
5.	THE ARCTIC—J. Richter-Menge and J. Mathis, Eds.
a.	 Introduction—J. Richter-Menge and J. Mathis

The Arctic chapter describes a range of observa-
tions of essential climate variables (ECV; Bojinski 
et al. 2014) and other physical environmental pa-
rameters, encompassing the atmosphere, ocean, and 
land in the Arctic and subarctic. As in previous years, 
the 2015 report illustrates that although there are 
regional and seasonal variations in the state of the 
Arctic environmental system, it continues to respond 
to long-term upward trends in air temperature. Over 
Arctic landmasses, the rate of warming is more than 
twice that of low and midlatitude regions.

In 2015, the average annual surface air tempera-
ture anomaly over land north of 60°N was +1.2°C, 
relative to the 1981–2010 base period. This ties the 
recent years of 2007 and 2011 for the highest value 
in the temperature record starting in 1900 and repre-
sents a 2.8°C increase since the beginning of the 20th 
century. Evidence of strong connections between the 
Arctic and midlatitude regions occurred from 1) No-
vember 2014 through June 2015, when anomalously 
warm conditions in the Pacific Arctic region were 
associated with southerly air f low into and across 
Alaska, and 2) February through April 2015, when 
anomalously cold conditions from northeastern 
North America to southwest Greenland were associ-
ated with northerly air flow.

There is clear evidence of linkages among the 
various components of the Arctic system. Under 
the influence of persistent warming temperatures, 
the Arctic sea ice cover is diminishing in extent and 
thickness. The lowest maximum sea ice extent in the 
37-year satellite record occurred on 25 February 2015, 
at 7% below the average for 1981–2010. This date of 
occurrence was the second earliest in the record and 
15 days earlier than the average date of 12 March. 
Minimum sea ice extent in September 2015 was 29% 
less than the 1981–2010 average and the fourth lowest 
value in the satellite record. In February and March, 
the oldest ice (>4 years) and first-year ice made up 3% 
and 70%, respectively, of the pack ice compared to 
values of 20% and 35%, respectively, in 1985.

As the extent of sea ice retreat in the summer 
continues to increase, allowing previously ice-covered 
water to be exposed to more solar radiation, sea sur-
face temperature (SST) and upper ocean temperatures 
are increasing throughout much of the Arctic Ocean 
and adjacent seas. The Chukchi Sea northwest of 
Alaska and eastern Baffin Bay off west Greenland 
have the largest warming trends: ~0.5°C per decade 
since 1982. In 2015, SST was up to 4°C higher than 

the 1982–2010 average in eastern Baffin Bay and the 
Kara Sea north of central Eurasia. 

The impact of sea ice retreat and warming ocean 
temperatures on the ecosystem is well demonstrated 
by changes in the behavior of walrus and fish com-
munities. In the Pacific Arctic, vast walrus herds are 
now hauling out on land rather than on sea ice as 
the ice retreats far to the north over the deep Arctic 
Ocean, raising concern about the energetics of fe-
males and young animals. Warming trends in water 
temperatures in the Barents Sea, which started in the 
late 1990s, are linked to a community-wide shift in 
fish populations: boreal communities are now found 
farther north and the local Arctic (cold-water affinity) 
community has been almost pushed out of the area.

Ice on land, including glaciers and ice caps outside 
Greenland (Arctic Canada, Alaska, Northern Scan-
dinavia, Svalbard, and Iceland) and the Greenland 
Ice Sheet itself, continues to lose mass. In 2015, the 
Greenland Ice Sheet, with the capacity to contribute 
~7 m to sea level rise, experienced melting over more 
than 50% of the ice sheet for the first time since 
the exceptional melting of 2012 and exceeded the 
1981–2010 average on 50 of 92 days (54%). Reflecting 
the pattern of ice melt, which is driven by the pattern 
of surface air temperature anomalies, the average 
albedo in 2015 was below the 2000–09 average in 
northwest Greenland and above average in southwest 
Greenland. 

Despite above-average snow cover extent (SCE) in 
April, Arctic SCE anomalies in May and June 2015 
were below the 1981–2010 average, a continuation 
of consistent early spring snowmelt during the past 
decade. June SCE in both the North American and 
Eurasian sectors of the Arctic was the second lowest 
in the satellite record (1967–present). The rate of June 
SCE reductions since 1979 (the start of the passive 
microwave satellite era) is 18% per decade. 

In 2014, the most recent year with complete data, 
the combined discharge of the eight largest Arctic 
rivers [2487 km3 from Eurasia (Pechora, S. Dvina, 
Ob’, Yenisey, Lena, and Kolyma) and North America 
(Yukon and Mackenzie)] was 10% greater than the 
average discharge during 1980–89. Since 1976, dis-
charge of the Eurasian and North American rivers 
has increased 3.1% and 2.6% per decade, respectively.  

Regional variability in permafrost temperature re-
cords indicates more substantial permafrost warming 
since 2000 in higher latitudes than in the subarctic, in 
agreement with the pattern of average air temperature 
anomalies. In 2015, record high temperatures at 20-m 
depth were measured at all permafrost observatories 
on the North Slope of Alaska, increasing between 
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0.21°C and 0.66°C decade−1 since 2000. Permafrost 
warming in northernmost Alaska exemplifies what 
is happening to permafrost on a pan-Arctic scale.

Arctic cloud cover variability significantly influ-
ences ultraviolet index (UVI) anomaly patterns. 
Reflecting this influence, monthly average noontime 
UVIs for March 2015 were below the 2005–14 means 
in a belt stretching from the Greenland Sea and 
Iceland in the east to Hudson Bay and the Canadian 
Arctic Archipelago in the west. This region roughly 
agrees with the regions where the atmospheric total 
ozone columns (TOC) were abnormally high in 
March 2015. At the pan-Arctic scale, the minimum 
TOC in March was 389 Dobson Units (DU), 17 DU 
(5%) above the average of 372 DU for the period 
1979–2014 and 23 DU (6%) above the average for the 
past decade (2000–14).

This overview alone refers to a number of differ-
ent periods of observation for which average values 
and departures from average (anomalies) have been 
calculated. For the World Meteorological Organiza-
tion, and national agencies such as NOAA, 1981–2010 
is the current standard reference period for calculat-
ing climate normals (averages) and anomalies. In 
this report, the current standard reference period 
is used when possible, but it cannot be used for all 
the variables described; some organizations choose 
not to use 1981–2010 and many observational re-
cords postdate 1981. The use of different periods to 
describe the state of different elements of the Arctic 
environmental system is unavoidable, but it does not 
change the fact that change is occurring throughout 
the Arctic environmental system.

b.	 Air temperature—J. Overland, E. Hanna, I. Hanssen-Bauer,  
S.-J. Kim, J. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman
Arctic air temperatures are both an indicator and 

a driver of regional and global changes. Although 
there are year-to-year and regional differences in 
air temperatures due to natural variability, the mag-
nitude and Arctic-wide character of the long-term 
temperature increase are major indicators of global 
warming (Overland 2009).

The mean annual surface air temperature anomaly 
for 2015 for land stations north of 60°N was +1.2°C, 
relative to the 1981–2010 mean value (Fig. 5.1). This 
ties the recent years of 2007 and 2011 for the highest 
value in the record starting in 1900. Currently, the 
Arctic is warming at more than twice the rate of lower 
latitudes (Fig. 5.1).

The greater rate of Arctic temperature increase 
compared to the global increase is referred to as Arctic 
amplification. Mechanisms for Arctic amplification 

include reduced summer albedo due to sea ice and 
snow cover loss, the decrease of total cloudiness in 
summer and an increase in winter, and the additional 
heat generated by increased sea ice free ocean areas 
that are maintained later into the autumn (Serreze 
and Barry 2011; Makshtas et al. 2011). Arctic am-
plification is also enhanced because radiational loss 
of heat from the top of the atmosphere is less in the 
Arctic than in the subtropics (Pithan and Mauritsen 
2014).

Although there is an Arctic-wide long-term pat-
tern of temperature increases, regional differences 
can be manifest in any given season based on natural 
variability of the atmospheric circulation (Overland 
et al. 2011; Kug et al. 2015).

Seasonal air temperature anomalies are described 
in Fig. 5.2 for winter [January–March (JFM)], spring 
[April–June (AMJ)], summer [July–September (JAS)], 
and autumn [October–December (OND)] of 2015. All 
seasons show extensive positive temperature anoma-
lies across the central Arctic with many regional 
seasonal temperature anomalies greater than +3°C, 
relative to a 1981–2010 base period. 

Warm temperature anomalies in winter 2015 ex-
tended across the Arctic, from the Pacific sector to the 
Atlantic sector (Fig. 5.2a). The warmest temperature 
anomalies were centered on Alaska and far eastern 
Siberia, including the Chukchi and East Siberian 
Seas. In Svalbard, in the Atlantic sector northeast of 
Greenland, winter temperatures were typically 2°C 
above the 1981–2010 average. In contrast, cold (nega-
tive) temperature anomalies of −2° to −3°C extended 
from southwest Greenland to central Canada and into 
the eastern United States. 

A broad swath of warm temperature anomalies 
continued to stretch across the Arctic in spring 

Fig. 5.1. Arctic (land stations north of 60°N) and 
global mean annual land surface air temperature (SAT) 
anomalies (in °C) for the period 1900–2015 relative to 
the 1981–2010 mean value. Note that there were few 
stations in the Arctic, particularly in northern Canada, 
before 1940. (Source: CRUTEM4.)
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2015, with a continuing warm anomaly over Alaska 
(Fig. 5.2b). However, unlike the winter pattern 
(Fig. 5.2a), spring saw a shift to a very warm anomaly 
(+4°C) over central Eurasia. A significant cold anom-
aly (−3°C) was centered over Greenland. In contrast to 
Greenland, spring temperatures at the weather station 
in Svalbard were typically 2°C above the 1981–2010 
average, as Svalbard was located on the margin of the 
broad swath of positive temperature anomalies that 
extended from Alaska to Eurasia.

A warm temperature anomaly over much of the 
Arctic Ocean, with the exception of a moderately cold 
anomaly over the Beaufort Sea north of Alaska, char-
acterized summer 2015 (Fig. 5.2c). Particularly cold 
anomalies occurred over western Eurasia. As noted 
in section 5f, a new record August low temperature of 
−39.6°C occurred on 28 August at Summit (elevation 
3216 m in the center of the ice sheet), while summer 
temperatures measured at most coastal weather sta-
tions were above average (Tedesco et al. 2015). Similar 
to coastal Greenland locations, at the Svalbard weath-
er station the average temperature was 1°–2°C above 
the 1981–2010 average, the highest JAS average ever 
recorded in the composite Longyearbyen–Svalbard 
Airport record that dates to 1898 (Nordli et al. 2014).

In autumn, particularly warm air temperature 
anomalies were seen in the subarctic regions of the 
Barents and Bering Seas (Fig. 5.2d). While the central 
Arctic remained relatively warm, cold anomalies 
were seen in northeastern North America similar 
to winter 2015. A difference, however, is that central 
Asia was also relatively cold in autumn compared to 
the warmer previous winter.

Both winter and autumn 2015 illustrate extensive 
interaction of large-scale weather systems between 
the Arctic and midlatitudes. The anomalously warm 
temperatures across Alaska in winter and spring 
2015 (Fig. 5.2a,b) extend a pattern that began during 
autumn 2014. The persistent positive (warm) near-
surface air temperature anomalies in Alaska and 
extending into the Chukchi and Beaufort Seas were 
associated with warm sea surface temperatures in the 
Gulf of Alaska and a pattern of geopotential height 
anomalies characterized by higher values along the 
Pacific Northwest coast of North America and lower 
values farther offshore (Fig. 5.3a). Consequently, 
warm air over the northeast Pacific Ocean was ad-
vected by southerly winds into and across Alaska, 
contributing to high mass loss on glaciers (see section 
5f). Associated with the southerly winds, a downslope 
component of the wind on the north side of the Alaska 
Range and into Interior Alaska caused dry conditions 
and reinforced high temperatures. The warm and dry 
conditions in Interior Alaska during May and June 
contributed to the second worst fire season on record 
for those months, eclipsed only by 2004. 

Fig. 5.2. 2015 Seasonal anomaly patterns for near- 
surface air temperatures (°C) relative to the baseline 
period 1981–2010 in (a) winter, (b) spring, (c) summer, 
and (d) autumn. Temperatures are from somewhat 
above the surface layer (at 925 mb level) to empha-
size large spatial patterns rather than local features. 
(Source: NOAA/ESRL.)

Fig. 5.3. (a) Large geopotential height anomalies over 
western and eastern North America and continuing 
into the North Atlantic sector in winter 2015. (b) 
Negative geopotential height anomalies over the 
North Atlantic and Bering Sea sectors in autumn 2015. 
The arrows indicate anomalous warm (red) and cold 
(blue) air flow generated as a result of these anomaly 
patterns.
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In contrast to the warm temperature anomalies in 
winter in Alaska (Fig. 5.2a) due to warm, southerly air 
flow (Fig. 5.3a), the cold anomalies extending from 
eastern Canada to southwest Greenland (Fig. 5.2a) 
were associated with strong northwesterly air flow. 
These cold anomalies extended into early spring. The 
potential source of these relatively cold temperatures 
is illustrated by the extensive winter (JFM) negative 
geopotential height anomaly pattern (Fig. 5.3a) that 
shows high values over northwestern North America 
and low values over eastern North America, Green-
land, and across the central Arctic Ocean to central 
Eurasia. Northwesterly winds on the west side of the 
trough between the two height centers channeled 
cold air southward from the source region in the 
central Arctic into northeastern North America. 
This geopotential height anomaly pattern may also 
explain the above-average winter air temperatures 
in Svalbard, which were associated with warm air 
advection across western Eurasia and into the central 
Arctic Ocean (Figs. 5.2a,b).

Autumn 2015 was noted for  large active low pres-
sure systems in the North Atlantic and Bering Sea 
(Fig 5.3b). These low height anomaly patterns with 
southerly wind components to their east kept the 
Chukchi and Barents Seas relatively warm and sea 
ice free well into the autumn season. 

c.	 Sea ice cover—D. Perovich, W. Meier, M. Tschudi, S. Farrell,  
S. Gerland, and S. Hendricks 
Three key variables are used to describe the state 

of the ice cover: the ice extent, the age of the ice, and 
the ice thickness. Sea ice extent is used as the basic 
description of the state of Arctic sea ice cover. Satel-
lite-based passive microwave instruments have been 
used to determine sea ice extent since 1979. There are 
two months each year that are of particular interest: 
September, at the end of summer, when the ice reaches 
its annual minimum extent, and March, at the end of 
winter, when the ice typically reaches its maximum 
extent. Maps of monthly average ice extents in March 
2015 and September 2015 are shown in Fig. 5.4. 

Based on estimates produced by the National Snow 
and Ice Data Center (NSIDC), the 2015 sea ice cover 
reached its maximum extent on 25 February, at a 
value of 14.54 million km2. This was 7% below the 
1981–2010 average and the lowest maximum value 
in the satellite record. Also notable, the maximum 
extent occurred 15 days earlier than the 1981–2010 
average (12 March) and was the second earliest of 
the satellite record. The annual minimum extent of 
4.41 million km2 was reached on 11 September. This 
was substantially higher (30%) than the record mini-

mum of 3.39 million km2 set in 2012. However, the 
2015 summer minimum extent was still 1.81 million 
km2 (29%) less than the 1981–2010 average minimum 
ice extent and 0.62 million km2 (12%) less than the 
2014 minimum. 

Sea ice extent has decreasing trends in all months 
and nearly all regions (the exception being the Bering 
Sea during winter). In 2015, the largest losses were in 
the eastern Arctic in regions of warm air temperature 
anomalies in spring and summer (section 5b, Fig. 5.2). 
The September monthly average decline for the entire 
Arctic Ocean is now −13.4% decade−1 relative to the 
1981–2010 average (Fig. 5.5). The trend is smaller dur-

Fig. 5.4. Average sea ice extent in (a) Mar and (b) Sep 
2015 illustrate the respective winter maximum and 
summer minimum extents. The magenta line indicates 
the median ice extents in Mar and Sep, respectively, 
during the period 1981–2010. (Source: NSIDC.) 

Fig. 5.5. Time series of ice extent anomalies in Mar (the 
month of maximum ice extent) and Sep (the month 
of minimum ice extent). The anomaly value for each 
year is the difference (in %) in ice extent relative to 
the mean values for the period 1981–2010. The black 
and red lines are least squares linear regression lines. 
Both trends are significant at the 99% confidence level.
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ing March (−2.6% decade−1) but is still a statistically 
significant rate of decrease in sea ice extent.

Prior to 2007, there had not been a March to Sep-
tember loss of more than 10 million km2 of ice in the 
record, but now such large losses are not unusual. 
More typical of recent years, 10.13 million km2 of ice 
was lost between the March maximum and Septem-
ber minimum extent in 2015. 

The age of sea ice serves as an indicator for ice 
physical properties, including surface roughness, melt 
pond coverage, and thickness. Older ice tends to be 
thicker and thus more resilient to changes in atmo-
spheric and oceanic forcing than younger ice. The age 
of the ice is estimated using satellite observations and 
drifting buoy records to track ice parcels over several 
years (Tschudi et al. 2010; Maslanik et al. 2011). This 
method has been used to provide a record of the age 
of the ice since the early 1980s (Tschudi et al. 2015).

The oldest ice (>4 years old) 
continues to make up a small 
fraction of the Arctic ice pack in 
March, when the sea ice extent has 
been at its maximum in most years 
of the satellite record (Figs. 5.6a,b). 
In 1985, 20% of the ice pack was >4 
years old, but in March 2015, this 
ice category only constituted 3% of 
the ice pack. Furthermore, we note 
that first-year ice now dominates 
the ice cover, comprising ~70% of 
the March 2015 ice pack, compared 
to about 50% in the 1980s. Given 
that older ice tends to be thicker, 
the sea ice cover has transformed 
from a strong, thick pack in the 
1980s to a more fragile, thin, and 
younger pack in recent years. The 
thinner, younger ice is more vul-
nerable to melting out in the sum-
mer, resulting in lower minimum 
ice extents. The distribution of ice 
age in March 2015 was similar to 
that in March 2014 (Fig. 5.6a).

Most of the oldest ice accu-
mulates along the coast of North 
Greenland and the Queen Eliza-
beth Islands of the Canadian Arc-
tic Archipelago, and much of this 
ice has resided in this area for sev-
eral years (Fig. 5.6b). In 2015, as in 
most years, ice transport patterns 
resulted in the movement of old 
ice from this area into the Beaufort 

Sea. The lack of ice older than one year in the east-
ern Arctic (on the Eurasian side of the Arctic basin) 
foreshadows its susceptibility to melt out in summer. 
The ice in the southern Beaufort and Chukchi Seas 
has also melted completely in the past few summers, 
with even the oldest ice not surviving the season.

Observations of sea ice thickness and volume 
from multiple sources have revealed the continued 
decline of the Arctic sea ice pack over the last decade 
(Kwok and Rothrock 2009; Laxon et al. 2013; Kwok 
and Cunningham 2015). Figure 5.6c shows ice thick-
nesses derived from CryoSat-2 satellite results and 
IceBridge aircraft observations in March–April 2015. 
The oldest ice north of Greenland and the Canadian 
Arctic Archipelago remains thicker than 3 m. There 
is a strong gradient to thinner, seasonal ice in the 
Canada basin and the eastern Arctic Ocean, where 
ice is 1–2 m thick. 

Fig. 5.6. (a) Time series of sea ice age in Mar for 1985–present, (b) 
sea ice age in Mar 2015, and (c) sea ice thickness derived from ESA 
CryoSat-2 (background map) and NASA Operation IceBridge mea-
surements (color coded lines) for Mar/Apr 2015.
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SIDEBAR 5.1: WALRUSES IN A TIME OF CLIMATE CHANGE— 
K. M. KOVACS, P. LEMONS, AND C. LYDERSEN

Climate change-induced alterations in Arc-
tic ecosystems are having impacts at all trophic 
levels, which are already being described as 
“transformative” ( Johannessen and Miles 
2011). However, it remains a challenge to pre-
dict impacts in terms of population trends of 
even highly visible, top trophic animals on mul-
tidecadal scales, based on changes occurring in 
primary physical features that determine habi-
tat suitability. For example, sea ice declines are 
clearly a major threat to ice-associated marine 
mammals (e.g., Kovacs et al. 2012; Laidre et 
al. 2015), but documented regional patterns 
in sea ice losses are not necessarily reflected 
in the trajectories of ice-dependent marine 
mammal populations on a regional basis. In this 
regard, walruses (Odobenus rosmarus) make an 
interesting case study. 

Walruses of both subspecies, O. r. divergens 
in the North Pacific Arctic and O. r. rosmarus 
in the North Atlantic Arctic, mate along ice 
edges in the drifting pack ice during winter 
and give birth on sea ice in the late spring. 
Both subspecies use sea ice extensively as a 
haul-out platform throughout much of the 
year if it is available close enough to foraging 
areas. This habitat also provides shelter from 
storms and protection from some predators. Despite 
these shared critical links to sea ice, the population 
trajectories for the two subspecies do not consistently 
reflect the relative patterns of sea ice losses in the two 
broad regions occupied by the two subspecies. 

The latest research indicates that the Pacific walrus 
population in the Bering and Chukchi Seas likely declined 
from about 1980 to 2000 (Taylor and Udevitz 2015). Prior 
to this time, subsistence harvest restrictions had allowed 
this population to recover from earlier overexploitation 
(Fay et al. 1989) to a level that likely approached the car-
rying capacity of the environment (e.g., Hills and Gilbert 
1994). But, population models suggest that a subsequent 
decline of approximately 50% took place in the Pacific 
population (Taylor and Udevitz 2015), which was likely 
initially stimulated by changes in vital rates (e.g., birth 
rates, calf survivorship) within the population. This de-
cline has almost certainly been exacerbated by declines 
in sea ice in the region (Fig. SB5.1), associated with global 
climate change (Taylor and Udevitz 2015). Hypothesized 
mechanisms include: (1) the retreat of sea ice to a position 
over the deep Arctic Ocean basin, forcing walruses to use 

land-based haulouts where trampling increases mortality 
of young animals (Fischbach et al. 2009; Udevitz et al. 2012) 
and (2) the decline in sea ice reducing walruses’ access to 
prey, which could impact the adult female body condition, 
ultimately reducing calf survival and recruitment (Jay et al. 
2011; Taylor and Udevitz 2015). The use of land-based 
haulout areas is not novel for Pacific walruses, but females 
with dependent young typically utilize sea ice for hauling 
out (Fay 1982), which allows them to avoid particularly 
large land-based groups where crowding and trampling 
events can result in high calf mortality. A lack of sea ice 
over the shelf in summer in the Bering and Chukchi Seas 
is already resulting in increased use of coastlines and is-
lands by females with calves, which has in turn resulted in 
significant calf mortalities in recent years (Fishbach et al. 
2009). Additionally, there is ongoing concern about the 
impacts of declining sea ice on the future energetics of 
females and young animals. These conditions require the 
animals to take significantly longer feeding trips between 
the coastal haul outs and offshore areas with high prey 
abundance (180 km one-way), rather than utilizing nearby 
ice edges for resting as they did in the past. 

Fig. SB5.1. Regional comparison of trends in sea ice (length of 
the summer season – number of days less coverage decade–1) 
and walrus stocks according to Laidre et al. (2015) and expert 
opinion for Pacific (purple) and Atlantic walrus (red) by region. 
Stocks are identified by black boundary lines. 
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d.	 Sea surface temperature—M.-L . Timmermans and  
A. Proshutinsky
Summer sea surface temperatures in the Arctic 

Ocean are set by absorption of solar radiation into the 
surface layer. In the Barents and Chukchi Seas, there 
is an additional contribution from advection of warm 
water from the North Atlantic and Pacific Oceans, 
respectively. Solar warming of the ocean surface layer 
is influenced by the distribution of sea ice (with more 
solar warming in ice-free regions), cloud cover, water 
color, and upper-ocean stratification. In turn, warmer 
SSTs can drive intensified cyclonic activity; cyclones 
propagating in marginal ice zones are associated with 
large ocean-to-atmosphere heat fluxes in ice-free re-
gions (e.g., Inoue and Hori 2011). Here, August SSTs 
are reported, which are an appropriate representation 
of Arctic Ocean summer SSTs and are not affected by 
the cooling and subsequent sea ice growth that takes 
place in the latter half of September. SST data are from 
the NOAA Optimum Interpolation (OI) SST Version 
2 product, which is a blend of in situ and satellite 
measurements (Reynolds et al. 2002, 2007; www.esrl 
.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html).

Mean SSTs in August 2015 in ice-free regions 
ranged from ~0°C in some places to around +7°C 
to +8°C in the Chukchi, Barents, and Kara Seas and 
eastern Baffin Bay off the west coast of Greenland 
(Fig. 5.7a). August 2015 SSTs show the same general 

spatial distribution as the August mean for the period 
1982–2010 (Timmermans and Proshutinsky 2015; 
Fig. 5.24b). The August 2015 SST pattern is also simi-
lar to that of recent years, for example 2012 (Fig. 5.7b), 
which was the summer of lowest minimum sea ice 
extent in the satellite record (1979–present).

Most boundary regions and marginal seas of the 
Arctic had anomalously warm SSTs in August 2015 
compared to the 1982–2010 August mean (Fig. 5.7c). 
SSTs in these seas, which are mostly ice free in 
August, are linked to the timing of local sea ice re-
treat; anomalously warm SSTs (up to +3°C relative 
to 1982–2010) in August 2015 in the Beaufort and 
Chukchi Seas were associated with low sea ice extents 
and exposure of surface waters to direct solar heat-
ing (Fig. 5.7c; see also section 5c). The relationship 
between warm SSTs and reduced sea ice is further ap-
parent in a comparison between August 2015 and Au-
gust 2014 SSTs: anomalously warm regions (including 
to the east of Svalbard, where SSTs were up to +3°C 
warmer in 2015) are associated with relatively lower 
sea ice extents in 2015 compared to 2014 (Fig. 5.7d). 
Although SSTs were warmer in general, August 2015 
SSTs were cooler relative to average in some regions, 
for example, along the southern boundaries of the 
Beaufort and East Siberian Seas (Fig. 5.7c), where 
summer air temperatures were also below average 
(see section 5b).

Sea ice losses in the North Atlantic Arctic, in particular 
the Barents Sea region, have been much more extreme 
than in the North Pacific (Fig. SB5.1). But, Atlantic wal-
rus abundance is increasing or stable for all stocks for 
which the trend is known (see Laidre et al. 2015) despite 
reductions in carrying capacity that are almost certainly 
taking place due to the sea ice declines. Concern does 
remain regarding possible overharvesting of several stocks 
with currently unknown trends in Canada/Greenland. 
However, the positive turnarounds that have occurred 
are responses to protective management regimes that 
have been instituted in the early- and mid-1900s (1928 in 
Canada, 1952 in Norway, and 1956 in Russia), and, in the 
case of Greenland, much more recently, with quotas being 
established there in 2006 (see Wiig et al. 2014 for more 
details). Perhaps the most extreme example of walrus 
abundance increasing where environmental conditions 
are deteriorating due to climate change occurs in the 
Svalbard Archipelago. Svalbard is an Arctic hot spot that 
is experiencing dramatic sea ice declines and warming 
ocean and air temperatures, and yet walrus numbers in 

the archipelago are increasing exponentially (Kovacs et 
al. 2014). Walruses in this area were hunted without re-
striction over several hundred years, up until the 1950s. 
When they finally became protected in 1952, there were 
at best a few hundred animals left. Now, after 60 years 
of complete protection from hunting, with some special 
no-go reserve areas, recovery is taking place, despite 
major reductions in sea ice. More females with calves are 
documented during surveys and historically used sites are 
being reoccupied as walruses continue to expand through 
the archipelago. These changes are occurring despite 
the fact that overall carrying capacity of the region for 
walruses is likely declining.

The population trajectories of many walrus stocks 
are currently a result of distant past, or more recent, 
hunting regimes. However, there is little question that 
sea ice declines are going to be a challenge for walruses 
in the future along with other climate change related fac-
tors such as increased shipping and development in the 
north, increased disease and contaminant risks, and ocean 
acidification impacts on the prey of walruses.
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Anomalously warm August 2015 SSTs in eastern 
Baffin Bay were notable, with values as much as 
4°C higher than the 1982–2010 August mean; SSTs 
over the region indicate a general warming trend 
of about 0.5°C decade−1 since 1982 (Fig. 5.8a). Over 
the past two decades, the linear warming trend in 
the surface waters of eastern Baffin Bay has acceler-
ated to about 1°C decade−1 (+0.10°C yr−1). Along the 
boundaries of the Arctic basin, the only marginal seas 
to exhibit statistically significant warming trends are 
the Chukchi and the Kara Seas. Chukchi Sea August 
SSTs are warming at a rate of about +0.5°C decade−1, 
commensurate with declining trends in summer sea 
ice extent in the region. In the Kara Sea, August 2015 
SSTs were also up to 4°C higher than the 1982–2010 
August mean; SSTs in this sea have warmed by about 
+0.3°C decade−1 since 1982. In other marginal seas, 
warm August SST anomalies observed in 2015 are of 
similar magnitude to warm anomalies observed in 

past decades (Timmermans and Proshutinsky 2015, 
their Fig. 5.26a). 

The seasonal evolution of SST in the marginal 
seas exhibited the same general trends and regional 
differences in 2015 (Fig. 5.8b) as for the preceding 
decade. Seasonal warming in the marginal seas 
begins as early as May, and the seasonal cooling 
period begins as early as mid-August, with cooling 
observed through December. The asymmetry in rates 
of seasonal warming and cooling, most notable in the 
Chukchi Sea and East Baffin Bay, suggests a source 
of heat in addition to solar radiation. Advection of 
warm water from the Bering Sea and North Atlantic 
likely inhibits SST cooling (e.g., Carton et al. 2011; 
Chepurin and Carton 2012).

Fig. 5.7. (a) Mean SST (°C) in Aug 2015. White shad-
ing is the Aug 2015 mean sea ice extent. (b) Mean SST 
in Aug 2012. White shading is the Aug 2012 sea ice 
extent. Gray contours in (a) and (b) indicate the 10°C 
SST isotherm. (c) SST anomalies (°C) in Aug 2015 
relative to the Aug mean for the period 1982–2010. 
White shading is the Aug 2015 mean ice extent and 
the black line indicates the median ice edge in Aug for 
the period 1982–2010. (d) SST anomalies (°C) in Aug 
2015 relative to Aug 2014; white shading is the Aug 
2015 mean ice extent and the black line indicates the 
median ice edge for Aug 2014. Sea ice extent and ice 
edge data are from NSIDC.

Fig. 5.8. (a) Time series of area-averaged SST anoma-
lies (°C) for Aug of each year relative to the Aug 
mean for the period 1982–2010 for the Chukchi and 
Kara Seas and eastern Baffin Bay (see Fig. 5.7b). The 
dash-dotted black line shows the linear SST trend for 
the Chukchi Sea (the same warming trend as eastern 
Baffin Bay). Numbers in the legend correspond to lin-
ear trends (with 95% confidence intervals) in °C yr–1. 
(b) SST (°C) in 2014–15 for each of the marginal seas, 
where the OISST V2 weekly product has been used 
in the calculation. For sea ice concentrations greater 
than 50%, the SST product uses a linear relationship 
with sea ice concentration to infer SST; variations 
in freezing temperature as a consequence of salinity 
variations imply that SSTs inferred from sea ice can be 
erroneously cool by as much as 0.2°C, with the highest 
errors in the Canadian sector (see Timmermans and 
Proshutinsky 2015).
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SIDEBAR 5.2: CLIMATE CHANGE IS PUSHING BOREAL FISH  
NORTHWARD TO THE ARCTIC: THE CASE OF THE BARENTS  
SEA—M. FOSSHEIM, R. PRIMICERIO, E. JOHANNESEN, R. B. INGVALDSEN, M. M. ASCHAN, AND A. V. DOLGOV

Under climate warm-
ing, species tend to shift 
their distributions pole-
ward (IPCC 2014). Some 
of the most rapid shifts 
are taking place in the 
Arctic , where warm-
ing is currently twice 
the global average (see 
sect ion 5.b, F ig. 5 .1; 
Hoegh-Guldberg and 
Bruno 2010; Doney et al. 
2012). Poleward shift-
ing marine species have 
been entering the Arctic 
Ocean from both the 
Atlantic and the Pacific 
(Grebmeier et al. 2010; 
Wassmann et al. 2011). 
Boreal (warm-water af-
finity) species of fish have 
shifted extensively northward into the Arctic (Mueter and 
Litzow 2008; Grebmeier et al. 2006; Rand and Logerwell 
2011; Christiansen et al. 2013; Fossheim et al. 2015).

As an example, we present the recent climate-induced 
changes in the fish communities of the Barents Sea, the 
entrance point to the Arctic Ocean from the Atlantic. The 
results are based on a large-scale annual Ecosystem Survey 
that monitors the whole ice-free shelf of the Barents Sea 
in August–September, the season with the least sea ice. 
This cooperative survey between Russia (Knipovich Polar 
Research Institute of Marine Fisheries and Oceanography) 
and Norway (Institute of Marine Research) was initiated 
in 2004. Our focus is on observations for the period 
2004–12, as they have been most thoroughly assessed.

In the Barents Sea, the present warming trend in 
water temperatures started in the late 1990s (Boitsov et 
al. 2012). The late summer temperature at the seafloor 
has increased by almost 1°C during the last decade alone. 
In this region, sub-zero water masses in late summer 
have almost disappeared and the sea ice is retreating. In 
association with this warming, boreal fish species have 
entered the northern parts of the Barents Sea in large 
numbers. The expansions of these fish species have led 
to a community-wide shift: boreal communities are now 
found farther north and the local Arctic (cold-water 
affinity) community has been almost pushed out of the 
area (Fig. SB5.2).

The fish species increasing in the north are large boreal 
fish predators, such as cod (Gadus morhua), beaked redfish 
(Sebastes mentella), and long rough dab (Hippoglossoides pla-
tessoides). These fish species are considered “generalists” 
in that they can use a wide range of habitats and feed on a 
diverse set of prey. As such, they are better able to thrive 
in a changing environment. Their northward expansion is 
likely related to warmer water temperatures and greater 
food availability for these fish species (Fossheim et al. 
2015). For instance, increased primary productivity in the 
previously ice-covered area (Dalpadado et al. 2014) and 
increasing abundance and biomass of Atlantic zooplankton 
in the northern Barents Sea (Dalpadado et al. 2012) likely 
favor boreal over Arctic fish species.

Cod, the most important commercial species, has 
reached a record high population size due to a favorable 
climate and lower fishing pressure (Kjesbu et al. 2014). 
The cod stock in the Barents Sea has not been this high 
since the 1950s. High abundances have also been recorded 
for haddock (Melanogrammus aeglefinus), the other main 
commercial species, and for long rough dab, a common 
and widespread species in the Barents Sea. A poleward 
expansion of cod and haddock and a northeastward dis-
placement of beaked redfish (Sebastes mentella) have been 
documented (Renaud et al. 2012; Hollowed et al. 2013; 
Fossheim et al. 2015).

The Arctic fish community, including various snail-

Fig. SB5.2. Comparison of the fish communities between the beginning of the Ecosys-
tem Survey taken in the Barents Sea in (a) 2004 and (b) 2012, indicates a significant 
change in distribution. The Atlantic (red) and central (yellow) communities (boreal 
fish species) have shifted north and east, taking over areas previously occupied by 
the Arctic (blue) community (arctic fish species). Data are available only for the 
shaded areas. (After Fig. 1 in Fossheim et al. 2015.)
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e.	 Greenland Ice Sheet—M. Tedesco, J. E. Box, J. Cappelen,  
X. Fettweis, K. Hansen, T. Mote, C. J. P. P. Smeets, D. van As,  
R. S. W. van de Wal, I. Velicogna, and J. Wahr
The Greenland Ice Sheet covers an area of 

1.71 million km2. With a volume of 2.85 million 
km3, it is the second largest glacial ice mass on Earth, 
smaller only than the Antarctic ice sheet. The amount 
of freshwater stored in the Greenland Ice Sheet has 
a sea level equivalent of ~7 m. The discharge of the 
ice to the ocean through runoff and iceberg calving 
not only increases sea level, but can also alter the 
ocean thermohaline circulation and global climate 
(Rahmstorf et al. 2015). Moreover, the high albedo 
(reflectivity) of the ice sheet surface (together with 
that of sea ice and snow on land) plays a crucial role 
in the regional surface energy balance (Tedesco et al. 
2011) and the regulation of global air temperatures.

Estimates of the spatial extent of Greenland Ice 
Sheet surface melting (e.g., Mote 2007; Tedesco 2007; 
Tedesco et al. 2013) show that in 2015 (Fig. 5.9a) melt-
ing occurred over more than half of the ice sheet for 
the first time since the exceptional melt events of July 
2012 (Nghiem et al. 2012). The 2015 melt extent ex-
ceeded two standard deviations above the 1981–2010 
average, reaching a maximum of 52% of the ice sheet 
area on 4 July (Fig. 5.9d). By comparison, melt extent 

in 2014 reached a maximum of 39% of the ice sheet 
area and ~90% in 2012. A second period of melting, 
which began in late August, covered between 15% and 
20% of the ice sheet (a mean of ~5% over the same pe-
riod) and lasted until early September. In the summer 
of 2015 (June–August), the number of melting days 
along the southwestern and southeastern margins of 
the ice sheet was close to or below the long-term aver-
age, with maximum negative anomalies (i.e., below 
the 1981–2010 average) of 5–10 days (Fig 5.9a). In 
contrast, the number of melt days in the northeastern, 
western, and northwestern regions was up to 30–40 
days above the 1981–2010 average, setting new records 
in terms of meltwater production and runoff over the 
northwestern regions.

The surface mass balance measured along the 
southwestern portion of the ice sheet at the K-transect 
for September 2014 through September 2015 (van de 
Wal et al. 2005, 2012) was the third least negative 
since the beginning of the record in 1990 (Tedesco et 
al. 2015). This is consistent with the negative melting 
anomalies along the southwestern portion of the ice 
sheet (Fig. 5.9a). At all PROMICE network stations 
(www.promice.dk; Ahlstrøm et al. 2008; van As et 
al. 2011) summer 2015 ablation was low with respect 
to the 2011–15 period of record (Fig. 5.9b), except at 

CONT. SIDEBAR 5.2: CLIMATE CHANGE IS PUSHING BOREAL FISH  
NORTHWARD TO THE ARCTIC: THE CASE OF THE BARENTS  
SEA—M. FOSSHEIM, R. PRIMICERIO, E. JOHANNESEN, R. B. INGVALDSEN, M. M. ASCHAN, AND A. V. DOLGOV

fishes, sculpins, and eel pouts, does not seem to cope 
well with warming water temperatures (Fossheim et al. 
2015). Most of these Arctic fish species are relatively 
small, stationary, and feed on organisms living on the sea 
bottom. These species have a more specialized diet than 
the boreal fish species and are thus more vulnerable to 
climate change (Kortsch et al. 2015). In addition, they 
are adapted to life on the shallow shelf of the Barents 
Sea. Because the central Arctic Ocean is much deeper, 
it is unlikely that these species will move farther north. 
However, they can be found farther to the east on the 
neighboring shelf (e.g., Kara Sea; Fig. SB5.2).

Large fish and marine mammals can move quickly 
over large distances, while other species, such as small 
Arctic fish species and organisms that live on or near the 
seafloor, are more stationary. As a result, two previously 
separate communities are now mixing together (Fossheim 
et al. 2015). The larger fish species from the south will 
compete with the smaller Arctic species for food, and 
even prey on them directly. Thus, the Arctic community is 
being pressured from two sides: the marine environment 

is changing due to rising water temperatures, and new 
competitors and predators are arriving. It is anticipated 
that this could result in the local extinction of some Arctic 
fish species, such as the gelatinous snailfish (Liparis fabricii) 
and even the most abundant Arctic species, the Polar cod 
(Boreogadus saida).

One consequence of the general nature of large boreal 
fish moving into the Arctic is the development of novel 
feeding links between incoming and resident species, ul-
timately changing the configuration of the Arctic marine 
food web (Kortsch et al. 2015). Arctic food webs contain 
fewer feeding links than boreal food webs. As cod and 
other large fish species feeding on many prey move into 
arctic waters, they establish many new links in the Arctic 
food web, which becomes more tightly connected. The 
ecological effects of perturbations will spread faster 
and more widely in a more interconnected arctic food 
web, making it more susceptible to environmental stress 
(Kortsch et al. 2015).
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the most northerly latitudes 
(Kronprins Christian Land, 
KPC, 80°N, 25°W; Thule, 
THU, 76°N, 68°W), where 
melt totals were slightly above 
average. The highest recorded 
melt in 2015, 5.1 m on the Qa-
ssimiut lobe (QAS_L station, 
61°N, 47°W), was just over 
half the record-setting 9.3 m 
at that site in 2010 (Fausto 
et al. 2012).

Consistent with the dis-
tribution of melt anomalies, 
measurements at weather 
stations of the Danish Me-
teorological Institute (DMI; 
Cappelen 2015) during spring 
2015 indicate that summer 
average temperature anoma-
lies (relative to the 1981–2010 
average) were positive at sev-
eral northerly stations around 
the Greenland coastline, with 
values exceeding one stan-
dard deviation at Pituff ik 
(+1.2 °C), Upernavik (+1.2°C) 
and Danmarkshavn (+0.9°C). 
In contrast, temperatures in 
south and southwest Green-
land (e.g.,Paamiut, Narsar-
suaq, Qaqortoq, and Prins 
Christian Sund) were 1.5 
standard deviations below 
the 1981–2010 average, with 
temperature anomalies as 
much as −2.6°C at Narsarsuaq 
(Tedesco et al. 2015). These 
widespread low temperatures 
are consistent with a strong 
negative spring temperature 
anomaly centered over Green-
land (see section 5b, Fig. 5.2b). 
Danmarkshavn also experi-
enced its warmest January on 
record, with a +7.7°C anoma-
ly. A new record August low temperature of −39.6°C 
occurred on 28 August at Summit (3216 m a.s.l.).

The average albedo for the Greenland Ice Sheet 
in summer 2015, derived from data collected by the 
Moderate-resolution Imaging Spectroradiometer 
(MODIS, after Box et al. 2012), was below the 2000–09 
average over the northwestern region and above the 

average in the southwest (Fig. 5.9c), consistent with 
the negative surface mass balance and melting day 
anomalies measured over the same region (Fig. 5.9a). 
The trend of mean summer albedo over the entire 
ice sheet for the period 2000–15 remained negative 
and was estimated to be −5.5% ± 0.4%. In July 2015, 
when extensive melting occurred (Fig. 5.9d), albedo 

Fig. 5.9. (a) Map of the anomaly (with respect to the 1981–2010 average) of the 
number of days when melting was detected in summer 2015 using spaceborne 
passive microwave data. The locations of the stations used for the in situ 
analysis of surface mass balance and temperature are reported on the map 
as black disks (PROMICE) and cyan triangles (K-transect). (b) Summer 2015 
ablation at PROMICE stations with respect to the 2011–15 period of record. 
(c) Greenland Ice Sheet surface albedo anomaly for JJA 2015 relative to the 
average for those months between 2000 and 2009 derived from MODIS data. 
(d) Daily spatial extent of melting from Special Sensor Microwave Imager/
Sounder (SSMIS) as a percentage of the total ice sheet area for all of 2015. 
The 1981–2010 average spatial extent of melting (dashed line) and ±2 std. 
dev. of the mean (shaded) are also plotted for reference.
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averaged over the entire ice sheet was 68%. 
Albedo in July 2015 was as much as 15%–20% 
below average along the northwestern ice sheet 
and along the west coast, where a large increase 
in melting days was observed in 2015. Over the 
entire summer, however, the albedo anomaly 
along the southwestern ice sheet margin coast 
was positive, consistent with a relatively shorter 
melt season and with the presence of summer 
snow accumulation.  

GRACE satellite data (Velicogna et al. 2014) 
are used to estimate monthly changes in the total 
mass of the Greenland Ice Sheet, including mass 
gain due to accumulation and summer losses due 
to runoff and calving (Fig. 5.10). Between the be-
ginning of September 2014 and the beginning of 
September 2015 GRACE recorded a 174 ± 45 Gt 
(Gt ≡ 109 tons) mass loss, versus an average Sep-
tember-to-September loss of 278 ± 35 Gt for the 
2002–15 period. As a comparison, the 2013–14 
September-to-September loss was 236 ± 45 Gt 
(7% of the total loss of ~ 3500 Gt since the beginning 
of the GRACE record in 2002) and that for 2011–12 
was 638 ± 45 Gt (18% of the total loss). The relatively 
modest loss for the 2014–15 period is consistent with 
reduced melting over the southwest portion of the ice 
sheet and increased summer snowfall. 

Glacier front classification in LANDSAT and AS-
TER imagery (after Jensen et al. 2016) reveals that 45 
of the widest and fastest flowing marine-terminating 
glaciers retreated at a slower rate in 2013–15 than in 
the 1999–2012 period (Fig. 5.11). Between the end of 
the 2014 melt season and the end of the 2015 melt 
season, 22 of the 45 glaciers retreated, but the advance 
of 9 relatively wide glaciers resulted in the lowest 

annual net area loss in the 16-year period of obser-
vations (1999–2015), being −16.5 km2 or 7.7 times 
lower than the annual average area change trend of 
−127 km2 yr−1 (Fig. 5.11). Specifically, Petermann Gla-
cier advanced by 0.68 km across a width of 17.35 km, 
and Kangerdlugssuaq Glacier advanced by 1.68 km 
across a width of 6.01 km. 

f.	 Glaciers and ice caps outside Greenland—G. Wolken,  
M. Sharp, L. M Andreassen, A. Arendt, D. Burgess, J. G. Cogley, L. Copland, 
J. Kohler, S. O’Neel, M. Pelto, L. Thomson, and B. Wouters
Mountain glaciers and ice caps cover an area of 

over 400 000 km2 in the Arctic and are a leading 
contributor to global sea level change (Gardner 

et al. 2011, 2013; Jacob et al. 2012). They gain 
mass by snow accumulation and lose mass 
by surface melt runoff, and by iceberg calv-
ing where they terminate in water (ocean or 
lake). The total mass balance (ΔM) is defined 
as the difference between annual snow accu-
mulation and annual mass losses (by iceberg 
calving plus surface melt runoff). Of the 27 
glaciers currently monitored, however, only 
three (Kongsvegen, Hansbreen, and Devon 
Ice Cap NW) lose any mass by iceberg calv-
ing into the ocean. For all glaciers discussed 
here, the climatic mass balance is reported 
(Bclim, the difference between annual snow 
accumulation and annual runoff). Bclim is a 
widely used index of how glaciers respond to 
climate variability and change.

Fig. 5.10. Cumulative change in the total mass (Gt) of the 
Greenland Ice Sheet between Apr 2002 and Sep 2015 estimated 
from GRACE measurements. The square symbols denote Apr 
values for reference.

Fig. 5.11. Cumulative net area change (km2, left y-axis and 
square miles, right y-axis) of 45 of the widest and fastest-
flowing marine-terminating glaciers of the Greenland Ice 
Sheet (Box and Hansen 2015; Jensen et al. 2016). The linear 
regression is dashed.
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Bclim measurements for mass balance year 2014/15 
are available for only 9 of the 26 glaciers that are 
monitored across the Arctic (three each in Alaska and 
Svalbard, and one in Norway), and some of these are 
still provisional. Therefore, we focus on the 2013/14 
Bclim measurements, which are available for 21 gla-
ciers (WGMS 2015b). These glaciers are located in 
Alaska (three), Arctic Canada (four), Iceland (seven), 
Svalbard (three), Norway (three), and Sweden (one; 
Fig. 5.12; Table 5.1). For these glaciers as a group, 
the mean Bclim in 2013/14 was negative. However, 
five glaciers [one each in Arctic Canada (Meighen 
Ice Cap) and Iceland (Dyngjujökull) and three in 
Svalbard (Midre Lovenbreen, Austre Broggerbreen, 
and Kongsvegen)] had positive balances. 

For the Arctic as a whole, 2013/14 was the 17th 
most negative mass balance year on record (the first 
record dates from 1946) and the 12th most negative 
year since 1989 (i.e., the median for the 25-year peri-
od), when annual measurements of at least 20 glaciers 
began. This balance year continues the increasingly 
negative trend of cumulative regional climatic mass 
balances, calculated by summing the annual mean 
mass balances for all glaciers in each reporting re-
gion of the Arctic (Fig. 5.13). For Svalbard, 2013/14 
was among the least negative mass balance years on 
record, and the climatic balances of each of its three 
glaciers were among the 3–9 most positive since 1987. 
Local meteorological observations suggest that the 
positive balances in Svalbard were attributable to high 
winter (October–May) precipitation, especially at low 
elevations, that was followed by a relatively cool sum-
mer (June–August). Melt suppression over Svalbard, 
as well as the Russian Arctic Archipelagos and the 
northernmost islands of Arctic Canada, was likely 
linked to negative 850-hPa air temperature anoma-
lies in June–September. In contrast, in 2013/14 the 
mean measured climatic balance of glaciers in Alaska 
was the fifth most negative since 1966, with Lemon 
Creek and Wolverine glaciers registering their third 
and fourth most negative years on record, respec-
tively. The negative balances of Alaska, Iceland, and 
northern Scandinavia glaciers in 2013/14 were most 
likely linked to melt increases caused by positive air 
temperature anomalies at the 850-hPa level in July–
September that exceeded +2.5°C in northern Norway 
and Sweden (data from NCEP–NCAR reanalysis). 
Indeed, in 2014, many locations in northern Scandi-
navia reported their highest summer air temperatures 
since records began (Overland et al. 2015).

Among the nine glaciers for which 2014/15 Bclim 
measurements have been reported, the balances of 
glaciers in Alaska, Svalbard, and northern Norway 

Fig. 5.12. Locations (green circles) of 27 Arctic glaciers 
with long-term records of annual climatic mass bal-
ance (Bclim). See Table 5.1 for glacier names. Regions 
outlined in yellow are the Randolph Glacier Inventory 
(RGI) regions of the Arctic (Pfeffer et al. 2014). In re-
gions where individual glaciers are located too close 
together to be identifiable on the map, their numbers 
are shown at the edge of the RGI region in which they 
occur. Red shading indicates glaciers and ice caps, 
including ice caps in Greenland outside the ice sheet. 
Yellow shading shows the solution domains for regional 
mass balance estimates for Alaska, Arctic Canada, 
Russian Arctic, and Svalbard derived using gravity data 
from the GRACE satellites (see Fig. 5.3).

Fig. 5.13. Cumulative climatic mass balances (Bclim in 
kg m–2) for glaciers in five regions of the Arctic and 
for the Arctic as a whole (Pan–Arctic). Mean balances 
are calculated for glaciers monitored in each region 
in each year and these means are summed over the 
period of record. Note that the period of monitoring 
varies between regions and that the number and iden-
tity of glaciers monitored in a given region may vary 
between years.
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(Langfjordjøkelen) were negative, while those of 
glaciers in central Norway were near balance (Rund-
vassbreen) or positive (Engabreen). The pattern of 
negative balances in Alaska and Svalbard is also 
captured in time series of regional total stored water 
estimates (Fig. 5.14), derived using GRACE satellite 

gravimetry available since 2003. Annual storage 
changes are proxy for changes in the regional annual 
glacier mass balance (ΔM) for the heavily glacierized 
regions of the Arctic (Luthcke et al. 2013). Measure-
ments of ΔM in 2014/15 for all the glaciers and ice 
caps in Arctic Canada and the Russian Arctic also 

Table 5.1. Measured annual climatic mass balance (Bclim) of glaciers in Alaska, the Canadian Arctic, 
Iceland, Svalbard, and northern Scandinavia for 2013/14 and 2014/15, along with the 1980–2010 mean and 
standard deviation for each glacier (column 3). Mass balance data are from the World Glacier Monitoring 
Service (2015; 2016), with corrections to Svalbard data provided by J. Kohler and to Alaska data provided 
by S. O’Neel, and with updates from the Norwegian Water Resources and Energy Directorate (NVE) 
database. Numbers in column 1 identify glacier locations in Fig. 5.1. Note that 2014/15 results may be 
based upon data collected before the end of the 2015 melt season and may be subject to revision.

Region Glacier 
(Record length, years)

Mean 
Climatic 
Balance 

1980–2010 
(kg m–2 yr–1)

Standard 
Deviation of 

Climatic Mass 
Balance 

 1980–2010  
(kg m–2 yr–1)

Climatic 
Balance 
2013/14  

(kg m–2 yr–1)

Climatic 
Balance 
2014/15  

(kg m–2 yr–1)

Alaska
1 Wolverine (50) −285 1205 −1950 −1130
3 Lemon Creek (63) −584 709 −1825 −2270
2 Gulkana (50) −505 738 −220 −1440
Arctic Canada
7 Devon Ice Cap (54) −153 176 −246
5 Meighen Ice Cap (53) −173 284 +57
4 Melville South Ice Cap (52) −295 369 −159
6 White (52) −239 260 −417
Iceland
8 Langjökull S. Dome (18) −1448 817 −1950
9 Hofsjökull E (24) −602 1009 −990
9 Hofsjökull N (25) −606 787 −950
9 Hofsjökull SW (24) −978 947 −990
14 Köldukvislarjökull (22) −529 738 −887
10 Tungnaarjökull (23) −1170 873 −1535
13 Dyngjujökull (17) −133 912 +170
12 Brúarjökull (22) −367 660 −34
11 Eyjabakkajökull (23) −867 813 −353
Svalbard
17 Midre Lovenbreen (48) −356 305 +30 −450
16 Austre Broggerbreen (49) −469 342 +10 −610
15 Kongsvegen (29) −70 378 +140 −160
18 Hansbreen (26) −431 512 −227
Nortern Scandinavia
20 Engabreen (45) +463 1091 −892 +668
21 Langfjordjøkelen (25) −927 781 −780 −800
22 Marmaglaciaren (23) −430 525
23 Rabots Glaciar (29) −394 560
24 Riukojietna (26) −592 805
25 Storglaciaren (68) −113 698 −890
26 Tarfalaglaciaren (18) −212 1101
27 Rundvassbreen (8) −777 −790 −20
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show a negative mass balance year. The GRACE-
derived time series clearly show a continuation of 
negative trends in ΔM for all measured regions in 
the Arctic. These measurements of Bclim and ΔM are 
consistent with anomalously warm (up to +1.5°C) 
June–August air temperatures over Alaska, Arctic 
Canada, the Russian Arctic, and Svalbard in 2015 
(section 5b), and anomalously cool temperatures in 
northern Scandinavia, particularly in June and July 
(up to −2°C). 

g.	 Terrestrial snow cover—C. Derksen, R. Brown, L. Mudryk, 
and K. Luojus
The Arctic (land areas north of 60°N) is always 

completely snow-covered in winter and almost snow 
free in summer, so the transition seasons of autumn 
and spring are significant when characterizing vari-
ability and change. The timing of spring snowmelt 
is particularly significant because the transition 
from highly reflective snow cover to the low albedo 
of snow-free ground is coupled with increasing so-
lar radiation during the lengthening days of the 
high-latitude spring.  The 2015 spring melt season 
provided continued evidence of 
earlier snowmelt across the ter-
restrial Arctic. There is increased 
awareness of the impact of these 
changes on the Arctic climate sys-
tem, the freshwater budget, other 
components of the cryosphere 
(such as permafrost and associated 
geochemical cycles), and Arctic 
ecosystems (Callaghan et al. 2011). 

Snow cover extent (SCE) anom-
alies (relative to the 1981–2010 ref-
erence period) for the 2015 Arctic 
spring (April, May, June) were 
computed separately for the North 
American and Eurasian sectors 
of the Arctic from the NOAA 
snow chart Climate Data Record, 
maintained at Rutgers University 
(Estilow et al. 2015; http://climate 
.rutgers.edu/snowcover/). Consis-
tent with nearly all spring seasons 
of the past decade, both May and 
June SCE anomalies were strongly 
negative in 2015 (Fig. 5.15); June 
SCE in both the North American 
and Eurasian sectors of the Arctic 
was the second lowest in the snow 
chart record, which extends back 
to 1967.

Fig. 5.14. Cumulative changes in regional total stored 
water for 2003–15 (Gt), derived using GRACE satel-
lite gravimetry. Annual storage changes are proxy for 
changes in the regional annual glacier mass balance 
(ΔM). The estimated uncertainty in regional mass 
changes is 10 Gt yr−1 for the Gulf of Alaska, 8 Gt yr−1 for 
the Canadian Arctic, 8 Gt yr−1 for the Russian Arctic, 
and 4 Gt yr−1 for Svalbard. These errors include the 
formal error of the least squares fit and the uncertain-
ties in the corrections for glacial isostatic adjustment, 
Little Ice Age, and terrestrial hydrology.

Fig. 5.15. Monthly Arctic snow cover extent standardized (and thus unit-
less) anomaly time series (with respect to 1981–2010) from the NOAA 
snow chart Climate Data Record for (a) Apr, (b) May, and (c) Jun 1967–2015 
(solid lines denote 5-yr moving average); (d) % change decade−1 in spring 
snow cover extent for running time series starting in 1979 (1979–98, 
1979–99, 1979–2000, etc.).
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For the fifth time in the past six years (2010–15), 
Arctic SCE in June was below 3 million km2 despite 
never falling below this threshold in the previous 
43 years of the snow chart data record (1967–2008). 
Figure 5.15d shows the changing rate of SCE loss 
across the Arctic since 1998 via calculations over 
running time periods since 1979, the first year of the 
satellite passive microwave record used to track sea 
ice extent. The April and May SCE reductions have 
remained relatively consistent year over year, ranging 
between −1% and −2% decade−1 (April; insignificant 
at 95%) and −3% and −5% per decade−1 (May; sig-
nificant at 99%). A significant rate of June SCE loss 
was identified over the first 20 years (nearly −16% 
for 1979–98) due to rapid reductions in the 1980s, 
which then plateaued due to a period of stable spring 
snow cover during the 1990s. Since 2005, the rate of 
June SCE loss has increased again, reaching almost 
18% decade−1 for the period 1979–2015 (compared 
to the 1981–2010 mean June SCE). Since 2011, the 
rate of June snow cover loss has exceeded the much 
publicized rate of September sea ice loss (section 5c).

There are complex interactions between regional 
variability in the onset of snow cover in the autumn, 
subsequent winter season snow accumulation pat-
terns (which themselves are driven by the complex in-
terplay of temperature and precipitation anomalies), 
and continental-scale spring SCE anomalies (shown 
in Fig. 5.15). Snow cover duration (SCD) departures 
(relative to the 1998–2010 period) derived from the 
NOAA daily Interactive Multi-sensor Snow and Ice 
Mapping System (IMS) snow cover product (Helfrich 
et al. 2007) suggest earlier snow cover onset in the 
autumn over much of the Arctic for the 2014/15 snow 
year (Fig. 5.16a). This is consistent with premelt April 
snow depth anomalies (relative to the 1999–2010 
average), derived from the Canadian Meteorological 
Centre (CMC) daily gridded global snow depth analy-
sis (Brasnett 1999), which were largely positive over 
much of the Arctic land surface (25.1% and 33.7%, 
respectively, for the North American and Eurasian 
sectors of the Arctic). There was a notable east–west 
snow depth gradient across Eurasia in April 2015 
with above-average snow depth in eastern Siberia 
and below-average snow depth across western Siberia 
and northern Europe. The North American Arctic 
was characterized by a more latitudinal gradient of 
deeper-than-normal snow depth north of the bo-
real tree line and shallower-than-normal snow depth 
across the boreal forest. Note that the CMC results 
shown in Figs. 5.17a–c mask out anomalies over high 
elevation areas (in the Canadian Arctic Archipelago, 
Baffin Island, coastal Alaska) known to be affected by 

a bias toward higher winter snow depths since 2006 
due to changes in the resolution of the precipitation 
forcing used as part of the CMC analysis. Strong 
positive surface temperature anomalies over central 
Siberia, Alaska, and the western Canadian Arctic 
in May (which persisted into June; section 5b) were 
associated with rapid reductions in regional snow 
depth reflected in the May and June depth anomalies 
(Figs. 5.17b,c) and earlier than normal snowmelt in 
these regions (Fig. 5.16b), which drove the negative 
continental-scale SCE anomalies in May and June 
(Figs. 5.16b,c). 

Fig. 5.16. Snow cover duration departures (with 
respect to 1998–2010) from the NOAA IMS data 
record for the (a) 2014 autumn season and (b) 2015 
spring season.
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h.	 River discharge—R. M. Holmes, A. I. Shiklomanov, S. E. Tank,  
J. W. McClelland, and M. Tretiakov
River discharge integrates hydrologic processes 

occurring throughout the surrounding landscape. 
Consequently, changes in the discharge of large rivers 
can be a sensitive indicator of widespread changes in 
watersheds (Rawlins et al. 2010; Holmes et al. 2013).  
Changes in river discharge also impact coastal and 
ocean chemistry, biology, and circulation. This inter-
action is particularly strong in the Arctic, given the 
relative volume of river discharge to ocean volume.  
Rivers in this region transport >10% of the global river 
discharge into the Arctic Ocean, which represents 
only ~1% of the global ocean volume (Aagaard and 
Carmack 1989; McClelland et al. 2012).  

In this section, annual river discharge values since 
2011 are presented for the eight largest Arctic rivers, 
and recent observations are compared to a 1980–89 
reference period (the first decade with data from all 
eight rivers). Six of the rivers lie in Eurasia and two 
are in North America. Together, the watersheds of 
these rivers cover 70% of the 16.8 × 106 km2 pan-
Arctic drainage area and, as such, account for the 
majority of riverine freshwater inputs to the Arctic 
Ocean (Fig. 5.18). Discharge data for the six Eurasian 
rivers are analyzed through 2015, whereas data from 
the Yukon and Mackenzie Rivers in North America 
are only available through 2014. Most of these data 
are now available through the Arctic Great Rivers 
Observatory (www.arcticgreatrivers.org). 

A long-term increase in Arctic river discharge 
has been well documented and may be linked to 
increasing precipitation associated with global warm-
ing (Peterson et al. 2002; McClelland et al. 2006; 
Shiklomanov and Lammers 2009; Overeem and 

Syvitski 2010; Rawlins et al. 2010). The long-term 
discharge trend is greatest for rivers of the Eurasian 
Arctic and constitutes the strongest evidence of in-
tensification of the Arctic freshwater cycle (Rawlins 
et al. 2010). 

In 2015, the combined discharge of 2051 km3 for 
the six largest Eurasian Arctic rivers was 15% greater 
than the 1980–89 average (Fig. 5.19; Table 5.2), and 
the peak discharge occurred earlier than the average 
over the same period (Fig. 5.20). This is the fourth 
highest combined discharge value since measure-
ments began in 1936. The four highest values have 

Fig. 5.17. Snow depth anomaly (% of 1999–2010 average) from the CMC snow depth analysis for (a) Apr, (b) 
May, and (c) Jun 2015.

Fig. 5.18.  Map showing the watersheds of the eight riv-
ers featured in this section. The blue dots show the lo-
cation of the discharge monitoring stations and the red 
line shows the boundary of the pan-Arctic watershed.
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all occurred in the past 14 years. Overall, the most 
recent data indicate a continuing long-term increase 
in Eurasian Arctic river discharge, at a rate of 3.5% 
± 2.1% decade−1 since 1976. Looking more closely at 
recent years, Eurasian Arctic river discharge generally 
declined between 2007 and 2012 and then began to 
increase again in 2013. Values for 2012 (1702 km3), 
2013 (1759 km3), and 2014 (1989 km3) were 5% less, 
1% less, and 2% greater than the 1980–89 period, 
respectively. The short-term variability in Eurasian 
Arctic river discharge is consistent with previous 
increases and decreases over 4–6 year intervals in 
the past (Fig. 5.19). 

For the North American Arctic rivers consid-
ered here (Yukon and Mackenzie), the combined 
discharge declined each year from 2012 (538 km3) 
to 2014 (499 km3), yet in each of those years the 
combined discharge was greater than the long-term 
average (493 km3 year−1; Fig. 5.19; Table 5.2). Thus, as 
discussed for Eurasian rivers, these most recent data 
indicate a longer-term pattern of increasing river 
discharge (Fig. 5.19). At a rate of 2.6% ± 1.7% decade−1 
since 1976, the overall trends of increasing discharge 
are remarkably similar for the North American 

and Eurasian rivers. (Increases per decade follow a 
Mann – Kendall trend analysis; error bounds are 95% 
confidence intervals for the trend.)

Fig. 5.19. Long-term trends in annual discharge for 
Eurasian and North American Arctic rivers. The 
Eurasian rivers are Severnaya Dvina, Pechora, Ob’, 
Yenisey, Lena, and Kolyma. The North American riv-
ers are Yukon and Mackenzie. Note the different scales 
for the Eurasian and North American river discharge; 
discharge from the former is 3–4 times greater than 
the latter.  Reference lines show long-term means for 
the Eurasian (1812 km3 yr−1, 1936–2015) and North 
American (493 km3 yr−1, 1976–2014) rivers. 

Table 5.2. Annual discharge for 2012, 2013, and 2014 for the eight largest Arctic rivers, compared to long-term and 
decadal averages back to the start of observations. Values for 2015 are provided for the six Eurasian rivers. Red values 
indicate provisional data, which are subject to modification before official data are released.

Discharge (km3 yr−1)

Yukon Mackenzie Pechora S. Dvina Ob’ Yenisey Lena Kolyma Sum

2015 123 80 527 654 585 82
2014 227 272 116 91 448 640 607 86 2487

2013 213 311 82 97 372 527 600 80 2282
2012 232 306 103 117 300 458 665 59 2240
Average 
2010–15

212 293 108 93 409 594 583 75 2366

Average 
2000–09

207 305 124 103 415 640 603 78 2475

Average 
1990–99

217 275 117 111 405 613 532 68 2338

Average 
1980–89

206 273 108 100 376 582 549 68 2262

Average 
1970–79

184 292 108 94 441 591 529 65 2304

Average 
1960–69

273 112 98 376 546 535 73

Average 
1950–59

110 108 380 566 511 74

Average 
1940–49

102 100 424 578 498 72

Average for 
Period of  
Record

206 286 111 100 401 589 540 71 2305
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Considering the eight Eurasian and North Ameri-
can Arctic rivers together, their combined discharge 
in 2014 (2487 km3) was 10% greater than the average 
discharge for 1980–89. Comparing 2014 to 2012, the 
combined discharge of these eight rivers was almost 
250 km3 greater in 2014. For perspective, 250 km3 is 
approximately 14 times the annual discharge of the 
Hudson River, the largest river on the east coast of 
the United States.

i.	 Terrestrial permafrost—V. E. Romanovsky, S. L. Smith,  
K. Isaksen, N. I. Shiklomanov, D. A. Streletskiy, A. L. Kholodov,  
H. H. Christiansen, D. S. Drozdov, G. V. Malkova, and S. S. Marchenko
Permafrost is defined as soil, rock, and any other 

subsurface earth material that exists at or below 0°C 
continuously for two or more consecutive years. On 
top of permafrost is the active layer, which thaws 
during the summer and freezes again the following 
winter. The mean annual temperature of permafrost 
and the active layer thickness (ALT) are good indica-
tors of changing climate and therefore designated as 
essential climate variables (Smith and Brown 2009; 
Biskaborn et al. 2015) by the Global Climate Observ-
ing System Program of the World Meteorological 
Organization. Changes in permafrost temperatures 
and ALT at undisturbed locations in Alaska, Canada, 
Russia, and the Nordic region (Fig. 5.21) are reported 
here. Regional variability in permafrost temperature 
records, described below, indicates more substantial 
permafrost warming since 2000 in higher latitudes 
than in the subarctic. This is in general agreement 
with the pattern of average air temperature anomalies.

In 2015, record high temperatures at 20-m depth 
were measured at all permafrost observatories on the 
North Slope of Alaska (Barrow, West Dock, Franklin 
Bluffs, Happy Valley, and Galbraith Lake in Fig. 5.22a; 
Romanovsky et al. 2015). The permafrost temperature 
increase in 2015 was substantial and comparable to 
the highest rate of warming observed in this region 
so far, which occurred during the period 1995–2000; 
20-m depth temperatures in 2015 were from 0.10°C 
to 0.17°C higher than those in 2014 (Fig. 5.22a) 

on the North Slope. Since 2000, temperature at 
20-m depth in this region has increased between 
0.21°C and 0.66°C decade−1 (Fig. 5.22a; Table 5.3). 
Permafrost temperatures in Interior Alaska were 
higher in 2015 than 2014 at all sites (Old Man, 
College Peat, Birch Lake, Gulkana, and Healy 
in Fig. 5.22b), except for Coldfoot. Notably, this 
warming followed slight cooling of 2007–13 (Fig. 
5.22b). However, the recent warming in the interior 
(see section 5b; Fig. 5.2) was not strong enough to 
bring permafrost temperatures back to the record 

highs observed between the mid-1990s and the mid-
2000s except at Gulkana (Fig. 5.22b; Table 5.3). 

In northwestern Canada, temperatures in warm 
permafrost of the central Mackenzie Valley (Nor-
man Wells and Wrigley in Fig. 5.22b) were similar 
in 2014/15 to those observed the previous year. 

Fig. 5.20. Combined daily discharge for the six Eurasian 
Arctic rivers in 2015 compared to the 1980–89 average.

Fig. 5.21. Location of the permafrost monitoring 
sites shown in Fig. 5.22 superimposed on average air 
temperature anomalies during 2000–14 (with respect 
to the 1971–2000 mean) from the NCEP–NCAR re-
analysis (Kalnay et al. 1996) (Source: NOAA/ESRL.) 
Sites shown in Fig. 5.22 are (a) Barrow (Ba), West 
Dock (WD), KC-07 (KC), Deadhorse (De), Franklin 
Bluffs (FB), Galbraith Lake (GL), Happy Valley (HV), 
Norris Ck (No); (b) College Peat (CP), Old Man (OM), 
Chandalar Shelf (CS), Birch Lake (BL), Coldfoot (Co), 
Norman Wells (NW), Wrigley 2 (Wr), Healy (He), 
Gulakana (Gu), Wrigley 1 (Wr); (c) Eureka EUK4 (Eu), 
Alert BH2 (Al), Alert BH5 (Al), Resolute (Re), Alert 
BH1 (Al), Arctic Bay (AB), Pond Inlet (PI), Pangnirtung 
(Pa); (d) Janssonhaugen (Ja), Urengoy #15-10 (Ur), Juv-
vasshøe (Ju), Tarfalaryggen (Ta), Bolvansky #59 (Bo), 
Bolvansky #65 (Bo), Urengoy #15-06 (Ur), Bolvansky 
#56 (Bo), Iskoras Is-B-2 (Is).
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Fig. 5.22. Time series of mean annual ground temperature at depths of 9–26 m below the surface at selected 
measurement sites that fall roughly into the Adaptation Actions for a Changing Arctic Project (AMAP 2015) 
priority regions: (a) cold continuous permafrost of NW North America (Beaufort–Chukchi region); (b) dis-
continuous permafrost in Alaska and northwestern Canada; (c) cold continuous permafrost of eastern and 
high Arctic Canada (Baffin Davis Strait); (d) continuous to discontinuous permafrost in Scandinavia, Svalbard, 
and Russia/Siberia (Barents region). Temperatures are measured at or near the depth of penetration of the 
seasonal ground temperature variations. Data series are updated from Christiansen et al. 2010; Romanovksy 
et al. 2015; Smith et al. 2015; Ednie and Smith 2015.

Table 5.3. Change in mean annual ground temperature (MAGT; °C decade−1) for sites shown in Fig. 5.22, for which 
data are available for 2015 († indicates discontinuous permafrost regions). For sites with records initiated prior to 
2000, the rate for the entire available record is provided along with the rate for the period after 2000. (Note records 
for some sites only began after 2007 as shown in Fig. 5.22).

Region Sites Entire Record Since 2000
Central Mackenzie Valley † Norman Wells (NW), Wrigley (Wr) +0.1 to +0.2 <+0.1 to +0.2
Northern Mackenzie Valley Norris Ck (No), KC-07(KC) NA +0.4 to +0.7
Baffin Island Pond Inlet (PI) NA +0.7
High Canadian Arctic Resolute (Re), Eureka (Eu) NA +0.4 to +0.7
High Canadian Arctic Alert (Al), BH5, BH1, BH2 +0.53, +0.3 to +0.4 +1.2, +0.7 to +0.9

Alaskan Arctic plain
West Dock (WD), Deadhorse (De), 
Franklin Bluffs (FB), Barrow (Ba)

+0.33 to +0.81 +0.36 to +0.66

Northern foothills of the 
Brooks Range, Alaska

Happy Valley (HV),  
Galbraith Lake (GL)

+0.25 to +0.37 +0.21 to +0.35

Southern foothills of the 
Brooks Range, Alaska †

Coldfoot (Co), Chandalar Shelf (CS), 
Old Man (OM)

+0.07 to +0.31 +0.13 to +0.18

Interior Alaska † College Peat (CP), Birch Lake (BL), 
Gulkana (Gu), Healy (He)

+0.03 to +0.15 –0.05 to +0.02

North of West Siberia Urengoy 15-06 and 15-10 (Ur) +0.31 to +0.47 +0.1 to +0.19
Russian European North Bolvansky 56, 59, and 65 (Bo) +0.18 to +0.46 +0.1 to +0.83
Svalbard Janssonhaugen (Ja) +0.7 +0.7
Northern Scandinavia † Tarfalarggen (Ta), Iskoras Is-B-2 (Is) NA +0.1 to +0.4
Southern Norway † Juvvasshøe (Ju) +0.2 +0.2
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Permafrost in this region has gener-
ally warmed since the mid-1980s, 
with less warming observed since 
2000 (Table 5.3), corresponding to a 
period of steady air temperatures. In 
contrast, greater recent warming has 
been observed in the colder permafrost 
of the northern Mackenzie (Norris 
Ck, KC-07 in Fig. 5.22a and Table 
5.3) with 2014/15 temperatures higher 
than those recorded over the previous 
5–7 years, ref lecting an increase in 
air temperatures over the last decade 
(Fig. 5.21).

Mean temperatures for 2014/15 
in the upper 25 m of the ground at 
Alert, northernmost Ellesmere Island 
in the high Canadian Arctic, were 
among the highest recorded since 1978 
(Fig. 5.22c). Since 2010, temperatures 
have changed little or even declined, 
consistent with lower air temperatures 
since 2010 (Smith et al. 2015). However, 
higher permafrost temperature at 15-m depth in 
2014/15 compared to 2013/14 appears to reflect an in-
crease in air temperature since 2013. Since 2000, Alert 
permafrost temperatures have increased at a higher 
rate (Table 5.3) than that for the entire record (Smith 
et al. 2015), consistent with air temperature anomaly 
patterns (Fig. 5.21). Short records, from other high 
Arctic sites in the Queen Elizabeth Islands (Resolute 
and Eureka) and on Baffin Island (Pond Inlet) in the 
eastern Arctic, indicate some cooling of permafrost 
since 2012/13 at 10–15-m depth (Fig. 5.22c). However, 
a general warming trend is observed (Table 5.3) with 
higher temperatures in 2014/15 than in 2008/09 when 
measurements began.

Similar to northern Alaska and the Canadian 
high Arctic, permafrost temperature has increased 
by 1–2°C in northern Russia during the last 30 to 
35 years. In the Russian European North and in the 
western Siberian Arctic, for example, temperatures 
at 10-m depth have increased by ~0.4°C to 0.6°C de-
cade−1 since the late 1980s at colder permafrost sites 
(in Fig. 5.22d, Bolvansky #59, Urengoy #15-5, and 
#15-10). Less warming has been observed at warm 
permafrost sites (Table 5.3; in Fig. 5.22d, sites Bolvan-
sky #56 and Urengoy #15-6; Drozdov et al. 2015).

In the Nordic countries (including Svalbard), 
regional warming and thawing of permafrost have 
been observed recently (Christiansen et al. 2010; 
Isaksen et al. 2011; Farbrot et al. 2013). Since 2000, 
temperature at 20-m depth has increased between 

0.1°C and 0.7°C decade−1 (Fig. 5.22d; Table 5.3) with 
lower rates of increase occurring at sites in the dis-
continuous permafrost zone that are affected by latent 
heat exchange at temperatures close to 0°C. Higher 
temperature increases occurred at colder permafrost 
sites on Svalbard and in northern Scandinavia. In 
southern Norway permafrost was warmer in 2015 
compared to 2014, a warming that followed a period 
of cooling between 2011 and 2014.

Active layer thickness [determined by probing ac-
cording to Brown et al. (2000) and Shiklomanov et al. 
(2012)] at North Slope and Alaska Interior locations 
was on average greater in 2015 than in 2014 (Fig. 5.23). 
An increase in the thickness of the ALT indicates 
warming surface temperature. Of 26 North Slope sites 
observed in 2015, only nine had ALT values within 
1 cm of those observed in 2014, while the majority of 
sites had greater ALT values than in 2014. The aver-
age ALT in 2015 for the 20 North Slope sites with 
records of at least 10 years was 0.51 m, which is 3 cm 
higher than the 1995–2013 average. In the interior 
of Alaska, three of the four active sites reported an 
ALT increase in 2015. The most pronounced change 
occurred at a site where surface cover was burned in 
2010. Here ALT was 1.78 m in 2015, which is 0.10 m 
greater than the 2014 value and 1.23 m greater than 
the prefire 1990–2010 average. 

Records from 25 sites with thaw tubes in the Mack-
enzie Valley, northwestern Canada, indicate that ALT 
in 2014 (the most recent year data are available) was 

Fig. 5.23. Long-term active-layer change from selected sites in six 
different Arctic regions as observed by the Circumpolar Active 
Layer Monitoring project (Shiklomanov et al. 2012). The data are 
presented as annual percentage deviations from the mean value for 
the period of observations. Thaw depth observations from the end 
of the thawing season were used. Only sites with at least 10 years of 
continuous thaw depth observations are shown in the figure. Solid 
red lines show mean values. Dashed black lines represent maximum 
and minimum values. In the Nordic countries (not shown here) active 
layer records (1996–2015) indicate a general increase in ALT since 
1999. Maximum ALT was observed in 2011 followed by a period of 
thinner active layers. 
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on average about 4% greater than the 2003–12 mean 
(Fig. 5.23). Although ALT in this region has generally 
increased since 2008 (Duchesne et al. 2015), there has 
been a decrease since 2012.

In Russia, active layer observations were con-
ducted at 44 sites in 2015. Since 2009, a progressive 
increase in ALT is evident for western Siberian loca-
tions (Fig. 5.23), with a substantial increase in 2015 
of 0.05–0.20 m. Locations in the Russian European 
North have been characterized by almost monotonic 
thickening of the active layer over the 1999–2012 peri-
od. However, after reaching its maximum in 2012, the 
ALT decreased for three consecutive years (Fig. 5.23). 
In central Siberia (Low Yenisey region) ALT increased 
by 0.07–0.10 m, while ALT in the East Siberian region 
(Yakutsk) was largely unchanged from 2014 values. In 
northeastern Siberia, ALT in 2015 was 4% lower than 
the 2014 peak values. Similarly, in Chukotka (Russian 
Far East) 2015 ALT values were on average 2% lower 
than in 2014 (Fig. 5.23). 

However, ALT was still greater in 2012–15 than 
the long-term average value. The summer of 2014 was 
particularly warm in the Nordic countries and con-
tributed to the thickest active layer measured to date 
at some places. On Svalbard (Janssonhaugen) ALT 
increased by 10% in 2015 compared to the 2000–14 
mean and was the highest in the entire 1998–2015 
observational record.

j.	 Ozone and UV radiation—G. Bernhard, I. Ialongo,  
J.-U. Grooß, J. Hakkarainen, B. Johnsen, G.L. Manney, V. Fioletov, 
A. Heikkilä, K. Lakkala
The minimum Arctic daily total ozone column 

(TOC) measured by satellites (Levelt et al. 2006) in 
March 2015 was 389 Dobson Units (DU). Measure-
ments from March are used for assessing the temporal 
evolution of Arctic ozone because chemically induced 
loss of ozone typically peaks in the month of March 
(WMO 2014). The March 2015 value was 17 DU (5%) 
above the average of 372 DU for the period of available 
measurements (1979–2014) and 23 DU (6%) above the 
average for the past decade, 2005–14 (Fig. 5.24). The 
record low was 308 DU in 2011. Figure 5.24 also indi-
cates that the Arctic ozone interannual variability is 
large: the standard deviation for the period 1979–2014 
is 35 DU. This large variability is caused by dynamical 
effects that affect vortex size and longevity, transport 
of ozone into the lower stratosphere, and stratospheric 
chemistry via its sensitivity to temperature (e.g., 
Tegtmeier et al. 2008; WMO 2014).

Between December 2014 and April 2015, ozone 
concentrations measured at an altitude of 20 km 
by the Microwave Limb Sounder (MLS) aboard the 

Aura satellite were the highest in the MLS record, 
which started in August 2004 (Manney et al. 2015). 
The altitude of 20 km is representative of the lower 
stratosphere (altitude range of 15 km to 25 km) where 
chemical destruction of ozone is typically observed in 
spring when temperatures drop below −78°C (equal 
to about −108°F or 195 K). Chemically induced loss of 
ozone was minimal in the spring of 2015 because of a 
minor sudden stratospheric warming (SSW) event in 
early January. This event caused lower stratospheric 
temperatures to rise above the critical temperature 
for the formation of polar stratospheric clouds, 
which is a prerequisite for heterogeneous chemical 
reactions that destroy ozone. A second reason for the 
abnormally high ozone concentrations observed in 
2015 was larger-than-usual transport of ozone-rich 
air into the lower stratosphere from higher altitudes, 
as observed by MLS (Manney et al. 2015). As a con-
sequence, TOCs in the spring of 2015 were relatively 
high (Figs. 5.24, 5.25b).

Spatial deviations of monthly average TOCs from 
historical (2005–14) means were estimated with 
measurements by the Ozone Monitoring Instrument 
(OMI), which is collocated from MLS on the Aura 
satellite (Figs. 5.25a, 5.25b). Monthly average TOCs 
for March 2015 exceeded historical means by more 
than 10% over Iceland, southern Greenland, the Davis 
Strait between Greenland and Canada, and eastern 
Canada (Fig. 5.25a). In contrast, TOCs over most of 
Siberia were 2.5%–7.5% below the 2005–14 average 

Fig. 5.24. Time series of area-averaged minimum total 
ozone (DU) for Mar in the Arctic, calculated as the 
minimum of daily average column ozone poleward of 
63° equivalent latitude (Butchart and Remsberg 1986). 
Open circles represent years in which the polar vortex 
broke up before Mar. Ozone in those years was rela-
tively high due to mixing with air from lower latitudes 
and higher altitudes and a lack of significant chemical 
ozone depletion. Red and green lines indicate the av-
erage TOC for 1979–2014 and 2005–14, respectively. 
[Sources: Data are adapted from Müller et al. (2008) 
and WMO (2014), updated using ERA-Interim reanaly-
sis data (Dee et al. 2011). Ozone data from 1979 to 2012 
are based on the combined total column ozone data-
base version 2.8 produced by Bodeker Scientific (www 
.bodekerscientific.com/data/total-column-ozone). 
Data for 2013–15 are from OMI.]
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with somewhat larger negative departures east of 
Moscow. Monthly average TOCs for April 2015 were 
above 2005–2014 means over almost the entire Arctic 
(Fig. 5.25b). Positive TOC anomalies between 10% 
and 20% were observed at the North Pole, northern 
Greenland, and the Canadian Arctic Archipelago.

UV radiation is quantified with the UV index 
(UVI), a measure of the ability of UV radiation to 
cause erythema (sunburn) in human skin (WHO 
2002). In addition to its inverse dependence on TOC, 
the UVI depends greatly on the sun angle, cloud 
cover, and surface albedo (Weatherhead et al. 2005). 
In the Arctic, the UVI ranges from 0 to about 7, with 

sites closest to the North Pole having the 
smallest peak radiation and UVI values 
<4 all year. UVI values <5 indicate low to 
moderate risk of erythema (WHO 2002). 

Maps shown in Figs. 5.25c,d quantify 
differences of monthly average noontime 
UVIs from historical (2005–14) means 
for March and April and are based on 
observations derived from OMI. The 
OMI UV algorithm uses a surface albedo 
climatology (Tanskanen et al. 2003) that 
does not change from year to year. At 
places where the actual surface albedo 
deviates greatly from the OMI albedo 
climatology (e.g., when snowmelt oc-
curred earlier than usual), OMI UVI 
data may be biased by more than 50%, 
although differences in absolute values 
rarely exceed 2 UVI units (Bernhard et 
al. 2015). Figures 5.25c,d therefore also 
compare UVI anomalies measured by 
OMI and ground-based instruments 
deployed throughout the Arctic and 
Scandinavia. Anomalies derived from 
the two datasets agree to within ±12% 
at all locations, with the exception of 
Andøya for April (OMI overestimates 
the actual anomaly by 16%) and Jokio-
inen for March (overestimate by 27% or 
0.3 UVI units). The large discrepancy 
for Jokioinen can be explained by early 
snowmelt on 9 March while the OMI 
climatology assumes snow cover through 
the month of March. Persistent cloud 
cover in the second half of March also 
contributed to this discrepancy.

Monthly average noontime UVIs for March 2015 
were below the 2005–14 means in a belt stretching 
from the Greenland Sea and Iceland in the east to 
Hudson Bay and the Canadian Arctic Archipelago 
in the west (Fig. 5.25c). This region roughly agrees 
with the region where TOCs were abnormally high 
in March 2015 (Fig. 5.25a), but UVI anomalies show 
a larger spatial variability than TOCs because of their 
added dependence on cloud cover. Monthly average 
noontime UVIs for April 2015 were 5%–15% below 
the 2005–14 means over almost the entire Arctic (Fig. 
5.25d), consistent with the positive ozone anomalies 
observed in this month (Fig. 5.25b). 

Fig. 5.25. Anomalies of total ozone column and the noontime 
UV index in 2015 relative to 2005–14 means. TOC anomaly 
for (a) Mar and (b) Apr. UVI anomaly for (c) Mar and (d) Apr 
(first value in parenthesis). Data are based on measurements 
from the OMI. Monthly means calculated from OMTO3 Level 
3 total ozone products (Bhartia and Wellemeyer 2002) that 
are provided in 1° × 1° spatial gridding. (c) and (d) also indicate 
UVI anomalies measured by ground-based instruments at 12 
locations (second value presented). Gray shading indicates 
areas where no OMI data are available.
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