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Introduction

Computational homogenization (so-called FE?) for micro-structured materials

— Two boundary value problems (BVP) are concurrently solved
* Macroscale BVP
* Microscale BVP
— Representative Volume Elements (RVE) are extracted from material microstructure
— An appropriate boundary condition

— Separation of lengthscales 1~ > Ieve > Lnicro

@ Extraction of a RVE
Macroscale

Material
response

A

BVP

Conventional FE2 scheme
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Introduction

 FE? for microstructured materials with strain
localization at the microscale

: . o | Stress
— Homogenized stress/strain behavior involves . f
. 0SS O
softening part uniqueness
— Scale separation assumption can not be satisfied
Strain
) _ S ) locaNzed
— Homogenized properties are not objective with
respect to micro-sample sizes micre“samp
Homogenous iZe increases
solution
- Solution: FE? with enhanced discontinuity Strain

(continuous-discontinuous FE?)

— Macroscale cohesive crack is inserted after onset
of microscopic strain localization

— Cohesive law is extracted from microscale BVP
(Nguyen V.-P. et al. CMAME 2010, Coenen E. et al. IMPS 2012)
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Computational strategy

« FE? with enhanced discontinuity based on Discontinuous-Galerkin/ Extrinsic
cohesive zone model (DG/ECZM) formulation
— Failure is detected at interface elements

— Prior to the microscopic strain localization:
« FEZ2based on DG formulation (Nguyen V.-D. et al. CMAME 2013)
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: At the macroscale
Homogenized bulk law Homogenized interface law
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Computational strategy

« FE? with enhanced discontinuity based on Discontinuous-Galerkin/ Extrinsic
cohesive zone model (DG/ECZM) formulation
— Failure is detected at interface elements
— Prior to the microscopic strain localization:
« FEZ?based on DG formulation (Nguyen V.-D. et al. CMAME 2013)
— After the onset of microscopic strain localization:
« FE?based on DG/ECZM formulation

— Cohesive crack is inserted after onset of microscopic localization
— Extrinsic cohesive law is extracted from microscopic damage
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Cohesive jump

At the macroscale
Homogenized bulk law Homogenized cohesive law

CM3 July 2016 WCCM Xl & APCOM VI 5 S




Computational strategy

« FE? with enhanced discontinuity based on Discontinuous-Galerkin/ Extrinsic
cohesive zone model (DG/ECZM) formulation

— Falilure is detected at interface elements

— Prior to the microscopic strain localization:
« FEZbased on DG formulation (Nguyen V.-D. et al. CMAME 2013)

— After the onset of microscopic strain localization:
« FE?based on DG/ECZM formulation
— Cohesive crack is inserted after onset of microscopic localization
— Extrinsic cohesive law is extracted from microscopic damage
— Advantages

« Same discontinuous polynomial approximations are considered for the test and trial
functions

» Mesh topology does not change during simulations

» Microscopic BVPs at bulk and interface integration points are inserted from the
beginning of simulations

* Cohesive normal is known
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Macroscopic hybrid DG/CZM formulation

« Strong form formulated in terms of the first Piola Kirchhoff stress

=9, on dpB
Py -Vo+B=0onBy, & {“M i 01 9D50

PM : NMr = T?Mf on aNB(]

« Weak form obtained by applying integration by parts on each element {2

dnBo / (
PM-VQ—I—Bo)-(SuAdeZO
On Qg w f ; 0
N a \
_ N ()I'QO Z/G_PM3(5UM®VO) dV+Z aﬂe(sUM’-PM-NMfdA—I—
dpB, X X AL = Joag
+ /
p Q5 N 125 ;/QSBo-c?uMdV:O
e
Q 9,08 l
/ P (Sun ® Vo) dV+/ [un] - Tag dA =
BO 81B0
Jump operator [e] = et — e~ B oy 0 s
Mean operator (e) = % (ot +o7) /Bo 0ot EV faNBo h O
Ny = N
" Tar = (Py) - Ny

(Noels L. & Radovitzky R. IJINME 2006)
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Macroscopic hybrid DG/CZM formulation

* Prior to the onset of microscopic localization
— Displacement continuity enforced by DG interface terms

(Noels L. & Radovitzky R. IJINME 2006)

Bulk term —— B, Py ouy @ VodV +

Interface consistency term —> Jj, B, [[ |

HUM]] . <L?\/I : (5UM 0% V0)> - N dA

Interface compatibility term——— 8, Bo

. h -
Interface stability term—— /- [unr]) - S™ - [oun] dA

T?M-(suMdA+/ By - duy dV

External force terms—> /5. 5, Bo

CM3 July 2016 WCCM XII & APCOM VI 9 S



Macroscopic hybrid DG/CZM formulation

« After the onset of microscopic localization

— The equality between the homogenized cohesive jump and the macroscopic
displacement jump is enforced by DG interface terms

(Truster T.J. & Masud A. Comp. Mech. 2013,
Hansbo P. & Salomonsson K. FEAD 2016 )

Bulk term ——> Py :duy @ VodV +
By

Interface consistency term—> / T - [dun] dA +

Interface compatibility term ———> / - LY, : 5uM®Vo> N dA
91 Bo
Interface stability term ——> /- - [[6uar] = (S« (dup ® Vo))] dA
0

_ 0
External force terms—> = T - oup dA +/ By - dups dV
aN-BO BO

— Homogenized extrinsic cohesive law from microscopic BVP
« Cohesive jump: Ay = Ay ((Far), [uar])

- Cohesive traction: Ty = Ty ((Far), [un])
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Microscopic implicit non-local damage formulation

« Strong form P, -Vy=0
B B on VU
¢—cAp=¢
P, =(1-D)P,
— Microscopic constitutive laws D =D (¢, F,,,Q)

» Active damage zone
— Does not magnify with the microscopic volume element size
— Has a constant width related to the parameter €

& VP ={XeVy|4>0and D>0} V&=V \V”

~
gP = V_OD
’ Vo (Nguyen V.-P. et al. CMAME 2010)

F
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Microscopic implicit non-local damage formulation

 Macro-micro transition

Vo
(Coenen E. et al. IMPS 2012)

1
Far = (Far) + Bur [un] @ Nay = —/ F,,dV
Vo

— Njsis known as the normal of interface elements

« Hill- Mandel principle 1
Py 0F = —/ P,, :0F,, dV
Vo Jv,
* Micro-macro transition ] op
M % /VO m M OF ar

— Cohesive traction T =Py - Ny

. : . o 2
— Onset of microscopic localization 1IN €1g (NM “ Lipg - NM) <0
— Prior to the onset of microscopic localization A =0

— After the onset of microscopic localization = extract cohesive law
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Extraction cohesive law from microscopic localization

« Homogenized cohesive jump (Nguyen V.-P. et al. CMAME 2010)

— Variational form

1

SA Ny = l(5FD N 5FD — _D SF,, dV Average band width
Voo Jvp [~ BP L,

— Integration form

|

FDO
Value at the

failure onset
VP ={X e Vo |%>0and D >0} Vo —Vo\Vo

Vo’

p_ Yo
« Macro-micro transition b= Vo

(6Fu) + By [dum] @ Ny = (1= BP) 6F%; + BY6FY;
= (1-8")Fy, +£5AM®NM

{(5FM) — (1 —BP) 6FE,

1
D E
o Jv

1
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Homogenization-based multi-scale analysis

e Two-scale concurrent scheme
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Homogenization-based multi-scale analysis

* First result: homogenized extrinsic cohesive law

— Pure opening mode |_1 +X 0 O'I
Fu = 0 1 0
Lo 0 1

— RVE geometries

RVE 1 RVE 2 RVE 3

— Damage pattern
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Homogenization-based multi-scale analysis

* First result: homogenized extrinsic cohesive law
— Pure opening mode

Fu =

o

[1+)\ (1) 8]
J

— Objective homogenized extrinsic cohesive law
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Homogenization-based multi-scale analysis

* First result: homogenized extrinsic cohesive law

— Mixed mode [1 LN 0 O-I
Fu=1 2 1 0
[ 0 0 1J

— Homogenized extrinsic cohesive law
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Conclusions

This proposed FE? scheme is based on the DG/ECZM framework
— Extrinsic cohesive law
— Cohesive normal is known

Both bulk and interface constitutive relations are obtained from microscopic
analyses at finite strains

The equality between the cohesive jump and the displacement jump is ensured
by having recourse to the DG formulation

The triaxiality effect during the failure process is automatically accounted for
since both the macroscopic deformation gradient and macroscopic
displacement jump are used to formulation the microscopic BVP

Future works
— Two-scale simulations
— Application to composites by incorporate matrix damage with matrix-fiber decohesion
— Validation by experiments
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Thank you for your attention !
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