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The objective of this paper is to demonstrate that the addition of properly-tuned nonlinearities to a nonlinear
system can increase the range over which a specific resonance responds linearly. Specifically, we seek to enforce
two important properties of linear systems, namely the force-displacement proportionality and the invariance
of resonance frequencies. Numerical simulations and experiments are used to validate the theoretical findings.
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I. INTRODUCTION

Devices used for sensing, imaging and detection are
usually required to exhibit linear behavior in their dy-
namic range. However, nonlinearity is a frequent oc-
currence in physical and engineering applications. For
instance, in micro- and nanoresonators used for ultra-
sensitive force and mass sensing! 3, radio-frequency sig-
nal processing?®, narrow band filtering®%, time keeping”
and nanoscale imaging!®!!, nonlinear behaviors are al-
ready experienced at low amplitudes compared to the
noise floor'>!3.  Nonlinearity may result in plethora
of dynamic phenomena including amplitude-frequency
dependence', modal couplings!®17, mixed hardening-
softening behaviors'? and chaotic responses'®19. Clearly,
these phenomena can drastically limit the performance of
the devices?%2!,

One well-established approach for enforcing linear be-
havior is feedback linearization?2-23, which uses feedback
control to cancel the undesired nonlinearities. However,
feedback linearization requires an accurate monitoring of
the system’s states, an actuator and an external source of
energy, which complicates its practical realization. There
have been attempts to exploit nonlinearity rather than
avoiding it. Bistability and jump phenomena were used
to enhance noise squeezing?*, to enlarge the bandwidth
of energy harvesters?® 28, to improve mass detection??,
to reduce the sensitivity of a resonator to the phase
of the drive” and to develop new mechanical memory
devices3931. Superharmonic excitation and internal res-
onances were employed to improve stability properties of
resonators®2 and time keeping devices'?. Finally, the in-
herent frequency-energy dependence of nonlinear oscilla-
tions was exploited in broadband vibration absorbers33.

The present paper proposes a fully passive, resonance-
based approach for dealing with undesired nonlineari-
ties in mechanical systems. Properly-tuned nonlinearities
are introduced in the nonlinear system to increase the
range over which a specific resonance responds linearly.
Specifically, we seek to enforce two important proper-

nonlinear dynamics; compensation of nonlinearity; nonlinear normal modes; linearization;

ties of linear systems, namely the force-displacement
proportionality and the invariance of resonance frequen-
cies. Unlike previous attempts concerned with passive
linearization343% and manipulation of nonlinearities3,
our approach relies on a principle of similarity®” which
states that the added nonlinearity should possess the
same mathematical form as that of the original nonlinear
system. This principle of similarity enables us to extend
the linear regime over a larger range of motion ampli-
tudes.

Il. ANALYTICAL DEVELOPMENTS

We consider an n-degree-of-freedom (DoF) mechanical
system with concentrated nonlinearities subject to har-
monic excitation:

M + Cx + Kx 4 by (x) = Vevfcoswt, (1)

where € is a small bookkeeping parameter. M, C and
K are the mass, damping and stiffness matrices, respec-
tively, /v f coswt is the forcing term and x is the posi-
tion vector. The vector by (x) contains both the origi-
nal and additional nonlinearities, which are of polynomial
nature. According to the principle of similarity3”, the ad-
ditional nonlinearities should possess the same exponent
as the original nonlinearity. Without loss of generality,
cubic nonlinearities are considered herein.

The objective of this study is to linearize one spe-
cific resonance of system (1) through the proper design
of the additional nonlinearities. To this end, the non-
linear normal mode (NNM) theory is exploited, because
nonlinear resonances are known to occur in the neighbor-
hood of NNMs3®. First, we transform Eq. (1) into modal
space through the change of variables x = Uy where
U contains the normal modes of the underlying linear
system, and we define normalized modal displacements,

q=1y/(vef), such that

4+ Cq+ Qq+ by (z) = veoswt, (2)
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where Q = diag [Q?] 1 C = ey and

j=Tm ij=I,n

by (X) = 5f2 Zh1+...+hn:3 bjh1---hn H:»L:l q,fh . (3)

b, (x) is the projection of b (x) in modal space, thus,
even if by, (x) is sparse, b, (x) can be fully populated.
bjh,...n, are scalars, where j indicates the mode number
and varies according to the rows of by, (x), while sub-
scripts hq ... h, are in accordance with the exponents of
the modal coordinates of the corresponding terms. We
assume that the system features no internal resonances,
i.e., natural frequencies §2; are incommensurate.

The NNMs are now calculated by removing damping
and forcing terms in Eq. (2). Following a standard per-
turbation technique and limiting the solution to the fun-
damental harmonic, the approximate solution has the
form

a= (a0 + a1 + O (%)) sin ((wo +ewr + 0 (%)) 1),
(4)
where qo = [+, qjo,-]" and @i = [, g1,
We adopt the standard single harmonic approximation
sin® (wt) ~ 3/4sin (wt). Imposing resonance condition at
order €% and solving terms of order ¢! yields for the I}
NNM

§bj0...3...0q130

q,0:07q‘1:* forj:l,n,j%l,(f))
J J 4 Q2 -QF

3 bio...3..005
“o I W1 4 2Q) ©

gjo and gj1 (j # 1) represent the influence of the nonres-
onant modes on the I*® mode. w; is the variation of the
I*" natural frequency with respect to the amplitude of
is of hardening (softening) type.

In order to relate the undamped, unforced NNM mo-
tions to the resonances of the damped, forced system, the
energy balance criterion®? is utilized:

T T
/ Q)T Ca(t)dt = / Q) v coswtdt,  (7)
0 0

where T is the period of motion. Eq. (7) indicates that
at resonance the energy dissipated by damping over a
full period is equal to the input energy. Inserting the
approximate solution for q in Eq. (7) gives

v
Qo= 5— (8)
Qiey
Qa0 (Z?ﬁ g + 3= lele) — 2201 gj1v;
q1 = J#l J#l J#l

v — 2 qrocy
2
W1q;pCu
v — 2 qiocy

9)

and

xk:\/gf UkIqi0 + € ZukjLIﬂ +O(€2) . (10)

j=1

Egs. (5), (6), (8), (9) and (10) completely define the "
resonance of system (1) and form the basis of the design
procedure developed in this work. Based on these equa-
tions, force-displacement proportionality for coordinate
xy, of the I'" resonance can simply be enforced through

n
Zuqujl =0. (11)
j=1

Indeed, if this latter condition is fulfilled, Eq. (10) trans-
forms into

Tk & Ve furiqio- (12)

lth

Similarly, invariance of the resonance frequency can

be enforced through
w1 = 0, (13)

such that the [*" natural frequency w; ~ wp.

Since Egs. (11) and (13) involve the n coefficients of
the nonlinear terms bjo.. 3.0, they can be used to design
the additional nonlinearities in function of the original
ones.

11l. EXPERIMENTAL VALIDATION
A. Force-displacement proportionality

Two different experimental systems are utilized to
demonstrate the proposed idea. The first one, pictured in
Fig. 1, comprises a 700 mm long cantilever beam (cross
section 14x14 mm), made of steel to which a 240 mm
long doubly-clamped beam, built using 3D printing, is
connected. The doubly-clamped beam is supported by
a thick frame assumed rigid, moreover, a small mass is
placed in the middle of its span in order to reduce its prin-
cipal natural frequency. The input force is applied to the
cantilever beam using an electrodynamic shaker. The
shaker excites the structure in the z direction, accord-
ing to the coordinate reference included in Fig. 1. The
original nonlinearity in this coupled system is due to a
thin steel lamina located at the free end of the cantilever
beam (cross section 14x0.5 mm, see Fig. 1) whereas the
additional nonlinearity comes from the doubly-clamped
beam itself. The nonlinearities are of geometric nature
and are activated for sufficiently large motion amplitudes.
Both of them can be modeled using cubic springs, which
satisfies the principle of similarity.

The frequency range encompassing only the first two
modes of vibration was considered. Their shapes are
qualitatively represented in Fig. 2.
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doubly-clamped beam

cantilever beam
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FIG. 1. Schematic representation of the experimental set-up
for enforcing force-displacement proportionality.

Sketch of the mechanical system

First mode of vibration

Second mode of vibration

——

FIG. 2. Schematic representation of the first two modes
of vibration of the mechanical system. The doubly-clamped
beam is rotated for a better visualization.

A two-DoF reduced model of the system without the
additional nonlinearity was first identified experimentally

0.46Z1 + 0.52%7 — 0.1525 + 1406521 — 171022
+3.3 x 10%2% = fcoswt (14)
0.07%2 — 0.1521 + 0.25%9 + 1710($2 — .131) =0.

where 3.3 x 10° N/m? is the nonlinear coefficient of the
steel lamina. The reduced model was then used to com-
pute nonlinear frequency responses for harmonic excita-
tion of amplitudes f up to 0.5 N. Fig. 3a illustrates that

the second resonance is significantly distorted by the non-
linearity of the steel lamina; it is therefore the target
resonance in this study.

To enforce force-displacement proportionality for this
resonance, the nonlinearity of the doubly-clamped beam
is now considered:

0.46z; + 0.52%; — 0.1529 4 140652 — 171022
+3.3x10°2% + ko (21 — x2)° = f cos (wt)
0.0729 — 0.1521 + 0.2529 + 1710(‘%2 — xl)

+ knl2 (LL‘Q - 171)3 =0.

(15)

The adequate nonlinear coefficient can be determined us-
ing Eq. (11), i.e. ky2 = 4.27 x 107 N/m?. The numerical
simulations in Fig. 3b confirm that the second resonance
obeys force-displacement proportionality, which validates
our theoretical developments.

The cross section of the doubly-clamped beam was thus
designed so as to achieve the requested value for ko,
according to the formula®® k,;o = 3k» / (4t2), where £ is
the thickness of the doubly-clamped beam, and ks is its
linear stiffness. Because of the uncertainties inherent to
3D printing, the value identified experimentally for k2
was 3.8 x 107 N/m?3.

The second resonance with the additional nonlinearity
was measured experimentally for 8 forcing amplitudes up
to 0.3 N (greater forcing amplitudes induced significant
shaker-structure interactions). The corresponding peak
amplitudes are represented by red circles in Fig. 3c. Be-
cause the circles are almost aligned horizontally, one can
conclude that the displacement of the experimental can-
tilever beam around the second resonance is proportional
to the amplitude of the harmonic forcing. For compari-
son, the results of numerical simulations are superposed
in Fig. 3c. The solid line (ky2 = 3.8 x 10”7 N/m?3) in-
dicates that an excellent agreement between experimen-
tal and numerical results is obtained. The dashed line
(kni2 = 0 N/m3) shows the significant variation of the
peak amplitude with the forcing level before the addi-
tion of the intentional nonlinearity. Another finding is
that, in spite of the 11% difference between the theoreti-
cal and actual nonlinearity of the doubly-clamped beam,
force-displacement proportionality was enforced quite ac-
curately in the experiment, which shows the robustness of
our procedure. Furthermore, extensive numerical analy-
ses of the basins of attraction of the system did not show
the existence of any other stable solution.

B. Isochronicity

The second experimental system, pictured in Fig. 4,
comprises the same cantilever beam to which another
doubly-clamped beam is connected. The system has two
hardening nonlinearities, one due to the thin steel lamina
and one due to the doubly-clamped beam itself. A two-
DoF reduced order model of the system was identified
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FIG. 3. (a,b) Numerical frequency responses of the 2 DoF beam model in Eq. (15) for f = 0.048, 0.186, 0.307, 0.50 N. (a)

knie = 0 N/m? and (b) kn2 = 4.27 x 107 N/m®. (c) Second resonant peak for increasing forcing amplitudes; red circles:
experimental results, dashed line: kyp;2 =0 N/m3 and solid line: kni2 = 3.8 x 107 N/md.

4
Y\Vx

FIG. 4. Schematic representation of the experimental set-up
for enforcing invariance of resonance frequency.

experimentally

0.362; + 0.005Z9 + 0.2521 — 0.322 + 10495z, — 3447z9
+2x10%2% + 8 x 107 (21 — 22)® = fcoswt
0.005%1 + 0.058%2 — 0.3&1 + 0.54¢9 + 3447 (z2 — 1)

+ 8 X ].07 ({L‘Q — 1‘1)3 =0.
(16)

The numerical frequency responses around the first res-
onance are represented in Fig. 5a. The resonance fre-
quency undergoes a significant variation due to the hard-
ening nonlinearities.

In order to compensate this frequency shift, a couple of
permanent magnets was attached directly to the doubly-
clamped beam. Additional magnets fixed on an external
support were placed symmetrically with a gap d, as illus-
trated in Fig. 4b. The two pairs of magnets are mutually

attractive. The full system dynamics is described by

0.362; + 0.005Z9 + 0.2527 — 0.322 + 10495z; — 3447z,
+2x10%2% + 8 x 107 (21 — 22)® = fcoswt

+ ksao + 8 x 107 (23 — 21)° + knizad =0,
(17)

where k3 and k,,;3 are the linear and cubic coefficients of
the magnetic force, respectively. These coefficients were
estimated analytically*!. Their value is negative (soften-
ing) and depends on the reciprocal distance d between
the magnets, as shown by the dashed line in Fig. 6.
Isochronicity for the first resonance can now be en-
forced through Eq. (13), and the result is the solid line
in Fig. 6. The intersection of the solid and dashed
lines therefore indicates that the magnets should have
a reciprocal distance of 4.4 mm, which results in k3 =
—1160 N/m and k,;3 = —1.26 x 108 N/m?. Due to un-
avoidable positioning error, the coefficients of the experi-

mental system were measured to be ks = —1000 N/m and
kniz = —1 x 108 N/m3, which correspond to a distance
d=4.6 mm.

The experimental results are represented by red cir-
cles in Fig. 5b; the resonance frequency seems to be al-
most constant (very slightly softening), which validates
our methodology. The numerical results superposed in
Fig. 5b also evidence the excellent predictive capability
of the developed reduced-order model of the set-up. Also
in this case, no additional stable solution was evidenced
by numerical analyses of the basins of attraction.

IV. CONCLUSIONS

In this paper, we demonstrated using supporting an-
alytical, numerical and experimental results that it is
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FIG. 5. Frequency responses of the 2 DoF beam model in Eq. (17) for f = 0.060, 0.074, 0.092, 0.114, 0.138 N. (a) k3 = kni3 =0
and (b) k3 = —1000 N/m and kn3 = —1 x 10® N/m>. Red circles: experimental results, and solid lines: numerical simulations.
ACKNOWLEDGEMENT
0x 10’

—1000
ks [N/m]
FIG. 6. Magnets design. Solid line: isochronicity condition;
dashed line: magnetic force coefficients as a function of the
magnets relative distance.

21500 2500

possible to linearize a specific resonance of a nonlinear
system through the addition of intentional nonlinearities.
Our methodology, which relies on a principle of similarity
between the added and original nonlinearities, paves the
way for performance improvement of existing engineer-
ing devices, for instance, by enlarging the dynamic range
in which these devices exhibit linear-like behaviors. If
the proposed procedure can find applications in macro-
scopic mechanical structures, it is particularly suitable
for micro- and nano-resonators, which are known to ex-
perience nonlinear behaviors already at low amplitudes.
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NoVib 307265).
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