Internal structures of clusters in driven granular gases

M.Noirhomme, E. Opsomer, F. Ludewig & N.Vandewalle GRASP Lab, CESAM Research Unit, University of Liège, 4000 Liège, Belgium

Abstract

We numerically and theoretically investigate the internal structures of a driven granular gas in cuboidal cell geometries. Clustering is reported and particles can be classified as gaseous or clustered via a local density criterion based on a Voronoi tesselation. We observe that small clusters arise in the corners of the box. These aggregates have a condensation-like surface growth until a critical size is reached. At this point, a structural transition occurs and all clusters merge together, leaving a hole in the center of the cell. This hole becomes then the new capture's center of particles. Taking into account all structural modifications and defining a saturation packing fraction, we propose an empirical law for the cluster's growth and deduce packing properties such as the random loose packing of granular aggregates in microgravity environment, $\Phi_{\rm RLP} = 0.55 \pm 0.02$.

Model

Assumption :

- The gas has to keep its constant packing fraction [1].
- Only the cluster is compacting

Numerical Approach

The study is based on Soft Spheres Discrete Element Method (SSDEM) simulations. Grains of radius r = 1 mm, restitution coefficient $\varepsilon = 0.9$ and friction's coefficient $\mu = 0.7$ are placed in cells of dimensions Ll^2 .

$z_1(t)$ -	1	A, f						
	L	N = 7000	#	$L(\mathrm{mm})$	$l(\mathrm{mm})$	f(Hz)	\overline{N}	
			1	40	15	20	[500; 6500]	
			2	40	15	40	[600; 5000]	
			3	40	25	20	[3000; 15000]	∇
			4	50	15	20	[1000; 6000]	0
			5	60	30	20	[1000; 30000]	Δ
			6	90	15	20	[1000; 10000]	\$
			7	150	15	20	[1000; 19000]	Ø
$z_2(t)$	↓ l	A, f						

- The nucleation arises in the corners of the box at $\phi = \phi_{\rm c}$.
- The cluster cages grains on its surface only.
- The cluster surface has the form of a truncated elliptical torus.

$l \sim l$

Structure of the clusters

A Voronoi tesselation gives the volumes occupied by each particle. Dividing the volume of the grain by its Voronoi cell's volume gives the local packing fraction of the particle φ_{loc} .

If $\varphi_{\rm loc} \geq 0.285$, the grain can not leave the cage formed by its neighboring and is considered as clustered.

Snapshots (SSDEM) :

The RLP in microgravity conditions

Extrapolation of the maximal packing fraction reached in each cell at \widetilde{V} (4) = 1

[1] E. Opsomer *et al.*, Eur. Phys. Lett. **99**, 40001 (2012).
[2] M. Jerkins *et al.*, Phys. Rev. Lett., **101**, 018301 (2008).
[3] C. S. O'Hern *et al.*, Phys. Rev. Lett., **88**, 075507 (2002).

