obtained by 

the addition of the compost consortium to leachate with a volumetric ratio 1:1.   

The cellulose hydrolysis rates, obtained after 34 days of digestion process, are presented at 

Figure 1.A. Microbial community from bioaugmented leachate is able to hydrolyze the whole 

cellulose content after 34 days (99 ± 0%), while respective hydrolysis rates observed for 

compost consortium alone and leachate alone are 65 ± 16 %  and 58 ± 36 %. These results 
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clearly point out the positive impact of the bioaugmentation treatment on the leachate’s 

hydrolytic potential.  

For improving the comprehension of this effect, different parameters have been recorded 

during cellulose digestion processes. Concentration of biodegradation products and biogas 

productions throughout the assays, presented at Figure 1.B and 1.D, have been used as 

proxy for estimating the kinetics of microbial activities. During the first days, the highest  

 

Figure 1 Experimental results of cellulose anaerobic digestion assay in triplicate using 3 different inocula: leachate (◊), 
compost consortium (○) and bioaugmented leachate (□). The curves represent: A-final cellulose hydrolysis rate; B- 
Evolution of  biodegradation products concentration throughout the process ; C- Evolution of acetate concentration 
throughout the process and D-Cumulative biogas production throughout the process. 

productions are observed in digestion flasks containing compost consortium. After 6 days, 

compost consortium already produces 2.39±0.46 g.L-1 of biodegradation products and 49±7 

ml of biogas whereas weak productions are recorded for bioaugmented leachate and 

leachate. Significant productions are measured after respectively 26 days and 13 days for 
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leachate and bioaugmented leachate microbial communities. Compost consortium is directly 

able to efficiently metabolize cellulose whereas bioaugmented leachate and leachate need 

adaptation period. Adaptation period observed in the case of bioaugmented leachate is 

probably due to a dilution of the cellulolytic bacteria. Afterwards, synergistic action of 

microbial communities coming from both environments induces higher microbial activities. 

After 20 days, cumulative biogas production by bioaugmented leachate reaches similar value 

than the one measured for compost consortium and the concentration of biodegradation 

products exceeds concentration obtained with compost consortium. Finally, between the 

20th day and the 34th day, biogas production by bioaugmented leachate overcomes biogas 

production by compost consortium. Concerning concentrations of biodegradation products, 

highest values are still measured in bioaugmented leachate samples after 34 days. Total 

concentrations of biodegradation products in liquid phase shower the same trend (i.e. a 

slight increase followed by stabilization) for bioaugmented leachate and compost 

consortium microbial communities. On the opposite, specific acetate concentrations (Figure 

1.C) evolve differently during this last period for these two microbial communities. Acetate 

concentrations in compost consortium samples still increase and reach values superior to 

the typical inhibitory concentration (3 g.L-1) while stability is observed for bioaugmented 

leachate. This rise above the critical threshold, probably due to the lack of efficient acetate 

consumers in compost microbial community, could explain the lower final cellulolytic 

hydrolysis rate (Figure 1.A) observed with compost consortium inoculum. In the case of 

bioaugmented leachate, this deficiency seems to be offset by bacteria originally present in 

leachate microbiota. It is also important to notice that biogas and other metabolites 

productions are observed only for one replicate of digestion assays led with not modified 
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leachate microbial community. This explains the high variability of the values observed after 

34 days (Figure 1).  

All these results point out that bioaugmentation treatment accelerates cellulose digestion 

process through the fast establishment of a cellulolytic community probably originating from 

compost consortium. Moreover, synergistic action between endogenous and exogenous 

microbial communities allows avoiding inhibitory conditions and leads to a complete 

assimilation of cellulose. On the opposite, a longer time is required for the establishment of 

an active cellulolytic community in untreated leachate; and due to a lack of metabolic 

activities preventing the accumulation of inhibitory compounds such acetate, consortium 

isolated from composting plant is not able to sustain complete cellulose hydrolysis. 

3.2 Microbial community analysis 

Flow cytometry and 16S rRNA gene sequencing have been considered for the analysis of the 

structure and dynamics of microbial communities involved in this work. For each type of 

inoculum, both methods are carried out for the replicate expressing maximum final cellulose 

degradation ratio.  

FCM fingerprinting reproducibility has been confirmed by comparing fingerprint obtained 

with the replicate displaying the highest cellulose degradation ratio and the average 

fingerprint resulting from the analysis of the communities from three replicates. More 

precisely, analysis of compost communities have been performed in triplicates and has been 

further used in this validation approach. 

The evolution of biogas production and degradation products concentrations obtained for 

these replicates during cellulose digestion tests can be found at figure 2.  
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Figure 2 experimental results of cellulose anaerobic digestion assay using 3 different inocula: leachate (◊), compost 
consortium (○) and bioaugmented leachate (□). The curves represent: A-final cellulose hydrolysis rate; B- Evolution of  
biodegradation products concentration throughout the process ; C- Evolution of acetate concentration throughout the 
process and D-Cumulative biogas production throughout the process. The values presented here express, for each 
inoculum, the results obtained for the replicate displaying the maximal final cellulose degradation ratio 

3.2.1 Bacterial diversity analysis based on 16S rRNA gene sequencing   

The main bacterial genera (relative abundance superior to 5% in at least one sample) met in 

the different samples for different times during the anaerobic degradation process are 

shown at figure 3. Moreover, initial leachate and compost consortium microbial community 

composition are presented. Initially, these two communities are composed by respectively 

61 and 179 OTUs (data not shown). Afterwards, important decrease of richness occurs. At 

the end of the digestion process, 19 OTUs, 11 OTUs and 13 OTUs are respectively observed 

in compost consortium, leachate and bioaugmented leachate microbial communities (data 

not shown).    
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Figure 3 16S rRNA gene sequencing fingerprint of samples from 3 kinds of inocula: (1) compost consortium (Comp.), (2) 
leachate (Leach.), (3) bioaugmented leachate (Bioaug. Leach.) during cellulose (filter paper, 10g.l

-1
) anaerobic and 

thermophilic (55°C) digestion. Samples are taken at 4 sampling times : T0 (0 day), T2 (13 days), T4 (26 days) and T5 (34 
days). As bioaugmented leachate consist in a mix 1:1 (v:v) of compost consortium and leachate, sequencing has not been 
carried out on Bioaug. Leach. sample before the beginning of the anaerobic digestion (T0). 

After 13 days of process, compost consortium is mainly composed of bacteria affiliated to 

the Stenotrophomonas genus (83%). Interestingly, bacteria belonging to this genus and more 

precisely to Stenotrophomonas maltophila species have already been reported to be able to 

degrade cellulose (Huang et al., 2012). This is the only OTU present at a relative abundance 

superior to 5%. However, two other potential cellulolytic OTUs are detected in weak 

proportion. The first one corresponds to bacteria which can be assigned to the Defluviitalea 

genus and closely relative to a bacterium already found in degrading cellulose community 

(EU250956). The second one is affiliated to Clostridium genus. Furthermore, the majority of 

the sequences grouped in this OTU can be assigned to Clostridium cellulosi species. This  



Results Chapter II 
 

98 
 

species is recognized to be able to hydrolyze cellulose and to assimilate the released 

cellobiose in anaerobic and thermophilic conditions (He et al., 1991). These two genera 

present respective relative abundances of 1% and 2%. None of 5 OTUs, displaying a relative 

abundance superior to 5% in crude compost consortium, is still detected. Microbial 

community rapidly adapts to specific growth conditions (i.e. cellulose as sole carbon source). 

For their part, leachate and bioaugmented leachate display several OTU with relative 

abundance superior to 5% after the same period. Bacteria belonging to Rhizobium genus are 

present in proportion superior to 5% in both consortia. Relative abundance of 42% and 6%, 

are respectively determined in leachate and bioaugmented leachate. Bacteria from 

Alcaligenes genus are also present in significant proportion (14%) in leachate consortium.  

Uncultured bacterium (FN436139) affiliated to this genus has been previously detected in 

thermophilic biogas reactor fed with renewable biomass. Moreover, presence of bacteria 

affiliated to this genus has been highlighted in an efficient lignocellulose-degrading microbial 

consortium (Hui et al., 2013). Others main OTUs from leachate microbiota are assigned to 

Sphingobacterium genus, Rhizobiales order and Alphaproteobacteria class and present 

respective relative abundance of 14, 11 and 6%. Therefore some OTUs (i.e. 

Alphaproteobacteria and Rhizobiales) displaying non negligible relative abundance in crude 

leachate consortium are still present after 13 days of process. Contrary to compost 

consortium community, leachate microbiota seems slower to adapt to growth conditions. 

This observation is in agreement with results shown at figure 2 which highlight inefficient 

cellulose digestion by this consortium.   

Bioaugmented leachate community is dominated (50%) by bacteria belonging to 

Acinetobacter genus. The second and third most abundant OTUs are respectively affiliated to 

Proteiniclasticum and Comamonas genera and display respective relative abundance of 21% 
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and 9%. Finally, it can be noticed that Clostridium cellulosi species display a relative 

abundance of 1% in bioaugmented leachate after 13 days of process. So despite efficient 

cellulose digestion by bioaugmented leachate community (figure 2), only few 16S rRNA gene 

sequences are assigned to strains known for their cellulolytic potential. It can be explained 

either by the lack of knowledge about metabolic characteristics of uncultured environmental 

bacteria either by amplification of inactive strains’ sequences. Indeed, this technique does 

not allow making the distinction between died, dormant and active cells. Amplification of 

sequences from inactive cells can hide information related to the active bacteria. 

On the opposite, after 26 days, as well in compost consortium as in bioaugmented leachate, 

a majority of sequences are assigned to genera, or even species, known for their cellulolytic 

potential. Bacteria belonging to Clostridium cellulosi and Defluviitalea genus, previously 

detected in small amount, display respective relative abundance of 29% and 35% in compost 

consortium. 16S rRNA gene sequencing also reveals that 26% of sequences belong to 

bacteria which can be affiliated to Fervidobacterium genus. In a previous study (Kinet et al., 

2015), bacteria belonging to Defluviitalea and Fervidobacterium genera has already been 

isolated from compost and shown to be involved in anaerobic and thermophilic cellulose 

degradation. Concerning bioaugmented leachate community, 90% of analyzed sequences 

are assigned to previously not detected genus Themoanaerobacterium. 84% of these 

sequences can be even more affiliated to Themoanaerobacterium thermosaccharolyticum 

species which is known for its ability to ferment cellobiose. Moreover, O-Thong et al. (2008) 

and Ren et al. (2008) showed that some specific strains belonging to this species are able to 

metabolize cellulose. Contrary to what is happened for compost consortium, Clostridium 

genus still displays low relative abundance (3%). Finally, bacteria assigned to 

Rummeliibacillus genus represent 6% of total bioaugmented leachate community.  
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The efficient cellulose digestion observed for leachate microbial community between 20th 

and 34th days is mirrored by emergence and succession of new OTU in this community. After 

26 days, microbiota is largely dominated by Stenotrophomonas genus (84%), which is the 

only OTU displaying relative abundance superior to 5%. On the opposite, after 34 days, 

Stenotrophomonas genus completely disappears from leachate microbiota whereas 

Thermoanaerobacterium genus becomes largely dominant (86%) and bacteria affiliated to 

Clostridium sensu stricto (cluster I) genus appeared in non-negligible proportion (9%). Notice 

that contrary to what is observed in bioaugmented leachate community, any sequence 

assigned to Themoanaerobacterium OTU can be affiliated to Themoanaerobacterium 

thermosaccharolyticum species.    

Despite decrease between 26th and 34th days, Themoanaerobacterium genus is still 

dominant in final bioaugmented leachate microbiota with 64% of analyzed sequences 

assigned to this genus. Moreover, 59% of sequences are still affiliated to 

Themoanaerobacterium thermosaccharolyticum. Contrary, relative abundance of Clostridium 

cellulosi increases from 3% to 13%. Two other OTUs display significant relative abundance of 

respectively 9% and 8%. First one is affiliated with Fonticella genus. Bacteria belonging to 

this genus have already been identified in compost (uncultured bacterium (FN667330)) 

(Partanen et al., 2010). Second one is affiliated with Clostridrium sensu stricto (cluster VII) 

genus. Finally, only weak modifications affect compost consortium microbiota. Three main 

strains present after 26 days display pretty same relative abundance, 31%, 29% and 28% 

respectively for bacterium belonging to Defluviitalea genus, Fervidobacterium genus and 

Clostridium cellulosi species.  
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Except, one classified among Fervidobacterium genus, all types of strain present in 

proportion superior to 5% in different final communities are part of Clostridia class. This 

highlights the importance of this class of bacteria during cellulose anaerobic digestion 

process in thermophilic conditions.           

Taken altogether, the results coming from sequencing analyses show the importance of the 

succession of microbial communities in the hydrolysis of cellulose and the subsequent 

metabolic activities leading to the generation of biogas. Therefore, a special attention must 

be paid to the dynamics of the communities in order to ensure the efficiency of the 

processes. As amplicon sequencing cannot be considered for routine on-site analysis, 

complementary cheaper and easier technique giving access to the dynamics of microbial 

communities is required. Flow cytometry fingerprinting has been considered for this 

purpose. More specifically, FC fingerprinting has been used in order to assess the stability of 

the communities and to assess resilience of consortium isolated from composting plant 

when inoculated in leachate.  

3.2.2 Flow cytometry community fingerprinting for routine population 

monitoring 

Flow cytometric analyses have been performed for microbiological samples whose 16S rRNA 

gene sequencing has already been performed. Note that, additionally to samples taken after 

13 (T2), 26 (T4) and 34 days (T5), consortia after 20 days (T3) of process are also analyzed 

with flow cytometry. Basic flow cytometry dot plots (SSC-FL1) are shown at figure 4. As 

internal organization is more discriminating than cellular size, SSC parameter has been 

preferred to FSC parameter for the characterization of communities. It can be seen that 

different population structures can be considered. These differences will be parameterized 
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on the basis of FCM fingerprinting. Further principal component analysis has been applied to 

the different fingerprints. Distribution of the different samples according to the two main 

principal components is represented at figure 5.  

Table 1 and Table 2 display correlation coefficients between samples according to flow 

cytometry and 16S rRNA gene sequencing fingerprinting. Amplicon sequencing based 

coefficients correlation are considered as reference for validating FCM based observation. 

The evolution of leachates’ cytometry fingerprints is different from two others (figure 5). 

After 20 days (T3), leachates’ cytometry fingerprints are still displaying a strong evolution. 

On the opposite, fingerprints of compost and bioaugmented leachate communities stabilize. 

This is particularly relevant for the compost consortium. Compost and bioaugmented 

leachate consortia display respective correlation coefficients of 0.89 and 0.74 between 

successive 26th day (T4) and 34th day (T5) samples while coefficient of 0.16 is calculated for 

the leachate community. These results are in accordance with the dynamics of anaerobic 

digestion displayed in Figures 1B, 1C and 1D. The fastest stabilization of the microbial 

community is observed for the compost inoculum while the slowest one is observed for 

leachate inoculum. Interestingly, bioaugmentation treatment applied to leachate accelerates 

the establishment of a stable community adapted to specific growth conditions (i.e. 

community able to grow in anaerobically and with cellulose as only carbon source). Indeed, 

stabilization dynamics of microbial community is significantly accelerated for bioaugmented 

leachate compare to leachate inoculum. 
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Figure 4 Cytogram (SSC-A/FL1-1) from 3 communities: compost consortium (comp.), leachate consortium (Leach.) and 
bioaugmented leachate (Bioaug. Leach.) during cellulose (filter paper, 10g.l

-1
) anaerobic and thermophilic (55°C) 

digestion. Samples are taken at 4 sampling times: T2 (13 days), T3 (20 days), T4 (26 days) and T5 (34 days). 

 

Figure 5 Evolution of microbiotas (Comp (compost consortium), Leach (leachate consortium), and Bioaug Leach 
(bioaugmented leachate)) flow cytometric fingerprints in 2 dimensions space (two first principal components). 
Microbiotas are sampled at 4 times during cellulose (filter paper 10 g.l

-1
) anaerobic and thermophilic (55°C) digestion: T2 

(13 days), T3 (20 days), T4 (26 days) and T5 (34 days). 
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Table 1 assessment of microbiota stabilization for the 3 kinds of inocula: Compost consortium (Comp.), leachate 
consortium (Leach.) and bioaugmented leachate (Bioaug. Leach). Correlation between communities at successive 
sampling points (13 days (T2) – 26 days (T4) and 26 days – 34 days (T5)) are evaluated through Pearson’s product 
moment correlation coefficients. These correlation coefficients are calculated based on 16S rRNA gene sequencing data 
and FCM fingerprinting data obtained for microbial communities monitoring. 

Microbiota pairs 
Amplicon sequencing Flow cytometry 

Correlation coefficients Correlation coefficients 

Comp. 13 days  – Comp. 26 days -0.03 0.16 

Comp. 26 days  – Comp. 34 days  0.99 0.89 

Leach. 13 days – Leach. 26 days -0.06 -0.39 

Leach. 26 days – Leach. 34 days -0.02 0.16 

Bioaug. Leach. 13 days – Bioaug. 
Leach. 26 days 

-0.07 -0.03 

Bioaug. Leach. 26 days – Bioaug. 
Leach. 34 days 

 0.96 0.74 

 

Table 2 Comparison of microbiota from the 3 kinds of inocula (Leachate consortium (Leach), Compost consortium (Comp) 
and Bioaugmented leachate (Bioaug. Leach)) for 3 sampling times (T2-13 days, T4-26 days and T5-34 days) using 
Pearson’s product moment correlation coefficient calculated according to 16S rRNA gene sequencing data and FCM 
fingerprinting data. 

Time Microbiota pairs 

Amplicon sequencing Flow cytometry 

Correlation 
coefficients 

Correlation 
coefficients 

13 days 

Leach. – Comp.  -0.13 -0.27 

Leach. – Bioaug. Leach. -0.06 -0.08 

Comp. – Bioaug. Leach.  -0.09  0.03 

26 days 

Leach. – Comp. -0.11 -0.15 

Leach – Bioaug. Leach. -0.06 -0.17 

Comp. – Bioaug. Leach.  -0.11  0.50 

34 days 

Leach. – Comp.  -0.08 -0.09 

Leach. – Bioaug. Leach.  0.96  0.05 

Comp. – Bioaug. Leach.  -0.001  0.39 

 

These FCM based trends about stabilizations dynamics are in agreement with sequencing 

results described in previous section. Correlation coefficients, calculated based on successive 

sequencing fingerprints display similar trends than FCM based correlation coefficients. 
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Correlation coefficients obtained after the 26th day and the 34th day, are equal to 0.99 and 

0.96 for respectively bioaugmented leachate and compost communities while value of -0.02 

is observed for leachate consortium. Comparatively, correlation coefficients of -0.03, -0.07 

and -0.06 are calculated between T2 and T4 for respectively compost, bioaugmented 

leachate and leachate consortia. This good agreement between cytometry fingerprints and 

sequencing data to assess microbial community stabilization is encouraging for the 

application of FCM in microbial resource management perspective and more precisely for 

the monitoring of the communities stability. 

Otherwise, according to the distribution of FCM fingerprints in principal components space 

(figure 5), bioaugmented leachate microbiota is more similar to compost community than 

leachate consortium from the 20th day (T3) of the process. Based on FCM data, correlation 

coefficients of 0.50 and 0.39 are calculated between bioaugmented leachate and compost 

communities respectively after 26 and 34 days whereas leachate-bioaugmented leachate 

coefficient correlations exhibit values of -0.17 and 0.05 (Table 2). These results would reveal 

the potential impact of bioaugmentation treatment on the phenotypic profile of microbial 

communities. The growth of strains provided by cellulolytic consortium would lead to a 

reconciliation of respective cytometric fingerprints of compost consortium and 

bioaugmented leachate. However, these trends are contradicted by sequencing results. 

Amplicon sequencing based correlation coefficients of -0.11 and -0.001 between compost 

and bioaugmented leachate microbiota are calculated after respectively 26 and 34 days of 

process. In this case, flow cytometry fingerprinting cannot adequately discriminate microbial 

samples composed of different bacterial genera. Similar cytometry fingerprints are obtained 

for different amplicon sequencing profiles. This can be explained by the fact that different 
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types of bacteria can display similar flow cytometric characteristics, as shown in works of 

Koch et al. (2013) and Müller et al. (2012). This is actually one of the main drawbacks of this 

cytometric fingerprinting method.   

Flow cytometry fingerprinting is a promising approach for dense and low cost on-site 

monitoring of microbial communities involved in bioprocesses such as anaerobic digestion. 

However, this technique can only be considered as a first line method giving indication about 

the stability/disturbance of an established microbial community along the bioprocess, and 

cannot be dissociated from 16S rRNA gene sequencing when more precise community 

characterization is required. Indeed, staining technique implemented in our flow cytometric 

approach is not specific enough for fine discrimination of the different genera/species 

involved in the community. Further improvement of the staining technique must be 

considered. FISH combined with flow cytometry can also be an alternative for the 

discrimination of the main constituent of the microbiota.      

Interestingly, as already successfully implemented for characterizing heterogeneities in 

isogenic population bioreactor (Brognaux et al., 2013), flow cytometry could be considered 

for automated on-line monitoring of complex population from anaerobic digestion. 

4 Conclusion 

Bioaugmentation of leachate microbiota with consortium isolated from composting plant 

induces a significant improvement of leachate cellulolytic potential (average improvement of 

41 %). Combination of 16S rRNA gene sequencing and flow cytometry, allows for monitoring 

the dynamics of microbial communities. Flow cytometry and amplicon sequencing 

fingerprinting are in agreement in terms of communities’ stabilization. However, flow 
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cytometry’s sensitivity does not allow comparison of communities presenting different 

species composition. Flow cytometry fingerprint can be viewed as a routine method to 

assess stability/disturbance of microbiota during a bioprocess. This is a promising high-

throughput, low-cost, fast and operator-independent technology for microbial resource 

management. 
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Supplementary file 1 : Flow cytometric data analysis pipeline 
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CHAPTER III: 

FLOW CYTOMETRY FOR METABOLIC FINGERPRINTING OF 

SINGLE SPECIES BIOFILM 

 

 

 

 

This chapter corresponds to the article entitled "Dynamic of biofilm formation by Bacillus 

amyloliquefaciens deciphered by flow cytometry phenotypic fingerprinting" (Kinet Romain, 

M. Ongena, N. Boon, F. Delvigne) which will be submitted in Microbial Biotechnology.  
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Abstract 

Potential of biofilm has recently been pointed out for fine chemical/biological synthesis. 

Especially, single species biofilm hold more and more attention as they display high 

potentialities for biocatalytic processes. Such communities exploit stochastic gene 

expression (cells switching randomly between discrete physiological states by differentiating 

gene expression) in order to divide labor required for biofilm formation. Cooperative 

interactions of specialized sub-populations yield ecological benefit for the community. 

Therefore, biofilm microbiota cannot be considered as a ‘blackbox’. A phenotypic 

fingerprint, representative of the isogenic community in its entirety, should be available for 

the efficient management of a biofilm reactor. Flow cytometry fingerprinting approach 

combined with RSG staining has been implemented in this work for obtaining metabolic 

fingerprints of biofilm communities formed by diverse B. amyloliquefaciens strains. This 

combined approach highlights various metabolic behaviors among monitored biofilm 

communities. Biofilm communities which are able to synthetize three typical B. 

amyloliquefaciens lipopeptides families (i.e. surfactin, fengycin, iturin) display divergent 

behavior from deleted communities exhibiting partial lipopeptide profile. Complementary, 

macroscale observation of biofilm communities reveals impacts of the alteration of native 

set of lipopeptide on biofilm structure. As for metabolic activities, communities with an 

altered lipopeptide profile are characterized by a divergent behavior by comparison with 

communities exhibiting the full set of lipopeptide. The maintenance of biofilm structure is 

negatively impacted by disequilibrium in lipopeptide profile.    

Key-words 

Bacillus amyloliquefaciens – biofilm – flow cytometry metabolic fingerprinting  
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1 Introduction 

Since decade, bacterial biofilms are involved in many environmental applications. 

Comparatively to planktonic cells, biofilm organization improves environmental continuous 

processes by increasing biomass concentration and its hydraulic retention time (Nicolella et 

al., 2000). By preventing biomass washout, biofilm formation on solid carrier results in a 

continuous conversion of feed stream. Traditionally, the management of such processes 

relies on control of few biotic factors such as feeding rate, aerobic/anaerobic conditions and 

shearing forces (Zune, 2015). As biofilm formation and maintenance naturally occurs in 

processes conditions, elucidating complex biofilm formation and maintenance is not 

necessary for efficiently managing such low added value applications. 

However, potential of biofilm has recently been pointed out for fine chemical/biological 

synthesis (Cheng et al., 2010). Especially, single species biofilm hold more and more 

attention as they display high potentialities for biocatalytic processes (Halan et al., 2012; 

Rosche et al., 2009). Functional specialization and stratification occurring in monospecies 

biofilm improve the robustness and the productivity of processes when comparing with 

planktonic cell strategy. These multicellular communities exploit phenotypic heterogeneity 

through a division of labor strategy (Martins and Locke, 2015). More precisely, bacteria 

exploit stochastic gene expression (cells switching randomly between discrete physiological 

states by differentiating gene expression) for distributing the metabolic burden associated 

with biofilm formation, leading to specialized subpopulations as it has been demonstrated in 

B. subtilis biofilm (Vlamakis et al., 2008). Only a small proportion of cells has been evidenced 

for expressing gene encoding matrix components (Chai et al., 2008). The energy cost, 

inherent to the synthesis of these molecules, is saved by non-producing cells which benefit 
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from matrix components produced by others. Similarly, biofilm maintenance and community 

survival/dispersion is ensured through functional specialization in mature communities. A 

part of the community maintain active growth while others differentiate into several 

phenotypes such as matrix producer, spore former or competent cell through complex 

regulatory pathways (Stewart and Franklin, 2008). More than co-existence of specialized 

groups, division of labor strategy imply positive interactions between different groups. A 

colony formed of multiple phenotypes is assumed preforming better than a colony that 

consists solely of any one of them. Cooperative interactions of specialized sub-populations 

yield ecological benefit for the community.  

Biofilm microbiota cannot be anymore considered as a ‘blackbox’. Spatial and functional 

heterogeneities affecting biofilm community should be elucidated. Moreover, physiological 

heterogeneities and related underlying molecular mechanisms involved in biofilm formation 

and maintenance must be deeply understood for process optimization. Nowadays, several 

techniques allows for evaluation at microscale of biofilm structure and function. Particularly, 

fluorescent reporter systems combined with advanced imaging approach (e.g. confocal laser 

scanning microscopy) allow for imaging the three dimensional distribution of 

microorganisms within the biofilm structure (Morgenroth and Milferstedt, 2009).   Flow cell 

which allows for a tightly control of the flow, can be easily combined with an imaging 

approach (Sternberg and Tolker-Nielsen, 2005). Microfluidic devices also reveal powerful for 

microscale investigations (Bruchmann et al., 2015; Delvigne et al., 2014). Moreover, it is 

crucial to link these microscale investigations with meso-/macroscale observations as 

mechanisms and processes at the microscale depend on and influence interactions on larger 

spatial scales (Morgenroth and Milferstedt, 2009).  



Results Chapter III 

117 
 

Ideally, a phenotypic fingerprint, representative of the isogenic community in its whole, 

should be available for an efficient management of a biofilm reactor. Previous mentioned 

approaches are not suitable for this purpose. Confocal laser microscopy is a powerful tool for 

highlighting heterogeneities, but this technique is only able to provide information about 

restricted/specific targeted area of the biofilm structure. While, conditions encountered in 

flow cell by biofilm communities diverge from bioprocesses conditions. Based on this 

statement, an original flow cytometry fingerprinting approach has been implemented in this 

work for obtaining metabolic fingerprints of artificial biofilm communities. Metabolic activity 

of every cell is evaluated thanks to Redox Sensor Green (RSG) stain. Kalyuzhnaya et al. (2008) 

demonstrated that RSG does not suppress cellular metabolism contrary to other metabolic 

marker (tetrazolium salts) and is useful for real-time detection of cells actively respiring. 

Moreover, Baert et al. (2016) demonstrate in their works that RSG fluorescent signal is 

proportional to the activity of the electron transport chain. Bacterial reductases, being part 

of electron transport systems, induce RSG yields green fluorescence.   

2 Material and methods 

2.1 Microbial strains and culture conditions 

Bacillus FZB42 strain and its mutant AK1, AK2, AK3, CH1 and CH2 used in this work were 

kindly provided by R. Borriss of Humboldt University, Berlin. Mutants were constructed in 

order to obtain strains with deficient in lipopeptide synthesis (Koumoutsi et al., 2004). Table 

1 lists respective lipopeptide synthesis profiles of the different strains.  
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Table 1 Respective lipopeptide synthesis profile of FZB42 strain and its mutant 

 
Bacillomycine Fengycine Surfactine 

FZB + + + 

AK1 - + + 

AK2 + - + 

AK3 - - + 

CH1 + + - 

CH2 + - - 

  

All cultures carried out in this work are led in not shaken 24 wells plates (4 raw of 6 wells) at 

30°C and with medium optimized for lipopetides production (Opt medium) (Jacques et al., 

1999). Different wells are filled with 1 ml of Opt medium and subsequently inoculated with 

20 µl of preculture. Precultures are led in the same conditions than plate cultures except 

they are carried out in 250 ml flasks. Cellular concentration in the different precultures are 

controlled and adjusted if necessary for ensuring equal inoculation load. In the case of co-

cultures, cell concentration ratio 1:1 is carried out for inoculation. 

2.2 Cultures characterization 

For each sampling time, segregated analyses of biofilm and liquid phase are realized. 

Consequently, separation of the two phases must be achieved before further parameters 

measurement. First, the liquid phase is collected. The biofilm formed at liquid-air interface is 

delicately pierced and the undersurface liquid is collected with precaution. Biofilm is then 

suspended in filtered (0.2 µm) Phosphate Buffered Saline solution (8.0 g.l-1 NaCl, 0.2 g.l-1 KCl, 

1.44 g.l-1 Na2HPO4, 0.24 g.l-1 KH2PO4) and collected. Sonication step is applied to samples in 

order to deconstruct extrapolymeric substances matrix in which cells are tangled up. Once 
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the cell suspensions are obtained for both phases, respective optical densities are measured 

at 600 nm. 

2.2.1 Sporulation  

Sporulation level is estimated through acridine orange (AO) staining technique involving flow 

cytometry for fluorescence measurement. 100 µl of cell suspension is added with 500 µl pH 

3 buffered solution 1 (13.23 mM citric acid, 6.85 mM Na2HPO4, 0.1 mM EDTA, 0.2 M 

anhydrous sucrose) and 500 µl of pH 3.8 buffered solution 2 (4.95 mM citric acid, 5.5 mM 

Na2HPO4, 0.147 M NaCl) in which AO stock solution is formerly diluted 100 times. Cell 

suspension concentration is previously adjusted in order to reach approximate final 

concentration of 105-106 cells per ml. After incubation at room temperature for 10 min, 

samples are centrifuged and resuspended in filtered PBS. Next, fluorescence profile of the 

different samples is evaluated thanks to Accuri C6 flow cytometer (BD Biosciences, NJ USA). 

Parameters are recorded for 40 000 events with flow rate of 14 µl.min-1 and FSC-H based 

threshold of 60 000 AU. Traditional FSC-H threshold (80 000 AU) is lowered in order to take 

into account the spore, smaller than vegetative cells.    

2.2.2 Metabolic state characterization – Redox Sensor Green (RSG) staining 

Metabolic state is characterized through RSG staining technique involving flow cytometry for 

fluorescence measurement. 1 ml of cell suspension is added with 1 µL Redox Sensor Green 

(Invitrogen, UK). Cell suspension concentration is previously adjusted in order to reach 

approximate final concentration of 105-106 cells per ml. After incubation at room 

temperature for 25 min, samples are centrifuged and resuspended in filtered PBS pH 7. Next, 

fluorescence profile of the different samples is evaluated thanks to Accuri C6 flow cytometer 
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(BD Biosciences, NJ USA) on the FL1 channel. Parameters are recorded for 40 000 events 

with flow rate of 14 µl.min-1 and FSC-H based threshold of 60 000 AU.   

2.2.3 Lipopeptide analysis 

Samples were analyzed by reverse phase UPLC–MS (UPLC, Waters, Acquity class H) coupled 

with a single quadrupole MS (SQDetector, Waters, Acquity) on an Acquity UPLC BEH C18 

(Waters) 2.1 × 50 mm, 1.7 μm column. We used a method, based on acetonitrile gradients, 

allowing the simultaneous detection of all three lipopeptide families. Elution was started at 

30% acetonitrile (flow rate of 0.60 ml min−1 ). After 2.43 min, the percentage of acetonitrile 

was brought up to 95% and held until 5.2 min. Then, the column was stabilized at an 

acetonitrile percentage of 30% for 1.7 min. Compounds were identified on the basis of their 

retention times compared with authentic standards (98% purity, Lipofabrik society, 

Villeneuve d’Asc, France) and the masses detected in the SQDetector. Ionization and source 

conditions were set as follows: source temperature, 130°C; desolvation temperature, 400°C; 

nitrogen flow, 1000 l h−1 ; cone voltage, 120 V. 

2.3 Statistical data treatment 

2.3.1 Flow cytometry data  

The raw data are extracted from the CFlow software (Accuri, BD Bioscience) as .fcs files and 

loaded into R software. As well for RSG staining as for AO staining, FSC-H, SSC-H features and 

induced green fluorescence (FL1 channel) are considered for further data treatment. Data 

analysis pipeline consists of three major steps. (1) Creating a n-dimensional quantitative 

fingerprint of each sample from their respective bivariate  FCM distributions, either (SSC – 

FL1) or (FSC – FL1), using the recursive probability binning (PB) algorithm for flow cytometry 

data, implemented in the Bioconductor package FlowFP (Rogers and Holyst, 2009). In a first 
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time, a model, composed of hyper-rectangular regions (bins) of varying size and shape, is 

established. From superimposed FCM distribution (i.e. data from all samples are pooled 

together) and thanks to PB algorithm (Rogers et al., 2008), bivariate data space is divided in 

hyper-rectangular regions in such way that each contains similar number of events (one 

event corresponding to one cell). First step of the algorithm consists in the division of space 

into two bins containing similar number of events. Afterwards, each of these bins is again 

divided into two bins with equal number of events, and so forth. Therefore region of 

bivariate FCM space displaying high density of events are characterized by bins of small area 

whereas larger bins characterized regions of weak density. Moreover, the final number of 

bins (n) is arbitrary set and correspond to 2i with i the number of recursive subdivisions. In 

our case, 6 recursive subdivisions are applied and therefore model is composed of 64 bins. 

The obtained model is then applied to each sample and number of cells per bin is 

determined, creating feature vector of counts (n-dimensional) for each sample (figure 1). 

The latter will be used as a fingerprint of the microbial community at a given time and under 

given conditions. (2) For each type of strains or cocultures, a vector of values is created by 

computing successive feature vectors of counts obtained at step 1 for the different sampling 

times. (3) Hierarchical clustering of the different strains according to their respective vector 

of values created at step 2. Hierarchical clustering on principal component is carried out for 

establishing clusters. 
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Figure 1 Flow sheet of flow cytometry fingerprinting (FlowFP). A vector of values describing raw biparametric histogram 
(SSC-A – FLA-1) is obtained thanks to FlowFP fingerprinting. Gating grid composed of 64 bins is applied to histograms. The 
number of events per bins is determined for constructing vector of values. The structure of the gating grid depends on 
the structure of the raw biparametric cytometric histograms studied. 

3 Results and discussion 

3.1 Growth dynamics of FZB42 and its mutant 

B. amyloliquefaciens FZB42 and its mutants, deficient in lipopeptide synthesis, have been 

cultured in static conditions in order to highlight potential impact of deficient lipopeptide 

synthesis on biofilm formation. Additionaly, two co-cultures have been carried out, i.e. AK1-

CH2 and AK3-CH1. Mixing these deletion mutants allows for the production of the full set of 

lipopeptides (similar to wild FZB42 strain). The ability of the different strains in forming 

biofilm is depicted at figure 2A through the OD values measured for the biofilm phase during 

culture. Moreover, figure 2B displays complementary OD values measured in liquid phase of 

the cultures and figure 2C displays the total cellular densities (i.e. addition of cellular 

densities from both liquid and biofilm phase).  All strains display similar growth dynamics 

until 56 hours of culture, i.e. exponential growth followed by maintenance period. As well 

the FZB42 strain as its mutants and the co-cultures is characterized by fast exponential 

growth phase resulting in the fast formation of biofilm. Maximal cellular densities in biofilm 
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phase are reached for every strain after 26 or 32 hours. Nevertheless, initial growth is 

observed in liquid phase. 

 

Figure 2 Dynamics of OD (600 nm) measured during not shaken culture of the different B. amyloliquefaciens strains: AK1 

(◊), CH2 (□), AK3 (∆), CH1 (x), AK2 (*), AK1-CH2 (○), AK3-CH1 (+), FZB (-) in biofilm phase (A), liquid phase (B) and both 

(C). 

An increase of OD is observed in liquid phase between inoculation and 10 hours of culture. 

Once critical cellular density is reached in liquid phase (e.g. an optical density of 

approximatively 0.5 in this experiment), cells slip towards air-liquid interface and form 

biofilm. Quorum sensing mechanisms are believed to trigger genetic switch responsible of 



Results Chapter III 

124 
 

the phenotype transition (i.e. when the local density of bacteria exceeds a threshold value, 

the sessile phenotype is favored over motile state) (Kobayashi, 2007; Vlamakis et al., 2008). 

Ardré et al. (2015) also advance aerotaxis phenomenon for explaining similar fact occurring 

in static liquid culture of B. subtilis, which is closely related to B. amyloliquefaciens. B. subtilis 

is known to exhibit aerotaxis (i.e. bacteria migrate to areas in which the concentration of 

oxygen is high) and water-air interface acts as an oxygen source.  

Biofilm establishment is then followed by a maintenance period. Maintenance period takes 

place at least until 56 hours, except for CH1 strain whose biofilm destructuration already 

occurs from 50th hours. From 56 hours, biofilm dispersion affects all mutant strains. After 72 

hours, distinction between biofilm and liquid phase is very tough. Contrary, not any 

dispersion is observed for FZB42 and co-cultures. Increase of OD values in biofilm phase is 

even observed for AK3-CH1 co-culture. 

Exopolysaccharides (EPSs), which are typically one of the main constituents of biofilm matrix, 

are known to be essential for the development of the architecture of any biofilm matrix 

(Sutherland, 2001). In this case, deficiency in some lipopetide synthesis seems to negatively 

impact biofilm maintenance. More than lipopeptides themselves, the interactions and 

equilibrium between different lipopeptide families seem crucial for stable biofilm structure. 

These differential biofilm behaviors, between strains exhibiting either full or partial 

lipopeptide profile, are corroborated by hierarchical clustering designed on the basis of 

respective OD dynamic profiles (figure 3).  All mutants are grouped in a specific cluster 

whereas FZB42 and both co-culture take place in a divergent branch of the hierarchical tree.  

As expected, an increase of OD values in liquid phase is observed during the dispersion of 

the biofilm. This phenomenon is particularly marked for AK1, CH1 and CH2 strains. 
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Disappearance of the biofilm organization results in the release of cells constituting biofilm 

to the liquid phase. The evolution of total cellular densities (figure 2C) tends towards 

corroborating this increase of OD in liquid phase is only the result of biofilm dispersion. The 

cellular densities curves measured for biofilm and both liquid-biofilm phases (total) display 

identical shapes. The cellular density associated to liquid phase slightly impact total cellular 

density. From the 32th hour no more significant increase of total OD is observed for the 

dispersing strains. The final increase observed in liquid phase does not result in an increase 

of the total population. Cells cultures enter in stationary phase after 32 hours. 

 

Figure 3 Hierarchical clustering based on principal component analysis of the biofilm O.D. dynamics profiles associated to 
different strains and co-cultures. Characteristics of the different mutants are provided in table 1. 

3.2 Lipopeptide synthesis 

Three types of lipopeptides are typically synthetizes by B. amyloliquefaciens, i.e. surfactin, 

fengycin and iturin. Their respective concentrations in the liquid phase have been 
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determined at different moment of the cultures carried out in not shaken conditions for the 

different strains and co-cultures. Figure 4 A, 4 B and 4 C display respectively the evolution of 

the concentration of surfactin, fengycin and iturin in the liquid phase.  

First of all, these results confirm that the three types of lipopeptides are present in the co-

cultures of mutant strains. “Native” lipopeptide profile of B.amyloliquefaciens is 

reconstructed through the co-inoculation of complementary mutant strains. Otherwise, 

similar dynamics of production are observed for every “strains”. After 10 hours of growth, 

when mature biofilm structure is not yet set up, weak amounts of lipopeptide are detected. 

Afterwards, an important increase of the concentrations is observed for each strain between 

the 10th and 26th hours. Finally, surfactin and fengycin concentrations remain pretty stable 

until the end of the cultures while iturin concentrations still increase until the 50th hour. The 

three types of lipopeptide are thus mainly produced by bacteria during exponential growth 

during which biofilm structure is elaborated. Nevertheless, iturin and fengycin synthesis 

seems delayed comparatively to surfactin synthesis. In their works, Jacques et al. (1999) and 

Koumoutsi et al. (2004) highlighted similar dynamics in lipopetides production from 

respectively Bacillus subtilis S499 which has since been reclassified in Bacillus 

amyloliquefaciens S499 (Nihorimbere et al., 2012) and Bacillus amyloliquefaciens FZB42.  

Except for the first sampling time, maximal lipopeptides concentrations are measured in the 

wild strain cultures. At first sampling time, FZB42, which display the lowest cellular density in 

biofilm, exhibit the lowest concentrations. Contrary, during the rest of the culture, the wild 

strain is characterized by the highest concentrations for the three types of lipopeptides. 

Particularly, fengycin concentrations are two times higher for the wild strain than for 

mutants and co-cultures. Moreover, these results highlight lipopeptides are not produced in 

the same range of concentration. Surfactin is synthetized in much lower quantities than  
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Figure 4 Lipopeptide concentrations ((A) surfactin, (B) fengycin and (C) iturin) during static microplate assays of 
B.amyloliquefaciens FZB42, mutant strains and co-cultures. Characteristics of the different mutants are provided in table 
1. 

fengycin and iturin. Indeed, surfactin concentrations are approximatively 10 times lower 

than iturin and fengycin. These results are in contradiction with the results obtained by 

Jacques et al. (1999). Surfactin was the main product (maximal concentration of ~1200 mg.L-
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1) while fengycin is produced in low quantity (~100 mg.L-1). However, these productions 

were obtained in different condition. The microbial cultures were carried out in shaken 

bioreactor and not in static microplate in such way that biofilm formation was avoided. This 

could explain such different lipopeptide production during culture.     

3.3 Sporulation dynamics 

Complementary to cellular densities, sporulation ratio have been assessed for each sample 

in both liquid and biofilm phase (figure 5). Indeed, The segregation between vegetative and 

spores is based on AO staining method. Linkage of AO molecules to vegetative cells results in 

significantly higher fluorescent signal than linkage between AO and sporulated cells. 

Sporulation ratio of a microbial population can thus be determined through measurement of 

single cell fluorescence.  

As highlighted at figure 5, spores represent a very weak proportion of the global population 

at the beginning of exponential growth phase (i.e. after 10 hours of culture) for every strain. 

However, after 24 hours, more than 60% of spores are identified in biofilm for both co-

cultures and 47%±1 in FZB42’s biofilm. AK1 displays intermediate sporulation ratio (32%±3) 

in biofilm phase after the same time whereas lower rates are calculated for other mutants 

(around 10%). Next, sporulation ratios increase for each type of “strains”. However, unlike 

mutants, which reach maximal rates between 50 hours and 72 hours, FZB42 and co-cultures 

already reach maximal sporulation ratios after 34 hours. Moreover, while for mutants 

sporulation ratios remain stable after reaching maximums, a decrease is observed for the 

strains exhibiting a full lipopeptide profile. This decrease of the sporulation ratios between 

the 34th hour and the end of the process is even more pronounced in the liquid phase. 

Concerning liquid phase, similar trends and values than biofilm phase are observed. It is also 
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interesting to note that very high sporulation ratios are reached in the cultures. Indeed, 

maximal values oscillate between 80% and 95%. Similar ratios have been measured by 

Wijman et al. (2007) in biofilms formed by Bacillus cereus.  

 

Figure 5 Dynamics of sporulation measured during static culture of the different B. amyloliquefaciens strains: AK1 (◊), 

CH2 (□), AK3 (∆), CH1 (x), AK2 (*), AK1-CH2 (○), AK3-CH1 (+), FZB (-) in biofilm (A) and liquid phase (B). Sporulation 

ratios are determined through AO staining approach.          

3.4 Metabolic activities dynamics   

3.4.1 Median values  

The dynamics of metabolic activities for the different strains in liquid and biofilm phase are 

displayed at figure 6. The metabolic activities are expressed through the median values of 

fluorescence resulting from RSG staining and measured for 40 000 cells for each sample by 

flow cytometry. 
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Displaying their highest level of metabolic activities after 10 hours of culture (median values 

comprised between 150 000 and 280 000), biofilm communities exhibit drastic lower 

metabolic activities after 24 hours (median values around 30 000) (figure 6 A). Afterwards, 

metabolic activities associated to biofilm cells still decrease for finally stabilizing at a minimal 

level after 50 hours of culture. Once biofilm structure is established, bacteria enter in a 

weakly metabolically active stage. Such dynamics is observed for every type of strain in 

biofilm phase. Moreover, quantitative differences only appear for the first sampling time, 

before the exponential growth phase. 

 

Figure 6 Dynamics of the metabolic activities measured through RSG staining during static culture of the different B. 

amyloliquefaciens strains: AK1 (◊), CH2 (□), AK3 (∆), CH1 (x), AK2 (*), AK1-CH2 (○), AK3-CH1 (+), FZB (-) in biofilm (A) and 

liquid phase (B). Plotted values correspond to the median of FL1-A values obtained for the different samples. 
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Except a slower initial decrease of the metabolic activities, similar dynamics are observed for 

cells extracted from liquid phase and from biofilm. Such similar trend would suggest that 

cells observed in liquid phase result from biofilm dispersion and are not the result of specific 

planktonic cells growth. The decrease of metabolic activities associated to bacteria from 

liquid phase (figure 6 B) corroborates the hypothesis that the final increase of OD, observed 

in the liquid phase, is only the result of the release of cells from biofilm. 

3.4.2 Metabolic phenotypic fingerprinting  

Bidimensional flow cytometric representations resulting from RSG staining approach 

implemented for the investigation of metabolic activities of the different strains are 

displayed at figure 7. More precisely, this figure displays cytometric patterns (FSC-FL1 and 

SSC-FL1) obtained for the wild type (FZB42) biofilm community during culture. 

In the previous section, median FL1-A values related to these distributions have been 

discussed. However, a part of the information associated to the cytometric analyses is lost 

by observing such discrete values. The distribution/diversity of the metabolic single-cell 

activities is not taking into account. Just by giving a look at the cytogram (figure 7), it is 

obvious that metabolically different subpopulations appear in biofilms. The dynamic of these 

different metabolic phenotypes is neglected when only interpreting median values. Based on 

this statement, metabolic phenotypic fingerprinting (see section 2.3. for data analysis 

pipeline) has been implemented with the aim of clustering the strains according to their 

metabolic behavior during cultures. Figure 8 and the figure 9 display the results of these 

metabolic clustering when respectively considering SSC-FL1 and FSC-FL1 bidimensional 

cytometric patterns related to biofilm cells. As cells from liquid phase are thought to be only 
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the result of biofilm release, phenotypic fingerprinting has not been considered for these 

ones.  

Divergent behavior of FZB42 and co-cultures observed for biofilm dynamics and highlighted 

through O.D. clustering, is also noticed in term of metabolic phenotypic dynamics. The shape 

of both hierarchical trees’ highlights this divergence. FSC and SSC parameters of the cells, 

which typically give structural information about respectively cell size and about internal cell 

organization, do not impact clustering. At least, FSC or SSC variability measured between 

cells is not significant compare to FL1 variability. As for cellular densities clustering, “strains” 

with an uncomplete lipopeptide profile are strongly separated from “strains” with complete 

set of lipopeptide. While AK1, AK2, AK3, CH1 and CH2 are grouped in the same branch of the 

trees, FZB42 and co-culture take place in a divergent branch. Similar divergences are 

highlighted at macroscale, i.e. dynamic of biofilm formation, and microscale, i.e. dynamics of 

metabolic phenotypes.  

By comparing metabolic behaviors of co-cultures of mutant strains and wild strain FZB 42, no 

adverse effect of the genetic construction is highlighted. Depletion in lipopeptide is 

confirmed as the sole potential cause for divergent biofilm metabolic behavior. A divergent 

biofilm structure induced by lipopeptide depletion could result in the implementation of a 

divergent single-cell metabolic strategy by the biofilm community. 
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Figure 7 Bidimensional flow cytometric histogram obtained during static culture of B. amyloliquefaciens FZB42( (A) FSC-A/FL1-A and (B) SSC-A/FL1-A). Fluorescence, expressed through FL1-
A values, results from RSG staining technique. Histograms are displayed for six sampling times for both cases.  
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Figure 8 Hierarchical clustering based on principal component analysis of the biofilm metabolic flow cytometric 
fingerprinting (SSC-FL1) profiles associated to different strains and co-cultures. 

 

Figure 9 Hierarchical clustering based on principal component analysis of the biofilm metabolic flow cytometric 
fingerprinting (FSC-FL1) profiles associated to different strains and co-cultures. 
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III. 4 Conclusion 

The flow cytometry fingerprinting approach implemented in this work has been shown as an 

efficient approach for the monitoring of biofilm communities at a single-cell level. 

Remarkably, contrary to other single-cell monitoring approach (e.g. confocal microscopy 

laser scanning), the whole biofilm community is characterized based on this approach. 

Moreover, results reveal RSG as an efficient tool for evaluating metabolic activity of cells. 

Combined with flow cytometry fingerprinting, RSG staining allows for highlighting various 

metabolic behaviors among monitored biofilm communities. Biofilm communities which are 

able to synthetize three typical B. amyloliquefaciens lipopeptides families (i.e. surfactin, 

fengycin, iturin) display divergent behavior from communities characterized by uncomplete 

lipopeptide profile. Disequilibrium in lipopeptide synthesis also impacts the 

architecture/structure of biofilm. The lack of one or two lipopeptide families results in a 

faster destabilization of the structure. Impacts of the alteration of native set of lipopeptide 

are highlighted for biofilm communities at both macroscale and microscale. However, 

further analyses are necessary for elucidating biological mechanisms responsible of these 

divergences and evaluating specific impact of each lipopeptide family. 
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5 General discussion and perspectives 

The global objective of the project was to improve the comprehension of microbial 

processes underlying anaerobic cellulose digestion for improving process performances on 

the basis of biological parameters. In a first time, the efficiency of a bioaugmentation 

treatment, for improving cellulose anaerobic digestion capacities of microbial communities, 

has been validated. Afterwards, 16s rRNA sequencing and flow cytometry, two culture 

independent methods, have been considered for the monitoring of the microbial 

communities involved in the cellulose anaerobic digestion processes. These techniques have 

been considered for elucidating the complexity inherent to microbial communities through 

the evaluation of several parameters linked with microbial ecology, i.e. richness, evenness 

and dynamics. Finally, flow cytometry monitoring technique has been transposed for the 

monitoring of single-species biofilm multicellular communities with the aim of highlighting 

phenotypical heterogeneities among such isogenic population. Major results obtained for 

these different topics are discussed in this section.        

5.1 Improving anaerobic digestion of cellulosic biomass: toward a 

microbial resource management approach 

Among several considered environments, compost provides the community of 

microorganisms displaying the highest cellulolytic potential in anaerobic and thermophilic 

conditions. Surprisingly, none consortium able to efficiently degrade cellulose under aerobic 

conditions could be isolated from compost (Wongwilaiwalin et al., 2010).  

The isolated community displays similar degradation capacities than well-known anaerobic 

cellulolytic species Clostridium thermocellum (Tachaapaikoon et al., 2012). Regardless the 
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substrate’s level of crystallinity, the isolated consortium is able to degrade a significant 

amount of cellulose in a weak lapse of time. The isolated community seems to have a 

complete set of enzymes acting synergistically for the efficient degradation of different 

forms of cellulose. This absence of negative impact from crystallinity is remarkable as this 

factor is regularly mentioned for explaining the recalcitrance of cellulose toward hydrolysis 

(Mansfield et al., 1999). On the opposite and in agreement with the works led by Salehian et 

al. (2013), lignin is shown for clearly negatively impacting the anaerobic digestion of 

cellulosic substrate. Non degradable in the absence of oxygen, lignin polymers protect 

cellulose from hydrolysis. 

Once isolated from compost, the consortium has been considered as a bioaugmentation 

agent for improving performance of two microbial communities involved in anaerobic 

digestion bioprocesses:  

(1) Sludge from full-scale anaerobic digester fed with agro-food organic wastes and 

agricultural wastes 

(2) Leachate from landfill containing municipal solid waste. 

In both cases, management of the microbial population leads to an increase of the biogas 

production from cellulose digestion (average gains of respectively 14% and 122%). 

Particularly, bioaugmentation treatment results in an average improvement of 41% of the 

leachates’ cellulolytic potential. In this specific case, bioaugmentation treatment clearly 

accelerates the establishment of an efficient cellulolytic population. Based on these results 

and other similar works (Martin-Ryals et al., 2015; Peng et al., 2014), bioaugmentation with 

cellulolytic microbial agent can thus be considered as a promising approach for improving 

digestibility of recalcitrant cellulosic substrate during anaerobic digestion. By comparison 
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with physical, chemical and biological pretreatment, efficient management of the microbial 

resources involved in processes does not significantly increase the cost of the global process 

and does not generate inhibitory compounds (Palmqvist and Hahn-Hägerdal, 2000).     

5.2 Amplicon sequencing for elucidating complex microbial communities 

In order to improve the management of the microbial resources, it is crucial for elucidating 

the structure of microbial communities. As several factors make classical culture dependent 

analytical techniques inefficient, culture independent method (i.e. 16S rRNA gene 

sequencing (figure 1)) has been carried out for this purpose. Particularly, the richness, the 

evenness and the dynamics of the microbial communities have been evaluated through the 

calculation of several ecological parameters on the basis of sequencing results. In a first 

time, consortium isolated from compost has been characterized during cellulose anaerobic 

digestion. Specific culture conditions (i.e. cellulose as only substrate, strict anaerobia, 

thermophilic conditions …) induce a drastic decrease of the richness comparatively to raw 

compost population (Gladden et al., 2011). Moreover, community is also characterized by a 

weak evenness. Only few phylotypes display successively high relative abundance. Such 

structure is classically recognized as not favorable for the stability of the ecosystem. Highest 

evenness increases the probability that a species tolerant to perturbation is present in 

significant proportion (Wittebolle et al., 2009) which improves the community robustness. 

However, despite unfavorable structure, deep modifications of the community allow for 

maintaining the cellulolytic capacities in evolving conditions. Similar sequencing analyses 

carried out for the assessment of landfill leachate cellulolytic bioaugmentation also display 

the importance of the succession of microbial phylotypes in the hydrolysis of cellulose and 

the subsequent step leading to biogas generation. Therefore, monitoring of the populations’ 

dynamics is crucial to ensure the efficiency of such processes. However, 16S rRNA gene 
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sequencing cannot be considered as a suitable approach for routine on-site analysis. Based 

on this statement, flow cytometry fingerprinting has been implemented as a cheaper, faster 

and easier communities monitoring approach. By measuring a set of optical parameters, 

flow cytometry allows the characterization of cellular populations at single-cell level in a very 

short time. Becoming widely used for the monitoring of phenotypic heterogeneities within 

isogenic cultures (Delvigne et al., 2014; Delvigne and Goffin, 2014), flow cytometry has also 

already been implemented for the investigation of microbial communities structure (De Roy 

et al., 2012; Günther et al., 2012).     

5.3 Flow cytometry fingerprinting – an efficient link with MRM parameters 

Complementary to sequencing analyses, flow cytometry fingerprinting has been performed 

for the assessment of leachate bioaugmentation. Through a simple experimental procedure 

involving DNA staining (figure 2), an operator-independent fingerprint of a community is 

obtained in less than one hour. Afterwards, diverse statistical analyses are implemented for 

an efficient interpretation of the community structure and more precisely for the evaluation 

of similarities between communities.  

The fingerprinting method has been implemented for the monitoring of the 

dynamics/stability of microbial communities involved in the anaerobic digestion of cellulose. 

Results highlight divergent behavior of the investigated populations. Particularly, flow 

cytometry fingerprinting underlines the time required for the establishment of a stable 

structure. Leachate initial population required longer period than other for adapting to the 

environmental conditions. Similar statistical tools have been applied to the sequencing 

fingerprints for assessing the relevance of the cytometric approach. Comparison of flow 

cytometry and amplicon sequencing show similar trends about the population dynamics of 
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the respective communities. Flow cytometric hypotheses are corroborated by sequencing 

results. Therefore flow cytometry fingerprinting can be considered as a suitable routine 

approach (low-cost, fast, on-site, operator independent) for the monitoring of complex 

microbial communities and particularly for the assessment of structure dynamics.  

In a second time, the establishment/resilience of added species in bioaugmented leachate 

community has been investigated through flow cytometric fingerprinting. The levels of 

similarity between the different communities have been evaluated. As for stability 

assessment, sequencing fingerprints have been considered as referential for the validation 

of trends drawn on the basis of cytometric results. Unfortunately and contrary to dynamics 

analyses, results from both techniques are not in agreement. Cytometric approach does not 

allow a fine discrimination of the diverse genera/species involved in communities. 16S rRNA 

gene sequencing remains essential for this purpose.  

Based on these results, flow cytometric fingerprinting appears as an efficient first line 

method for the detection of disturbance among communities and 16S rRNA sequencing as a 

support technique for understanding and explaining such disturbances. Taken together, both 

techniques should be suitable for the efficient management of microbial resources involved 

in bioprocesses. 

5.4 Extension of flow cytometry fingerprinting to metabolic fingerprinting 

of biofilms 

In this last part of our works, focus has been put on the monitoring of microbial biofilm 

communities, more precisely single-species biofilm. Despite an homogeneous nucleic
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Figure 1 16S rRNA gene sequencing approach for the monitoring of complex microbial communities involved in bioprocesses 

 

 

Figure 2 Flow cytometry fingerprinting approach for the monitoring of complex microbial communities involved in bioprocess
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content, such multicellular communities display phenotypic/metabolic heterogeneities 

which result from diverse factors (e.g. division of labor strategy (Martins and Locke, 2015) 

and heterogeneous environmental conditions (Stewart and Franklin, 2008)). Elucidating the 

microbial complexity of such “multiphenotypes” communities is required for the efficient 

management/design of the bioprocesses which they are involved in. Physico-chemical 

monitoring, actually implemented is not sufficient for this purpose. A microbial single-cell 

approach is required. Moreover, for being truly efficient, the investigating approach should 

consider community in its entirety and provide information representative of the 

bioprocesses conditions.  

Demonstrated as an efficient way to parametrize the dynamics of complex communities 

displaying several subpopulations (Kinet et al., 2016), flow cytometry fingerprinting has been 

considered for the monitoring of the heterogeneities exhibited by biofilm communities. 

Specifically, metabolic heterogeneities have been investigated thanks to flow cytometry 

fingerprinting combined with a staining technique. Redox Sensor Green, whose fluorescence 

is proportional to the flux of electron involved in the respiratory chain (Baert et al., 2016), is 

suitable for this purpose. The staining of biofilm communities, formed by Bacillus 

amyloliquefaciens, results in the discrimination of several subcommunities displaying 

divergent level of metabolic activities.  

In addition to this microscale investigation (i.e. single-cell microbial community), biofilms has 

been also investigated from macroscale point of view (i.e. global biofilm structure) with the 

aim of highlighting potential concordances. More precisely, the impact of lipopeptide 

profiles on the biofilm structure formation (macroscale observations) and on the metabolic 

strategy implemented by biofilm communities at single-cell level (microscale observations) 
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have been explored. Several mutant strains of Bacillus amyloliquefaciens, for which the 

synthesis ability of one or two type of lipopeptides (i.e. surfactine, iturine, fengycine) is 

depleted (Koumoutsi et al., 2004), have been considered for this purpose. Divergent 

behaviors are observed for the biofilm communities according to their lipopeptide profile. 

The destabilization of the “natural” lipopeptide equilibrium results in an altered biofilm 

structure. Similarly to exopolysaccharides (Sutherland, 2001), lipoppeptides seem to play a 

key role in biofilm structure. As well from a macroscale point of view than from single-cell 

point of view, communities with a complete set of lipopeptide diverge from communities 

displaying an uncomplete profile. The maintenance of the biofilm structure is altered by a 

modification of the “wild” lipopeptide profile. The lack of at least one type of lipopeptide 

induces a faster dispersion of the biofilm structure. Similarly, a divergent metabolic behavior 

is highlighted for the communities characterized by an uncomplete lipopetide profile. 

Highlighting such divergence at single-cell level is enabled by the implementation of the 

fingerprinting approach for the analysis of the flow cytometry results. Fingerprinting 

approach parametrizes the dynamics of subcommunities revealed by staining during 

cultures. Contrary, the interpretation of the fluorescence (resulting from metabolic staining), 

through discrete values (median or mean), results in the loss of such dynamic information. 

Given to their respective fingerprints, strains have been clustered. While mutant strains are 

grouped together, communities with a complete lipopeptide profile (i.e. wild strain and co-

culture of complementary mutants) take place in a divergent branch. 

Previously proved to be an efficient tool for assessing the stability of multispecies 

communities (Kinet et al., 2016), the results obtained in this last part of our works highlight 

that flow cytometry fingerprinting is also relevant for the monitoring of phenotypical 

heterogeneities among multicellular isogenic communities such as biofilms. Moreover, the 
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approach implemented in this section allows for overcoming drawbacks inherent to methods 

classically used for elucidating biofilm complexity: (1) the behavior of the whole community 

is simultaneously investigated and (2) it is compatible with an implementation in bioprocess 

conditions. Nevertheless, a major drawback of the flow cytometry fingerprinting approach 

cannot be ignored: no biological meanings can be associated to the fingerprints obtained for 

the different communities.  

5.5 General Conclusion 

The management of microbial resources has been proved to be an efficient tool for 

overcoming drawbacks of bioprocesses. Particularly, bioaugmentation treatment with a 

cellulolytic agent (consortium) improves the efficiency of microbial communities for 

producing biogas from anaerobic digestion of (ligno-)cellulosic substrates. By complementing 

endogenous communities with a consortium isolated from compost and displaying high 

cellulolytic abilities, the limitation induced by the hydrolysis of complex cellulosic substrate is 

minimized. However, in order to improve their management, the complexity of microbial 

communities must be elucidated (Verstraete et al., 2007). 16S rRNA gene sequencing is a 

powerful tool for elucidating the structure and behavior of complex microbial communities 

such as those involved in cellulose anaerobic digestion. It allows for identifying major actors 

of the processes and for evaluating their relative distribution. Moreover, it allows for the 

monitoring of the dynamics of the species inside the communities. Based on sequencing 

results, several parameters describing the community in these terms can be calculated 

(richness, evenness, dynamics, ...). Nevertheless, such approach is not compatible with a 

routine on-site implementation. Flow cytometry fingerprinting of the communities has been 

shown as a promising approach for routine assessment of communities’ 

stability/disturbances in bioprocesses conditions. Combined with the staining of cellular 
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nucleic content, flow cytometry fingerprinting is validated as an efficient tool for the 

monitoring of communities dynamics.  

Similarly to multispecies communities, the complexity of isogenic biofilm communities must 

be resolved for an efficient management of processes in which they are involved. Based on 

this statement and on the encouraging results previously obtained (Kinet et al., 2016), flow 

cytometry fingerprinting has been implemented in combination with a staining technique for 

the monitoring of metabolic heterogeneities among multicellular biofilm communities.  

Staining with Redox Sensor Green reveals that isogenic biofilm communities are composed 

of several subpopulations displaying divergent level of metabolic activities. Moreover, flow 

cytometry fingerprinting carried out for analyzing the dynamic behavior of these 

subcommunities during static cultures allows for highlighting similarity/dissimilarity between 

several investigated strains. Specifically, the impact of the alteration of the lipopeptides set 

on the metabolic behavior of biofilm communities is evidenced through this combined 

approach. The flow cytometry fingerprinting approach presented in this work allows for 

investigating the dynamic behavior of biofilm communities in their entirety at a single-cell 

level and in bioprocess conditions.  

5.6 Perspectives 

The results obtained during this project point out that an efficient management of microbial 

resources is beneficial for bioprocesses performances. In this way, flow cytometry 

fingerprinting proved to be an efficient and promising tool for the routine monitoring of 

complex microbial populations in bioprocess conditions. However, despite promising results 

obtained, several drawbacks are still inherent to the different methods implemented. These 

perspectives propose several ways for overcoming these limitations. 
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As shown in the second part of our works, the staining technique implemented in 

combination with flow cytometry fingerprinting for the monitoring of multispecies 

communities does not allow for discriminating members at species or even genus level. A 

more discriminant technique is required for identifying different members among a 

community. DAPI (4',6-diamidino-2-phenylindole) molecule, another fluorescent staining 

molecule, should be considered for this purpose (Koch et al., 2013c). Contrary to the stain 

involved in our works which stains all DNA without distinction, DAPI is a molecule which 

preferentially binds to DNA regions rich in adenine and thymine. This property results in a 

discrimination of the cells based on their A/T content and not just any more on their total 

DNA content. A FISH (fluorescence in situ hybridization) approach is also an interesting 

alternative for an efficient monitoring of the members of a complex community (Neumann 

and Scherer, 2011; Scherer and Neumann, 2013). After their identification major actors of 

the community could be monitored during processes through the use of fluorescent probes. 

However, the high specificity of this technique is also a drawback as only few actors 

(considered as most important) of the communities would be considered. Minor actors, 

which nevertheless can reveal essential for the global behavior of the community, would be 

neglected. Moreover, preliminary identification of the actors is imperative for the design of 

the fluorescent probes. 

Another drawback of the flow cytometry fingerprinting technique implemented in our work 

is the lack of biological meaning associated to the fingerprints. The information resulting 

from staining are lost when fingerprints are designed. “Reference fingerprints” 

corresponding to the potential biological states encountered by community during 

bioprocess should be preliminary available. Taking into account this referential, biological 

meaning could be associated to the fingerprints and the evolution of the fingerprints could 
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be biologically explained. Similarly, the evolution of the fingerprints could be related to the 

evolution of the environmental parameters as already proposed by Koch et al. (2013). 
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