

Simulations of composite laminates inter- and intra-laminar failure using on a non-local mean-field damage-enhanced multi-scale method

Ling Wu (CM3), L. Adam (e-Xstream), B. Bidaine (e-Xstream), Ludovic Noels. (CM3) Experiments: F. Sket (IMDEA), J.M. Molina (IMDEA), A. Makradi (List)

STOMMMAC The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of M-ERA.NET Joint Call 2014.

SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.

• Introduction

- Failure of composite laminates
- Multi-scale modelling
- Mean-Field-Homogenization (MFH)
- Micro-scale modelling
 - Incremental-Secant MFH
 - Damage-enhanced incremental-secant MFH
- Multi-scale method for the failure analysis of composite laminates
 - Intra-laminar failure: Non-local damage-enhanced mean-fieldhomogenization
 - Inter-laminar failure: Hybrid DG/cohesive zone model
 - Experimental validation
- Introduction of uncertainties
 - As a random field

Failure of composite laminates

• Difficulties

- Different involved mechanisms a different scales
 - Inter-laminar failure
 - Intra-laminar failure
- Direct finite element simulation

On Micro-scale volume

Not possible at structural scale

Fiber rupture

⋪

Pull out

Bridging

Failure of composite laminates

Difficulties

- Different involved mechanisms _ different scales
 - Inter-laminar failure •
 - Intra-laminar failure •
- Direct finite element simulation is not _ possible at structural scale
- Continuum damage models do not _ represent accurately the intra-laminar failure
 - Damage propagation direction is not in • agreement with experiments

Failure of composite laminates

• Difficulties

- Different involved mechanisms at different scales
 - Inter-laminar failure
 - Intra-laminar failure
- Direct finite element simulation is not possible at structural scale
- Continuum damage models do not represent accurately the intra-laminar failure
 - Damage propagation direction is not in agreement with experiments
- Solution:
 - Embed damage model in a multi-scale formulation
 - For computational efficiency: use of mean-field-homogenization
 - For macro cracks: using hybrid
 DG/Cohesive zone model

CM3

Multi-scale modelling

- Mean-Field-Homogenization
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
 - Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models

Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

Mean-Field-Homogenization

σ

inclusions

• Key principles

Based on the averaging of the fields

$$\langle a \rangle = \frac{1}{V} \int_{V} a(\mathbf{X}) \mathrm{d}V$$

- Meso-response
 - From the volume ratios ($v_0 + v_I = 1$)

$$\begin{cases} \overline{\boldsymbol{\sigma}} = \langle \boldsymbol{\sigma} \rangle = v_0 \langle \boldsymbol{\sigma} \rangle_{\omega_0} + v_{\mathrm{I}} \langle \boldsymbol{\sigma} \rangle_{\omega_{\mathrm{I}}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}} \\ \overline{\boldsymbol{\varepsilon}} = \langle \boldsymbol{\varepsilon} \rangle = v_0 \langle \boldsymbol{\varepsilon} \rangle_{\omega_0} + v_{\mathrm{I}} \langle \boldsymbol{\varepsilon} \rangle_{\omega_{\mathrm{I}}} = v_0 \boldsymbol{\varepsilon}_0 + v_{\mathrm{I}} \boldsymbol{\varepsilon}_{\mathrm{I}} \end{cases}$$

One more equation required

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{\mathrm{C}}$$

Difficulty: find the adequate relations

$$\sigma_{I} = f(\boldsymbol{\varepsilon}_{I})$$

$$\sigma_{0} = f(\boldsymbol{\varepsilon}_{0})$$

$$\boldsymbol{\varepsilon}_{I} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

$$\boldsymbol{\varepsilon}_{1} = \boldsymbol{\varepsilon}_{0}$$

 ω_{I}

composite

 ω_0

matrix

?

3

Mean-Field-Homogenization

- Key principles (2)
 - Linear materials
 - Materials behaviours

$$\boldsymbol{\sigma}_{\mathrm{I}} = \overline{\boldsymbol{C}}_{\mathrm{I}} : \boldsymbol{\varepsilon}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{0} = \overline{\boldsymbol{C}}_{0} : \boldsymbol{\varepsilon}_{0}$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}} \right) : \boldsymbol{\varepsilon}_{0}$$

with $\boldsymbol{B}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_0^{-1} : (\overline{\boldsymbol{C}}_1 - \overline{\boldsymbol{C}}_0)]^{-1}$

Mean-Field-Homogenization

- Key principles (2)
 - Linear materials
 - Materials behaviours

$$\boldsymbol{\sigma}_{\mathrm{I}} = \overline{\boldsymbol{C}}_{\mathrm{I}} : \boldsymbol{\varepsilon}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{0} = \overline{\boldsymbol{C}}_{0} : \boldsymbol{\varepsilon}_{0}$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}} \right) : \boldsymbol{\varepsilon}_{0}$$

with
$$\boldsymbol{B}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_0^{-1} : (\overline{\boldsymbol{C}}_1 - \overline{\boldsymbol{C}}_0)]^{-1}$$

- Non-linear materials
 - Define a Linear Comparison Composite (LCC)
 - Common approach: incremental tangent

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$$

• Micro-scale modelling

- Incremental-Secant Mean-Field-Homogenization (MFH)
- Damage-enhanced incremental-secant MFH

- Material model
 - Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} \boldsymbol{R}(p) \leq 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

New Linear Comparison Composite (LCC)

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

New Linear Comparison Composite (LCC)

- Apply MFH from unloaded state
 - New strain increments (>0)

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/\mathrm{0}}^{\mathrm{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

CM₃

CM3

EMMC15 -

7 - 9 September 2016, Brussels, Belgium

- Verification of the method
 - Spherical inclusions
 - 17 % volume fraction
 - Elastic
 - Elastic-perfectly-plastic matrix
 - Non-proportional loading

CM3

Material models ۲

- Elasto-plastic material _
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$ •
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$ •

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\boldsymbol{\varepsilon}, \Delta p)$
- Non-Local damage model
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta \widetilde{p})$
 - Anisotropic governing equation $\tilde{p} \nabla \cdot (\boldsymbol{c}_{g} \cdot \nabla \tilde{p}) = p$
 - Linearization

$$\delta \boldsymbol{\sigma} = \left[(1 - D) \boldsymbol{C}^{\text{alg}} - \hat{\boldsymbol{\sigma}} \otimes \frac{\partial F_D}{\partial \boldsymbol{\varepsilon}} \right] : \delta \boldsymbol{\varepsilon} - \hat{\boldsymbol{\sigma}} \frac{\partial F_D}{\partial \tilde{\boldsymbol{p}}} \delta \tilde{\boldsymbol{p}}$$

CM3

- Equations summary: zero-approach ۲
 - For soft matrix response _
 - Remove residual stress in matrix •
 - Avoid adding spurious internal energy •
 - Solve iteratively the system _

$$\begin{cases} \Delta \overline{\boldsymbol{\varepsilon}}^{(\mathrm{r})} = v_0 \Delta \boldsymbol{\varepsilon}_0^{(\mathrm{r})} + v_{\mathrm{I}} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{(\mathrm{r})} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_0 + \Delta \boldsymbol{\varepsilon}_0^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathbf{I}, (1 - D) \overline{\boldsymbol{C}}_0^{\mathrm{S0}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{cases}$$

With the stress tensors

$$\begin{bmatrix} \overline{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}} \\ \boldsymbol{\sigma}_{\mathrm{I}} = \boldsymbol{\sigma}_{\mathrm{I}}^{\mathrm{res}} + \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} \\ \boldsymbol{\sigma}_0 = (1 - D) \overline{\boldsymbol{C}}_0^{\mathrm{S0}} : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{bmatrix}$$

• Mesh-size effect

Displacement [mm]

- Multi-scale method for the failure analysis of composite laminates
 - Intra-laminar failure: Non-local damage-enhanced mean-fieldhomogenization
 - Inter-laminar failure: Hybrid DG/cohesive zone model
 - Experimental validation

Intra-Iaminar failure: Non-Iocal damage-enhanced MFH

- Weak formulation of a composite laminate
 - Strong form $\nabla \cdot \overline{\sigma}^T + f = 0$ for each homogenized ply Ω_i $\widetilde{p} - \nabla \cdot (c_g \cdot \nabla \widetilde{p}) = p$ for the matrix phase
 - Boundary conditions

 $\overline{\boldsymbol{\sigma}} \cdot \overline{\boldsymbol{n}} = \overline{\boldsymbol{T}}$ $\overline{\boldsymbol{n}} \cdot \left(\boldsymbol{c}_{g} \cdot \nabla \widetilde{\boldsymbol{p}} \right) = 0$

- Macro-scale finite-element discretization $\begin{pmatrix}
\widetilde{p} = N_{\widetilde{p}}^{a} \widetilde{p}^{a} \\
\overline{u} = N_{u}^{a} \overline{u}^{a} \\
\hline{\kappa}_{\widetilde{p}\overline{u}} & K_{\widetilde{u}\widetilde{p}} \\
K_{\widetilde{p}\widetilde{p}} & K_{\widetilde{p}\widetilde{p}}
\end{pmatrix}
\begin{bmatrix}
d\overline{u} \\
d\overline{p}
\end{bmatrix} = \begin{bmatrix}
F_{ext} - F_{int} \\
F_{p} - F_{\widetilde{p}}
\end{bmatrix}$

- $[45^{\circ}_4 / -45^{\circ}_4]_{S}$ open hole laminate
 - Tensile test on several coupons

Propagation of the damaged zones in agreement with the fibre direction

Université de Liège

- $[45^{\circ}_4 / -45^{\circ}_4]_{s}$ open hole laminate (2)
 - Predicted delamination zones in agreement with experiments
 - Tensile stress within 15 %

• [90° / 45° / -45° / 90° / 0°]_S- open hole laminate (2)

- Propagation of the damaged zones in agreement with the fibre direction

Université de Liège

36

de Liège

- [45°/-45°]_S laminate under uniform tension
 - No hole to trigger localization
 - Material defects trigger localization _

Conclusions

- Multi-scale method for the failure analysis of composite laminates
 - Damage-enhanced MFH
 - Non-local implicit formulation
 - Hybrid DG/CZM for delamination
- Experimental validation
 - Open-hole laminates
 - Different stacking sequences
- Introduction of material uncertainties in the model
 - First simulations

CM3