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Abstract:

Numerous audio systems are nonlinear. It is thus of great importance to study them and un-
derstand how they work. Volterra series model and its subclass (cascade Hammerstein-Wiener
model) are usual ways to modelize nonlinear systems. However the identification methods of
these models are still considered as an open topic. Therefore we have developed a new opti-
mized identification tool ready for use and presented as a Matlab toolbox. This toolbox provides
the parameters of the optimized sine sweep needed for the identification method, it is able to cal-
culate the parameters of the Hammerstein model and to emulate the output signal of a nonlinear
device for a given input signal. To evaluate the toolbox, we modelize a guitar distortion effect (the
Tubescreamer ) having a total harmonic distortion (THD) comprised in the range 10-23%. We
report a mean error of less than 0.7% between the emulated signal and the signal coming from
the distortion effect.
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1 Introduction
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Figure 1: The Global Polynomial Hammerstein
model

The modelization of nonlinear systems has
been a central topic in many engineering
areas, as most real-world devices exhibit non-
linear behaviors. The study of these topics
is of great interest as they include a large
range of applications such as industrial pro-
cesses, control systems, economic data, life
sciences, social systems, physics and many
more. This project focuses on one partic-
ularly interesting application: the modeliza-
tion of the audio chain of a guitar player.
Such a chain is usually composed of com-
pressors, distortion effects, preamplifiers, am-
plifiers, loudspeakers and microphones. Most
of these elements exhibit nonlinear charac-
teristics. The idea is to replace these devices by a computer emulation that could be suitable
for guitar players in many situations [1].

Most weakly nonlinear systems can be approximated by linearization. In that case, the mod-
elization can be achieved by the convolution technique, as for classical Linear Time Invariant
(LTI) systems. However, stronger nonlinearities need more specific models in order to keep an
accurate approximation of the real system.

In our research, we focus on a technique based on the Volterra series model [2, 3], which re-
cently received an increased interest with the improvement of computer’s performance. Consid-
ering only static (memoryless) nonlinearities, this model can be simplified into a Hammerstein
model (see Fig. 1) which is a cascade of M parallel (the system’s order) branches where each
branch m is composed by a static monomial nonlinearity (putting the input signal to the power
m) followed by a linear filter hm[n] which is the mth Hammerstein kernel (also called diagonal
Volterra kernel) [3, 4, 5].

In the last few years, a nonlinear convolution method [6] has been elaborated with the aim of
emulating nonlinear audio systems such as loudspeakers [1, 7], guitar distortion generators [8,
9] (the famous Tube-Screamer is often taken as an example) and compressors [10]. The key of
the method is the identification of the diagonal Volterra kernels by means of the synchronized
sine sweep technique [9]. However, the practical implementation of this identification technique
is complex due to many possible sources of error. The nature of these errors will be explained
in details in a journal paper entitled Optimized Hammerstein Kernels Identification by Means
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of a Sine Sweep Technique Applied to Nonlinear Audio Devices Emulation which is presently
submitted for publication. This paper describes how to accurately measure the Hammerstein
kernels using our simple Matlab toolbox program[11]. This toolbox has been evaluated on
some real nonlinear audio devices.

The paper is organized as follows : the basic identification technique is summarized in section
2. In section 3, we present the features of our Matlab toolbox. In section 4, we provide a
step by step example of the Hammerstein kernels identification of a guitar distortion effect (the
Tubescreamer ). Finally, section 5 presents our conclusion about this toolbox.

2 Basic identification method
This section briefly presents the principles of Volterra series and Hammerstein model. The full
development of the method will be shortly given in another paper [12].

2.1 Volterra Series

Considering time invariant nonlinear systems, the Volterra series expresses the relationship
between an input signal x(t) and its corresponding output signal y(t) as an infinite sum of
multiple convolutions [2, 3]:

y(t) =
∞

∑
m=1

∫ +∞

−∞

. . .
∫ +∞

−∞

vm(τ1, . . . ,τm)

×
m

∏
i=1

x(t− τi) dτ1 . . .τm

(1)

Where {vm(τ1, . . . ,τm)}∀m∈N+ are the Volterra kernels characterizing the system.

2.2 Cascade of Hammerstein Models

It can be shown that any continuous nonlinear system can be represented by a set of M
parallel branches composed by a static non linearity Pm(.) surrounded by two linear filters [13].
The cascade Hammerstein model is a subclass of this general model where we consider a
static nonlinear monomial function followed by a linear filter hm(t) (the Hammerstein kernels) as
shown in Fig.1. Considering a nonlinear discrete time causal system with a finite order M, we
can express the input/output relationship as:

y[n] =
M

∑
m=1

hm[n]~ xm[n] (2)

We can see from Eqs. (1) and (2) that the Hammerstein model corresponds to the Volterra
series model if the Volterra kernels are diagonal (ie. the Volterra kernels differ from zero only
for the values τ1 = τ2 = ...= τM). That is why the cascade of Hammerstein models is also called
a diagonal Volterra model.
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2.3 Hammerstein Kernels Identification

In order to extract the Hammerstein kernels, we need to excite the nonlinear system with a suit-
able input signal. Such a signal should allow us to separate the different Hammerstein kernels
from each other after the deconvolution by its inverse filter. The next two subsections explain
which suitable input signal is chosen and how it can be used to compute the Hammerstein
kernels.

2.3.1 Exponential Sine Sweep Phase Properties

Farina et al. [6] proposed to use the properties of the Exponential Sine Sweep (ESS) signal
in order to identify the Hammerstein kernels. The goal is to separate the harmonic responses
(created by the harmonic distortion of the nonlinear system) from each other.

From now on, we propose to develop all our equations in discrete time for a better correspon-
dence with the practical implementation. Let ss[n] be the ESS:

ss[n] = Asin(φ [n]) (3)

The phase φ [n] grows exponentially such that :

φ [n] = ω1
R
fs
.(e

n
R −1) ∀n ∈ [0,N−1] (4)

Where:

• R = (N−1).(log ω2
ω1)
−1 is the inverse frequency changing rate.

• N is the length of the sweep in samples.

• ω1,ω2 are the initial and final angular frequencies respectively.

• fs is the sample rate.

An interesting property of the ESS [1] is that the mth harmonic of the ESS is the ESS itself
delayed by ∆m, as:

m.φ [n] = φ [n+∆m]−B(m−1) ∀n≤ N−1−∆m (5)

Where: B =
ω1.R

fs

∆m = R. log(m)

(6)

Choosing B ∈ 2kπ, with k ∈ N allows to neglect the B term in Eq. (5) as it just adds a multiple
of 2π to the sine phase. Note that the values ∆m are real. As our problem is discretised for
practical implementation, this could lead to phase mismatches between the different harmonic
impulse responses. From now on, consider that ∆m ∈ N until Eq. (14) where this problem will
be discussed.
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The property of the ESS in Eq. (5) is interesting because the contribution of an harmonic m
in the impulse response will be delayed by −∆m from the first order impulse response, after its
deconvolution by the ESS inverse filter ss[n]:ss(φ [n])~ ss(φ [n]) =

N−1

∑
k=0

ss[k].ss[n− k] =C.δ [n−n0]

ss(m.φ [n])~ ss(φ [n]) = D.δ [n− (n0−∆m)]

(7)

Where C and D are constant amplitude factors. n0 is the position along the time axis of the first
order (linear) impulse response which depends on the ESS length (n0 = N− 1). The inverse
ESS can be calculated in several ways [12]. In this work, we use the time reversed and
amplitude corrected version :

ss[n] = ss[N−1−n].
(

ω2

ω1

) −n
N−1

(8)

2.3.2 Power sine properties

It can be shown [12] that the power formulas of the ESS signal (defining SSn as the Fourier
transform of (sinn(x)) ) in the positive frequency domain are equal to :

SS2n+1 = SS.
−1n

4n

n

∑
k=0

(−1)kCk
2n+1e jω∆2n+1−2k = an.SS ∀n ∈ N

SS2n = j.SS.
−1n

22n−1

n−1

∑
k=0

(−1)kCk
2ne jω∆2n−2k = bn.SS ∀n ∈ N0

(9)

Where the DC component has been neglected.

2.3.3 Deconvolution Process

Including the ESS signal (3) as an input to the model (2) gives:

y[n] = Asin(φ [n])~h1[n]+A2 sin2(φ [n])~h2[n]+ · · ·++Am sinm(φ [n])~hm[n] (10)

Applying (9) for sine powers, the deconvolution of the Hammerstein model in the frequency
domain leads to:

Z( jω) = Y ( jω)SS( jω) = H1( jω)+
MM

∑
m=1

[amH2m+1( jω)+bmH2m( jω)] (11)

Where MM = (M− 1)/2 and Hm( jw) is the Fourier transform of hm[n]. In the time domain,
Eqs. [9,11] show that z[n] is a superposition of several versions of each Hammerstein kernel
hm[n] delayed by ∆k (e jω∆k in the Fourier domain). We name gm[n] the superposition of the hm[n]
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having the same delay, which gives:G1( jω)
...

GM( jω)

= T

H1( jω)
...

HM( jω)

 (12)

We can develop the elements Tu,v with u,v≤M by developing Eq. (11) in the matrix form and
grouping in Gu( jω) the Hv( jω) having the same phase delay.

Tu,v =


(−1)

1−u
2

2v−1 C
v−u

2
v ∀v≥ u & mod(

u+ v
2

) = 0

0 else
(13)

Finally the Hammerstein kernels in the positive frequency domain are given by the following
relationship: H1( jω)

...
HM( jω)

= (T)−1

G1( jω)
...

GM( jω)

 (14)

One can notice that we have made the assumption that B ∈ 2kπ, with k ∈ N and ∆m ∈ N which
is not necessarily the case. The T matrix has to be corrected to take this into account [12].

3 Presentation of the toolbox
The toolbox is composed of three parts, (1) the sine sweep generation, where the signal to
send to the nonlinear device under test (DUT ) is generate, (2) the calculation of the Hammer-
stein kernels through the signal recovered at the output of the DUT and (3) the emulation of
the nonlinear DUT.

3.1 Sine sweep generation

The tab Sweep generation (see Fig. 2) is the first step to measure a nonlinear device. In this
step a proper ESS signal is generated. The parameters of the sweep have to be optimized
in order to have the amplitude of the ESS last sample as close as possible to zero [14]: this
is done using the Mixed Integer NonLinear Problem (MINLP) global optimality solver Scip [15].
The idea is to give a range of possible values for the ESS and let the solver choose the best
parameters values. The parameters of the ESS are the following : f1 is the lower bound of the
measured bandwidth, f2 is the upper bound of the measured bandwidth, N is the duration of
the sweep in samples, fs is the sampling frequency, Fade_In is the duration in seconds of the
fade in of the ESS to avoid oscillations in the bandwidth.

Note that the calculation of the Hammerstein kernels is correct only on the domain f ∈ [M ∗
f1, f2] where M is the order of the DUT [12]. For example, if one wants to calculate the Ham-
merstein kernels on the domain [100, 20000]Hz up to the 5th order, we suggest to choose
f1 = 100/5 = 20Hz.
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3.2 Hammerstein kernels calculation

The second step (shown in Fig. 3) is to calculate the Hammerstein kernels defined by Eq. (14).

Load the y response in .wav format i.e. the output of the DUT when it is driven by the ESS at
the input. Deconvolve y[n] with the inverse filter ss[n] in order to obtain the impulse response
z[n]. Choose the number of Hammerstein kernels (the order of the nonlinear DUT ) and the
desired maximum length (in samples) of the Hammerstein kernels (it must be a power of 2 in
order to perform FFT ). The parameter Decay_cut allows to cut the gm[n] kernels at positions
n0−∆m +decay_cut instead of n0−∆m. The purpose of this decay is to perform a better recon-
struction of the Hammerstein kernels [12]. The decay must be negative, a value comprised
in the range [-100 -1000] seems reasonable. After cutting the gm[n], the Hammerstein kernels
can be calculated and plotted in the time and frequency domain. The Hammerstein kernels are
automatically saved in the MATLAB work space.

3.3 Emulation of the DUT

The last step is the emulation of the DUT for a given input signal. Using Eq. (2) and the
Hammerstein kernels previously calculated, the emulated output signal of the DUT can be
computed for any given input signal (note that the simulation works better if the amplitude of
the input signal remains relatively constant and is approximately the same as the one used for
the ESS signal).

Load the desired input signal in .wav format. Perform the nonlinear convolution by clicking on
the Convolve button. The emulated signal is displayed and can be exported in the work space.

4 Example of nonlinear emulation
To verify the efficiency of this toolbox, we evaluate it by emulating the well-known guitar dis-
tortion effect the Tubescreamer [16]. The button Tone is positioned at the middle and the
Overdrive and Level buttons are at their maximum to generate a maximum level of distortion.

The first step is to choose the ESS parameters: we want to emulate the Tubescreamer be-
tween [60 20000]Hz until the 10th order (60Hz correspond to a guitar tuned in C). The initial
frequency of the sweep will be around f1 =

60
10 = 6Hz, the final frequency is comprised between

20000Hz and the Nyquist frequency. The length in samples of the ESS is chosen to corre-
spond to a duration of about 20 seconds. After clicking the Optimize button we obtain the
result as shown in Fig.2 and we can generate the file sweep.wav.

We can now open an audio sequencer and send the ESS (sweep.wav file) to the DUT. At the
output of the DUT a signal is received and saved as yDUT.wav. On the Hammerstein kernels
calculation tabs we load the yDUT.wav file by clicking the Load y response button. After clicking
the Deconvolve button, we obtain z[n] a set of impulse responses as illustrated in the Fig.3

Regarding the signal z[n], the number of kernels for our model has been fixed to ten kernels
(M = 10). Clicking the cut into g_m[n] button extracts the ten kernels from z[n] to gm[n]. The
Hammerstein Compute button is then clicked to calculate the Hammerstein kernels.
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Figure 2: ESS generation

Figure 3: z[n] the convolution between yDUT and the ESS inverse filter
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Finally, using the computed Hammersteins kernels of the Tubescreamer, the emulation can be
proceeded. In the Nonlinear Convolution tabs the input signal to emulate can be chosen. In
this example , we have chosen the ESS itself because it sweeps over all frequencies. Click-
ing on the Convolve button launches the generation of the emulated signal (it could take a
moment, depending on the length of the input signal). Figs. 4 and 5 present the comparison
between the ESS through the Tubescreamer (y1) and the result of our emulation (y2) around
the instantaneous frequencies 100 and 1000 respectively. The mean error (absolute difference
between the two signals) is less than 0.7%, which makes the emulated signal almost identical
to the original.
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Figure 4: Comparison of the ESS through the
Tubescreamer y1 and through the emulator y2
(zoom over the frequency f = 100Hz)
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Figure 5: Comparison of the ESS through the
Tubescreamer y1 and through the emulator y2
(zoom over the frequency f = 1000Hz)

5 Conclusions
An identification method of the cascade Hammerstein model by sine sweep has been elab-
orated in 2001 by Farina [6]. Since that time, the technique has been improved by several
research teams. In [12], the computation of the Hammerstein kernels has been improved to
arrive to an Optimized Hammerstein Kernels Identification by Sine Sweep (OHKISS) method.
Based on this method, the toolbox presented in this paper has been created to ease the iden-
tification and the emulation of nonlinear systems. We have demonstrated its efficiency on a
guitar distortion effect, the Tubescreamer. The resulting signal is close to the original, with less
than 0.7 percent of mean error between the output Tubescreamer signal and its emulation.
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