The mysteries of droplet birth in microfluidic cross junctions Stéphanie van Loo ^{1,2} & Tristan Gilet ¹ « How to predict droplet volume and frequency based on inlet flow rates? » ### Introduction - Experiments on droplet formation in symmetric cross junction → the simplest geometry. - With and without surfactant. - Different production regimes are observed as Capillary number (Ca) and flow rate ratio (φ) are varied in a large range. ### **Parameters** ### Fixed: H, W, μ_D , μ | $W^* = \frac{W}{H}$ | | $Ca = \frac{1}{WH} \frac{\mu Q_C}{\sigma}$ | |---------------------------|---------------|--| | $\eta = rac{\mu_D}{\mu}$ | Dimensionless | $\phi = \frac{Q_D}{Q_C}$ | Output: L_d, F_d $$\Omega_d = \frac{Q_D}{F_d} \frac{1}{W^2 H}$$ # Phase diagrams - Stable dripping over several decades of Ca and φ - Range reduced with surfactant. ## Prediction of Ω Parity plot of measured dimensionless droplet volume Ω vs. empirical law : $$\Omega_i^* = A_1 - B_i \log Ca - C_i \log \phi$$ | Step i | 1: Filling | | 2: Pinching | | |------------|------------------|------------------|-----------------|-----------------| | Surfactant | W/O | w/ | w/o | w/ | | A_i | -0.25 ± 0.04 | -2.21 ± 0.03 | 0.25 ± 0.04 | 0.09 ± 0.03 | | B_i | 0.7 ± 0.01 | 1.42 ± 0.01 | 0.81 ± 0.01 | 0.82 ± 0.01 | | C_i | 0.05 ± 0.03 | 0.74 ± 0.03 | 0.61 ± 0.03 | 0.67 ± 0.03 | # Conclusion - Model valid for large range of Ca & φ (extended range compared to previous models limits of Chen's model) - Influence of surfactant mainly on T₁ - Aspect ratio W* determined from satellite droplets. # Satellite droplets Satellite droplet looping in the horizontal plane between two main droplets. ### Time decomposition Ω_1, Ω_2 - Ω_1 & Ω_2 vs. Ca (resp. φ) with fixed φ (resp. Ca). Solid line = fit on the whole dataset. Dashed line = model of Chen et al. [1]. - without surf.with surf. ### Inflation: dispersed volume Superposition of two snapshots from the same experiment right after pinch-off and initial retraction (orange) and after T1 at the end of the inflation step (blue). • $\Omega_1 \searrow$ with Ca \nearrow (more pronounced with surfactant) • $\Omega_1 \searrow$ with φ \nearrow (only with surfactant) ### Stéphanie van Loo (svanloo@ulg.ac.be) (1) Microfluidics Lab, department of Aerospace and Mechanical Engineering University of Liège, Belgium (2) Microsys Lab, department of Electrical Engineering and Computer Science University of Liège, Belgium ### Acknowledgments This research has been funded by the FNRS (FRIA) and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST), initiated by the Belgian Science Policy Office. ### References [1] Chen et al., Microfluid. Nanofluid., 2014, 18.