A coupled Electro-Thermo-Mechanical Discontinuous Galerkin method applied on composite materials

Lina Homsi, Ludovic Noels
LTAS/CM3, University of Liège
Belgium

EMMC15 7-9-2016

Introduction

Carbon fiber polymer composites

- Multifuctional materials
 - Structural capabilities
 - Electrical and thermal functions

Application: Activation of fiber reinforced shape memory polymer composites in its application in deployable hinge in space [1].

Carbon fiber reinforced composite

Shape recovery process of a prototype of solar array actuated by SMPC hinge

2

Outline

- Introduction
 - Constitutive equations
 - Main concept and equation of Discontinuous Galerkin (DG) method
- DG Formulation for Electro-Thermo-Mechanical coupled problem
 - Weak form of equations
 - Numerical properties i.e. solution uniqueness, convergence rate...
- Numerical examples
- Conclusions & Perspectives

Governing equations for Electro-Thermo-Mechanical coupling

$$\forall \mathbf{u}, V, T \in \left[H^2(\Omega_0)\right]^3 \times H^2(\Omega_0) \times H^{2^+}(\Omega_0)$$

Conservation of momentum balance

$$abla_0 \cdot \mathbf{P}^{\mathrm{T}} = 0 \quad \forall \ \mathrm{X} \in \Omega_0$$

$$\mathbf{P} = \mathbb{P}(\mathbf{F}, \mathrm{T}, \mathbf{I})$$

Conservation of electric charge

$$abla_0 \cdot \mathbf{J}_e = 0 \quad \forall \ X \in \Omega_0$$

$$\mathbf{J}_e = \mathbb{J}_e(\mathbf{F}, V, T)$$

Conservation of energy

$$\nabla_0 \cdot \mathbf{J}_y = 0 \quad \forall \ X \in \Omega_0$$

 $\mathbf{J}_y = \mathbb{J}_y(\mathbf{F}, V, T)$

$$\mathbf{J}_{\mathrm{e}} = \mathbf{L} \cdot (-\nabla_{0} \mathbf{V}) + \alpha \mathbf{L} \cdot (-\nabla_{0} \mathbf{T})$$

$$\mathbf{J}_{\mathrm{v}} = \mathbf{Q} + \mathrm{V} \mathbf{J}_{\mathrm{e}}$$

$$\mathbf{Q} = \mathbf{K} \cdot (-\nabla_0 \mathbf{T}) + \alpha \mathbf{T} \mathbf{J}_e$$

Electro-Thermal constitutive relations

- Vector of the unknown fields: $\left(egin{array}{c} f_{
 m V} \\ f_{
 m T} \end{array}
 ight)=\left(egin{array}{c} -rac{
 m V}{
 m T} \\ rac{1}{
 m T} \end{array}
 ight)$
- Matrix form of fluxes and fields gradient

ullet $\left(egin{array}{c} {f J}_{
m g} \ {f J}_{
m g} \end{array}
ight)$ and $\left(egin{array}{c}
abla_0 {f f}_{
m T} \ {f V}_0 {f f}_{
m T} \end{array}
ight)$ are conjugated pairs of fluxes and fields gradient

Discontinuous Galerkin (DG) method

- Similarity to FEM, to solve PDE's
 - Geometry approximated by polyhedral elements
 - Continuity ensured inside elements
 - Polynomial solution of finite degree
- Main difference with FEM:
 - Compatibility weakly ensured
 - Inter-element continuity weakly constrained
 - Support of nodal shape functions restrained to one element

$$X^{k(+)} = \left\{ \mathbf{G}_h \in \left[L^2(\Omega_{0h}) \right]^3 \times L^2(\Omega_{0h}) \times L^{2^{(+)}}(\Omega_{0h}) \mid_{\mathbf{G}_h \mid_{\Omega_0^e} \in [\mathbb{P}^k(\Omega_0^e)]^3 \times \mathbb{P}^k(\Omega_0^e) \times \mathbb{P}^{k^{(+)}}(\Omega_0^e) \, \forall \Omega_0^e \in \Omega_{0h}} \right\}$$

- Allows / eases:
 - High scalability and high accuracy order
 - Irregular and non-conforming meshes
 - hp-adaptivity

DG main concepts and equations

$$\nabla_0 \cdot \mathbf{P}^{\mathrm{T}} = 0,$$

$$(+BC's)$$

$$abla_0 \cdot \mathbf{P}^{\mathrm{T}} = 0, \qquad (+\mathrm{BC's})$$

$$\int_{\Omega_{\mathrm{Oh}}} (\nabla_0 \cdot \mathbf{P}^{\mathrm{T}}) \cdot \delta \mathbf{u} d\Omega_0 = 0$$
by parts

Define operators

Jump operator
$$[\![\mathbf{u}]\!] = \mathbf{u}^+ - \mathbf{u}^-$$

Average operator $\langle \mathbf{u} \rangle = \frac{\mathbf{u}^+ + \mathbf{u}^-}{2}$

 $\partial_{\mathbf{N}}\Omega_{\mathbf{0h}}$

$$\int_{\Omega_{0\mathrm{h}}} \mathbf{P} : \nabla_0 \delta \mathbf{u} \mathrm{d}\Omega_0 + \int_{\partial_{\mathrm{I}}\Omega_{0\mathrm{h}}} \llbracket \delta \mathbf{u} \rrbracket \cdot \langle \mathbf{P} \rangle \cdot \mathbf{N}^- \mathrm{dS}_0 + () + () = \mathrm{b}(\delta \mathbf{u})$$

- Supplementary terms:
 - **Consistency** term ← (appears naturally above)
 - **Symmetrisation** term (optimal convergence rate) $\int_{\partial_{\mathbf{I}}\Omega_0}$
 - Quadratic **stabilization** term

Quadratic **stabilization** term
$$\int_{\partial_{\mathbf{I}}\Omega_{0\mathbf{h}}} \llbracket \mathbf{u} \rrbracket \otimes \mathbf{N}^{-} : \left\langle \frac{\mathcal{H}_{0}\mathcal{B}}{\mathbf{h}_{\mathbf{s}}} \right\rangle : \llbracket \delta \mathbf{u} \rrbracket \otimes \mathbf{N}^{-} \mathrm{dS}_{0}$$

Nonlinear DG formulation of Electro-Thermo-Mechanical coupling $\partial_{\mathbf{N}}\Omega_{\mathbf{0h}}$

- $\begin{array}{ll} \text{Introducing vector of the unknowns field} \quad \mathbf{G} = \begin{pmatrix} \mathbf{u} \\ f_{\mathrm{V}} \\ \end{pmatrix} \\ \begin{array}{ll} \partial_{\mathrm{D}}\Omega_{\mathrm{oh}} \\ \end{array} \\ \begin{array}{ll} \mathbf{N}^{-} & \Omega^{\mathrm{e}^{+}} \\ \nabla_{0} \cdot \mathbf{P}^{\mathrm{T}} \\ \nabla_{0} \cdot \mathbf{J}_{\mathrm{e}} \\ \nabla_{0} \cdot \mathbf{J}_{\mathrm{y}} \\ \end{array} \\ \end{array} \right) = 0 \\ \begin{array}{ll} \partial_{\mathrm{D}}\Omega_{\mathrm{oh}} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \partial_{\mathrm{D}}\Omega_{\mathrm{oh}} \\ \end{array} \\ \begin{array}{ll} \partial_{\mathrm{D}}$
- Finding $G_b \in X^{k^+}$

$$A(\mathbf{G}_h, \delta \mathbf{G}_h) = B(\bar{\mathbf{G}}, \delta \mathbf{G}_h) \ \forall \delta \, \mathbf{G}_h \in X^k$$

Structural term + DG terms = Boundary terms

$$\begin{split} &A(\mathbf{G}_{h},\delta\mathbf{G}_{h}) = \int_{\Omega_{0h}} \nabla_{0}\delta\mathbf{G}_{h}^{\mathrm{T}}\mathbf{J}(\mathbf{G}_{h},\nabla_{0}\mathbf{G}_{h})\mathrm{d}\Omega_{0} + \int_{\partial_{I}\Omega_{0h}\cup\partial_{D}\Omega_{0h}} \left[\!\!\left[\delta\mathbf{G}_{\mathbf{N}_{h}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{J}(\mathbf{G}_{h},\nabla_{0}\mathbf{G}_{h})\rangle \,\mathrm{d}S_{0} \\ &+ \int_{\partial_{I}\Omega_{0h}\cup\partial_{D}\Omega_{0h}} \left[\!\!\left[\mathbf{G}_{\mathbf{N}_{h}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{J}_{0\nabla\mathbf{G}}(\mathbf{G}_{h})\nabla_{0}\delta\mathbf{G}_{h}\rangle \,\mathrm{d}S_{0} + \int_{\partial_{I}\Omega_{0h}\cup\partial_{D}\Omega_{0h}} \left[\!\!\left[\delta\mathbf{G}_{\mathbf{N}_{h}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{J}_{0\mathbf{G}}(\mathbf{G}_{h})\mathbf{G}_{h}\rangle \,\mathrm{d}S_{0} \\ &+ \int_{\partial_{I}\Omega_{0h}\cup\partial_{D}\Omega_{0h}} \left[\!\!\left[\mathbf{G}_{\mathbf{N}_{h}}^{\mathrm{T}}\right]\!\!\right] \left\langle \frac{\mathbf{J}_{0\nabla\mathbf{G}}(\mathbf{G}_{h})\mathcal{B}}{h_{s}}\right\rangle \left[\!\!\left[\delta\mathbf{G}_{\mathbf{N}_{h}}^{\mathrm{T}}\right]\!\!\right] \mathrm{d}S_{0} \end{split}$$

$$B(\bar{\mathbf{G}}, \delta \mathbf{G}_h) = BC's$$

Stability

Remark: we use an abuse of notations when defining $\nabla_0 \mathbf{G}$, \mathbf{N}

 $d_{\rm I}\Omega_{\rm 0h}$

Consistency

Nonlinear DG formulation of Electro-Thermo-Mechanical coupling

Considering small deformation

$$\nabla \left(\begin{pmatrix} \boldsymbol{\mathcal{H}}_0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{0} & \mathbf{z}_{21} & \mathbf{z}_{22} \end{pmatrix} \begin{pmatrix} \nabla \mathbf{u} \\ \nabla f_{V} \\ \nabla f_{T} \end{pmatrix} \right) + \begin{pmatrix} \mathbf{0} & \mathbf{0} & \boldsymbol{\alpha}_{th}^{T} \boldsymbol{\mathcal{H}}_{0} \frac{1}{f_{T}^{2}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \nabla \mathbf{u} \\ \nabla f_{V} \\ \nabla f_{T} \end{pmatrix} = 0$$

- Strong form: $\nabla (\mathbf{w}(\mathbf{G}, \nabla \mathbf{G})) + \mathbf{o}(\mathbf{G}) \nabla \mathbf{G} = 0$ in Ω . + BC's
- Weak form: $\mathbf{G}_h \in X^{k^+}$ $a(\mathbf{G}_h, \delta \mathbf{G}_h) = b(\bar{\mathbf{G}}; \delta \mathbf{G}_h) \ \forall \delta \, \mathbf{G}_h \in X^k$

$$\begin{split} &a(\mathbf{G}_{h},\delta\mathbf{G}_{h}) = \int_{\Omega_{h}} \nabla \delta \mathbf{G}_{h}^{\mathrm{T}} \mathbf{w}(\mathbf{G}_{h},\nabla \mathbf{G}_{h}) \mathrm{d}\Omega + \int_{\Omega_{h}} \mathbf{G}_{h}^{\mathrm{T}} \mathbf{o}(\mathbf{G}_{h}) \nabla \delta \mathbf{G}_{h} \mathrm{d}\Omega \\ &+ \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\!\left[\delta \mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{w}(\mathbf{G}_{h},\nabla \mathbf{G}_{h}) \rangle \, \mathrm{d}S + \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\!\left[\mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{o}(\mathbf{G}_{h}) \delta \mathbf{G}_{h} \rangle \, \mathrm{d}S \Longrightarrow \quad \text{Consistency} \\ &+ \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\!\left[\mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{w}_{\nabla \mathbf{G}}(\mathbf{G}_{h}) \nabla \delta \mathbf{G}_{h} \rangle \, \mathrm{d}S + \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\!\left[\delta \mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{o}(\mathbf{G}_{h}) \mathbf{G}_{h} \rangle \, \mathrm{d}S \Longrightarrow \quad \text{Symmetry} \\ &+ \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\!\left[\mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \left\langle \frac{\mathbf{w}_{\nabla \mathbf{G}}(\mathbf{G}_{h}) \mathcal{B}}{h_{\mathbf{s}}} \right\rangle \left[\!\!\left[\delta \mathbf{G}_{h_{\mathbf{n}}}^{\mathrm{H}}\right]\!\!\right] \, \mathrm{d}S \Longrightarrow \quad \text{Stability} \\ &\mathbf{b}(\bar{\mathbf{G}}, \delta \mathbf{G}_{h}) = \mathbf{B}\mathbf{C}'\mathbf{s} \end{split}$$

The mesh dependent norm

$$|\| \mathbf{G} \||_1^2 = \sum_e \| \mathbf{G} \|_{H^1(\Omega^e)}^2 + \sum_s h_s \| \mathbf{G} \|_{H^1(\partial \Omega^e)}^2 + \sum_s h_s^{-1} \| [\![\mathbf{G_n}]\!] \|_{L^2(\partial \Omega^e)}^2$$

Where $\partial\Omega^e=\partial_I\Omega^e\cup\partial_D\Omega^e$

Consistency form

 $\mathbf{G}^{e} \in [\mathrm{H}^{2}(\Omega)]^{3} \times \mathrm{H}^{2}(\Omega) \times \mathrm{H}^{2^{+}}(\Omega)$ the solution of the strong form.

Thus as $[\![\mathbf{G}^{\mathrm{e}}]\!] = 0$ on $\partial_{\mathrm{I}} \Omega^{\mathrm{e}}$

$$a(\mathbf{G}^{e}, \delta \mathbf{G}^{e}) = b(\bar{\mathbf{G}}, \delta \mathbf{G}^{e}) \ \forall \delta \mathbf{G}^{e} \in X,$$
 (1)

Weak form

The weak form, reads as finding $\mathbf{G}_h \in X^k$, such that

$$a(\mathbf{G}_{h}, \delta \mathbf{G}_{h}) = b(\bar{\mathbf{G}}; \delta \mathbf{G}_{h}) \ \forall \delta \mathbf{G}_{h} \in X^{k} \subset X$$
 (2)

$$a(\mathbf{G}^e, \delta \mathbf{G}_h) - a(\mathbf{G}_h, \delta \mathbf{G}_h) = b(\bar{\mathbf{G}}, \delta \mathbf{G}_h) - b(\bar{\mathbf{G}}, \delta \mathbf{G}_h) = 0 \ \forall \delta \mathbf{G}_h \in X^k$$

$$\mathcal{A}(\underline{\mathbf{G}}^{e}; \underline{\mathbf{G}}^{e} - \underline{\mathbf{G}}_{h}, \delta \underline{\mathbf{G}}_{h}) + \mathcal{B}(\underline{\mathbf{G}}^{e}; \underline{\mathbf{G}}^{e} - \underline{\mathbf{G}}_{h}, \delta \underline{\mathbf{G}}_{h}) = \mathcal{N}(\underline{\mathbf{G}}^{e}, \underline{\mathbf{G}}_{h}; \delta \underline{\mathbf{G}}_{h})$$

Fixed β Bilinear

Expansion of Taylor series on interface terms

$$\begin{split} \mathcal{A}(\mathbf{G}^{\mathrm{e}};\mathbf{G}^{\mathrm{e}}-\mathbf{G}_{\mathrm{h}},\delta\mathbf{G}_{\mathbf{h}}) &= \int_{\Omega_{\mathrm{h}}} \nabla \delta \mathbf{G}_{\mathrm{h}}^{\mathrm{T}} \mathbf{w}_{\nabla \mathbf{G}}(\mathbf{G}^{\mathrm{e}}) (\nabla \mathbf{G}^{\mathrm{e}}-\nabla \mathbf{G}_{\mathrm{h}}) \mathrm{d}\Omega \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\delta \mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{w}_{\nabla \mathbf{G}}\left(\mathbf{G}^{\mathrm{e}}\right) (\nabla \mathbf{G}^{\mathrm{e}}-\nabla \mathbf{G}_{\mathrm{h}}) \rangle \, \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{G}_{\mathbf{n}}^{\mathrm{e}^{\mathrm{T}}}-\mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{w}_{\nabla \mathbf{G}}(\mathbf{G}^{\mathrm{e}}) \nabla \delta \mathbf{G}_{\mathrm{h}} \rangle \, \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{G}_{\mathbf{n}}^{\mathrm{e}^{\mathrm{T}}}-\mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \langle \mathbf{w}_{\nabla \mathbf{G}}(\mathbf{G}^{\mathrm{e}}) \nabla \delta \mathbf{G}_{\mathrm{h}} \rangle \, \mathrm{d}S \\ &+ \int_{\Omega} \nabla \delta \mathbf{G}_{\mathrm{h}}^{\mathrm{T}} \left(\mathbf{w}_{\mathbf{G}}(\mathbf{G}^{\mathrm{e}}, \nabla \mathbf{G}^{\mathrm{e}}) \mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathrm{h}} \right) \, \mathrm{d}\Omega \\ &+ \int_{\Omega} \nabla \delta \mathbf{G}_{\mathrm{h}}^{\mathrm{T}} \left(\mathbf{o}_{\mathbf{G}}'(\mathbf{G}^{\mathrm{e}}) (\mathbf{G}^{\mathrm{e}}-\mathbf{G}_{\mathrm{h}}) \right) \, \mathrm{d}\Omega \end{split}$$

 $+ \int_{\partial_{\mathbf{I}}\Omega_{\mathbf{h}} \cup \partial_{\mathbf{D}}\Omega_{\mathbf{h}}} \left[\!\!\left[\delta \mathbf{G}_{\mathbf{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \mathbf{w}_{\mathbf{G}}(\mathbf{G}^{\mathrm{e}}, \nabla \mathbf{G}^{\mathrm{e}}) (\mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathbf{h}}) \right\rangle \mathrm{dS}$

 $+ \int_{\partial_{\mathbf{I}}\Omega_{\mathbf{h}} \cup \partial_{\mathbf{D}}\Omega_{\mathbf{h}}} \left[\!\!\left[\delta \mathbf{G}_{\mathbf{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \mathbf{o}_{\mathbf{G}}'(\mathbf{G}^{\mathrm{e}})(\mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathbf{h}}) \right\rangle \mathrm{dS}$

 $+\int_{\mathrm{a.o.t.}} \left[\mathbf{G_n^{e^{\mathrm{T}}}} - \mathbf{G_{h_n}^{\mathrm{T}}} \right] \langle \mathbf{o}(\mathbf{G}^{\mathrm{e}}) \delta \mathbf{G_h} \rangle \, \mathrm{dS}.$

$$\begin{split} \mathcal{N}(\mathbf{G}^{\mathrm{e}},\mathbf{G}_{\mathrm{h}};\delta\mathbf{G}_{\mathrm{h}}) &= \int_{\Omega_{\mathrm{h}}} \nabla \delta \mathbf{G}_{\mathrm{h}}^{\mathrm{T}} (\bar{\mathbf{R}}_{\mathbf{w}} (\mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathrm{h}}, \nabla \mathbf{G}^{\mathrm{e}} - \nabla \mathbf{G}_{\mathrm{h}})) \mathrm{d}\Omega \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\delta \mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \bar{\mathbf{R}}_{\mathbf{w}} (\mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathrm{h}}, \nabla \mathbf{G}^{\mathrm{e}} - \nabla \mathbf{G}_{\mathrm{h}}) \right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{G}_{\mathbf{n}}^{\mathrm{e^{\mathrm{T}}}} - \mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle (\mathbf{w}_{\nabla \mathbf{G}} (\mathbf{G}^{\mathrm{e}}) - \mathbf{v}_{\nabla \mathbf{G}} (\mathbf{G}_{\mathrm{h}})) \nabla \delta \mathbf{G}_{\mathrm{h}} \right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{G}_{\mathbf{n}}^{\mathrm{e^{\mathrm{T}}}} - \mathbf{G}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle (\mathbf{o}(\mathbf{G}^{\mathrm{e}}) - \mathbf{o}(\mathbf{G}_{\mathrm{h}})) \delta \mathbf{G}_{\mathrm{h}} \right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\delta \mathbf{G}_{\mathbf{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \bar{\mathbf{R}}_{\mathbf{G}} (\mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathrm{h}}) \right\rangle \mathrm{d}S \end{split}$$

Nonlinear

Spliting
$$\zeta$$
 into its components
$$\zeta = \mathbf{G}^e - \mathbf{G}_h - \mathbf{I}_h \mathbf{G} + \mathbf{I}_h \mathbf{G}$$

$$= \eta + \xi$$
The interpolant of \mathbf{G}^e in X^k

$$\eta = \mathbf{G}^e - \mathbf{I}_h \mathbf{G} \in X$$

$$\xi = \mathbf{I}_h \mathbf{G} - \mathbf{G}_h \in X^k$$

$$\mathcal{A}(\mathbf{G}^e; \mathbf{I}_h \mathbf{G} - \mathbf{G}_h, \delta \mathbf{G}_h) + \mathcal{B}(\mathbf{G}^e; \mathbf{I}_h \mathbf{G} - \mathbf{G}_h, \delta \mathbf{G}_h)$$

$$= \mathcal{A}(\mathbf{G}^e; \eta, \delta \mathbf{G}_h) + \mathcal{B}(\mathbf{G}^e; \eta, \delta \mathbf{G}_h) + \mathcal{N}(\mathbf{G}^e, \mathbf{G}_h; \delta \mathbf{G}_h)$$

Fixed point formulation

Map
$$S_h: X^k o X^k$$
 as follows $orall {f y} \in X^k, ext{Find } S_h({f y}) = {f G_y} \in X^k$

$$\mathcal{A}(\mathbf{G}^{\mathrm{e}}; \mathbf{I}_{\mathrm{h}}\mathbf{G} - \mathbf{G}_{\mathbf{y}}, \delta \mathbf{G}_{\mathrm{h}}) + \mathcal{B}(\mathbf{G}^{\mathrm{e}}; \mathbf{I}_{\mathrm{h}}\mathbf{G} - \mathbf{G}_{\mathbf{y}}, \delta \mathbf{G}_{\mathrm{h}})$$

$$= \mathcal{A}(\mathbf{G}^{\mathrm{e}}; \boldsymbol{\eta}, \delta \mathbf{G}_{\mathrm{h}}) + \mathcal{B}(\mathbf{G}^{\mathrm{e}}; \boldsymbol{\eta}, \delta \mathbf{G}_{\mathrm{h}}) + \mathcal{N}(\mathbf{G}^{\mathrm{e}}, \mathbf{y}; \delta \mathbf{G}_{\mathrm{h}})$$

Definition of the ball O_{σ}

• Radius: σ

ullet Center: $I_h G$ the interpolant of G^e

$$O_{\sigma}(I_{h}\mathbf{G}) = \left\{ \mathbf{y} \in X^{k} \text{ such that } ||| I_{h}\mathbf{G} - \mathbf{y} |||_{1} \leq \sigma \right\}$$
with
$$\sigma = \frac{||| I_{h}\mathbf{G} - \mathbf{G}^{e} |||_{1}}{h_{s}^{\varepsilon}}, \quad 0 < \varepsilon < \frac{1}{4}$$

- Assumption C_{α} , C_{y} , C^{k} and Lemmas (e.g. trace inequality, inverse inequality)
- Bound the bilinear terms $\mathcal{A},\,\mathcal{B}$

ullet Bound the nonlinear term ${\mathcal N}$

Stabilization parameter β >Const (C_{α} , C_{y} , $C_{\cdot\cdot\cdot}^{k}$)

 $\mathrm{S_{h}}$ maps $\mathrm{O}_{\sigma}(\mathrm{I_{h}}\mathbf{G})$ into itself

$$h_s \longrightarrow 0 \implies I_h \mathbf{G} - \mathbf{G_y} \longrightarrow 0$$

Continuity of S_h in the ball $O_{\sigma}(I_h \boldsymbol{G})$

$$|\parallel \mathbf{G}_{\mathbf{y}_1} - \mathbf{G}_{\mathbf{y}_2} \parallel| \leq C^k h_s^{\mu - 2 - \varepsilon} \mid \parallel \mathbf{y}_1 - \mathbf{y}_2 \parallel|$$

$$\mathbf{y} \in \mathrm{O}_{\sigma}(\mathrm{I}_{\mathrm{h}}\mathbf{G})$$

 $\mathrm{S}_{\mathrm{h}}(\mathbf{y}) = \mathbf{y}$

Brouwer fixed point

 $\mathrm{S_h}(y)$ has a fixed point $\,G_h$

The existence of unique solution of the nonlinear elliptic problem for $k \ge 2$

Brouwer fixed point theorem

A prior error estimates

H¹-norm

$$\| \| \mathbf{G}^{e} - \mathbf{G}_{h} \| \|_{1} \le C^{k} h_{s}^{\mu-1} \| \mathbf{G}^{e} \|_{H^{s}(\Omega_{h})}$$

 $\mu = \min\left\{s, k+1\right\}$

L^2 -norm

$$\parallel \mathbf{G}^{\mathrm{e}} - \mathbf{G}_{\mathrm{h}} \parallel_{\mathrm{L}^{2}(\Omega_{\mathrm{h}})} \leq C^{\mathrm{k}} h_{\mathrm{s}}^{\mu} \parallel \mathbf{G}^{\mathrm{e}} \parallel_{\mathrm{H}^{\mathrm{s}}(\Omega_{\mathrm{h}})}$$

H¹, L²-norms are optimal in the mesh size for linear elliptic problem

H¹, L²-norms are optimal in the mesh size for nonlinear elliptic problem

1-D example with one material

(Electro-Thermal coupling)

Material parameters of bismuth telluride

1 [S/m]	k [W/(K·m)]	α [V/K]
$diag(8.422 \times 10^4)$	diag(1.612)	1.941×10^{-4}

[2]. L. Liu. International Journal of Engineering Science, 2012

1-D example with two materials

(Electro-Thermal coupling)

The effect of the **stabilization parameter** on the quality of the approximation

DG formulation is stable for stabilization parameter >10

2-D study of convergence order

(Electro-Thermal coupling)

2-D study of convergence order

(Electro-Thermal coupling)

H^1 -norm

Theor. converg. ord.: k

L^2 -norm

Theor. converg. ord.: k+1

Convergence rates agree with the theoretical estimates

3-D unit cell simulation for composite material

(Electro-Thermo-Mechanical coupling)

Material	1 [S/m]	k [W/(K·m)]	α [V/K]	$\boldsymbol{\alpha}_{\mathrm{th}} [\mathrm{K}^{-1}]$	E _L [GPa]	E _T [GPa]
Carbon fiber	diag(100000)	diag(40)	3×10^{-6}	$diag(2 \times 10^{-6})$	230	40
Polymer	diag(0.1)	diag(0.2)	3×10^{-7}	$\operatorname{diag}(20 \times 10^{-5})$	1.5	1.5

T = 25 [°C]

BC on

DG formulation is also applicable for irregular mesh

3-D unit cell simulation for composite material

(Electro-Thermo-Mechanical coupling)

3-D unit cell simulation for composite material

(Electro-Thermo-Mechanical coupling)

Material	l [S/m]	$\mathbf{k} [W/(K \cdot m)]$	α [V/K]	$\boldsymbol{\alpha}_{\mathrm{th}} [\mathrm{K}^{-1}]$	E_L [GPa]	E _T [GPa]
Carbon fiber	diag(100000)	diag(40)	3×10^{-6}	$diag(2 \times 10^{-6})$	230	40
Polymer	diag(0.1)	diag(0.2)	3×10^{-7}	$\mathrm{diag}(20\times10^{-5})$	1.5	1.5

DG formulation is also applicable for irregular mesh

30

Conclusion & Perspectives

Conclusion

- A consistent and stable DG method was developed for Electro-Thermo-Mechanical coupled problems
- The DG numerical properties were derived:
 - Uniqueness fixed point form
 - Optimal convergence rates in L_2 , H_1 -norm with respect to the mesh size
 - Convergence rates agree with the error analysis derived in the theory

Perspectives

- Extension to Electro-Thermo-Mechanical coupled problems to recover shape memory composite material behavior
- Plug in multiscale analyses

Thank you for your attention 😃

Lina.Homsi@student.ulg.ac.be

EMMC15 2016

