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Context

Motivations

1 EU 2020 objectives (greenhouse gas, renewable energy, energy
efficiency)

2 Basic working of soil-caisson system upon both monotonic and cyclic
loading (serviceability)

3 Highlighting of components of reaction : first step to the elaboration
of a macro-element
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Context

Suction caissons for offshore foundations

Houlsby et al. (2005)

Pumping

Water flows

Decreasing inside 
pressure

Offshore wind turbines specificities

light structure

high overturning moment

Suction caissons specificities

hollow steel cylinder open towards the
bottom

extensively used as anchors in the North
Sea

monopod or tetra/tri-pod
superstructure

cheaply and quickly installed, reusable,
Senders (2008)

limited extension resistance by suction
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Description of the case study

Geometry

Seabed

Sea level Waves + Wind

Published in Cerfontaine et al.
(2016), Géotechnique

Modelling (axisymmetric)

Lid
Elastic superficial
          layer

Inner
  interface (top)

Outer
     interface 
          (skirt)

Inner 
  interface 
       (skirt)

Skirt 

Elastic 
        toe

H
ei

gh
t (

H
)

Radius (D/2)

B. Cerfontaine, F. Collin and R. Charlier RUGC2016 26/05/16 6 / 24



Description of the case study

Geometry

Seabed

Sea level Waves + Wind

Published in Cerfontaine et al.
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Modelling (axisymmetric)

Initial stress
       (interface)

H
ei

gh
t (

H
)

Radius (D/2)

Loading

Initial stress
          (soil)

B. Cerfontaine, F. Collin and R. Charlier RUGC2016 26/05/16 6 / 24



Description of the case study

Geometry

Seabed

Sea level Waves + Wind

Published in Cerfontaine et al.
(2016), Géotechnique

Size
D=7.8m and H=4m

Soil-steel friction coefficient
µ = 0.5

Permeability
k= 5 · 10−12m2

Coefficient of lateral earth pressure at
rest

K0 = 1.0

Porosity
n= 0.36
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Description of the case study

Prevost model for cohesionless soils - Kinematic hardening

After Elgamal (2003)

Implementation in LAGAMINE code published in Cerfontaine et al. (2014)
NUMGE2014 Proceedings
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Description of the case study

Prevost model for cohesionless soils - Volumetric behaviour

p'

q

Contractive

Dilative PT line

Current stress
state

Trace of current
yield surfaceη

Non-associated plastic volumetric
behaviour

ε̇pv =
1

3
· η

2 − η̄2

η2 + η̄2
· λ̇

η = q/p′

λ̇ continuous plastic multiplier

η̄ phase transformation ratio,
Ishihara (1975)

Very simple (only 1 param.)
⇒ satisfactory to a 1st approx.
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Description of the case study

Cyclic triaxial tests (Lund Sand, Dr= 90%, Ibsen & Jakobsen (1996))

Two distinct behaviours from two initial deviatoric stress invariants
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Full calibration process published in Cerfontaine (2014), PhD thesis
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Description of the case study

Hydro-mechanically coupled interface element

Mechanical behaviour

|tT|

p'

f>0

f<0
f=0

Elastic 
domain

Plastic
surface

No contact

µ

N

+ Penalty method

Flow behaviour

Side 2

Side 1

InsidegN

fwt2

fwt1

fwl

Couplings

Effective stress Storage Permeability

Published in Cerfontaine et al. (2015) Computers and Geotechnics
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Results Reaction modes

Reaction of the caisson to applied vertical load

ΔFtot

ΔFin ΔFout

ΔFtop

ΔFtip

ΔFpw

ΔFtot

Resistance to compressive load
∆Ftot

∆Fin, inner friction ;

∆Fout , outer friction ;

∆Fpw , pore water pressure
(> 0) ;

∆Ftop, top effective stress ;

∆Ftip, tip effective stress.

ΔFtot ΔFtot

ΔFin ΔFout

ΔFpw

Resistance to extension load ∆Ftot

∆Fin, inner friction ;

∆Fout , outer friction ;

∆Fpw , pore water pressure
(< 0).
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Results Monotonic simulations

Monotonic extension simulations (load controlled)

Drained
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Results Monotonic simulations

Pore water pressure generation during extension
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Results Cyclic simulations

Pseudo-random and equivalent loadings
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Results Cyclic simulations

Pseudo-random and equivalent loadings
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Results Cyclic simulations

Cyclic partially drained behaviour
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Results Cyclic simulations

Cyclic partially drained behaviour : displacement and PWP accumulation
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Results Cyclic simulations

Cyclic partially drained behaviour : influence of permeability
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Conclusions and perspectives

Coupled modelling of a suction caisson upon monotonic and cyclic
loading

Importance of the partially drained behaviour (both monotonic and
cyclic)

Identification of different modes of resistance not activated all at the
same time

Complex behaviour and accumulation of settlement during a
short-time storm event

Perspectives

Calibration procedure and validation of the model
Elaboration of a macro-element
3D simulations including lateral loading
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Conclusions and perspectives
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