LaBGen-P: A Pixel-Level Stationary Background Generation Method Based on LaBGen

B. Laugraud, S. Piérard, M. Van Droogenbroeck

INTELSIG Laboratory, University of Liège, Belgium

December 4th 2016

IEEE Scene Background Modeling Contest (SBMC 2016)

Cancun, Mexico

URL: http://hdl.handle.net/2268/201146

- LaBGen-P is a stationary background generation method.
- It is a simpler pixel-based version of LaBGen.
- LaBGen should be introduced to understand LaBGen-P.

- It combines a pixel-wise median filter and a patch selection mechanism.
- The selection mechanism is based on motion detection.
- This mechanism selects the patches with the smallest amounts of motion.
- The pipeline of the method comprises 5 steps.

- Increases the duration of the input video sequence.
- In fact, we process the sequence in \mathcal{P} passes.
- An odd pass is performed forwards while an even pass is performed backwards.

forwards (odd passes)

backwards (even passes)

LaBGen: Step 2 - Motion detection

- We chose to work with background subtraction (bgs) algorithms.
- The training of the considered algorithm \mathcal{A} is helped by the augmentation step.
- **LaBGen** does not use the model of \mathcal{A} , only segmentation maps.
- LaBGen can be used with any bgs algorithm "out-of-the-box".

LaBGen: Step 3 - Local estimation of the quantity of motion

- The image plane is divided into $\mathcal{N} \times \mathcal{N}$ spatial areas.
- A quantity of motion *q* is estimated for each patch.
- It represents the probability of observing pixels corresponding to moving objects.

■ In each spatial area, *S* patches are selected.

The S selected patches are associated to the smallest quantities of motion q.

A pixel-wise median filter is applied on the sets of \mathcal{S} selected patches.

The background is then generated.

- Sometimes, with LaBGen, we have a "patch effect".
- We wanted to make a pixel-based method to avoid this effect.
- LaBGen-P(ixel).

Backgrounds estimated with the same parameters!

LaBGen-P is now pixel-based!

LaBGen-P: Frame difference

- The frame difference has the most valuable contribution in average for LaBGen.
- Only the frame difference is used in LaBGen-P (no \mathcal{A} and \mathcal{P} parameter).

LaBGen-P: Motion maps

- No threshold is applied on the resulting differences (motion scores) any more.
- The motions scores are put in a motion map.
- Such a map allows to capture some shades about motion.
- For instance: $200 > 20 \rightarrow fg$, $30 > 20 \rightarrow fg$, but p(fg|200) > p(fg|30).

Motion map

Segmentation map ($\tau = 20$)

LaBGen-P: Local estimation of the quantity of motion

- Unlike in LaBGen, quantities of motion are estimated per pixel, but locally!
- The motion scores available in the local neighbourhood are aggregated (sum).
- The local neighbourhood is delimited by a window centered on the current pixel.
- The size of the window depends on the parameter *N*.

85	22	5	71	50	86	39	3
59	11	82	87	51	26	57	2
60	53	84	31	17	35	63	25
91	36	56	14	61	66	65	13
7	42	24	99	77	38	45	30
75	92	1	6	20	4	10	06
	52		9	20	4	19	90
48	83	' 18	9 73	20 74	4 29	98	90 88

Motion map (5 \times 5 window)

quantity of motion of $\Box = \sum_{\Box} = 1120$

Drawbacks

Quantitative evaluation

- We have ground-truth (GT) for $\simeq 1/6$ of the sequences.
- Metrics consider LaBGen-P better for half of the sequences with GT.
- Is LaBGen-P better than LaBGen considering the overall dataset?

Subjective evaluation - Web platform

1. Video for which we would like to define a background image

video/Candela_m1.10.m4v

2. Question

hich background image do you prefer ?	Please select the correct answer! *)
	Please select the correct answer!	cover the answers and display the part question
	I don't know.	save the answers and display the next question
opyright Piérard Sébastien, 2012	The one on the right hand side.	

- **35** human experts participated.
- We collected **2210** answers (\simeq **28** answers in average per video sequence).
- Unable to choose between LaBGen and LaBGen-P for 38 sequences.
- LaBGen-P was prefered for 26 sequences and LaBGen for 15 sequences.

Results (September 12, 2016)

Overall Basic Intermitte	ent Motion Cl	utter Jitter	Illumination	Changes	Backgrour	nd Motion	Very Long	Very Sh	
esults, all categories combined.									
Click on method name for more details.									
Method	+ Average ranking	Average ranking across categories	+ Average + AGE +	Average pEPs +	Average pCEPs \$	Average MS-SSIM	Average PSNR +	Average CQM ÷	
LaBGen [6]	2.00	4.75	6.7090	0.0631	0.0265	0.9266	28.6396	29.4668	
LaBGen-P [7]	2.83	5.38	7.0738	0.0706	0.0319	0.9278	28.4660	29.3196	

LaBGen [6]	2.00	4.75	6.7090	0.0631	0.0265	0.9266	28.6396	29.4668
LaBGen-P [7]	2.83	5.38	7.0738	0.0706	0.0319	0.9278	28.4660	29.3196
Photomontage [3]	3.33	6.50	7.1950	0.0686	0.0257	0.9189	28.0113	28.8719
<u>SC-SOBS-C4</u> [9]	4.33	6.00	7.5183	0.0711	0.0242	0.9160	27.6533	28.5601
MAGRPCA [10]	5.83	6.88	8.3132	0.0994	0.0567	0.9401	28.4556	29.3152
Temporal median filter [2]	7.17	5.50	8.2761	0.0984	0.0546	0.9130	27.5364	28.4434
BE-AAPSA [14]	7.17	7.88	7.9086	0.0873	0.0447	0.9127	27.0714	27.9811
Bidirectional Analysis [13]	7.67	6.63	8.3449	0.0756	0.0181	0.9085	26.1722	27.1637
Bidirectional Analysis and Consensus Voting [12]	8.67	7.75	8.5816	0.0724	0.0257	0.9078	26.1018	27.1000
TMFG [11]	10.00	6.25	7.4020	0.1051	0.0566	0.9043	27.1347	28.0530
EC-FlowNet [5]	10.17	9.00	9.1131	0.1128	0.0599	0.9162	26.9559	27.8767
RSL2011 [4]	11.17	10.25	9.0443	0.1008	0.0497	0.8891	25.8051	26.7986
AAPSA [1]	12.17	10.88	9.2044	0.1057	0.0523	0.9000	25.3947	26.3021
RMR [8]	12.50	10.00	9.5363	0.1176	0.0582	0.8790	26.5217	27.4549

Results for SBMnet 2016

Overall Basic Intermittent Mo	tion Clu	tter Jitter I	llumination (Changes	Backgroun	d Motion	Very Long	Very Sh	
kesults, all categories combined.									
Method A the for the form	Average ranking	AVerage ranking across categories \$	Average AGE \$	Average pEPs \$	Average pCEPS \$	Average MSSSIM \$	Average PSNR \$	CÓW ¢	
MSCL [15]	1.00	4.13	5.9547	0.0524	0.0171	0.9410	30.8952	31.7049	
BEWIS [24]	3.17	4.88	6.7094	0.0592	0.0266	0.9282	28.7728	29.6342	
LaBGen [6]	3.67	6.38	6.7090	0.0631	0.0265	0.9266	28.6396	29.4668	
LaBGen-P [7]	4.83	7.13	7.0738	0.0706	0.0319	0.9278	28.4660	29.3196	
Photomontage [3]	5.33	9.63	7.1950	0.0686	0.0257	0.9189	28.0113	28.8719	
SC-SOBS-C4 [9]	6.33	8.00	7.5183	0.0711	0.0242	0.9160	27.6533	28.5601	
MAGRPCA [10]	7.67	8.25	8.3132	0.0994	0.0567	0.9401	28.4556	29.3152	
Temporal median filter [2]	9.33	7.50	8.2761	0.0984	0.0546	0.9130	27.5364	28.4434	
BE-AAPSA [14]	9.33	10.38	7.9086	0.0873	0.0447	0.9127	27.0714	27.9811	
Bidirectional Analysis [13]	10.00	9.38	8.3449	0.0756	0.0181	0.9085	26.1722	27.1637	
Bidirectional Analysis and Consensus Voting [12]	11.00	11.38	8.5816	0.0724	0.0257	0.9078	26.1018	27.1000	
TMFG [11]	12.17	9.00	9.4020	0.1051	0.0566	0.9043	27.1347	28.0530	
FC-FlowNet [5]	12.33	11.25	9.1131	0.1128	0.0599	0.9162	26.9559	27.8767	
RMAMR [20]	13.50	13.63	9.6995	0.1243	0.0770	0.9258	26.5380	27.4680	
RSL2011 [4]	13.83	15.38	9.0443	0.1008	0.0497	0.8891	25.8051	26.7986	

- LaBGen-P is a variant of the LaBGen method.
- It combines a pixel-wise median filter and a pixel selection mechanism.
- It uses the frame difference as a motion detection algorithm.
- Quantities of motion are computed spatially by aggregating motion scores.
- It performs well on the SBMnet dataset.
- The metrics consider LaBGen-P less effective than LaBGen.
- A subjective evaluation has shown the contrary.
- Shall we find a metric even more correlated with the human eye?

Thank you for your attention!

Do you have questions?

LaBGen website