fn's
FREEDOM TO RESEARCH

Generalized Pascal triangle for binomial coefficients of words: an overview Joint work with Julien Leroy and Michel Rigo

Manon Stipulanti
FRIA grantee

Mons Theoretical Computer Science Days September 7, 2016

		k							
		0	1	2	3	4	5	6	7
$*$	0	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$
\binom{m}{k}=\frac{m!}{(m-k)!k!}
$$

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101$

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 1$ occurrence

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 2$ occurrences

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 3$ occurrences

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 4$ occurrences

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 5$ occurrences

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 6$ occurrences

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

$$
\underline{\text { Example: }} u=101001 \quad v=101
$$

$$
\Rightarrow\binom{101001}{101}=6
$$

Remark:
Natural generalization of binomial coefficients of integers
With a one-letter alphabet $\{a\}$

$$
\binom{a^{m}}{a^{k}}=(\underbrace{\overbrace{a \cdots a}^{m \text { times }}}_{k \text { times }} \begin{array}{c}
a \cdots a
\end{array})=\binom{m}{k} \quad \forall m, k \in \mathbb{N}
$$

					k				
		0	1	2	3	4	5	6	7
m	1	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$
\binom{m}{k}=\frac{m!}{(m-k)!k!}
$$

A way to build the Sierpiński gasket:

					k				
		0	1	2	3	4	5	6	7
m	1	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$
\binom{m}{k}=\frac{m!}{(m-k)!k!}
$$

A way to build the Sierpiński gasket:

- Grid: intersection between \mathbb{N}^{2} and $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$

- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Normalize by a homothety of ratio $1 / 2^{n}$
\rightsquigarrow sequence belonging to $[0,1] \times[0,1]$

Theorem [von Haeseler, Peitgen, Skordev, 1992]

This sequence converges, for the Hausdorff distance, to the Sierpiński gasket (when n tends to infinity).

Theorem [von Haeseler, Peitgen, Skordev, 1992]

This sequence converges, for the Hausdorff distance, to the Sierpiński gasket (when n tends to infinity).

Definitions:

- ϵ-fattening of a subset $S \subset \mathbb{R}^{2}$

$$
[S]_{\epsilon}=\bigcup_{x \in S} B(x, \epsilon)
$$

- $\left(\mathcal{H}\left(\mathbb{R}^{2}\right), d_{h}\right)$ complete space of the non-empty compact subsets of \mathbb{R}^{2} equipped with the Hausdorff distance d_{h}

$$
d_{h}\left(S, S^{\prime}\right)=\min \left\{\epsilon \in \mathbb{R}_{\geq 0} \mid S \subset\left[S^{\prime}\right]_{\epsilon} \quad \text { and } \quad S^{\prime} \subset[S]_{\epsilon}\right\}
$$

Idea: binomial coefficients of integers
\rightsquigarrow binomial coefficients of words

Idea: binomial coefficients of integers \rightsquigarrow binomial coefficients of words

Definitions:

- $\operatorname{rep}_{2}(n)$ greedy base-2 expansion of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_{2}(0)=\varepsilon$ where ε is the empty word
\rightsquigarrow base- 2 expansions ordered genealogically (first by length, then lexicographically)

		v							
		ε	1	10	11	100	101	110	111
u	1	0	0	0	0	0	0	0	
	1	1	1	0	0	0	0	0	0
	10	1	1	1	0	0	0	0	0
	1	2	0	1	0	0	0	0	
	1	1	2	0	1	0	0	0	
	1	2	1	1	0	1	0	0	
	1	2	2	1	0	0	1	0	
	1	3	0	3	0	0	0	1	

\rightsquigarrow base- 2 expansions ordered genealogically (first by length, then lexicographically)

The classical Pascal triangle

Questions:

- After coloring and normalization can we expect the convergence to an analogue of the Sierpiński gasket?
- Could we describe this limit object ?
- Grid: intersection between \mathbb{N}^{2} and $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$

- Color the grid:

Color the first 2^{n} rows and columns of the generalized Pascal triangle

$$
\left(\binom{\operatorname{rep}_{2}(m)}{\operatorname{rep}_{2}(k)} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{\mathrm{rep}_{2}(m)}{\mathrm{rep}_{2}(k)} \equiv 0 \bmod 2$
- black if $\binom{\mathrm{rep}_{2}(m)}{\mathrm{rep}_{2}(k)} \equiv 1 \bmod 2$
- Color the grid:

Color the first 2^{n} rows and columns of the generalized Pascal triangle

$$
\left(\binom{\operatorname{rep}_{2}(m)}{\operatorname{rep}_{2}(k)} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{\mathrm{rep}_{2}(m)}{\mathrm{rep}_{2}(k)} \equiv 0 \bmod 2$
- black if $\binom{\mathrm{rep}_{2}(m)}{\mathrm{rep}_{2}(k)} \equiv 1 \bmod 2$
- Normalize by a homothety of ratio $1 / 2^{n}$
\rightsquigarrow sequence belonging to $[0,1] \times[0,1]$

Theorem [Leroy, Rigo, S., 2016]

The sequence converges to a limit object \mathcal{L}.

Topological closure of a union of segments described through a simple combinatorial property

Simplicity: coloring regarding the parity of binomial coefficients

Extension

Everything still holds for binomial coefficients $\equiv r \bmod p$ with

- base-2 expansions of integers
- p a prime
- $r \in\{1, \ldots, p-1\}$

Left: binomial coefficients $\equiv 2 \bmod 3$
Right: estimate of the corresponding limit object

Manon Stipulanti (ULg)

	ε	1	10	$\begin{gathered} v \\ 11 \end{gathered}$	100	101	110	111	S
ε	1	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	2
10	1	1	1	0	0	0	0	0	3
u 11	1	2	0	1	0	0	0	0	3
100	1	1	2	0	1	0	0	0	4
101	1	2	1	1	0	1	0	0	5
110	1	2	2	1	0	0	1	0	5
111	1	3	0	3	0	0	0	1	4

Definition: $\forall n \geq 1$
$S(n)=$ number of non-zero elements in the nth row of the generalized Pascal triangle

$$
=\#\left\{\left.\binom{\operatorname{rep}_{2}(n-1)}{\operatorname{rep}_{2}(m)}>0 \right\rvert\, m \in \mathbb{N}\right\}
$$

$$
S(0)=1
$$

First few terms of $(S(n))_{n \geq 0}$:

$$
\begin{aligned}
& 1,1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5 \\
& 6,9,11,10,11,13,12,9,9,12,13,11,10, \ldots
\end{aligned}
$$

Palindromic structure \rightsquigarrow regularity

- 2-kernel of h

$$
\begin{aligned}
\mathcal{K}_{2}(h) & =\{h(n), h(2 n), h(2 n+1), h(4 n), h(4 n+1), h(4 n+2), \ldots\} \\
& =\left\{\left(h\left(2^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<2^{i}\right\}
\end{aligned}
$$

- 2-kernel of h

$$
\begin{aligned}
\mathcal{K}_{2}(h) & =\{h(n), h(2 n), h(2 n+1), h(4 n), h(4 n+1), h(4 n+2), \ldots\} \\
& =\left\{\left(h\left(2^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<2^{i}\right\}
\end{aligned}
$$

- 2-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{2}(h)$ is a \mathbb{Z}-linear combination of the t_{j} 's

- 2-kernel of h

$$
\begin{aligned}
\mathcal{K}_{2}(h) & =\{h(n), h(2 n), h(2 n+1), h(4 n), h(4 n+1), h(4 n+2), \ldots\} \\
& =\left\{\left(h\left(2^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<2^{i}\right\}
\end{aligned}
$$

- 2-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{2}(h)$ is a \mathbb{Z}-linear combination of the t_{j} 's

Proposition [Leroy, Rigo, S., 2016]

$(S(n))_{n \geq 0}$ is 2-regular.

- 2-automatic if the 2 -kernel is finite
- 2-automatic if the 2 -kernel is finite

Proposition [Leroy, Rigo, S., 2016]

$(S(n))_{n \geq 0}$ is not 2-automatic.

- 2-automatic if the 2 -kernel is finite

Proposition [Leroy, Rigo, S., 2016]

$(S(n))_{n \geq 0}$ is not 2-automatic.

- 2-synchronized if the language

$$
\left\{\operatorname{rep}_{2}(n, h(n)) \mid n \in \mathbb{N}\right\}
$$

is accepted by some finite automaton

- 2-automatic if the 2 -kernel is finite

Proposition [Leroy, Rigo, S., 2016]

$(S(n))_{n \geq 0}$ is not 2-automatic.

- 2-synchronized if the language

$$
\left\{\operatorname{rep}_{2}(n, h(n)) \mid n \in \mathbb{N}\right\}
$$

is accepted by some finite automaton

Proposition [Leroy, Rigo, S., 2016]

$(S(n))_{n \geq 0}$ is not 2-synchronized.

Remark: 2-automatic \subsetneq 2-synchronized \subsetneq 2-regular.

Definitions:

- $\operatorname{rep}_{F}(n)$ greedy Fibonacci representation of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_{F}(0)=\varepsilon$ where ε is the empty word

		ε	1	10	100	101	1000	1001	1010	S_{F}
	ε	1	0	0	0	0	0	0	0	1
	1	1	1	0	0	0	0	0	0	2
	10	1	1	1	0	0	0	0	0	3
	100	1	1	2	1	0	0	0	0	4
u	101	1	2	1	0	1	0	0	0	4
1000	1	1	3	3	0	1	0	0	5	
	1001	1	2	2	1	2	0	1	0	6
	1010	1	2	3	1	1	0	0	1	6

Definition: $\forall n \geq 0$

$$
S_{F}(n)=\#\left\{\left.\binom{\operatorname{rep}_{F}(n)}{\operatorname{rep}_{F}(m)}>0 \right\rvert\, m \in \mathbb{N}\right\}
$$

First few terms of $\left(S_{F}(n)\right)_{n \geq 0}$:

$$
\begin{aligned}
& 1,2,3,4,4,5,6,6,6,8,9,8,8,7,10,12 \\
& 12,12,10,12,12,8,12,15,16,16,15, \ldots
\end{aligned}
$$

2-kernel $\mathcal{K}_{2}(h)$ of a sequence h

- Select all the nonnegative integers whose base-2 expansion (with leading zeroes) ends with $w \in\{0,1\}^{*}$
- Evaluate h at those integers
- Let w vary in $\{0,1\}^{*}$

$$
\mathbf{w}=\mathbf{0}
$$

n	$\mathrm{rep}_{2}(n)$	$h(n)$
$\mathbf{0}$	ε	$\mathbf{h}(\mathbf{0})$
1	1	$h(1)$
$\mathbf{2}$	10	$\mathbf{h}(\mathbf{2})$
3	11	$h(3)$
$\mathbf{4}$	$\mathbf{1 0 0}$	$\mathbf{h}(4)$
5	101	$h(5)$

F-kernel $\mathcal{K}_{F}(h)$ of a sequence h

- Select all the nonnegative integers whose Fibonacci representation (with leading zeroes) ends with $w \in\{0,1\}^{*}$
- Evaluate h at those integers
- Let w vary in $\{0,1\}^{*}$

n	$\operatorname{rep}_{F}(n)$	$h(n)$
$\mathbf{0}$	ε	$\mathbf{h}(\mathbf{0})$
1	1	$h(1)$
$\mathbf{2}$	10	$\mathbf{h}(\mathbf{2})$
$\mathbf{3}$	$\mathbf{1 0 0}$	$\mathbf{h}(\mathbf{3})$
4	101	$h(4)$
5	$\mathbf{1 0 0 0}$	$\mathbf{h}(\mathbf{5})$

F-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{F}(h)$ is a \mathbb{Z}-linear combination of the t_{j} 's
F-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{F}(h)$ is a \mathbb{Z}-linear combination of the t_{j} 's

Proposition [Leroy, Rigo, S., 2016]

$\left(S_{F}(n)\right)_{n \geq 0}$ is F-regular.

In the literature, not so many sequences that have this kind of property

Study the

- behavior of the summatory function of $(S(n))_{n \geq 0}$
- behavior of the summatory function of $\left(S_{F}(n)\right)_{n \geq 0}$

Study the

- behavior of the summatory function of $(S(n))_{n \geq 0}$
- behavior of the summatory function of $\left(S_{F}(n)\right)_{n \geq 0}$

Example: $s_{2}(n)$ number of 1 's in $\operatorname{rep}_{2}(n)$
s_{2} is 2-regular
summatory function $N \mapsto \sum_{j=0}^{N-1} s_{2}(j)$

Theorem [Delange, 1975]

$$
\begin{equation*}
\frac{1}{N} \sum_{j=0}^{N-1} s_{2}(j)=\frac{1}{2} \log _{2} N+\mathcal{G}\left(\log _{2} N\right) \tag{1}
\end{equation*}
$$

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Delange, 1975]

$$
\begin{equation*}
\frac{1}{N} \sum_{j=0}^{N-1} s_{2}(j)=\frac{1}{2} \log _{2} N+\mathcal{G}\left(\log _{2} N\right) \tag{1}
\end{equation*}
$$

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Allouche, Shallit, 2003]

Under some hypotheses, the summatory function of every k regular sequence has a behavior analogous to (1).

Theorem [Delange, 1975]

$$
\begin{equation*}
\frac{1}{N} \sum_{j=0}^{N-1} s_{2}(j)=\frac{1}{2} \log _{2} N+\mathcal{G}\left(\log _{2} N\right) \tag{1}
\end{equation*}
$$

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Allouche, Shallit, 2003]

Under some hypotheses, the summatory function of every k regular sequence has a behavior analogous to (1).
\rightsquigarrow Replacing s_{2} by S and S_{F} : same behavior as (1) but do not satisfy the previous theorem

