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a b s t r a c t

The paper presents the measured cumulative yields of 44Ti for natCr, 56Fe, natNi and 93Nb samples irra-
diated by protons at the energy range 0.04–2.6 GeV. The obtained excitation functions are compared
with calculations of the well-known codes: ISABEL, Bertini, INCL4.2þABLA, INCL4.5þABLA07, PHITS,
CASCADE07 and CEM03.02. The predictive power of these codes regarding the studied nuclides is ana-
lyzed.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Accumulation of 44Ti data in different materials can be inter-
esting for various areas of science and technology. For example,
the 44Ti activity in meteorites is used effectively in astrophysics to
study the century-scale variations of solar activity [1,2]. Natural
titanium is also considered as the basic component of the devel-
oping low-activated V–Ti–Cr alloys of structural materials for
advanced fusion reactors, which should work effectively in con-
ditions of high neutron fluxes and high temperature regimes. 44Ti
will be important component of the long-lived residual radio-
activity of such materials that will transform in the dominated one
after about 3 years of a cooling-down time [3,4].

This paper presents the study of the cumulative production
cross-sections of 44Ti for natCr, 56Fe, natNi and 93Nb targets
irradiated by protons at the energy range 0.04–2.6 GeV. Irradia-
tions have been performed at the synchrophasotron of the Insti-
tute for Theoretical and Experimental Physics (ITEP) during the
period from September 1, 2006 to August 31, 2009 within the
framework of the International Science Technical Center Project
#3266. Irradiation conditions and the measured independent and
cumulative cross-sections of the reaction products are presented
in Refs. [5–7]. On the whole 31 excitation functions for natCr, 39
excitation functions for 56Fe, 47 excitation functions for natNi, and
109 excitation functions for 93Nb have been determined. However,
due to the high activity of the irradiated samples and the low
energy gamma-lines from 44Ti, the excitation function of this
nuclide has not been determined in the previous measurements.

In order to obtain it, the measurements of gamma-spectra for
the previously irradiated samples of natCr, 56Fe, natNi and 93Nb
were continued in 2012–2015. The long cooling time provides a
significant decrease in the radioactivity background due to the
natural decay of the reaction products with short half-lives, and
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that allowed us to identify 44Ti quite confidently by its distinctive
gamma-lines.
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Fig. 2. The laboratory background spectrum. The measuring time was about
18 days.
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Fig. 3. The measured gamma-spectrum of the 56Fe sample at about 7 years after
irradiation by 0.4 GeV protons. The measuring time was about 99 h.
2. Methodology

The gamma-ray spectra measurements of residual nuclei were
performed by a spectrometer consisting of a low-energy Ge
detector of the GUL0110 type with a resolution of 500 eV at the
57Co gamma-line energy of 122 keV and the digital spectrum
analyzer DSA1000. The absolute efficiency of the spectrometer was
calibrated by means of the validated gamma-sources: 55Fe, 241Am,
133Ba, 57Co, 137Cs, 44Ti, which were certified by the Mendeleev
Institute for Metrology (St. Petersburg, Russia). An example of such
calibration is shown in Fig. 1. The background spectrum of the
room in which the measurements were carried out is shown in
Fig. 2.

The yield of 44Ti (T1/2¼59.1y) was identified in accordance with
the intensity of its attendant gamma-lines: 67.868 keV (93.0%) and
78.323 keV (96.4%) [8]. The third gamma-line satelliting the 44Ti
decay with energy 146.22 keV (0.092%) is not used because of its
extremely low yield. The typical gamma-spectrum of 56Fe sample
irradiated by 0.4 GeV protons is shown in Fig. 3, which demon-
strates a good separation of the dominant gamma-lines and a very
low contribution of the third gamma-line. The gamma-spectra for
the natCr, 56Fe, natNi and 93Nb samples measured at about 7 years
after irradiation are very similar to the shown one and differ only
by some changes of the dominant lines intensities.

The methodology for determining the cross-sections of radio-
active reaction products by means of the gamma-ray spectrometry
is described in details in Refs. [5–7]. Because 44Ti has only short-
lived precursors (see Fig. 4), the formula for the cumulative pro-
duction rate for the i-th gamma-line (i¼1, 2 for 67.868 and
78.323 keV lines, respectively) can be written as

Ri
cum ¼ Ai

NTag Uηi Uϵi Uλ
U
1
tirr

; ð1Þ

where Ai is the count rate of the corresponding gamma-line
reduced to the end of an exposure and adjusted to a self-
absorption in the sample in accordance with the data of Ref. [9];
NTag is the number of nuclei in the sample, ηi is the absolute yield
of the gamma-line per decay of 44Ti; εi is the absolute efficiency of
the spectrometer for the analyzed gamma-energy; λ is the decay
constant of 44Ti and tirr is the irradiation time (since tirrooT44Ti

1=2 , a
correction for 44Ti decay during irradiation can be ignored).
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Fig. 1. Efficiency of the gamma-ray spectrometer with the Ge detector.
The reaction rate of the 44Ti production was determined for
each gamma-line, therefore to calculate the average value of the
44Ti cumulative production rate the Eq. (2) has been applied while
Eq. (3) has been used to calculate the corresponding production
cross-sections:

R
44Ti
cum ¼

P2
i ¼ 1

Ri
cum UWi

P2
i ¼ 1

Wi

:; where Wi ¼
1

ΔRi
cum

� �2 U ð2Þ

σ44Ti
cum ¼ R

44Ti
cum

Φst
ð3Þ

here R
44Ti
cum is the averaged value of the cumulative production

rate; ΔRi
cum is the uncertainty of the gamma-line intensity esti-

mation; σ44Ti
cum denotes the 44Ti production cross section and Φst is

the proton flux presented in Tables 1–4 of Ref. [5].
Uncertainties of ΔRi

cum, ΔR
44Ti
cum, Δσ44Ti

cum have been calculated in
accordance with formulas given in Ref. [10].



Fig. 4. The chain of the 44Ti formation.

Table 1
Measured cross-sections for the reaction natCr(p,x)44Ti.

Target Ep, GeV R
44Ti

cum7ΔR
44Ti

cum , (1/
s)�10�17

Φ̂st7 ΔΦ̂st , (p/
(cm2 s))�1010

σ44Ti
cum7Δσ44Ti

cumσ, mb
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3. Experimental results

The obtained cross-sections for the 44Ti production for all tar-
gets are summarized in Tables 1–4 together with their
uncertainties.
Cr 0.07 2.2070.11 5.4270.43 0.40570.038
0.1 5.2170.24 3.7370.28 1.4070.12
0.15 5.1170.19 3.1470.27 1.6370.15
0.25 11.5770.42 7.2770.64 1.5970.15
0.4 9.9370.55 5.7070.47 1.7470.17
0.6 12.9470.39 6.7870.52 1.9170.16
0.8 10.6770.46 6.8870.64 1.5570.16
1.2 9.3270.25 6.7070.54 1.3970.12
1.6 7.4270.21 5.9870.50 1.2470.11
2.6 3.9670.15 5.2670.46 0.75370.072

Table 2
Measured cross-sections for the reaction 56Fe(p,x)44Ti.

Target Ep, GeV R
44Ti

cum7ΔR
44Ti
cum ,

(1/s)�10�17

Φ̂st7 ΔΦ̂st ,
(p/(cm2 s))�1010

σ44Ticum7Δσ44Ti
cumσ,

m barn

Fe 0.1 0.3070.12 4.0770.31 0.07370.031
0.15 0.9870.14 3.4470.30 0.28470.047
0.25 4.6370.32 7.2270.51 0.64170.064
0.3 5.2070.16 5.2370.38 0.99470.079
0.4 7.1370.23 6.3570.57 1.1270.11
0.6 11.0070.48 7.9970.64 1.3870.13
0.75 11.8870.35 7.4570.64 1.5970.14
0.8 9.2270.28 6.9770.59 1.3270.12
1.2 9.0370.44 6.6270.53 1.3670.13
1.6 7.8070.35 5.5670.47 1.4070.13
2.6 4.5170.27 4.7570.41 0.9570.10

Table 3
Measured cross-sections for the reaction natNi(p,x)44Ti.

Target Ep, GeV R
44Ti
cum7ΔR

44Ti

cum ,
(1/s)�10�17

Φ̂st7 ΔΦ̂st ,
(p/(cm2 s))�1010

σ44Ticum7Δσ44Ti
cumσ,

m barn

Ni 0.1 0.39070.084 4.3670.32 0.08970.020
0.15 1.3270.20 5.3170.45 0.24870.044
0.25 4.5770.39 7.1070.55 0.64370.074
0.4 5.5070.41 4.0170.38 1.3770.17
0.6 17.2570.73 7.1970.68 2.4070.25
0.8 7.3270.40 3.0670.26 2.3970.24
1.2 8.7770.44 3.3970.27 2.5970.24
1.6 11.5770.54 5.3070.44 2.1870.21
2.6 10.8270.54 6.4570.56 1.6870.17

Table 4
Measured cross-sections for the reaction 93Nb(p,x) 44Ti.

Target Ep, GeV R
44Ti

cum7ΔR
44Ti
cum ,

(1/s)�10�17

Φ̂st7 ΔΦ̂st ,
(p/(cm2 s))�1010

σ44Ticum7Δσ44Ti
cumσ,

m barn

Nb 1.2 0.05470.053 3.6670.29 0.01570.015
1.6 0.5070.23 6.0070.50 0.08470.039
2.6 0.7670.25 6.9670.61 0.10970.037
4. Comparison with experimental results of other authors

The measured cumulative cross-sections for the 44Ti produc-
tion are shown in Figs. 5–8 together with the data compiled from
Refs. [11–16].

The experimental database EXFOR [17] contains 5 entries [11–
15] related to the 44Ti production for the natFe target and 2 entries
[11,12] for natNi. The 44Ti production on 56Fe is represented by only
one experimental work [16] performed at GSI (Darmstadt) by
means of the inverse kinematics (56Fe-1

1H). There are no EXFOR
data on the 44Ti production for the natCr and 93Nb targets.

To compare the experimental data obtained by ITEP and other
laboratories the mean-square deviation factor Fh i has been con-
sidered, which closely corresponds to the widely-used statistical
factors [18]:

Fh i ¼ 10
1
N
PN
i ¼ 1

log σexp
i =σITEP

ið Þ½ �2
� �1=2

¼ 10
log F

� �� 	2
þ log Δ F

� �� �� 	2� �1=2

ð4Þ

where σexp
i is the experimental data from [11–16]; σITEP

i is the
experimental results obtained by the ITEP group; N is the number
of cross-sections used in a comparison. In the second form of Eq.
(4) F is the averaged value of the lognormal distribution σexp

i =σITEP
i

and ΔðF Þ is the dispersion of this distribution. Both of them are
described by the following expressions:

F ¼ 10
1
N
PN
i ¼ 1

log σexp
i =σITEP

ið Þ½ �
ð5Þ

ΔðF Þ ¼ 10
1
N
PN
i ¼ 1

log σexp
i =σITEP

ið Þ� log ðF Þ
� 	2� �1=2

ð6Þ

The factors F and Δ F
� �

are widely used under the classical
statistical analysis of data. They characterize the systematic shift
between two sets of data and the common spread of data,
respectively. On the other hand, the formula (4) reduces a two-
parameter consideration to a one-parameter description, which
could be more convenient for a simplified comparison of data and
a graphical representation of data discrepancies.

Since the proton energies of the experimental data obtained by
ITEP and Refs. [11–16] are not always coincided the ITEP data have
been interpolated to the energies corresponding to [11–16]. The
values of Fh i, F and ΔðF Þ calculated according to (Eqs. (4)–6) are
shown in Table 5.

Small deviations of the statistical factors from a unit show a
good agreement (r30%) between the ITEP results and the data of
Refs. [11,12,15,16] for iron and Ref. [12] for nickel.
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Fig. 5. Calculated cross-sections and experimental data for the reaction
natCr(p,x)44Ticum.
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Fig. 6. Calculated cross-sections and experimental data for the reaction
56Fe(p,x)44Ticum.
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Fig. 7. Calculated cross-sections and experimental data for the reaction
natNi(p,x)44Ticum.
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Fig. 8. Calculated cross-sections and experimental data for the reaction
93Nb(p,x)44Ticum.
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5. Comparison with model calculations

The production cross-sections of 44Ti have been calculated
using different versions of the intranuclear cascade model realized
in the well-known codes: ISABEL, Bertini, INCL4.2þABLA,
INCL4.5þABLA07, PHITS, CASCADE07, and CEM03.02. A brief
overview of these codes is given in Refs. [18,19], and a detailed
consideration of their main components can be found in the
references collected in [5]. All these codes calculate the indepen-
dent cross-sections of the residual nuclei while their cumulative
production cross-sections must be calculated in accordance with
the formulas presented in [5]. The calculated cumulative cross-
sections for the 44Ti production are presented in Figs. 5–8 together
with the corresponding experimental data.

In addition to the calculated cross-sections, the averaged
standard deviations of model results are shown as a grey back-
ground in Figs. 5–8. This allows to infer visually the quality of
reproducing experimental data in the model calculations. For
quantitative determination of predictive power of models for the
44Ti cumulative cross-sections,-the statistical factors were calcu-
lated in accordance with (Eqs. (4)–6) with the replacement of σexp

i
by the calculated values σcalc

i obtained with the model codes. The
calculated factors are presented in Table 6

The above statistical factors demonstrate that the discrepancy
between the experimental results obtained in different labora-
tories is much lower than the discrepancy between model calcu-
lations and experimental data. The results of the INCL4.5þABLA07
code look preferable over others and the CEM03.02 results show a
similar quality for light targets but not for 93Nb. This conclusion
about the model codes correlated strongly with the general
resume made before for a large amount of the high-energy exci-
tation functions of the proton induced reactions [18].
6. Conclusion

New experimental data on the production cross-sections of the
long-lived radionuclide 44Ti for main components of the structural
materials can be especially interesting for the analysis of the
residual activity of the accelerator-driven system equipment that
will work in conditions of high protons and neutron fluxes. On the
other side, these data can be also useful for the ongoing



Table 5
Values of statistical factors for the data obtained in Refs. [11–16] and ITEP.

Target Reaction product Factors Compared for Fe

[11], (N¼11) [12], (N¼8) [13], (N¼2) [14], (N¼1) [15], (N¼17) [16], (N¼5)

56Fe 44Ticum 〈F〉 1.27 1.23 4.21 2.69 1.11 1.18

F 0.91 1.20 0.46 2.69 0.96 0.87

ΔðF Þ 1.24 1.10 3.35 – 1.10 1.10
Target Reaction product Factors Compared for Ni

[11], (N¼10) [12], (N¼8) – – � �

natNi 44Ticum 〈F〉 1.40 1.15

F 0.77 1.09

ΔðF Þ 1.22 1.12

Table 6
Statistical factors of the model simulating the 44Ticum cumulative production cross-sections for natCr, 56Fe, natN, and 93Nb samples irradiated by protons at the energy range
0.04–2.6 GeV.

Target Reaction product Factors Code

CEM03.02 INCL4.2þABLA INCL4.5þABLA07 ISABEL BERTI-NI CASCA-DE07 PHITS

natCr 44Ticum 〈F〉 1.90 3.62 1.54 2.27 1.90 4.31 1.88

F 1.80 3.42 1.46 0.55 0.62 4.29 1.09

ΔðF Þ 1.30 1.46 1.23 1.75 1.54 1.12 1.87
56Fe 44Ticum 〈F〉 2.25 2.93 1.98 2.08 1.84 5.34 1.74

F 1.95 2.80 1.87 0.53 0.60 5.27 0.94

ΔðF Þ 1.59 1.36 1.31 1.43 1.38 1.23 1.74
natNi 44Ticum 〈F〉 1.89 2.35 1.72 5.53 4.28 4.23 2.71

F 1.39 2.05 1.36 0.25 0.31 4.19 0.65

ΔðF Þ 1.72 1.59 1.57 2.78 2.33 1.16 2.45
93Nb 44Ticum 〈F〉 18.3 1.68 2.95 3.69 3.69 11.9 3.72

F 17.5 0.76 1.97 3.33 3.33 11.6 3.67

ΔðF Þ 1.69 1.55 2.33 1.66 1.66 1.42 1.21
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development of the transport codes widely used for many appli-
cations. The predictive accuracy of some code versions certainly
needs essential improvements.
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