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a b s t r a c t

Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clos-
tridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread
of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemi-
ology and rapid diagnosis of CDI. In addition, different typing methods have been developed for
epidemiological studies. This review explores the history of C. difficile and the current scope of the
infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also
examined.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Clostridium difficile is one of the most important nosocomial
pathogens in humans. It is responsible for outbreaks of hospital-
acquired infection, with symptoms including serious diarrhoea
of Veterinary Medicine (DDA
B43b), 4000 Li�ege, Belgium.
z).
and, in several cases, pseudomembranous colitis and even death.
Although the principal risk factors in patients are a history of
antibiotic treatment, an age of over 65 years, and prolonged hos-
pitalisation [1,2], in recent years, studies have described the bac-
terium spreading further into the community [3] and an increase in
the incidence and severity of nosocomial C. difficile infection (CDI)
in North America and Europe [4]. This rise has been attributed to
the emergence of new hypervirulent strains, including PCR-
ribotype 027 [5] and PCR-ribotype 078 [6], which has been asso-
ciated with antimicrobial exposure. Furthermore, a significant
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correlation between the lack of PCR-ribotype diversity in health-
care settings and greater antimicrobial resistance has been
observed [7].

In the past years, several studies and guidelines have been
published to compare CDI incidence among different clinical set-
tings, to increase the awareness of C. difficile and to improve the
diagnosis and management of the infection [8]. This review is
intended to describe the history of C. difficile, starting from the first
descriptions up to the present, including the current knowledge
regarding the detection, typing methods, and laboratory diagnosis
of CDI.

2. Clostridium difficile discovery and its early history in
humans

C. difficile was first identified by Hall and O’Toole in 1935, in a
study of the daily microbial changes in the faeces of ten normal
breast-fed infants up to the tenth day, when they left the hospital.
The bacterium was described as a strict anaerobe with sub-
terminal, non-bulging, elongate spores. In recognition of the diffi-
culty of its isolation and study, it was originally named Bacillus
difficilis [9]. Another remarkable property was its pathogenicity.
Some strains were capable of producing toxins and caused respi-
ratory death, with marked edema in the subcutaneous tissues of
guinea pigs, rabbits, cats, dogs, rats and pigeons and convulsions in
guinea pigs similar to those of tetanus. Its toxin was thermolabile,
being inactivated in 5 min at 60 �C, but was not absorbed from the
intestinal tract of the guinea pig, rat and dog: it acted only upon
injection into the tissues [10]. In 1938, the bacterium B. difficiliswas
reclassified into the genus Clostridium [11] and C. difficile nomen-
clature was adopted by the Approved List of Bacterial Names [12].

Between 1940 and 1962, only two studies in the literature refer
to C. difficile in humans [13,14]. However, there was no evidence in
these cases that C. difficile was pathogenic. In the 1970s, a number
of reports focused on the isolation of C. difficile from different
hospitalised cases [15e21], but there did not seem to be an obvious
pathogenic role in these cases, and C. difficilewas still considered to
be part of the normal faecal flora of humans. During this period, the
first studies in animal models were published [22,23]. One of these
studies [23] reported a cytopathic toxin in tissue-cultured cells and
suggested the activation of an uncultivated virus. However, in
retrospect, these findings could represent a description of the
cytopathic effect of C. difficile induced by its toxins [24].

Pseudomembranous colitis (PMC) was first described in 1893
[25], prior to the availability of antibiotics, as a post-operative
complication of gastrojejunostomy for an obstructive peptic ulcer
in a young woman. Ten days after surgery, the patient developed
haemorrhagic diarrhoea and died. After autopsy, the disease was
identified as diphtheric colitis [26]. In subsequent years, many
other early cases of PMC were recorded after surgical operations, in
particular for patients with obstructive colorectal carcinoma [27] or
under antimicrobial therapy [28e30]; however, whilemany studies
showed important clues, its association with C. difficile would not
occur until 1978 [31e36]. The finding was reported by three studies
that were published in the literature almost simultaneously. In
March 1978, one study [37] suggested that C. difficile was the
causative agent of PMC. The authors found high titres of toxin in the
faeces of all patients with PMC studied and hypothesised that the
bacterium might be present in small quantities in the intestines of
healthy adults and that under the appropriate conditions, it was
able to multiply and cause postoperative diarrhoea or PMC due to
its potential for toxin production. In April 1978, a second study [38]
reported the isolation of C. difficile from the faeces of a patient with
clindamycin-associated PMC and demonstrated both the presence
of a faecal toxin and the toxigenicity of the isolate using a tissue-
culture assay. In May 1978, a third study [39] reported that C.
difficile was responsible for PMC and that previous antibiotic ther-
apy produces susceptibility to infection, presumably as a result of a
change in the bacterial flora. Finally, in late 1978, it was demon-
strated that vancomycin eliminates toxin-producing C. difficile from
the colon and is associated with rapid clinical improvement in
patients with pseudomembranous colitis [40]. Fig. 1 summarises
the early history of C. difficile in humans.

Since then, the number of reports documenting C. difficile
infection in hospitals increased, and it became the pathogen of the
90s [41]. In the early 2000s, a rise in the incidence, severity and
mortality rate of CDI was reported in Europe and North America,
associated with the emergence of a new hypervirulent strain, PCR-
ribotype 027 [5]. C. difficile is now a worldwide public health
concern, as it is considered the major cause of antibiotic-associated
infections in healthcare settings. Three previous reviews have
addressed the recent epidemiology of CDI in hospitals, nursing
homes and in the community as well as the principal outbreaks
reported [2,42,43].

In recent years, with the availability of next-generation
sequencing technologies, it has been demonstrated that C. difficile
is closely related to the Peptostreptococcaceae family. It has there-
fore been suggested that C. difficile should be attributed to a new
Peptoclostridium genus, renaming C. difficile to Peptoclostridium
difficile. The newly proposed genus, Peptoclostridium, are Gram-
positive, motile, spore-forming obligate anaerobes. All strains are
mesophilic or thermophilic, grow in a neutral to alkaline pH and are
oxidase- and catalase-negative. The G þ C content of the genomic
DNA ranged from 25 to 32 mol % [44].

3. The scope of CDI

C. difficile intestinal colonisation can be asymptomatic or pro-
duce disease. The clinical manifestations of CDI range from mild or
moderate diarrhoea to fulminant pseudomembranous colitis [8].
Other symptoms described are malaise, fever, nausea, anorexia, the
presence of mucus or blood in the stool, cramping, abdominal
discomfort and peripheral leucocytosis. Extraintestinal manifesta-
tions (arthritis or bacteraemia) have been described but are rare.
Severe disease can present colonic ileus or toxic dilatation and
distension with little or no diarrhoea. The worst outcome of CDI is
sepsis and death [8], which is estimated to occur in 17% of cases;
however, this percentage is higher among older people [45].

Antibiotic treatment [1] and advanced age have classically been
associated with C. difficile infection and related to an increased
mortality rate [46]. A recent review regarding CDI cost-of-illness
describes a mean cost ranging from 8911 to 30,049 USD for hos-
pitalised patients (per patient/admission/episode/infection) in the
USA [47]. In Europe, the annual economic burden is estimated to be
approximately 3000 million euro [48]. However, it is necessary to
note that the diagnostic strategy remains suboptimal in a large
number of healthcare facilities, and a significant proportion of in-
fections may remain undiagnosed [49].

Colonisation by non-toxigenic C. difficile has also been
described, with a prevalence ranging between 0.4% and 6.9% [50],
although this prevalence is lower than the estimated asymptomatic
colonisation by toxigenic strains, which is between 7% and 51%
[51,52]. Furthermore, it has been hypothesised that asymptomatic
carriers can be colonised by both types of strains (toxigenic and
non-toxigenic) for long periods of time without developing the
disease [53]. However, these asymptomatic carriers could play an
important role in transmission as a source for many unexplained
cases [54]. It has been suggested that the presence of non-toxigenic
C. difficile in the intestinal tract protects against CDI, although there
is no clear evidence to explain how these avirulent strains reduce



Fig. 1. Clostridium difficile history in humans PMC: pseudomembranous colitis.
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the risk of developing an infection [50]. Simple competition for a
niche in the gastrointestinal tract or other complex effects on
mucosal immunity and nutrient acquisition have been hypoth-
esised [50]. A variation in C. difficile non-toxigenic colonisationwith
age has been described, ranging from 6.9% for patients aged 60
years or more [55] to 22.8% for patients younger than 20 years of
age [56], and up to 53e96% in neonatal units [57,58], supporting the
hypothesis that these strains are more prevalent in younger pa-
tients and infants [50].

4. C. difficile outside Europe and North America

As previously cited, C. difficile is the most frequent bacteria
associated with nosocomial diarrhoea in Europe and North Amer-
ica. However, little information is available regarding the extent of
the infection in other regions or developing countries. In
Zimbabwe, a study conducted in a healthcare centre reported a
prevalence of 8.6% in a total of 268 diarrhoeal stool samples.
Further characterisation of the isolates showed that all were sus-
ceptible to metronidazole and vancomycin, but approximately 70%
were resistant to co-trimoxazole, which is an antibiotic widely used
in this region as prophylaxis against infections in HIV/AIDS patients
[59]. In a study of the gutmicrobiota of 6-month-old Kenyan infants
consuming home-fortified maize porridge daily for 4 months and
receivingmicronutrient powder containing 2.5 ng of iron, C. difficile
was detected with a high prevalence (56.5%). The results obtained
showed that iron fortification in infants adversely affected the gut
microbiota, with an increase in the proportion of some pathogenic
bacteria, including Escherichia coli, Salmonella, Clostridium
perfringens and C. difficile [60]. A review [61] on the epidemiology of
C. difficile in Asia shows that infection occurred at similar rates to
other areas but with a predominance of variant toxin A and toxin B
positive strains, including PCR-ribotypes 017 and 018. In contrast
with the situation in America and Europe, PCR-ribotypes 027 and
078 have rarely been reported in Asia. The unregulated use of an-
tibiotics in some Asian regions and the lack of surveillance raise
concerns over the risk of bacterial mutation and infection [61]. An
additional review describes the situation in Thailand in detail. A
lack of data regarding C. difficile epidemiology is reported along
with a high level of indiscriminate use of antimicrobials. C. difficile
strains isolated from Thai patients showed a high degree of resis-
tance for a wide range of antibiotics, including clindamycin,
cefoxitin and erythromycin. Nevertheless, the strains were fully
susceptible to metronidazole and vancomycin. In the same review,
the authors concluded with the recommendation for a monitoring
plan for C. difficile infections in hospital and community settings in
Thailand and other Asian countries [62]. The same observation has
been made for Latin America, where little data are available
regarding the epidemiology of C. difficile in hospitals, and increased
awareness and vigilance among healthcare professionals and the
general public seem essential [63]. In an epidemiological study of C.
difficile-associated diarrhoea in a Peruvian hospital, the reported
overall incidence per 1000 admissions was 12.9. As the presence of
another patient with CDI in the same room was significantly
associated with the development of diarrhoea, the authors
concluded that C. difficile transmission commonly occurred in this
healthcare setting and highlighted the need for implementing
adequate hygiene programmes [64] (Table 1).



Table 1
C. difficile infection in Asia, Africa and South America.

Continent Country Patients enrolled in the study/type of samples CDI cases Main PCR-ribotypes Date of studya Reference

Africa Zimbabwe Diarrhoeal stools of outpatients over 2 years of age presenting at
healthcare centres

8.6% (23/268) e 2014 [59]

Kenya 6 month-old Kenyan infants consuming home fortified maize porridge
and 2.5 ng of iron daily for 4 months

56.5% (65/115)b e 2015 [60]

Nigeria HIV-positive inpatients of a University Teaching Hospital
HIV positive outpatients a University Teaching Hospital

43.5% (10/23)
14% (10/71)

e 2008e2009 [67]

Asia Japan e e 018/014/002/001 2013 [61]
Korea Adult patients from 17 tertiary hospitals with a diagnosis of CDI 2.7/1000c e 2004e2008
Malaysia Stool samples from hospitalised inpatients with antibiotic associated

disease
13.7% (24/175) e 2008

India Stool samples from hospitalised patients with antibiotic associated
disease

22.6%
(21/93)

_ 1983e1984

Hospitalised patients with diarrhoea over 1 year 11.1% (38/341) e 1991
Diarrheal hospitalised patients 16.7% (26/156) e 1999
Hospitalised patients suspected of suffering CDI 17.2% (17/99) e 2006e2008
Children with acute diarrhoea in hospitals 7-11% e 1991/2001/2005
HIV seropositive adult subjects with diarrhoea 18.08% e 2008e2011 [66]

Bangladesh Children admitted to hospital with diarrhoea 1.6% (13/814) e 1999 [61]
China Patients from a 1216 bed hospital in Shanghai 17.1/10,000d 017/012/046 2007e2008
Taiwan Stools samples from patients with CDI at all high-risk units 0.45/1000d

7.9/1000e
e 2010

Hong-Kong Stools samples from patients suspected of CDI collected at a university-
affiliated teaching hospital

5.1% (37/723) 027f 2008 [137]

Singapore Samples from patients of tertiary and secondary general hospitals 5.16/10,000h

2.99/10,000h
e 2006

2008
[138]

Indonesia Patients with diarrhoea in community and hospital settings 1.3% (2/154) e 1997e1999 [140]
Thailand Hospitalised patients of all ages

Diarrheal stools of patients between 0 and 3 years
52.2% (106/203)
84.8%

e 1990 [62]

Patients over 15 years
Antimicrobial treated group
Control group

10% (20/140)
1.4% (2/140)

e 1991_1994

Immunocompromised patients
Febrile neutropenia paediatric oncology
Human immunodeficiency virus HIV positive cohort
Diarrheal patients
Non diarrheal patients

Acquired immunodeficiency syndrome in HIV positive patients

4.8%e52.2%
36.7% (11/30)
58.8% (20/34)
36.5% (99/271)
15; 6% (16/102)

e 1998

Patients of all ages
Treated with antimicrobials
Non-treated with antimicrobials

41.7% (20/48)
15.5% (13/84)

e 2001

Hospitalised patients 18.6% (107/574) e 2000e2001
Hospitalised patients over 15 years 26.9% (47/175) e 2012

South America Chile Hospitalised patients suspected of having CDI 20.6% (81/392) 012 (14.8%)
027 (12.3%)
046 (12.3%)
012/020 (9.9%)

2011e2012 [139]

Argentina Faecal specimens from hospitalised and ambulatory patients 6.5% (16/245) e 1998e1999 [63]
Diarrheal stool samples from hospitalised patients 36.8% (32/87) e 2000e2001
Hospitalised patients 37/10,000d

84/10,000d

67/10,000d

43/10,000d

48/10,000d

42/10,000d

017 (90.8%)/001 (5.3%)/014 (3.1%)/031 (0.7%) 2000
2001
2002
2003
2004
2005

Brazil Faeces of children over 1 year with acute diarrhoea 5.5% (10/181) e 2000e2001
Faeces of children aged between 3 months and 7 years 6.7% (14/210) e 2003
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Patients with diarrhoea in the intensive care unit 44.9% (22/49) e 2002
Faecal samples from children between 3 months and 7 years old e 001/015/031/043/046/131/132/

133/134/135/136/142/143
2007

Adult hospitalised patients 28.5% (6/21)i 014/106 2008e2009
Hospitalised patients suspected of having CDI 3.3/1000d,j e 2002e2003
Patients of a medical surgical intensive care unit presenting nosocomial
diarrhoea

19.7% (43/218)k 038/135 2006e2009

Immunosuppressed adult patients receiving antimicrobial treatment
before an episode of nosocomial diarrhoea

21.7% (19/70) 010/020/133/233 2008e2009

Chile Hospitalised patients at a university tertiary hospital suspected of
having CDI

28.2% (26/92) e 2001

Hospitalised patients suspected of having CDI 0.53/100l

7/100m
e 2000e2001

Inpatients of a health unit 15.9% (112/706) e 2003e2008
Costa Rica Patients presenting diarrhoea and receiving antimicrobial drugs 30% (31/104) e 2008

Patients with CDI in a Costa Rica hospital e 027 (54%) 2010
Jamaica Patients with and without immunosuppressive treatment and patients

under radiotherapy
14.1% (16/113) e 2009

Mexico Hospitalised patients at a tertiary hospital 5.04/1000e e 2003e2007
Puerto Rico Hospitalised patients with diarrhoea 10.3% e 2005
Peru Hospitalised patients at a tertiary hospital 156/4264 (35.5%) e 2005e2006 [64]

a Study period if available or date of publication.
b Detection by 16S pyrosequencing and targeted real-time PCR.
c Incidence of CDI for adult admission.
d Incidence of CDI for admission.
e Incidence of CDI in medical care units.
f Only one strain identified as PCR-ribotype 027.
h Incidence of CDI cases per 100,000 inpatient-days.
i C. difficile was isolated from 4/6 of the patients with CDI.
j C. difficile was isolated from 16/138 stool samples of patients with CDI.
k Mean incidence of CDI 1.8/1000 patient days. Highest incidence between December 2007 and August 2008 (5.5/1000 patient days).
l Global incidence of CDI per year in the hospital.

m Incidence in the nephrology unit.
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One of the most serious human health problems in developing
regions is the microbial contamination of drinking water and foods,
leading to severe gastrointestinal diseases that are exacerbated by
under-nutrition and the lack of medical treatment in these regions.
Water-, sanitation- and hygiene-related deaths occur almost
exclusively in developing countries (99.8%), of which 90% are the
deaths of children [65]. Indeed, children are the most at-risk group,
especially in the first year of life. C. difficile was identified among a
large number of bacteria associated with diarrhoea in this popu-
lation. However, the source of contamination (water, food or
environment) by the enteropathogens identified in diarrheic chil-
dren was not elucidated [65].

Another issue of concern is CDI in immuno-compromised pa-
tients in developing countries. In a study conducted to assess the
microbial aetiologies of diarrhoea in adults infected with human
immunodeficiency virus (HIV) in India, C. difficile was the most
common bacterial pathogen identified, with a reported prevalence
of 18% [66]. Consistent with this study, HIV-positive inpatients and
outpatients in Nigeria were shown to be C. difficile-positive in 43%
and 14% of cases, respectively [67] (Table 1). Both studies show the
importance of establishing controlled and regulated access to an-
tibiotics in developing countries, as well as the importance of the
early diagnosis of intestinal pathogens to reduce morbidity and
mortality rates, especially among HIV-positive people. In a further
study evaluating CDI in travellers, infection was reported to be
more commonly acquired in low- and middle-income countries.
Furthermore, CDI was often acquired in the community by young
patients and associated with the empirical use of antimicrobials,
frequently fluoroquinolones [68].

5. C. difficile is found everywhere

C. difficile is ubiquitous in the environment, and the bacterium
has the capacity to persist on inanimate surfaces for as long as
several months [69]. These contaminated areas can contribute to-
wards C. difficile transmission in healthcare settings. Bed frames,
floors or bedside tables have been described as the most commonly
contaminated areas in rooms used to isolate patients with C. difficile
diarrhoea [70], even after detergent-based cleaning [71]. Table 2
summarises the available studies in the literature regarding the
dissemination of C. difficile spores in healthcare settings and related
environments. However, the difference in prevalence among
studies may be due to the sampling and culture methods used [70]
and in the cleaning programmes used to control the spread of C.
difficile. In this context, a previous study reported that unbuffered
hypochlorite (500 ppm) was less effective than phosphate buffered
hypochlorite (1600 ppm) for surface decontamination [72]. In
addition to the patient room environment, the bacterium was iso-
lated from the hands and stools of asymptomatic hospital staff and
from the home of a patient suffering CDI. Furthermore, C. difficile
inoculated onto a surface (floor) has been shown to persist there for
five months [73]. In an intensive care unit, an outbreak of pseu-
domembranous colitis was attributed to the cross-contamination of
inanimate environmental sources with persistence in the hospital
for several weeks [77]. Regarding the medical equipment, two
previous studies have reported that the replacement of electronic
thermometers with single-use disposables significantly reduced
the incidence of C. difficile-associated diarrhoea in both acute care
and skilled nursing care facilities [78,79]. However, it has also been
reported that with the use of disposable or electronic thermome-
ters, there was no effect on either the overall rate of nosocomial
diarrhoea or the rate of nosocomial infections [79]. A further study
also describes how the use of tympanic thermometers reduces the
risk of acquiring vancomycin-resistant Enterococcus and CDI by 60%
and 40%, respectively [80].
Increased interest in the transmission of C. difficile has led to
new studies in the literature reporting the presence of spores in
other areas never studied before. Medical staff has increasingly
used mobile technology devices in hospitals, such as iPads, to ac-
cess electronic patient information. A recent study [82] evaluated
the contamination of 20 iPads by C. difficile spores in a healthcare
setting. Although with the number of samples tested, there was not
sufficient data to estimate the prevalence, and in addition, there
was no C. difficile recovery, the study also reported the effect of
different agents on iPad disinfection. The results showed that
bleachwipes were able to remove the inoculated spores completely
from the screen surface, while amicrofibre clothwasmore effective
than alcohol wipes. As there are no existing medical guidelines
specific to electronic devices, and the manufacturer recommends
avoiding the use of chemicals or abrasives to clean the device, the
authors emphasised the importance of reducing the tablets’ envi-
ronmental contact in rooms housing patients suffering from CDI.

There are few studies describing the presence of C. difficile in the
natural environment and in the environment in the community
(Table 3). The prevalence of C. difficilewas recently studied in retail
baskets, trolleys, conveyor belts and plastic bags in 17 different
supermarkets from 2 cities in Saudi Arabia. The study reported a C.
difficile prevalence of 0.75% on sampled surfaces, with the highest
level of contamination in baskets and trolleys, which could suggest
the need for the implementation of planned disinfection in super-
markets to control community-acquired CDI [83]. In the natural
environment, the bacteriumwas detected in seawater, zooplankton
[84], tropical soils [85] and rivers [86]. In the rural environment, C.
difficile was recovered from homestead soils, household-stored
water [87] and soils of stud farms with mature horses [88]. In
this last study, C. difficile was inoculated in equine faeces and the
bacteriumwas found to survive at least 4 years (no later time points
were tested) when kept at room temperature and outdoors at an
ambient temperature over the year.

While C. difficile is also known as an enteric pathogen in some
food-producing and companion animal species, there are several
reports describing the presence of the bacterium in the intestinal
contents of apparently healthy animals (Table 3). Moreover,
recently published data suggests that animals are an important
source of human CDI that can spread disease through environ-
mental contamination, direct or indirect contact, or food contami-
nation, including carcass andmeat contamination at slaughter or, in
the case of crops, through the use of organic animal manure [129].
Table 3 summarises the prevalence of C. difficile reported in pets
(dogs and cats), food animals (pigs and cattle), horses and wild
animals. Despite the large number of studies describing the pres-
ence of human epidemic PCR-ribotypes in these animals, C. difficile
has not been confirmed as a zoonotic agent, but it seems evident
that there is a potential risk of transmission, especially in people
with close contact with contaminated animals and their
environment.

6. C. difficile characteristics and its toxins

Since its discovery in 1935, the characteristics of C. difficile
growth, sporulation and virulence have been documented in detail.
The fundamental aspects of the bacterium are summarised in
Table 4. One of these characteristics is that C. difficile has no pro-
tease, phospholipase C or lipase, but it is among the few bacteria
able to ferment tyrosine to p-cresol, which is a phenolic compound
that inhibits the growth of other anaerobic bacteria [134,20].
Dawson et al. (2008) [134] found that Clostridium sordellii tolerated
p-cresol but did not produce it. Therefore, the authors suggested
that the mechanism of tolerance might not be linked to the pro-
duction of this organic compound. Furthermore, the increased



Table 2
C. difficile spores in the environment of healthcare settings.

Environment Positive surfaces (number or percentage of
positive surfaces/patient rooms)

Study conditions Main PCR-ribotypes (%
of toxigenic strains)

Reference

Hospital rooms previously
accommodating CDI patients

Patient-helper trapeze (5)
Call button (3)
Bed table (4)
Bedrail (6)
Tap (3)
Toilet (7)
Inner door handle (1)
Shackle of hand disinfectant (1)
Door handle facing to outer sluice (1)
Stethoscope (1)
Rail at foot-end (2)

Surface sampling before being
cleaned

PCR-ribotype 012
PCR-ribotype 020C
PCR-ribotype SE121
PCR-ribotype 023

[70]

Patient-helper trapeze (1)
Bedrail (2)
Toilet (3)

Surface sampling after being
cleaned

Hospital side rooms used for
the isolation of patients with
symptomatic CDI

Floor (45%)
Light (35%)
Bed (9%)
Sink/table (8%)
Window (3%)

Surface sampling after
detergent-based cleaning

PCR-ribotype 1
(93% of toxigenic
strains)

[71]

Hospital with an outbreak of
antibiotic-associated colitis

Environmental cultures obtained on the ward
(31.4%)

Surface sampling before ward
disinfection

e [72]

Environmental cultures obtained on the ward
(21%)

Surface sampling after ward
disinfection with unbuffered
hypochloritea

Environment and contacts of
hospitalised patients
carrying C. difficile in their
stools

Floors and other surfaces (9.3%) Areas where carriers had
diarrhoea

(100% of toxigenic
strains)

[73]

Floors (2.6%) Areas without C. difficile carriers

Different areas of hospitals with
and without positive
patients for C. difficile

Environmental cultures (32.5%) Case-related environmentsb e [74]
Environmental cultures (1.3%) Control sitesc

Highest counts of C. difficile from toilet seats,
toilet bowl rims, bathroom handrails and
bathroom floors

Ambulatory patients

Highest counts of C. difficile from bed handrails
and near the beds

Non ambulatory patients

Two elderly medicine wards Environmental cultures (35%) Two different types of cleaning
which included hypochlorite or
neutral liquid detergentd

e [75]

Samples of the inanimate ward
environment on two elderly
medicine hospital wards (A
and B)

Environmental cultures (34%). Highest counts of
C. difficile (sorted in descending order) from:
sluice floor, commodes, toilet floors, ward
floors, radiators and air vents

Environmental samples for
ward A

e [76]

Environmental cultures (36%). Highest counts of
C. difficile (sorted in descending order) from:
commodes, toilet floors, ward floors/air vents/
sluice floor and radiators

Environmental samples for
ward A

Samples from surfaces of a
variety of areas in a nursing
home

Environmental cultures (kitchen, kitchen-staff
locker room and bathroom, resident’s rooms,
private bathrooms, residence hall, lifts and
staircase railings (0%)

Sampling before and after
cleaning routine

e [81]

a If disinfection with phosphate buffered hypochlorite, 98% of reduction in surface contamination.
b Hospital bedrooms and bathrooms used by eight patients with faecal cultures positive for C. difficile.
c Hospital bedrooms and bathrooms where there were no known cases of diarrhoea.
d Decrease of CDI incidence on one ward when it was disinfected with hypochlorite.
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production and p-cresol tolerance of some strains, including PCR-
ribotype 027 strains, has led to hypotheses regarding its contribu-
tion towards C. difficile hypervirulence [134].

C. difficile is able to produce two major toxins, toxin A (308 kDa)
and toxin B (270 kDa), as well as the binary cytolethal distending
toxin (CDT). Toxins A and B belong to the group of Large Clostridial
Toxins (LCT). Only strains that produce at least one of the three
toxins cause disease. Toxin A is considered to be an enterotoxin
because it causes fluid accumulation in the bowel. Toxin B does not
cause fluid accumulation but is extremely cytopathic for tissue-
cultured cells [130]. These toxins are encoded by two genes, tcdA
and tcdB, mapping to a 19.6 kb pathogenicity locus (PaLoc) and
containing 3 additional regulatory genes, tcdC, tcdR, and tcdE, that
are responsible for the synthesis and regulation of toxins A and B
[135]. Deletions, insertions, or polymorphic restriction sites in one
or more of the PaLoc genes can result in toxin variant strains that
produce either toxin A or toxin B [135]. While the power of purified
toxin A to produce pathology in vitro has been widely described, a
study [136] reported that toxin B, but not toxin A, was essential for
virulence. Finally, in 2011, it was shown that both mutant variants,
toxin Aþ toxin B� and toxin A� toxin Bþ, can cause disease [137]. It
is worth noting that toxin A þ B� isolates of C. difficile have not
been described in nature. Toxin A� toxin Bþ strains have been
widely reported in human cases [138] but also in animals suffering
from diarrhoea [139]. A previous study reported that toxin A� toxin
Bþ strains caused the same spectrum of disease that is associated
with toxin Aþ toxin Bþ strains, ranging from asymptomatic colo-
nisation to fulminant colitis, with outbreaks in hospitals and other



Table 3
C. difficile spores in the natural environment, in the environment in the community and in animals.

Environment/animals Prevalence (%) Samples Main PCR-ribotypes Reference

17 supermarkets from two cities in Saudi Arabia 20/1600 (0.75%) Retail baskets and trolleys (4/400)
Conveyor belts (1/400)
Plastic bags (3/400)

PCR-ribotype 027
4 different PCR-ribotypes (with NIN)

[83]

Five sampling stations along the coastline of the Gulf of
Naples

9/21 (42.9%) Sea water (2/5)
Sediment (0/5)
Zooplankton (3/5)
Shellfish (4/6)

PCR-ribotype 003
PCR-ribotype 005
PCR-ribotype 009
PCR-ribotype 010
PCR-ribotype 056
PCR-ribotype 060

[84]

Samples from grassland, non-agricultural soils from five
different regions of Costa Rica

3/117 (3%) Central Plateau/Dry Pacific/North e [85]

Water samples (n ¼ 69) from 25 different rivers in Slovenia 42/69 (60.9%) Water samples 34 different PCR-ribotypes
PCR-ribotype 014 predominant (16.2%
of all isolates)

[86]
17/25 (68%) Rivers

Samples from a rural community in Zimbabwe 54/146 (37%) Soil samples e [87]
14/234 (6%) Water samples
20/115 (17.4%) Chicken faces samples
7/161 (4.3%) Faecal samples of other animals

Samples from studfarms and farms with horses and samples
from faecal samples of horses

14/132 (11%) Outdoor soil samples e [87]
2/220 (1%) Soil samples from farms with mature horses
4/72 (6%) Diarrhoeic mature horses e [88]
18/43 (42%) Faecal samples of horses with colitis
(5%e63%) Foals and adults horses with gastrointestinal disease e [111]
5/134 (3.7%) Faecal samples of horses at hospital admission PCR-ribotype 014

4 additional PCR-ribotypes with NIN
[112]

10/73 (13.7%) Faecal samples of hospitalised horses PCR-ribotype 014
6 additional PCR-ribotypes with NIN

[113]

4/82 (4.8%) Faecal samples of horses at hospital admission 17 different PCR-ribotypes [114]
14/62 (23%) Faecal samples from diarrheic horses 6 different PCR-ribotypes [115]

Wild animals 2 fatal cases of elephants
with enterocolitis

Samples of intestinal contents of two Asian Elephants PCR-ribotype I [89]

1 clinical case of an ocelot
with diarrhoea

Stool sample of a male Ocelot e [90]

11/30 (36.7%) Pooled faecal samples of captive white-tailed deer PCR-ribotype 078 [91]
2/34 (5.9%) Non-diarrheic maned wolf and a diarrheic ocelot e [92]
7/175 (4%) Droppings from barn Swallows PCR-ribotype SB3,

PCR-ribotype SB159
PCR-ribotype S166

[93]

0/465 50%) Cloacal samples of migrating passerine birds e [94]
7/200 (3.5%) Faecal samples from zoo animals (chimpanzee, dwarf goat,

Iberian ibex and plains zebra)
PCR-ribotype 078
PCR-ribotype 039
PCR-ribotype 110

[95]

15 cases of enterocolitis in
harbor seals

Faecal samples of juvenile harbor seals (Phoca vitulina) e [96]

3/46 (6.5%) Stool samples from free-living South America coati PCR-ribotype 014/020
PCR-ribotype 106
PCR-ribotype 013

[97]

5/109 (4.6%) Faecal samples of free-living South America coatis e [98]
95/724(13.1%) Faecal samples of black and Noway rats 35 different PCR-ribotypes [99]
7/161 (4.4%) Faecal samples of feral swine e [100]
41/60 (25%) Faecal samples of Iberian pigs (free range system) PCR-ribotype 078 [101]

Pets (dogs and cats) 14/139 (10%) Faecal samples of dogs PCR-ribotype 001
3 other PCR-ribotypes (with NIN)

[102]

62/204 (30%) Faecal samples of dogs 29 PCR-ribotypes [103]
16/117 (13.6%) Faecal samples of dogs [104]
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PCR-ribotype 012
PCR-ribotype 014
PCR-ribotype 046

(33.3%e100%) Faecal samples from 18 puppies aged between 7 and 55
days

PCR-ribotype 056
PCR-ribotype 010
PCR-ribotype 078
PCR-ribotype 213
PCR-ribotype 009
PCR-ribotype 020

[105]

2/50 (4%) Faeces from healthy dogs PCR-ribotype 009
PCR-ribotype 010

[106]

2/20 (10%) Faeces from dogs with diarrhoea PCR-ribotype 014
48/93 (52%� Faces from dogs e [107]
9/165 (5.5%) Faeces from dogs PCR-ribotype 010

PCR-ribotype 014/020
PCR-ribotype 039
PCR-ribotype 045
PCR-ribotype with NIN

[108]
5/135 (3.7%) Faeces from cats

Two cats with acute
diarrhoea

Faecal samples of two adult cats e [109]

23/245 (9.4%) Faecal samples of cats in a veterinary hospital e [110]
Pigs (piglets and adult pigs at slaughter 1/100 (1%) Faecal samples from pigs at slaughter (5e6 months) PCR-ribotype 078 [116]

45/67 (67.1%) Faecal samples from neonatal piglets PCR-ribotype 046 [117]
2/61 (3.3) Faecal samples from pigs at slaughter e [118]
58/677 (8.6%) Faecal samples from pigs at slaughter PCR-ribotype 078

PCR-ribotype 014
PCR-ribotype 013

[119]

0/165 (0%) Faecal samples from pigs at slaughter e [120]
241/513 (47%) Faecal samples from neonatal piglets e [121]
30/436 (6.9%) Faecal samples from pigs at slaughter PCR-ribotype 078 [122]
103/174 (59.2%) Faecal samples from neonatal diarrhoeic piglets PCR-ribotype 273 [123]
11/11 (100%) Faecal samples from neonatal non diarrhoeic piglets
2/250 (0.8) Faecal samples of finishing pigs at farm (13e27 weeks) e [124]

Cattle (calves and adult cattle) 4/42 (9.5%) Faecal samples of calves (<12 weeks) PCR-ribotype 077
PCR-ribotype 038
PCR-ribotype 002

[125]

10/101 (9.9%) Faecal samples of cattle at slaughter (15e56 months) PCR-ribotype 078
PCR-ribotype 029

[116]

3/67 (4.5%) Faecal samples of cattle at slaughter e [118]
176/999 (17.6%) Faecal samples of calves PCR-ribotype 078

PCR-ribotype 033
PCR-ribotype 045

[126]

90/150 (60%) Faecal samples of calves aged between 3 and 25 days e [127]
2/330 (0.61) Faecal samples of dairy and beef cow PCR-ribotype 027 [128]

With NIN: with non international nomenclature.
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Table 4
Fundamental aspects of the bacterium.

C. difficile characteristics Data Reference

Cells Gram Gram-positive [130]
Motility Motile in broth cultures
Ciliature Peritrichous
Size 0.5e1.9 mm wide

3.0e1.9 mm long
Chains Some strains produce chains of 2e6 cells aligned end-to-end

Spores Shape and position Oval, subterminal (rarely terminal) and swell the cell
Cogerminants for spores Bile salts (cholate, taurocholate)

Glycine, histidine
[131]

Colonies Morphology Circular, occasionally rhizoid [10,130]
Size 2e5 mm
Colour Opaque, greyish, whitish, with a matt-to-glossy surfacea

Yellow fluorescenceb
[133]

Other characteristics Non-haemolytic. They produce a characteristic odour, described as smelling like cow manure,
a barnyard or horse stables

[132]

Growth temperature Optimum 30e37 �C [10,130]
Range of growth 25e45 �C

pH 5 (minimum)
Water activity 0.969 (minimum)
Atmosphere Anaerobic conditions
Cultures in PYG after 5

days of incubationc
pH 5.0e5.5 [130]
Products in this medium Acetic, isobutyric, butyric, isovaleric, valeric, isocaproic, formic and lactic acidsd

Other characteristics Cultures are turbid with smooth sediments

a Colonies on blood agar.
b After 24 h of incubation on cycloserine cefoxitin fructose agar (CCFA) or after 48 h of incubation on blood agar under long-wavelength ultraviolet light.
c Peptone yeast glucose (PYG) broth is a liquid non-selective medium used to identify metabolic products of anaerobic bacteria.
d When lactate is not used, pyruvate is converted to acetate and butyrate, and threonine is converted to propionate.
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healthcare settings worldwide [135]. It must be noted that toxin A�
toxin Bþ strains are sometimes reported solely on the basis of the
lack of tcdA amplification; however, there are some Aþ variant
strains with a partially deleted tcdA fragment [140].

Both toxins A and B translocate to the cytosol of target cells and
inactivate small GTP-binding proteins. By glycosylating small GTP-
ases, the two toxins cause actin condensation and cell rounding,
which is followed by cell death. Toxin A acts primarily within the
intestinal epithelium, while toxin B has broader cell tropism [141].
Both toxins induce the production of tumour necrosis factor alpha
and pro-inflammatory interleukins, which induce the inflamma-
tory cascade and the pseudomembrane formation in the colon. The
endoscopy of C. difficile colitis shows a colonic mucosa with mul-
tiple whitish plaques, usually raised and adherent, of a size varying
from a fewmillimetres to 1e2 cm; the cells can even be confluent in
severe disease. The intervening colonic mucosa can be oedematous,
granular, hyperaemic or completely normal [142].

The genes cdtA and cdtB, encoding the CDT, which belongs to the
group of clostridial binary toxins, are not found on the PaLoc. This
toxin is encoded on a separate region of the chromosome (CdtLoc).
It has been described that all strains with cdtA and cdtB genes are
variant strains (with changes in the tcdA and tcdB genes) [143]. In
contrast, most types not producing binary toxin have toxin genes
very similar to the reference strain, VPI 10463.1 These CDTþ strains
represent up to 6% of the toxigenic isolates from hospitalised pa-
tients [143]. The production of CDT is frequently associated with
hypervirulent strains. CDT has been described as causing the
collapse of the actin cytoskeleton and cell death. The lipolysis-
stimulated lipoprotein receptor (LSR) is known to be the host re-
ceptor for the C. difficile CDT toxin [144]. Furthermore, the CDT
toxin also induces the formation of microtubule-based protrusions
and increases the adherence of the bacterium [145]. While CDT is
still being investigated, some studies have already reported data
regarding the clinical relevance of this toxin. Bacci et al. (2011) [146]
1 http://www.mf.uni-mb.si/mikro/tox/.
associated the presence of CDT in patients with higher case-facility
(death) rates. Other authors also found that CDT was a marker for
more virulent C. difficile strains or that it contributed directly to
strain virulence. Tagashira et al. (2013) [147] described two cases of
fulminant colitis due to CDTþ strains in the sameward of a hospital
in Japan occurring within ten weeks of each other. A further study
suggested that CDT was a predictor of recurrent infection, and its
presence may require longer antibiotic treatments [148]. CDT þ C.
difficile strains that do not produce toxins A and B have been
described in independent cases of patients with diarrhoea sus-
pected of having CDI [149].

7. Laboratory diagnosis of CDI

To aid in the surveillance of CDI and to increase comparability
between clinical settings, standardised case definitions have been
proposed (Fig. 2) [8]. A laboratory diagnosis of CDI must be based
on the detection of C. difficile toxins or on the isolation of toxigenic
C. difficile strains from stool samples [150]. However, these results
should be combined with the clinical findings to diagnose the
disease. The clinical manifestation includes diarrhoea with the
passage of 3 or more unformed stools in 24 or fewer consecutive
hours [8]. In this context, only unformed and fresh stools should be
tested for diagnostic purposes (the specimen should be loose
enough to take the shape of the container). The cytotoxic activity is
lost very quickly, meaning if the analysis of fresh specimens is not
possible, the samples should be stored at 4 �C or below. However,
cultures are not affected by temporal conditions due to sporulation
[150]. Formed stools only must be tested if they come from patients
with ileus or potential toxic megacolon or in the case of epidemi-
ological studies [150].

A recent guide to the utilisation of the microbiology laboratory
for the diagnosis of infectious diseases [151] highlights the
importance of the collection device, temperature and transport
time because the interpretation of the results will depend on the
quality of the specimens received for analysis. Specifically,
regarding C. difficile, the recommendations are that the stool

http://www.mf.uni-mb.si/mikro/tox/


Fig. 2. Community onset CDI and healthcare facility-associated CDI definitions.
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samples must be received in sterile close containers and kept at
room temperature for a maximum of 2 h, and therefore, specimens
of dubious quality must be rejected [151].

The culture of samples is recognised as the most sensitive
method for the detection of C. difficile, but its specificity for CDI is
low because the rate of asymptomatic carriage of C. difficile among
hospitalised patients is so high. This method is not clinically prac-
tical for routine diagnosis because it does not distinguish between
toxigenic and non-toxigenic isolates and requires 24e48 h to obtain
the first results [150]. However, stool culture testing permits the
molecular typing of the isolated strains and antibiotic susceptibility
determination, making it essential for epidemiological surveys
[8,150]. Therefore, stool culture testing can be coupled with a cell
cytotoxicity assay or EIA (enzyme immunoassay) to detect toxin-
producing C. difficile strains (known as toxigenic cultures), result-
ing in increased specificity [150].

Since it was first proposed by George et al. in 1979 [133],
cycloserine-cefoxitin fructose (CCF) has been the most commonly
used medium for C. difficile isolation. The original formulation has
been extensively modified, including the replacement of egg yolk
by blood [150]. The addition of 1 g/L of taurocholate, desoxycholate
or cholate has also been shown to induce the germination of C.
difficile spores when they are incorporated in CCF [152,153]. Sodium
salt of cholic acid is more inexpensive than pure taurocholate but
just as effective [150]. The concentration of the selective agents has
also varied among studies, from 250 mg/L to 500 mg/L for cyclo-
serine and from 8 mg/L to 16 mg/L for cefoxitin. Other modifica-
tions to improve thismedia have been proposed. Delm�ee et al. [154]
included cefotaxime instead of cefoxitin, which increased the
sensitivity and specificity of the medium. C. difficile colonies are
easily recognised in this media when observed under the micro-
scope: with an appearance similar to ground glass, they release an
odour akin to horse manure and reveal a yellow-green fluorescence
under ultraviolet illumination. Early identification of C. difficile
colonies in this primary selective culture can be performed using an
antigen latex agglutination assay. Latex particles are coated with
IgG antibodies specific to C. difficile cell wall antigens. When the
bacterium is present, the latex particles agglutinate into large
visible clumps within 2 min. However, cross-reactions have been
described, including with C. sordellii, Clostridium glycollicum and
Clostridium bifermentans [155].
Presently, several commercial selective media are available for

the detection of C. difficile from stool specimens. The new chro-
mogenic media seem to be effective as well as more rapid and
sensitive than the classic selective media and have been shown to
aid in the diagnosis of CDI [156e159]. However, pre-made agars are
expensive and unaffordable for many research groups. Further-
more, they are used for the clinical recovery of C. difficile from faecal
samples and not for the semi-quantification of viable spores [160].

Pre-treatment of samples with ethanol shock has been associ-
ated with an increase in sensitivity [161e164]. However, in the
different studies conducted in our laboratory (unpublished data),
ethanol shock or pre-heat treatment of samples does not improve
the recovery of C. difficile from faecal or food samples. Rather, it
seems that an increase in the time of enrichment is best for
improving the sensitivity of the method. A bacterial competition in
the enrichment broth has been observed [164]. In a previous study
on carcasses and faecal samples [116], after 30 days of enrichment,
different C. difficile types were identified, and colonies other than C.
difficile were rarely present in the plate. However, the enrichment
of samples is a time-consuming technique for laboratory purposes
and might not be worth the slight increase in sensitivity observed.

Toxin detection is the most important clinical test [8]. It can be
performed using cell lines to examine a stool filtrate (cell cytotox-
icity assay) or by EIA [150]. Cell cytotoxicity is often considered the
best standard test for identifying toxigenic C. difficile as it can detect
toxins at picogram levels and is recognised as the most sensitive
available test for the detection of toxin B [165]. A laboratory cell line
(Vero, Hep2, fibroblasts, CHO or HeLa cells) is exposed to a filtrate of
a stool suspension. If C. difficile toxins are present, a cytopathic ef-
fect is observed after 24e48 h (cell rounding via cytoskeleton
disruption). The effect is mainly due to toxin B, which is more
cytotoxic than toxin A. The presence of toxigenic C. difficile can be
confirmed if a specific antiserum (added later) reverses the effect
on the cells. This method is very sensitive and specific but is rela-
tively slow and requires the maintenance of cell lines. If the anti-
serum does not neutralise the cytopathic effect, which is observed
in 21% of cases, the results are inconclusive [150].

EIA is rapid but less sensitive than the cell cytotoxicity assay [8],
missing 40% of diagnoses [165]. However, it is easy to perform and
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does not require technical training or special equipment. EIA can
detect both toxin A and toxin B and may also detect glutamate
dehydrogenase (GDH), a specific enzyme of C. difficile found in
toxigenic and non-toxigenic isolates. C. difficile constitutively pro-
duces GDH in easily detectable levels, so tests based on GDH
detection have good sensitivity (96%e100%). As GDH only identifies
the bacterium and not the presence of toxins, the method is com-
parable with stool culture. Furthermore, it only takes 15e45 min
and the cost is low (estimated at 8 USD); it can also be combined
with a cell cytotoxicity assay, EIA for toxins, or culture with further
toxin characterisation of the strains [165]. However, the results
from GDH seem to differ based on the commercial kit used, and
therefore, for some authors, this approach remains an interim
recommendation [8]. EIA may be useful in laboratories without
tissue culture facilities, but it must be combined with a positive
culture. If the EIA results are negative and the culture test results
are positive, it is recommended to isolate the strain from the plate
and repeat EIA testing to determine if it is toxigenic [150]. Table 5
summarises the most-used tests for the diagnosis of C. difficile
infection.

Delm�ee et al. (2001) [150] proposed the following scheme for
the routine bacteriological diagnosis of CDI in humans. First, culture
and toxin detection (by cytotoxicity assay or by EIA) should be
performed directly from the stool specimen. If both tests are
negative, a diagnosis of CDI is excluded. In contrast, if both are
positive, the patient is diagnosed with CDI and requires immediate
treatment. When the culture is positive but toxin detection is
negative, an EIA test should be performed on several colonies
removed from the culture plate. If the test is still negative, treat-
ment is not necessary. If the test is positive, the patient should be
considered positive for CDI. Finally, when the culture is negative
but toxin detection is positive, a control specimen is requested and
the culture must be repeated, which results in a patient testing
positive for C. difficile in most cases. Repeat testing of patients who
were previously positive as a “test of cure” is not appropriate [150].

Many studies have developed different real-time PCR (RT-PCR)
methods for the detection of C. difficile toxin genes directly from
stool samples, not only from humans [166,167] but also from ani-
mals [168], and for the quantitative detection of C. difficile in hos-
pital environmental samples [169]. Various automated RT-PCR
systems are commercially available, intended as diagnostic tools for
CDI. These systems include BD GeneOhm™ Cdiff (Becton Dick-
enson)2 and Xpert® C. difficile (Cepheid).3 These commercial RT-
PCRs have been shown to be rapid (<4 h for a result), sensitive
and specific. Therefore, they have been largely proposed for the
laboratory diagnosis of CDI [170e172]. In addition, a recent guide
for the management of C. difficile infection in surgical patients
suggests that PCR testing of perirectal swabs may be an efficient
method for toxigenic C. difficile detection [173].

There are several other molecular genetic test systems
commercially available for the identification of C. difficile from stool
and culture samples. One example is Genotype Cdiff (Hain Life-
science), which is based on DNA strip technology.4 This system is
based on DNA amplification, hybridisation and visualisation using
the enzyme alkaline phosphatase. The results are visible in a
colorimetric reaction. The test is rapid in detecting C. difficile, its
toxins, deletions in the tcdC gene, and mutations in the gyrA gene
that are associated with moxifloxacin resistance. However, these
2 https://www.bd.com/resource.aspx?IDX¼17953.
3 http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/healthcare-

associated-infections/xpert-c-difficile.
4 http://www.hain-lifescience.de/en/products/microbiology/genotype-cdiff/

genotype-cdiff.html.
new technologies require considerable capital equipment, costly
cartridges and experienced laboratory personnel. Furthermore, the
results reported have not shown any significant improvement
when compared with classic methods [150]. Therefore, some lab-
oratories use these procedures to verify dubious results observed
after rapid screening with other methods or to further process the
samples for epidemiological purposes.

8. C. difficile typing methods

To characterise and compare the circulating strains and to
identify emerging strains and those responsible for outbreaks
worldwide, several typing methods have been applied. Table 6
summarises the available typing methods and their advantages
and disadvantages. Lem�ee et al. (2004) [140] designed a multiplex
PCR for the simultaneous identification and toxigenic type char-
acterisation of C. difficile isolates. Several other studies have pro-
posed different multiplex PCR primers and protocols not only to
detect the genes encoding the major toxins A and B but also to
detect binary toxin genes (cdtA and cdtB) and other deletions in the
Paloc genes [174].

Pulsed-field gel electrophoresis (PFGE5) and restriction enzyme
analysis (REA) are widely used in the United States and Canada.
PFGE was one of the first molecular methods used for C. difficile and
other food-borne pathogens in North America [175]. The method
uses restriction enzymes that infrequently cut (such as SmaI or
SacII) to cleave bacterial DNA at different restriction sites. The use of
these infrequently cutting restriction enzymes limits the number of
restriction fragments (to between 7 and 20) and ensures that they
are relatively large [176]. Generally, the frequency of cutting is
inversely proportional to the number of nucleotides in the recog-
nition site [177]. In North America, the isolates are designated with
NAP and a number (e.g., NAP1: North America Pulsotype 1) [178].
The technique separates the large fragments of DNA generated
based on size using a pulsed-field electrophoresis gel with resulting
electrophoresis patterns that are highly discriminatory. However,
large amounts of high-molecular-weight DNA have to be read,
making the process labour-intensive (Table 6). C. difficile typing
based on REA is performed using total cellular DNA, which is
digested with a frequently cutting restriction enzyme (HindIII), and
the resulting fragments are resolved by classical agarose electro-
phoresis. This method was shown to be reproducible, highly
discriminatory and universally applicable. However, the visual
assessment of the large number of fragments in a single gel can be
difficult and may be confounded by the presence of extra-
chromosomal DNA [175] (Table 6).

In Europe, C. difficile PCR-ribotyping has been recognised as the
dominant typing method. PCR-ribotyping is based on the size
variation of the 16Se23S rDNA intergenic spacer regions. A PCR-
ribotype is defined as a group of strains that produce an identical
band pattern. Therefore, a single band difference warrants a new
ribotype [178]. Stubbs et al. (1999) [179] constructed a C. difficile
PCR-ribotype reference library composed of 2030 isolates, with a
total of 116 distinct types identified from environmental, hospital,
community practitioner, veterinary and reference sources. The
method was performed with agarose gel-based electrophoresis.
Bidet et al. (1999) [180] improved the reading of the banding pat-
terns by selecting a partial sequence of the rRNA genes (16Se23S)
and the intergenic spacer region with a new set of primers located
closer to this intergenic spacer region. The Public Health Laboratory
5 Pulsed-field Gel Electrophoresis (PFGE) | Pathogens and Protocols | PulseNet |
CDC [WWW Document], n.d. URL http://www.cdc.gov/pulsenet/pathogens/pfge.
html (accessed 6.18.15).

https://www.bd.com/resource.aspx?IDX=17953
https://www.bd.com/resource.aspx?IDX=17953
http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/healthcare-associated-infections/xpert-c-difficile
http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/healthcare-associated-infections/xpert-c-difficile
http://www.hain-lifescience.de/en/products/microbiology/genotype-cdiff/genotype-cdiff.html
http://www.hain-lifescience.de/en/products/microbiology/genotype-cdiff/genotype-cdiff.html
http://www.cdc.gov/pulsenet/pathogens/pfge.html
http://www.cdc.gov/pulsenet/pathogens/pfge.html


Table 5
Laboratory test for C. difficile.

C. difficile
detection

Test Objective Characteristics Confirmation Advantages Disadvantages Study

Toxin/enzyme
detection

Cell cytotoxicity
assay

Considered the best
standard test for
identifying toxigenic
C. difficile

A laboratory cell line (Vero,
Hep2, fibroblast, CHO or
HeLa cells) is exposed to a
filtrate of a stool suspension
If C. difficile toxins are
present, a cytopathic effect
is observed after 24e48 h
(cell rounding via
cytoskeleton disruption)
The effect is mainly due to
toxin B (which is more
cytotoxic than toxin A)

The presence of toxigenic C.
difficile can be confirmed if
a specific antiserum (added
later) reverses the effect on
the cells

It can detect toxins at
picogram levels
Most sensitive available
test for detection of toxin B

Relatively slows and
requires the maintenance
of cell lines.
If the antiserum does not
neutralise the cytopathic
effect, which is observed in
21% of cases, the results are
inconclusive

[8,165,166]

Enzyme
immunoassay
(EIA)

It can detect both toxins
A and/or B, and may
also detect glutamate
dehydrogenase (GDH)c

C. difficile constitutively
produces GDH in easily
detectable levels, but only
identifies the bacterium
and not the presence of
toxins (the method is
comparable with stool
culture)

The method can be
combined with cell
cytotoxicity assay, EIA for
toxins, or culture with
further toxin
characterisation of the
strains
If EIA results are negative
and culture testing results
are positive, it is
recommended to isolate the
strain from the plate and
repeat EIA testing to
determine if it is toxigenic

Rapid (15e45 min)
Low cost (estimated at 8
USD)
Easy to perform and does
not require technical
training or special
equipment
Good sensitivity for
detection of GDH (96%
e100%)
Useful in laboratories
without culture facilities

Less sensitive than the cell
cytotoxicity assay missing
40% of diagnosis
Results seem to differ based
on the commercial kit used
It must be combined with a
positive culture)

Culture Stool culture It permits molecular
typing of the isolated
strains and antibiotic
susceptibility
determination
(essential for
epidemiological
surveys)

Cycloserine-cefoxitin
fructose (CCF) has been the
most commonly used
medium for C. difficile
isolation. The medium
includes egg-yolk or blood
and taurocholate,
desoxycholate or cholate,
which has been shown to
induce germination of
spores.
Presently, several
commercial selective media
are available. The new
chromogenic media improve
the recovery the bacterium.
Pre-treatment of samples
with ethanol shock has
been associated with an
increase in sensitivity

Molecular typing of the
strains

Most sensitive method for
detection of C. difficile
Pre-made agars are used for
the clinical recovery of C.
difficile from faecal samples
and not for the semi-
quantification of viable
spores

Low specificity for CDId

Not clinically practical for
routine diagnosis:
Slow (24e48 h) and its not
give information about
toxin production

[8,150,166e170]

Molecular
methods

Real Time PCR
(RT-PCR)

Detection of C. difficile
toxin genes directly
from stool samplese

BD GeneOhmTM Cdiff
(Becton Dickenson)a

Xpert® C. difficile (Cepheid)b

Culture with further
characterisation of the
strains

Rapid (<4 h for a result),
sensitive and specific

Expensive
Requires technical training
and special equipment

[171e173]

a https://www.bd.com/resource.aspx?IDX¼17953.
b http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/healthcare-associated-infections/xpert-c-difficile.
c Specific enzyme of C. difficile produced in in both toxigenic and non-toxigenic isolates.
d Low specificity for C. difficile infection (CDI) because the rate of asymptomatic carriage of C. difficile among hospitalised patients is so high.
e They have been largely proposed for laboratory diagnosis of CDI but also for quantitative detection of C. difficile in hospital environmental samples.
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Table 6
C. difficile typing methods.

Method Characteristics Advantages Disadvantages Reference

Multiplex PCR The PCR can target:
� tpi housekeeping genea

� an internal fragment of the toxin B (tcdB gene)
� the 30 region, deleted or not, of the toxin A (tcdA gene)
� binary toxin genes (cdtA and cdtB)
� Other deletions in the Paloc genes

Low cost Process labour-intensive [140,174]

Pulsed-field gel
electrophoresis (PFGE)

The method uses infrequently-cutting restriction
enzymes (like SmaI or SacII) to cut bacterial DNA at
different restriction sites

Highly discriminatory Process labour-intensive
Difficulty of lysing spores
Difficulty of interpreting results and the inter-laboratory
exchange of the results
Equipment and time required

[175,176]

Restriction enzyme
analysis

(REA)

The method uses frequently-cutting restriction enzymes
(HindIII) to cut total cellular DNA at different restriction
sites

Reproducible and highly discriminatory power
Universally applicable

Difficulty of interpreting results and the inter-laboratory
exchange of the
results

[175]

PCR-ribotyping A PCR-ribotype is defined as a group of strains that
produce an identical band pattern based on the size
variation of the 16Se23S rDNA intergenic spacer regions

Dominant typing method
Inter-laboratory comparisons easy if standard
nomenclature is available or use of Webribo database

Time intensive
Equipment and material costs
Technical training required
Inter-laboratory comparisons difficult if standard
nomenclature is not available

[178,182]

QIAxcel® system For C. difficile ribotyping, the detection of tcdC18 bp
deletion, and toxin gene detection
Based on an automated electrophoresis platform

Reduce the cost
of hands-on time
Allows analysis of up to 96 samples per run

Cost of the cartridges and equipment
Limited sensitivity and discriminatory power (cannot
distinguish between closely related PCR-ribotypes)

[184]

Serotyping
- by slide agglutination
- by polyacrylamide gel

electrophoresis
- by ELISA

The method distinguishes variations in C. difficile strains
based on bacteria surface antigens

Good correlation between methods
Reproducible, Rapid and reliable
Inter-laboratory comparisons easy

Cross-agglutination caused by flagellar antigens (totally
suppressed by ELISA)

[185,186]

Surface-layer protein
A gene sequence
typing (slpAST)

Sequencing of slpA gene, which encodes for a surface
immuno protein Layer (S-layer)

Good discriminatory power
It can be applied to direct typing (without culture) from
DNA stool specimens

It has been showed that C. difficile genotype is no
predictive of antigenic types

[187e189]

Repetitive sequence-based
PCR typing (rep-PCR)

Specific repetitive PCR-primers complement the short
repetitive sequences dispersed the bacterial genome
The amplified DNA fragments provide a genomic
fingerprint that can be employed for subspecies
discrimination

Automated rep-PCR with a higher discriminatory power
than traditional PCR-ribotyping

Requires visual interpretation and technical skills
Inter-laboratory reproducibility has not been
demonstrated

[190e192]

Random amplified
polymorphic DNA

(RAPD)

Random amplification of DNA segments by PCR reaction
using a single primer of arbitrary nucleotide sequence

Inexpensive
Does not require any specific knowledge of the DNA
sequence

Must be combined with PCR-ribotyping to obtain
higher discriminatory power

[193,194]

Amplified fragment length
polymorphism

(AFLP)

Genomic DNA is totally digested with two restriction
enzymes. This step is followed by ligation of double-
stranded oligonucleotide adaptors to the sticky ends of
the restriction fragments followed by amplified by PCR

Low cost Suboptimal reproducibility (variation in the precision
of sizing of fragments)
Limited application in C. difficile typing

[195]

Toxinotyping Polymerase chain reaction-restriction fragment length
polymorphism based method for differentiating strains
according to changes in their toxin genes when
compared to the reference VPI 10463 strain

Results of toxinotyping and PCR-ribotyping correlated
well

Requires technical skills [175]

Multilocus sequence typing
(MLST)

The sequences of internal fragments of housekeeping
genes (usually seven) are used to characterise the strains

Inter-laboratory comparisons easy Time-consuming (several days)
Costly and laborious technique
Requires specific technical skills

[199,200]

Multilocus variable number
tandem repeat analysis
(MLVA)

The method utilizes the naturally occurring variation in
the number of tandem repeated DNA sequences found
inmany different loci in the genome. The different lengths
of variable number of tandem repeats (VNTR) regions
are determined to distinguish among strains

High discriminatory power which allows tracking of
outbreaks and determining phylogenetic relationships

Time-consuming
Costly and laborious technique
Requires specific technical skills
Inter-laboratory comparisons difficult

[175,201]

Whole genome sequencing
(WGS)

The method reveals the complete DNA of the bacterium
at a single time

Provides the most comprehensive collection of an
individual’s genetic variation
Increasingly low cost

Method still under development
The large amount of data requires technical skills for
further processing and analysis

[203]

a Species species-interspecific fragment of the triose phosphate isomerase (tpi) housekeeping gene.
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Service Anaerobe Reference Unit, Cardiff (UK) has established a
ribotyping nomenclature reference database for C. difficile. This
nomenclature is designated by a three-digit number starting from
001 (ex. PCR-ribotype 027). Currently, the collection of existing
PCR-ribotypes and the assignment of new ones is performed by the
Health Protection Agency-funded C. difficile Ribotype Network
(CDRN) in Leeds (UK), which has more than 600 different PCR-
ribotypes in the CDRN database [181]. However, in many labora-
tories, the standard nomenclature is not always available and a
local nomenclature is used, making inter-laboratory comparisons
difficult [178] (Table 6). Indra et al. (2008) [182] developed a C.
difficile sequencer-based PCR-ribotyping method based on capillary
gel electrophoresis that was proposed in order to solve the prob-
lems associatedwith inter-laboratory comparisons of typing results
and to make PCR-ribotyping less time-intensive (Table 6). PCR
amplification was performed using a fluorescent label in one of the
primers, and the amplicon sizes were determined using an ABI
genetic analyser [175]. A database and web-based software pro-
gramme was created that allows the analysis and comparison of C.
difficile capillary-sequencer-based PCR-ribotyping data by simply
uploading sequencer data files.6 Janezic et al. (2011) [183] described
a modification to PCR-ribotyping that enables the detection of C.
difficile in stool samples within hours. The designed primers were
located partially within the C. difficile 16Se23S rRNA intergenic
spacer regions and partially within 16S (forward primer) and 23S
(reverse primer).

The QIAxcel® system has been proposed as a new method for C.
difficile ribotyping, the detection of tcdC18 bp deletion, and toxin
gene detection (toxin A, toxin B and binary toxin CDT genes).7

QIAxcel is based on an automated electrophoresis platform that
processes samples in batches of 12 and allows the analysis of up to
96 samples per run. The system does not require the use of
fluorescein-labelled primers and displays the data as both a gel-
view format and an electropherogram. The system has the poten-
tial to reduce the cost of PCR-ribotyping by drastically reducing the
hands-on time. The major costs are the purchase of cartridges, the
setup of the QIAxcel system hardware, and the BioCalculator
analysis. However, the method has limited sensitivity and
discriminatory power. It cannot clearly distinguish between closely
related ribotypes, such as 027 and 176 [184].

Serotyping distinguishes variations in C. difficile strains based on
the bacterial surface antigens. Serogrouping by slide agglutination
and by polyacrylamide gel electrophoresis have both been tradi-
tionally accepted as practical in routine typing [185]. Both methods
have shown a good correlation in results and allow the differenti-
ation of 10 major serogroups (A, B, C, D, F, G, H, I, K and X). Specific
profiles have been associated with each of the 10 serogroups except
for serogroup A. Strains from serogroup A have a common flagellar
antigen that is responsible for cross-agglutination. The shearing of
the flagella allows the differentiation of 12 different subgroups of
serogroup A. Delm�ee et al. (1993) [186] used an enzyme-linked
immunosorbent assay (ELISA) with antisera specific for the 10 C.
difficile serogroups (A1, B, C, D, F, G, H, I, K, X) and the 12 serogroups
within serogroup A (A2 to A12) for the serogrouping of C. difficile
colonies for 314 positive faecal samples. The authors found that
ELISA was a rapid and reliable method for C. difficile serotyping and
that cross-agglutination caused by flagellar antigens in the slide
agglutination method is totally suppressed by ELISA.

Surface-layer protein A gene sequence typing (slpAST) has also
been described for C. difficile characterisation. C. difficile has a
6 https://webribo.ages.at/.
7 https://www.qiagen.com/be/products/catalog/automated-solutions/detection-

and-analysis/qiaxcel-advanced-system/.
surface immuno-protein Layer (S-layer) encoded by the slpA gene,
and the typing of isolates is performed by the sequencing of this
slpA gene. It can also be used for direct typing from DNA stool
specimens without culture [187]. This method has been reported as
a discriminative tool for C. difficile characterisation [188]. However,
Dingle et al. (2013) [189] showed that the C. difficile genotype was
not predictive of antigenic types. Therefore, S-layer typing could be
useful for explaining the temporal changes and geographic differ-
ences in the epidemiology of CDI as well as the way in which iso-
lates (and antigens) are selected for inclusion in C. difficile vaccines
[189].

Repetitive sequence-based PCR typing (rep-PCR) is another
method proposed for the characterisation of C. difficile strains [190].
Bacterial genomes contain multiple dispersed short repetitive se-
quences separating longer single-copy DNA sequences. Specific
repetitive PCR primers complement these repetitive sequences, and
the amplified DNA fragments provide a genomic fingerprint that
can be employed for subspecies discrimination [191]. The Diversi-
Lab system8 is an automated rep-PCR typingmethod that has a high
discriminatory power when compared to traditional PCR-
ribotyping. However, this method requires the visual interpreta-
tion of rep-PCR fingerprint patterns and technical skills. Further-
more, interlaboratory reproducibility for this method must be
demonstrated prior to its use for C. difficile surveillance [192].

Random amplified polymorphic DNA (RAPD) analysis is the
‘random amplification’ of DNA segments by PCR reaction using a
single primer consisting of an arbitrary nucleotide sequence. RAPD
is an inexpensive and powerful typingmethod and does not require
any specific knowledge of the DNA sequence of the target micro-
organism. The amplification of a segment of DNAwill be performed
depending on positions that are complementary to the primer
sequence. Green et al. (2011) [193] used PCR-ribotyping in
conjunction with RAPD to further categorise different C. difficile
types within defined PCR-ribotypes and therefore obtained a
higher discriminatory power than either of the methods used
alone. Barbut et al. (1993) [194] evaluated genomic fingerprinting
of C. difficile strains using RAPD and suggested that this method
could be an additional valuable tool for epidemiological studies.

In the amplified fragment length polymorphism (AFLP) tech-
nique, a small amount of purified genomic DNA is totally digested
with two restriction enzymes, one with an average cutting fre-
quency and the other with a higher cutting frequency. This step is
followed by the ligation of double-stranded oligonucleotide adap-
tors to the sticky ends of the restriction fragments, followed by PCR
amplification. After final amplification, the selectively amplified
fragments are separated by gel electrophoresis and comparison of
banding patterns is typically achieved using dedicated finger-
printing analysis software. AFPL has a relatively low cost, but
variation in the precision of the sizing of fragments has been
observed, leading to suboptimal reproducibility [195]. This method
has seen limited application in C. difficile typing. Klaassen et al.
(2002) [196] reported that AFLP analysis yielded high-resolution
and highly reproducible fingerprinting patterns in a short time
period (24 h) to evaluate epidemiological relatedness among hos-
pital C. difficile isolates. A further study showed that AFLP is better
able to discriminate between C. difficile reference strains (most of
them toxin Aþ, toxin Bþ) than PCR-ribotyping. However, for toxin
A�, toxin Bþ isolates, both methods yielded similar results [138].

Toxinotyping is a polymerase chain reaction-restriction frag-
ment length polymorphism (PCR-RFLP) based method for differ-
entiating C. difficile strains according to changes in their toxin genes
8 http://www.biomerieux-diagnostics.com/diversilab.

https://webribo.ages.at/
https://www.qiagen.com/be/products/catalog/automated-solutions/detection-and-analysis/qiaxcel-advanced-system/
https://www.qiagen.com/be/products/catalog/automated-solutions/detection-and-analysis/qiaxcel-advanced-system/
http://www.biomerieux-diagnostics.com/diversilab
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when compared to the reference strain VPI 10463. Strains
belonging to the same toxinotype have identical changes in the
PaLoc region. Toxinotyping is performed by PCR amplification and
restriction enzyme digestion of 10 regions of the PaLoc [175].
Currently, 31 different toxinotypes are identified and designated by
Roman numerals from I to XXXII. Strains with toxin genes similar to
VPI 10463 are classified as toxinotype 0. A total of 12 out of 20
toxinotypes with variant strains produce binary toxin, while most
of the toxinotypes not producing binary toxin have toxin genes very
similar to the reference strain, VPI 104639. In this context, only one
strain resembling VPI 10463 and positive for CDT has been previ-
ously described [197]. Toxinotype XXXII has been recently reported
and corresponds to a new type of C. difficile strain (toxin A�, Bþ,
CDT-) that completely lacks the tcdA gene and has an atypical
organisation of the PaLoc integration site [198].

Multilocus sequence typing (MLST) analysis uses the sequences
of internal fragments of housekeeping genes (usually seven) to
characterise the strains. The internal fragments of each gene
(450e500 bp) are sequenced on both strands using an automated
DNA sequencer. For each housekeeping gene, the different se-
quences present within a bacterial species are assigned as distinct
alleles, and for each isolate, the alleles at each of the seven loci
define the allelic profile or sequence type (ST). The data obtained
are unambiguous, and the allelic profiles of the isolates can easily
be compared to those in a large central database and therefore can
be compared between laboratories10. There are two MLST data-
bases available for C. difficile, each adapted to a different typing
scheme: the first is organised according to the scheme described by
Griffiths et al. (2010) [199], which is performed with the house-
keeping genes adk, atp, dxr, recA, sodA, tpi and glyA11; and the
second is organised according to the scheme described by Lem�ee
et al. (2004) [200], which is performed with the housekeeping
genes aroE, dutA, gmk, groEL, recA, sodA and tpi.12 The primary
problem with MLST is the time-consuming nature of the method,
with the completion of analysis taking several days. In addition,
MLST is a relatively costly and laborious technique that requires
specific technical skills.

Multilocus variable-number tandem-repeat analysis (MLVA) has
been suggested to have higher discriminatory power than other
typingmethods for investigating the relatedness between C. difficile
strains [201]. It has beenwidely used in medical microbiology as an
alternative or complement to other typing techniques such as PFGE,
rep-PCR or MLST [202]. MLVA utilizes the naturally occurring
variation in the number of tandem repeat DNA sequences found in
many different loci in the genome. Therefore, the lengths of the
variable number of tandem repeats (VNTR) regions are determined
to distinguish among the strains. The technique is achieved by a
multiplex PCR assay (with primers designed to target different
VNTR regions in the genome) and visualised by electrophoresis or
automated fragment analysis on a sequencer. The product size is
used to calculate the number of repeat units of each locus. The
calculated numbers of repeats of the VNTR loci (alleles) are com-
bined, and this provides the MLVA profile. Each unique MLVA
profile is given an MLVA type designation. The MLVA profile can be
used for the comparison and clustering of the bacterial strains.13

Compared with traditional PCR ribotyping, MLVA has increased
discriminatory power, which allows for the more efficient tracking
of outbreaks and has the potential to determine phylogenetic
9 http://www.mf.uni-mb.si/tox/.
10 http://pubmlst.org/general.shtml.
11 http://pubmlst.org/cdifficile/.
12 http://www.pasteur.fr/recherche/genopole/PF8/mlst/Cdifficile2.html.
13 http://www.mlva.net/.
relationships. In addition, MLVA produces digital data with a
decreased turnaround time [175].

Whole genome sequencing (WGS) reveals the complete DNA of
an organism at a single time and provides the most comprehensive
collection of an individual’s genetic variation [203]. Sanger
sequencing and subsequently Roche 454 and Illumina next-
generation sequencing technologies have been applied to study
the evolutionary dynamics of C. difficile [175] at increasingly low
cost [203]. Recent studies have applied WGS to determine the
epidemiological relationships between C. difficile strains in
healthcare settings or in the scientific community employing WGS
[204]. Although the method is still under development and the
large amount of data obtained requires technical skills for further
processing and analysis, it is very probable that in the near future,
WGS will replace all other current typing techniques.

Killgore et al. (2007) [205] compared seven different techniques
(REA, PGE, PCR-ribotyping, MLST, MLVA, AFLP and slpAST) for
epidemic C. difficile strain typing. They found that all methods
appeared to be adequate for detecting an outbreak strain in a
particular institution. However, REA or MLVA showed the highest
level of discrimination between strains, and they seem to be the
most recommended methods to track outbreak strains geographi-
cally. However, as neither of the techniques are widely used and
little data are available, there is currently no method with proven
interlaboratory reproducibility for inter-institutional C. difficile
tracking.

9. High-throughput sequencing analysis and CDI

16Smetagenetics is a culture-independent strategy allowing the
identification of bacterial populations present in a large panel of
samples. It has been recently introduced to investigate the intes-
tinal microbiota of healthy patients and patients suffering CDI. In
the last year, most of the studies reported bacteria at the phylum
and class level, but higher taxonomic resolution may reveal more
differences in the population structure [206]. Preliminary results
have shown that one of the taxa found in high proportions in pa-
tients with CDI is Proteobacteria, while Bacteroidetes proportions
are lower in infected patients [207]. In this context, one study has
proposed the use of Bacteroidetes and Firmicutes as probiotics to
treat CDI [208]. However, the few available data regarding alter-
ations to the intestinal microbiota of patients with CDI has been
obtained in different patient conditions (age, antibiotic treatment,
hospitalisation), which explains the high amount of variability
between the studies. Despite this limitation, further studies
exploring the diversity of the gut microbiota in CDI patients will be
critical for further understanding the pathogenesis of C. difficile and
for developing new approaches for the treatment and prophylaxis
of the infection. In addition, recent studies in humans and animals
have shown that many of the sequences were not identical to
sequence entries present in the available databases [209,210].
Furthermore, among the sequences identical to known entries, the
species name was seldom taxonomically defined. As previously
reported, these findings underline the complexity of the gut
microbiota, stressing the need for further research on taxonomy
and functional microbiology [207].

10. Conclusions and perspectives

Eighty years after its discovery, C. difficile continues to be the
focus of attention in hospitals and an important topic for many
research groups worldwide. Recognised as the leading cause of
nosocomial antibiotic-associated diarrhoea, the incidence of CDI
remains high and in some years has increased, despite the efforts to
improve prevention and reduce the spread of the bacterium in

http://www.mf.uni-mb.si/tox/
http://pubmlst.org/general.shtml
http://pubmlst.org/cdifficile/
http://www.pasteur.fr/recherche/genopole/PF8/mlst/Cdifficile2.html
http://www.mlva.net/
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healthcare settings. Outside of Europe and America, the incidence
of CDI infection is also rising. The major research studies of the last
decade have been focused on the control of the spread of the
bacterium, the rapid diagnosis of CDI, and the efficacy of treatment
and recurrence prevention. Different guidelines have been
designed to improve the management of the infection. Diagnosis
must consider both clinical and laboratory findings. Laboratory
tests must be rapid and sensitive; therefore, stool culture is not
clinically practical. However, the isolation of the strain is necessary
for epidemiological studies. There is a need for highly discrimina-
tory typing methods, and results should be comparable between
laboratories. One potential alternative in the near future is whole
genome sequencing, now considered as the next-generation typing
tool.

The investigation of the gut’s microbial communities by new
metagenetic analyses will allow researchers to discernwhether any
alteration of the gut microbiota composition can favour C. difficile
colonisation, as well as the microbes responsible for rendering in-
dividuals less susceptible to the infection. This approach will be
critical in the future to further understand the pathogenesis of C.
difficile and to develop new successful prevention and treatment
measures.
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