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Valérie Arnould. Development of innovative and practical management tools to improve 

sustainability of milk production and quality of dairy products. Gembloux, Belgium, Gembloux 

Agro-Bio Tech, University of Liège. 

ABSTRACT 

In the current complex economical context, novel strategies are needed to help local dairy farmers to 

face the European dairy sector crisis. This thesis was initiated in the framework of ManageMilk project 

and was globally aimed to investigate the possibility to develop some innovative and practical 

management tools helping dairy farmers in their daily decisions. To develop such management tools, 

several conditions must be fulfilled. Firstly, used data must be relevant. According to the literature, the 

milk composition, and in particular, the milk fatty acid (FA) profile, appears to be a suitable trait allowing 

useful information about the dairy cow’s health status or about the management system efficiency. 

These data must also be easily available at low cost from milk recording organization. Recently, the MIR 

spectrometry offers the possibility to build routinely cheaper and more important databases. To develop 

management tools, milk samples have to be collected using comparable sampling methods. 

Unfortunately, in order to decrease the milk quality control costs, the International Committee for 

Animal Recording allows alternative sampling schemes including the collection of samples from morning 

or evening only milkings. This alternative sampling scheme can interact with phenotypic and genetic 

parameters. Therefore, additionally to the development of conversion equations, this thesis is 

establishing if morning or evening only milkings are genetically different traits. Last condition concerns a 

useful phenotypic and genetic variability. Milk FA profile is, among others, altered by genetics. So, one 

paper of this thesis concerns the setup of a useful genetic evaluation model able to estimate accurately 

the genetic part of milk fat composition variations. Routine genetic evaluation of production traits in 

dairy cattle commonly uses random regression model (RRM). Recently, “splines” have been advocated as 

a good alternative to Legendre polynomials (LP) for analyzing test-day yields in RRM. Therefore, several 

models are compared. Obtained results show the possibility to propose a practical and robust method 

for estimating accurate daily major FA production from single milking, useful for a further development 

of practical management tools helping dairy farmers in their daily decisions. 

  



 

 
 

 



 

 
 

Valérie Arnould. Développement d’outils de gestion innovants et utiles aux éleveurs soucieux 

d’améliorer leur système de production et la qualité de leurs produits. (PhD Dissertation en 

Anglais). Gembloux, Belgium, Gembloux Agro-Bio Tech, Université de Liège.  

RESUME 

Dans un contexte économique difficile, de nouvelles stratégies doivent être proposées à nos producteurs 

laitiers locaux afin de leur permettre de faire face à la crise européenne du secteur laitier. Cette thèse 

s’inscrit dans le cadre du projet belgo-luxembourgeois ManageMilk dont l’objectif global est la 

contribution au développement d’outils innovatifs et utiles aux éleveurs laitiers dans leurs décisions 

quotidiennes. Le développement de tels outils est soumis à plusieurs conditions nécessaires. La première 

condition est la construction d’une base de données pertinente. La composition du lait et, plus 

particulièrement le profil en acides gras (AG) du lait, apparaît comme autant de sources d’information 

utiles reflétant la santé du bovin et l’efficacité du système de production. Les données enregistrées 

doivent être facilement récoltées et ce, à moindre coût. Récemment, la mise au point de la technologie 

de spectrométrie MIR permettait la construction, en routine, de bases de données, plus importantes et 

moins onéreuses que les systèmes d’analyses traditionnels. Les échantillons de lait utilisés doivent 

également être prélevés selon des protocoles similaires. Cependant, dans le but de réduire les coûts du 

contrôle laitier, le Comité International d’Enregistrement des Animaux permet la collecte d’échantillons 

proportionnés selon le moment de traite. Le dernier objectif de cette thèse est donc l’étude de l’effet du 

moment de traite sur les paramètres génétiques des caractères étudiés. Selon les résultats obtenus, il est 

possible de construire une méthode pratique et robuste permettant l’estimation de la production d’AG à 

partir des données d’une seule traite. La dernière condition concerne les variabilités phénotypique et 

génétique des caractères précités. Les évaluations génétiques appliquées en routine utilisent 

essentiellement des modèles de régression aléatoires. Selon certaines recherches, l’utilisation de 

« splines » permettrait de corriger certains défauts des polynômes de Legendre. La comparaison de 

différents modèles permettant l’étude/estimation des paramètres génétiques de la production laitière 

est également réalisée dans le cadre de cette étude. En conclusion, les données AG laitiers peuvent être 

utilisées en tant qu’outils de gestion d’une production laitière bovine.  

 

 



 

 
 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

« Soit A, un succès dans la vie.  
Alors A = x+y+z.  

Où x = travailler. y = s'amuser. z = se taire. » 
 

Albert Einstein 
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RRTDM Random regression test-day model 
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UFA  Unsaturated fatty acids 
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1.1. Context 
 

Over recent years Europe encounters a serious agricultural, and in particular, dairy crisis. 

According to the European Commission and the European Council, the crisis in the European 

dairy sector is a result of a combination of several factors such as the Russian embargo on 

Europe agri-food products, a lower than expected Chinese demand for dairy products, the 

increasing production of volumes of milk in Europe after the abolition of the milk quota system, 

as well as an overall observed increasing production of milk in New Zealand and Australia. 

In this complex economical context, the policy of the European Commission Rural 

Development aims to improve sustainability of agriculture, as well as to improve the quality of 

life in rural areas and the diversity of rural economies. Therefore, milk recording organizations 

in Europe, have a strong role to play in the development of management tools helping to 

improve sustainability of dairy farms. 

CONVIS s.c., as an agricultural and breeding cooperative in Luxembourg, is a provider of 

services such as performance testing for breeding animals, consultancy in animal husbandry 

related areas such as feeding and farm management. CONVIS s.c. is a service provider for the 

official milk recording, offers advisory services for animal breeding, performs evaluations of cost 

and analysis of production characteristics. Thus, CONVIS s.c. actively supports the 

Luxembourgish dairy farmers by making available, relevant management tools in order to 

improve sustainability of dairy farms. 

Compared to other European countries, Luxembourg presents some particularities. 

Among the European Member States, Luxembourg has the smallest number of agricultural 

holdings (2,200) in 2010 (Eurostat, 2010). Over the 2000-2010 timeframe, 540 farms ceased 

their activities. In parallel, as widely observed across the EU-28, Luxembourg also encountered 

an important decrease in the number of people working on farm falling by 21% between 2000 

and 2010 (4,960 workers).The used agricultural land experienced the opposite trend by an 

increase to 131,110 hectares in 2010 (+2.9 % vs. 2000). The most common farms are farms with 

at least 50 hectares of agricultural land representing about half (49%) of the number of 

agricultural holdings and occupied 86% of the country’s agricultural land in 2010. Further, in 
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terms of the number of holdings, dairy farms are the most common category of farms: they 

accounted for 27% of the country’s farm population and 47% of the Standard Output in 2010 

(Standard Output is defined as the average monetary value of the agricultural output at farm 

gate price of each agricultural product in a given region). Consequently, developing 

management tools for farmers in Luxembourg is relevant. 

From this general context, this thesis which is the result of a collaboration between 

CONVIS s.c. and the Animal Science Unit of Gembloux Agro-Bio Tech (University of Liège, 

Belgium) aims to contribute to the development of innovative and practical management tools 

helping dairy farmers to improve the sustainability of their farms. 

In particular, the innovative aspect of this thesis is to strengthen the use of data 

routinely recorded to develop such tools. The use of test-day records is an interesting 

opportunity to develop management tools. Indeed, test-day yield records from the milk 

recording system provide an important source of information for both breeding and 

management (Caccamo et al., 2008). Historically, herd management improvement and breeding 

values’ estimation have been separate processes but the use of dairy records should be more 

than a simple reporting of yield performance or inputs for the estimation of breeding values 

(Bastin et al., 2009). However, there are clear advantages of using the same data and statistical 

procedures for both management purposes and genetic evaluation (Caccamo et al., 2008).  

Further, in practice, routine measurement of milk components offers the potential for 

early detection of systemic and/or local alteration and, consequently, provides assistance for 

strategic and management decisions. Mid-infrared (MIR) spectrometry is already used routinely 

by milk recording organizations and milk laboratories to quantify the contents of fat, protein 

and lactose in milk samples. However, this use could be easily extended to other milk 

components. Indeed, several papers (Soyeurt et al., 2006, 2008a, 2008b, and 2011; Rutten et al., 

2009) have shown the potential of MIR spectrometry for quantifying small fractions, such as 

fatty acids (Soyeurt et al., 2006 and 2011).  
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Consequently, the working hypothesis of this thesis is that several milk components 

predicted by MIR spectrometry could be used as indicators of the metabolic status of dairy cows 

and/or the nutritional quality of milk and/or the environmental sustainability. Particularly, the 

knowledge of the milk fatty acid (FA) profile produced by dairy cows seems to be interesting 

with regard to this perspective. To refine the analysis and correct the noisy background related 

to the natural sources of variation such as dietary composition, genetics, lactation stage, energy 

balance and animal status (e.g. parity, days in milk, health status) (Arnould et al., 2009; Beaulieu 

et al., 1995; Chilliard et al., 2001;Gross et al., 2011; Grummer, 1991; Palmquist et al., 1993), 

computer-based systems are very useful in interpreting differences between the observed and 

expected values of given milk components predicted by MIR, which could be used as a guideline 

for health management and preventive systems. Such an approach would result in the 

development of easy, cheap and useful sustainable management tools assisting dairy farmers in 

their daily decisions.  

 

1.2. Outline 

 

This thesis is a compilation of published scientific papers and is structured in 8 chapters. 

As mentioned in the title, the global objective of this thesis is to contribute to the 

development of innovative management tools for dairy farmers allowing them to improve their 

dairy production system and product quality. As aforementioned, a first literature review 

permitted to identify the contents of milk fatty acid as potential interesting traits with regard to 

their environmental, animal health and nutritional aspects (Chapter II).  

The development of management tools takes profit of the existing genetic and 

phenotypic variability of the studied traits. A second literature review was conducted to 

summarize the state of the knowledge in genetic variability of FA (Chapter III). Unfortunately, no 

information was available for dairy cattle in Luxembourg. Therefore a study was conducted to 

define a model allowing the estimation of genetic parameters. This study compared two 
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approaches using more or less computational resources to model the evolution of genetic 

parameters throughout the lactation (Chapter V).In milk production, quality control samples are 

typically taken during both the AM and PM milkings. CONVIS s.c. proposes alternative 

procedures that restrict sampling to a single time of day as approved by the International 

Committee for Animal Recording. These alternative testing schemes present economic 

advantages in daily routine explaining the interest of farmers in Luxembourg. However, the 

composition of AM- and PM-collected milk samples can differ and impact the estimation of 

genetic and phenotypic variability. Therefore, a study conducted in the context of this thesis had 

two objectives: 1) the estimation of FA genetic parameters for dairy cattle in Luxembourg and 2) 

the estimation of the impact of an alternate milking testing scheme on the phenotypic and 

genetic variability (Chapter VI). As variability was observed among times of milking, one solution 

studied in this thesis was to develop conversion equations allowing the prediction of daily yields 

of production traits (milk, milk fat and FA) from readily available field data (Chapter VII).  

In order to better assess the results obtained in this thesis and their potential added 

value for the dairy cattle sector, the final chapter of the present thesis contains a general 

discussion presenting perspectives and conclusions (Chapter VIII). 

 

1.3. Framework 

 

This thesis was initiated in the framework of ManageMilk project financed by A.F.R.-F.N.R. (AFR 

PHD-09-119-RE) (Fonds National de la Recherche Luxembourg). This project was jointly 

conducted by CONVIS s.c. (Ettelbruck, Luxembourg) and the Animal Science Unit of Gembloux 

Agro-Bio Tech, University of Liège (GxABT - ULg, Gembloux, Belgium).  
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2.1. Abstract 
 

The main objective of this paper is the use of milk composition data as a management tool. 

Milk composition, and in particular, milk fat content and fatty acid profiles may be significantly 

altered due to a variety of factors. These factors are reviewed in the literature; they include 

diet, animal (genetic) selection, management aspects and animal health. Changes in milk 

composition can be used as an indicator of the animal’s metabolic status or the efficiency of the 

feed management system. The advantages of using this kind of data as a management tool 

would be to allow the early detection of metabolic or management problems. The present 

review suggests that milk and, especially milk fat composition may be used as a sustainability 

management tool and as a monitoring and prevention tool for several pathologies or health 

disorders in dairy cattle. Further, due to the use of mid-infrared spectrometry (MIR) technology, 

these tools may be easily implemented in practice and are relatively cheap. In the field, milk 

labs or milk recording agencies would be able to alert farmers whenever threshold values for 

disease were reached, allowing them to improve their dairy production from an economic, 

ecological and animal (welfare) point of view.  

 

Keywords. Cow milk, composition, management techniques, sustainability, fatty acids, 

spectrometry, decision support systems, and livestock management. 

 

2.2. Résumé 

 

L’objectif principal de cette synthèse bibliographique est l’étude de l’utilisation de la 

composition laitière en tant qu’outil de décision et de gestion. La composition laitière est 

relativement variable et de nombreux facteurs de variation sont répertoriés dans la littérature 

tels que le régime alimentaire, la sélection animale, la conduite du troupeau ou le statut 

sanitaire de l’animal. La composition laitière se révèle être un véritable miroir du statut 

métabolique de la vache laitière et de l’efficacité du système de gestion du troupeau. Cet article 



CHAPTER II: REVIEW: MILK COMPOSITION AS MANAGEMENT TOOL OF SUSTAINABILITY 

 
 

14 
 

suggère donc l’utilisation pratique de la composition laitière en tant qu’outil d’aide à la décision, 

en vue d’améliorer la durabilité de la production laitière grâce au contrôle, au suivi et à la 

détection précoce de dysfonctionnements métaboliques ou de gestion du troupeau. Des valeurs 

limites sont disponibles en tant qu’exemple dans la littérature pour certains composés. Par 

ailleurs, l’utilisation de l’outil MIR facilitera (d’un aspect pratique et économique) l’application 

d’un tel outil sur le terrain. Enfin, les organismes chargés d’assister les éleveurs dans leurs 

décisions pourront alerter les producteurs laitiers en cas de risque de maladie, leur permettant 

de traiter tout problème préventivement et d’améliorer ainsi leur production laitière d’un point 

de vue économique, écologique et animal (bien-être). Mots-clés. Lait de vache, composition, 

technique de gestion, durabilité, acides gras, spectrométrie, système d’aide à la décision, 

conduite d’élevage. 

 

2.3. Introduction 

 

In the last two decades, the beef and dairy sectors have faced new challenges regarding 

sustainability issues. The current challenge is to improve the economic efficiency of dairy cows 

by improving productivity and lowering costs (e.g. feed, veterinary). Firstly, human consumption 

patterns of beef and dairy products have changed and, currently, besides being driven by price, 

consumers are basing their choices more often on health aspects of food. Thus, it is becoming 

increasingly important for dairy farmers to take into account these considerations and to adapt 

their milk production system to consumer and dairy industry needs. Fortunately, milk 

composition and, in particular, milk fat content and fatty acid (FA) profiles may be significantly 

altered through management interventions such as changes in diet (e.g. Grummer, 1991; 

Chilliard et al., 2000; Chilliard et al., 2001; Forsbäck et al., 2010), but also through animal 

(genetic) selection (Arnould et al., 2009a). The high elasticity of milk fat content offers the 

opportunity to respond to industry and consumer requirements. 

Secondly, efficient milk production requires dairy cows to experience gestation and 

parturition every year. Most of the metabolic diseases of dairy cows occur within the first weeks 
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of lactation. Indeed, the cow’s high nutrient demand due to an increased mammary gland 

activity cannot always be met. The most economically relevant diseases in higher yielding cows 

are milk fever, ketosis (or acetonemia) and mastitis. Understanding the variation in milk 

composition can be useful for providing information about the health status of dairy cows. 

Indeed, modifications in the metabolic process, and changes in milk yield, fatty acids, protein 

fractions or mineral content can be used as indicators for the metabolic status of the cow 

(Fleischer et al., 2001; Mulligan et al., 2006). In this case, the efficiency of a cow health 

management system is determined by the ability to diagnose changes in animal health status at 

an early stage and the ability to develop preventive measures (Hamann et al., 1997). The earlier 

health problems are identified, the higher the chance of successful health management, with 

positive consequences for farm management, economical, ecological and animal welfare issues. 

Indeed, a more effective prevention system for common dairy diseases and the improvement of 

the health status of dairy cows would, indirectly, help to improve dairy farming from an 

economical and ecological point of view. Such a system would limit labor investment, medical 

treatment costs, and animal suffering (social aspects), and would also increase milk yield and 

milk quality, including the animal’s lifetime production. In addition, analysis of milk composition 

could provide some interesting information about the efficiency of the feed management 

system. Furthermore, feed management issues are highly related to the agricultural 

environmental footprint. Indeed, methane production, for instance, corresponds to a loss of 

productive energy in cows and is negatively correlated to feed conversion (Boichard et al., 

2012). 

In practice, routine measurement of milk components during milk recording offers the 

potential for early detection of systemic and/or local alteration and, consequently, provides 

assistance for strategic and management decisions. Limiting negative influences on dairy cows is 

the key issue in achieving this objective. The majority of analytical techniques (e.g., gas 

chromatography, ELISA, or immuno-diffusion methods) used for measuring specific milk 

components in bovine milk are expensive and time consuming, and require skilled staff. 

Therefore, these methods are not feasible for making regular measurements relating to 

individual cows. This inconvenience can be solved by using mid-infrared (MIR) spectrometry. 
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This technology is already used routinely by milk recording organizations to quantify, for 

instance, fat, protein and lactose content in milk samples. Several papers (Soyeurt et al., 2006, 

2008a, 2008b, and 2011; Rutten et al., 2009) have shown the potential of MIR spectrometry for 

quantifying small fractions, such as fatty acids (Soyeurt et al., 2006 and 2011). Therefore, MIR 

spectrometry could be used to routinely quantify various milk components. Furthermore, 

computer-based systems could be very useful in interpreting differences between the observed 

and expected values of a milk component, which could be used as a guide for health 

management and preventive systems. 

Several milk components that can be predicted by MIR spectrometry could be used as 

indicators of the metabolic status of dairy cows. For instance, the milk fatty acid (FA) profile is a 

dynamic pattern influenced by several factors such as dietary composition, genetics, lactation 

stage, energy balance and animal status (e.g. parity, days in milk, health status) (Grummer, 

1991; Palmquist et al., 1993; Beaulieu et al., 1995; Chilliard et al., 2001; Arnould et al., 2009a; 

Gross et al., 2011). Moreover, protein, fat, the fat:protein ratio, levels of acetone, etc. could be 

used as disease, feeding and environmental management indicators, and indirectly, as economic 

indicators, using observed deviations from normal concentrations and their trends of change 

(Hamann et al., 1997; Chilliard et al., 2009). 

The objective of this review is to determine the practical aspects of measuring milk composition 

and milk fat in order to propose an easy, cheap and useful sustainable management tool to help 

dairy farmers in their daily decisions. 

 

2.4. Health management 

 

2.4.1. Acetonemia and energy balance 

 

At the beginning of lactation, the dairy cow must cope with an important increase in 

energy demand by the mammary gland for milk production. This is achieved partly by increasing 
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feed intake and partly by fat mobilization from the cow’s adipose tissue. However, excessive fat 

mobilization may induce an imbalance in hepatic carbohydrate and fat metabolism, 

characterized by elevated concentrations of ketone bodies (ß-hydroxybutyrate [BHBA], 

acetoacetate, and acetone), a state called hyperketonemia. Hyperketonemia, in its clinical 

manifestation (ketosis or acetonemia), has an economical effect through decreased milk 

production and a greater risk of periparturient diseases such as mastitis and left displaced 

abomasum (Enjalbert et al., 2001; Mulligan et al., 2006). Subclinical ketosis and negative energy 

balance are closely linked and numerous studies available on the relationship between 

modifications in milk composition and the metabolic status of dairy cows focus on the energy 

metabolism (Hamann et al., 1997). Ketone bodies are produced as by-products when FAs are 

used in energy metabolism in the liver and kidney. Consequently, subclinical ketosis frequently 

results from an over-long negative energy balance. Because of its importance in dairy cattle 

(some studies conclude that approximately 50% of all lactating cows develop subclinical ketosis 

in early lactation), numerous authors have reviewed this kind of metabolic disorder in dairy 

cattle (e.g. Hamann et al., 1997; Van Haelst et al., 2008; Gross et al., 2011; Van Der Drift et al., 

2012). 

Even if there are no clinical signs of ketosis, milk composition may still be affected 

(Enjalbert et al., 2001). Current detection methods are based on the measurement of ketone 

bodies in body fluids (blood, urine or milk) (Van Haelst et al., 2008; Van Der Drift et al., 2012). As 

expected, both clinical and subclinical ketosis results in increased concentrations of ketone 

bodies in blood, tissues and milk. As blood sampling is not very convenient for farmers, 

analyzing milk composition would seem to be an interesting and more practical alternative. A 

few authors have reported studies comparing concentrations of ketone bodies in milk and blood 

(e.g. Van Haelst et al., 2008; Van Der Drift et al., 2012). In 2001, Enjalbert et al. observed high 

correlation coefficients between blood and milk acetone (0.96) and moderate correlation 

coefficients between blood and milk acetoacetate (0.74). The detection of milk acetone and 

BHBA could therefore be considered as a good predictor of ketosis in dairy cows. In some 

countries, such as The Netherlands, acetone and BHBA are already routinely analyzed by Fourier 

transform infrared spectrometry (FTIR) without any extra cost to the dairy farmer (Van Der Drift 
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et al., 2012). Unfortunately, the number of false-positive test results restricts the usability of 

acetone and BHBA for reliable detection of acetonemia. 

The FA composition of milk could also be used to detect preclinical ketosis. Indeed, milk 

fat production is the main expenditure for milk production in dairy cows. Moreover, the milk fat 

profile has been shown to change markedly during the first weeks of production (from week 1 

to week 12) and to remain unchanged thereafter (Gross et al., 2011). For all these reasons, and 

as mobilization of adipose tissue precedes the development of ketosis and incorporation of 

mobilized FAs into milk fat, changes in milk FA composition might be an early indicator of 

hyperketonemia (Van Haelst et al., 2008; Van Der Drift et al., 2012). To summarize, milk FAs can 

be derived from four major pathways: diet, the mammary gland (de novo synthesis), rumen 

(bacterial synthesis) and body fat mobilization (Stoop et al., 2009). Thus where a negative 

energy balance occurs, there may be several reasons underlying the changes in FA composition. 

Several studies (e.g. Van Haelst et al., 2008; Gross et al., 2011) have proposed relative increases 

in the proportions of omega-9 (or C18:1 cis9) and long chain fatty acids (LCFAs) as an interesting 

indicator of subclinical ketosis. Nutrient and energy deficiencies are compensated by 

mobilization of body fat reserves, predominantly of adipose tissue, associated with the release 

of FAs. Indeed, the major FAs released during fat mobilization are C16:0, C18:0 and C18:1 cis-9. 

Unfortunately, milk LCFAs may be largely influenced by diet. Correlations between energy 

balance and the proportion of C18:1 cis-9 have been shown to range from 0.77 (van Haelst et 

al., 2008) to 0.92 (Gross et al., 2011). These results confirm that a high proportion of LCFAs 

(especially if combined with lower medium chain fatty acid [MCFA] proportions) and, in 

particular, a high proportion of C18:1 cis-9 in milk fat can be considered as a good predictor of 

subclinical ketosis (Van Haelst et al., 2008). 

According to several authors (Hamann et al., 1997; Heuer et al., 1999; Mulligan et al., 

2006), the ratio of milk fat/protein (FPratio) is a useful risk predictor for numerous pathologies 

observed in dairy cattle, such as negative energy balance, ketosis, displaced abomasums, 

lameness and mastitis. In 1999, Heuer et al. proposed threshold values for diagnosing health 

problems in a given dairy cow using analysis of its milk composition. Using these threshold 



CHAPTER II: REVIEW: MILK COMPOSITION AS MANAGEMENT TOOL OF SUSTAINABILITY 

 
 

19 
 

values, Mulligan et al. (2006) established that milk containing an FPratio > than 1.4, a milk 

protein percentage lower than 2.9%, a milk fat percentage higher than 4.8% and a milk lactose 

value lower than 4.5% was an indicator for health problems in cows (Table 1). Toni et al. (2011) 

studied three large Italian dairy herds with 1,498 Holstein dairy cows, 35.8% of which were in 

first lactation. According to the data collected, the FPratio category with the lowest disease 

prevalence was between 1 and 1.5. On the other hand, cows presenting an FPratio < than 1 

showed a higher risk of developing disease. However, it would seem to be important to use 

these threshold values carefully, as they would need to be adapted to the particular dairy cow 

population under study. 

In addition, many of these milk production traits (fat and protein content, acetone and 

BHBA concentration) can vary according to the breed, parity number, season, etc. As a result, 

some authors, such as Van Der Drift et al. (2012), proposed improvements that could be made 

in order to improve the reliability of acetonemia detection by including the following 

components in the final diagnostic model: fat content, fatty acid composition (SCFAs, MCFAs, 

LCFAs and C18:1 cis-9), protein content, FPratio, acetone concentration, BHBA concentration, 

and other relevant factors, such as parity and season. 
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Table 1. Effects of metabolic diseases on milk composition. The composition of mature milk (vs 
colostrum) is shown for comparison — Effet des maladies dites métaboliques sur la composition du lait. 
Afin de permettre les comparaisons, la composition du lait est également indiquée. 
 

 

SCFA= short-chain fatty acids; MCFA = medium-chain fatty acids; LCFA = long chain fatty acids; BHBA = ß-
hydroxybutyrate; FAMEs = Fatty acids methyl esters. Numbers in parentheses indicate the reference(s) 
corresponding to the effect (↑: increase; ↓: decrease). Values are threshold values. Les numéros indiqués entre 
parenthèses correspondent aux références bibliographiques utilisées afin de décrire l’effet (↑: augmentation; ↓: 
diminution). Les valeurs indiquées sont des valeurs seuil. References: (1) Mulligan et al., 2006; (2) Van Haelst et al., 
2008; (3) Toni et al., 2011; (4) Van Der Drift et al., 2012; (5) Brandt et al., 2010; (6) Kutila et al., 2004; (7) Soyeurt et 
al., 2007; (8) Pyörälä, 2003; (9) Rajcevic et al., 2003 

 

2.5. Indicators of mammary inflammation 

 

In a well managed dairy herd, both clinical mastitis and subclinical mastitis should be 

efficiently detected (Pyörälä, 2003). Unfortunately, bacteriological sampling is not feasible as a 

routine test to identify subclinical mastitis. It is well known that mastitis affects the quality of 

  Mature 

milk 

Energy 

balance 

Ketosis Mastitis 
SCC     ↑ (5) 

Milk pH     ↑ (5) 

Mineral Sodium 470 mg.l
-1

   ↑ (5) 

 Potassium 1320 mg.l
-1

   ↓ (5) 

 Chloride 1190 mg.l
-1

   ↑ (5) 

 Calcium 1130 mg.l
-1

   ↓ (5) 

Protein  30-35 g.L
-1

 < 2.9% (1)   

Lactoferrin 0.1 to 0.4 

g.L
-1

 

  ↑ 

Mastitis: can 

reach 2.3g/L 

(6;7) 

Fat  35-40 g.L
-1

 > 4.8% (1) > 4.8% (1) ↑ (9) 

 C18:1 cis-9   ↑ (2) (g.100g
-1

 of FAMEs)  

 SCFA   ↓ (2)  

 MCFA   ↓ (2) (g.100g
-1

 of FAMEs)  

  LCFA   ↑ (2) (g.100g
-1

 of FAMEs)  

Ratio milk 

fat/protein 

  > 1.4 (1) 

 

>1.4 (1;4)  

BHBA    > 100mol/L (3) ↑ (5) 

Lactose  45-50 gL
-1

 < 4.5% (1) < 4.5% (1) ↓ (5;8;9) 

Urea     ↓ (5) 
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milk, and several authors (e.g. Pyörälä, 2003; Brandt et al., 2010) have reported changes in the 

composition of milk obtained from cows with infection. Thus, these changes in milk composition 

could be used as indirect mammary inflammation indicators. The most important changes are: 

an increasing permeability of the mammary epithelium, leading to a leak of ions, proteins and 

enzymes from the blood into milk (Bannerman et al., 2003), the invasion of phagocyting cells 

into udder compartments (Pyörälä, 2003; Komine et al., 2006), and a decreasing production 

capacity of the mammary gland, resulting in reduced concentrations of certain milk components 

(Pyörälä, 2003). Besides a high somatic cells count (SCC), the most important changes in milk 

composition resulting from subclinical mastitis are an increase in free FA concentration; a 

reduction in casein combined with an increase in whey protein; a reduction in lactose 

concentration; changes in the concentration of minerals such as sodium, chloride, potassium, 

and calcium, and an increase in milk pH (Brandt et al., 2010).  

An increase in the somatic cell count (SCC) is the first indicator of inflammation. A high 

SCC found in the milk of healthy cows is essentially due to the presence of macrophages (66-

88%), neutrophils (1-11%), epithelial cells and mononuclear cells (Pyörälä, 2003; Forsbäck et al., 

2010). In the case of inflammation of the mammary gland, the proportion of neutrophils may 

increase by up to 90%. The SCC in milk has been commonly used as a mastitis indicator since the 

1960s. In order to take into account SCC fluctuations in relation to a cow’s number of days in 

milk (DIM), different SCC thresholds have been proposed within lactation. The proposed SCC 

threshold values for the Canadian Holstein population are: 500,000; 300,000; and 200,000 

cells.ml-1for the following DIM classes: 5 to 10, 11 to 30, and 31 to 305 DIM, respectively (Koeck 

et al., 2012). Bovine lactoferrin (LTF) is also moderately correlated with the SCC. Arnould et al. 

(2009b) estimated positive genetic and phenotypic correlations between LTF and the SCC (0.24 

and 0.31, respectively; P < 0.0001). These values would seem to indicate that the LTF content in 

milk may increase proportionally to the SCC value. Bovine LTF is mainly present in milk and the 

protein shows important physiological and biological functions (such as antibacterial, antiviral, 

antifungal and antiparasitical characteristics). This multifunctional protein plays a key role in the 

health of the mammary gland. According to several authors (Seyfert et al., 1996; Wojdak-

Maksymiec et al., 2006; Soyeurt et al., 2007; Arnould et al., 2009b), the LTF gene could be 
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considered as a potential candidate gene for selection of mastitis resistance. Concentration of 

LTF in bovine milk increases significantly during mammary infections such as mastitis, and the 

degree of increase is related to the severity of the disease. The LTF concentration ranges from 

0.1 g.l-1 (mature milk: 0.1 to 0.4 g.l-1) to 5 g.l-1 (colostrum: 1.5 to 5 g.l-1). Although LTF is present 

in low concentrations in the milk of healthy cows, LTF concentrations in milk may increase up to 

a level of 2.3 g.l-1 during clinical mastitis (Kutila et al., 2004; Soyeurt et al., 2007) (Table 1).  

A recent genetic study in Canadian Holsteins shows a genetic correlation of 0.69 

between mastitis and the average somatic cell score (SCS) (Koeck et al., 2012). Other studies 

have estimated genetic correlations between mastitis and the SCC, ranging from 0.3 to 0.8, with 

an average of 0.6 (Heringstad et al., 2000). Thus, according to Koeck et al. (2012), even though 

mastitis and the SCS have a common genetic background, they may not be regarded as the 

same trait. 

Lactose values are also capable of displaying disorders in the secretory tissues. Indeed, 

udder infections cause the biosynthesis of lactose to decrease (Pyörälä, 2003; Rajcevic et al., 

2003; Brandt et al., 2010; Forsbäck et al., 2010). In 2003, Rajcevic et al. obtained a correlation 

between SCC and lactose of -0.42. According to Pyörälä (2003), lactose may be a more reliable 

indicator of mammary gland disorders as compared to SCC. Lactose presents an interesting 

advantage as an indicator as its day-to-day variation is very low (0.9%) compared to the day-to-

day variations in fat content (7.7%), milk yield (7.0%) and the SCC (2.0%) (Forsbäck et al., 2010). 

Thus, net observed decreases in lactose content are useful predictors of inflammation risk 

(Table 1). 

Mastitis also causes some changes in milk conductivity, due to damage in the mammary 

epithelium, thus altering the balance of specific minerals, such as potassium, sodium and 

chlorine ions. These minerals may thus be useful predictors for mastitis (van Hulzen et al., 2009; 

Brandt et al., 2010). Similar to the variation in lactose values, variations in the milk mineral 

concentration are obviously a response to udder inflammation, though these variations might, 

to some extent, also be related to other effects. By contrast, changes in milk fat and total 

protein content in milk are influenced by several other factors, including feed composition. Early 



CHAPTER II: REVIEW: MILK COMPOSITION AS MANAGEMENT TOOL OF SUSTAINABILITY 

 
 

23 
 

detection of mastitis might be related to the correlation between different indicators, such as 

the SCC, lactose and protein. 

 

2.6. Feeding and environmental management 

 

In the last few decades, numerous studies have dealt with the negative impact of dairy 

cattle on the environment. Nowadays, an ever increasing number of studies are focusing on 

environmental issues in agriculture, and more specifically, in animal production systems. In 

2010, agriculture was believed to contribute about 10% to the total EU-25 emissions of 

greenhouse gases (GHG) (EUROSTAT, 2012; Schils et al., 2005) and about 6% to the total GHG 

emissions in the United States (EPA, 2013). Animals are considered to contribute about 36% to 

the total emission values (Weiske et al., 2006). Methane (CH4) and nitrous oxide (N2O) are 

considered to be the primary greenhouse gases emitted by agricultural activities (EPA, 2013). 

Among the various agricultural activities, most GHG production is, directly or indirectly, caused 

by animal production, particularly of ruminants. Indeed, the main sources of agriculture-related 

GHG emissions are enteric fermentation, rumination of cattle and sheep, handling of manure 

(CH4) and agricultural soil practices (N2O). Thus we can conclude that CH4and N2O emissions are 

closely related to dairy production. Another important source of GHG is linked to the 

importation of feedstuffs, mostly protein-rich feeds (transport).  

Milk composition mainly depends on the quality of the feed, i.e. feed composition, energy 

and fiber content, etc. Milk urea content can be used as an indicator for dietary crude protein 

concentration (Kuterovac et al., 2005). In 2001, Godden et al. described the relationship 

between milk urea content and nutritional management, production, and economic variables in 

commercial dairy herds. There are three main sources of urea in milk: the final product of 

protein decomposition, the digestion of non-protein nitrogen (NPN), and the catabolism of 

amino acids in the mammary gland. Milk protein contains true-protein (95%) and NPN (5%). 

Milk urea contributes most to the NPN fraction (30-35% of the NPN: Bastin et al., 2009; Biswajit 

et al., 2011). According to Kuterovac et al. (2005) and Biswajit et al. (2011), average herd milk 
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urea concentrations are positively related to the dietary crude protein and rumen 

(un)degradable protein. Biswajit et al. (2011) also showed that milk urea measurements 

determined by infrared test methodology provide a useful tool for monitoring the efficiency of 

nitrogen utilization in dairy cattle. Diets those are too rich in protein lead to higher feed costs, 

environmental pollution and fertility problems (Biswajit et al., 2011). On the other hand, very 

low milk urea content could indicate protein deficiencies in the diet of dairy cattle, potentially 

leading to a loss of production. Target values for milk urea content used by farm advisors 

(Belgium, Walloon Region) are generally within a range between 200 and 400 mg.l-1 (Bastin et 

al., 2009). However, it still remains important to take into account certain characteristics of the 

cow, such as her stage of lactation, her parity number, etc. Consequently, monitoring milk urea 

content presents several economic and ecological benefits. Indeed, this tool could be useful in 

decreasing milk urea concentrations, in reducing the excretion of excess nitrogen into the 

environment, and consequently in lowering feed costs, while maintaining the cow’s level of milk 

yield (Kuterovac et al., 2005; Bastin et al., 2009; Biswajit et al., 2011).  

Boichard et al. (2012) looked at the relationship between feed management practices and 

the environmental footprint. In that study, feed costs were decreased through the use of 

alternative diet compositions, all while maintaining the herd’s milk yield at a constant level. This 

led to a decrease in the GHG emissions by the dairy cattle under study. This proves that the 

environmental concerns of consumers could be met by adapting herd management techniques, 

lowering the impact of dairy farming on GHG emission values and, indirectly, improving the 

economical sustainability of dairy production systems. In addition, despite the fact that GHG 

emissions currently have no direct value on the market, decreasing the agricultural 

environmental footprint becomes a major challenge for the future (Boichard et al., 2012) (e.g. 

increased importance of environmental policies, introduction of “emissions taxes” to be paid by 

farmers [Moraes et al., 2012]).  

Unfortunately, only a few studies have analyzed the relationship between milk composition 

and GHG production levels. Recent studies have shown that FA profiles may be used as 

indicators for the “environmental quality of milk” (e.g. Chilliard et al., 2009; Dijkstra et al., 
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2011). Fatty acid profiles thus represent a valuable tool for reducing methane emissions. The 

incentive for reducing methane emissions is two-fold. Firstly, a reduction in methane emissions 

leads to a decrease in the impact of GHG on the environment. Secondly, since methane 

production corresponds to a loss of productive energy by the dairy cow (Chilliard et al., 2009), 

there is great interest in providing indicators that will allow for a decrease in methane emission 

values. Various milk FAs show a moderate relationship with methane production in dairy cattle. 

According to the study of Chilliard et al. (2009), which was based on eight lactating multiparous 

Holstein cows, saturated FAs (SFAs) showed the highest positive correlation value with methane 

output (r = 0.87 to 0.91). Extremely high correlations were obtained for 8:0 to 16:0 (r = 0.94) 

and for the sum of C18-FA (r = -0.94). The relationship between milk FAs and methane output is 

easy to explain. As stated previously, milk FAs are derived from four major pathways: diet, the 

mammary gland, bacterial synthesis and body fat mobilization (Chilliard et al., 2009; Stoop et al., 

2009). On the one hand, synthesis both of FAs and of methane, acetate, and butyrate presents a 

common biochemical pathway. On the other hand, dietary FAs, especially SCFAs, MCFAs, LCFAs, 

and poly-unsaturated FAs (PUFAs), present a negative impact on protozoa, cellulolytic bacteria, 

or archaea methanogene populations, and consequently, on methane production (Chilliard et 

al., 2009). In addition, in the FAs studies carried out by Chilliard et al. (2009), most FAs 

presented an interesting correlation with methane production levels (trans-16 18:1; cis-9, trans-

13 18:2; trans-12 18:1; trans-13+14 18:1; trans-6+7+8 18:1; cis-15 18:1; and trans-11, cis-15 

18:2). These FAs are known as biohydrogenation intermediates, and are indirectly linked to the 

dietary 18:3 content. This explains why diets showing high concentrations of PUFAs tend to 

decrease methane production.  

 

2.7. Using milk components as multiple (health and environmental) 

indicators in dairy cattle management 

 

The main objective for using various milk components as management tools for promoting 

the sustainability of dairy production systems (health, feeding and environmental aspects) is to 
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obtain valuable indicators for diseases and unbalanced diets, which might be helpful for 

preventing metabolic problems at an early stage. Table 1 shows normal concentrations of 

several milk components, such as their range of changes according to different diseases or 

metabolic disorders. However, the evidence from the authors cited shows that expression levels 

of disease can vary from one study to another. Some authors prefer to present normal levels 

and threshold values for disease, while others display these values as a ratio (pathological value 

divided by physiological value). 

As indicated previously, some milk components may present different day-to-day variations 

(e.g. lactose vs fat content) (Forsbäck et al., 2010). Fortunately, for the majority of metabolic 

disorders, at least two parameters may vary, thus allowing the setting up of a pre-diagnostic 

test. In practice, normal physiological variances would need to be determined for each 

parameter used (Hamann et al., 1997). 

In order to improve the interpretation of milk composition patterns, a reference system 

needs to be set up for easy interpretation of available data. Indeed, values presented in this 

review may only be valid for that given dairy cow population or herd and may not be used as 

reference values for different dairy herds or cow populations. Threshold values for disease must 

be used with caution. It is important to study each dairy cow population separately and to adapt 

the threshold values accordingly. Values given in this review would still need to be adapted and 

validated in the field. In addition, due to variations between individual cows, this kind of 

strategy needs to be applied on a herd level, not on the basis of individual cows. Finally, the 

measurement of milk composition is meant as both a monitoring and a prevention tool. In other 

words, this tool can never replace close monitoring of a herd by the farmer and appropriate 

veterinary care, but may be used as an efficient alert system for preventing health disorders in 

cows. 
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2.8. Conclusion 

 

Milk yield, milk and milk fat composition may be used for developing strategies for the 

prevention and monitoring of production dysfunctions in dairy cattle and for the improvement 

of the sustainability of dairy production systems. The threshold values for disease in cattle 

presented in this review were obtained from the current literature. These values are examples 

and should be used with caution. Nevertheless, the present review suggests that milk and milk 

fat composition may be used both as a sustainability management tool and as a monitoring and 

prevention tool for several pathologies and health disorders in dairy cattle. The FA profile of 

milk may also be used to predict methane production in dairy cattle; however, more data 

reflecting a wide range of diets will be required to confirm the usefulness of the prediction 

model. In addition, due to the use of MIR technology, these tools may be easily implemented in 

practice and are relatively cheap. Milk labs or milk recording agencies would be able to alert 

farmers whenever threshold values for disease were reached, representing a valuable tool for 

health and environmental management. Using such prevention tools could thus help to improve 

the sustainability of dairy farmers. Indeed, in addition to avoiding losses arising from clinical 

diseases (milk yield losses, veterinary costs, etc.), and unbalanced diets, the prevention of 

production dysfunctions would also improve the reproductive performance of dairy herds, their 

udder health, animal welfare aspects (consumer concerns), labor input (medical treatment of 

cows), environmental aspects (decrease in the use of drugs and decrease in GHG emissions), 

etc. In this way, the introduction of prevention tools would contribute to improvements in dairy 

production from an economical, ecological and animal welfare point of view. 
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3.1. Abstract 
 

3.1.1. Genetic variability of milk fatty acids. 
 

The milk fatty acid (FA) profile is far from the optimal fat composition in regards to 

human health. The natural sources of variation, such as feeding or genetics, could be used to 

increase the concentrations of unsaturated fatty acids. The impact of feeding is well described. 

However, genetic effects on the milk FA composition begin to be extensively studied. This paper 

summarizes the available information about the genetic variability of FAs. The greatest breed 

differences in FA composition are observed between Holstein and Jersey milk. Milk fat of the 

latter breed contains higher concentrations of saturated FAs, especially short-chain FAs. The 

variation of the delta-9 desaturase activity estimated from specific FA ratios could explain partly 

these breed differences. The choice of a specific breed seems to be a possibility to improve the 

nutritional quality of milk fat. Generally, the proportions of FAs in milk are more heritable than 

the proportions of these same FAs in fat. Heritability estimates range from 0.00 to 0.54. The 

presence of some single nucleotide polymorphisms could explain partly the observed individual 

genetic variability. The polymorphisms detected on SCD1and DGAT1 genes influence the milk FA 

composition. The SCD1 V allele increases the unsaturation of C16 and C18. The DGAT1 A allele is 

related to the unsaturation of C18. So, a combination of the molecular and quantitative 

approaches should be used to develop tools helping farmers in the selection of their animals to 

improve the nutritional quality of the produced milk fat. 

Keywords: delta-9 desaturase, diacylglycerol O-acyltransferase and genetic, milk fatty acids. 

 

3.2. Introduction 

 

Milk fat is a complex mix of tri- and diglycerides, complex lipids, and liposoluble substances 

(Debry 2001). On average, 96% of milk fat is composed of triglycerides (Jensen 1995), each 

made up of glycerol esterified with 3 fatty acids (FAs). These are carboxylic acids with aliphatic 

chains, whose length and degree of saturation vary. According to the saturation, the FAs are 
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divided into 3 classes: saturated FAs (SFAs), monounsaturated FAs (MUFAs), and 

polyunsaturated FAs (PUFAs).  

Dairy products account approximately for 15–25% of fat intake and for 25–35% of SFA intake 

in human nutrition. Due to the negative effects of some SFAs on human health, milk fat has a 

bad reputation, because it is composed of 65–75% of SFAs (Debry 2001). Diets rich in SFAs, such 

as the lauric (C12:0), myristic (C14:0), and palmitic acids (C16:0), are highly related to an 

increased risk of atherosclerosis, obesity, and coronary heart diseases (e.g. Ulbricht and 

Southgate 1991; Cox et al. 1995; Hu et al. 1999; Haug et al. 2007). However, not all SFAs 

increase the cholesterol level in blood with the same proportion. According to Mensink et al. 

(2003), C12:0 markedly increases the total cholesterol content but decreases the ratio of total 

cholesterol to HDL cholesterol. This last property is favorable and more marked for C12:0 than 

for C14:0 and stearic acid (C18:0). C16:0 increases this ratio. The risk of cardiovascular diseases 

is not influenced by C18:0 (Hu et al. 1999). So, judging the nutritional quality of milk fat only 

basing on their total SFA content seems to be too generalist. 

The unsaturated FAs are usually called ‘healthy fats’, especially for their impact on the level 

of cholesterol in blood (Ward et al. 1998; Haug et al. 2007). PUFAs decrease the cholesterol 

content more strongly than MUFAs (Williams et al. 2000). Oleic acid (C18:1 cis-9) and linolenic 

acid (C18:3 cis-9, cis-12, cis-15), belonging to the ω-3 family, have anticancer and anti-

atherogenic properties (Williams et al. 2000; Haug et al. 2007). Besides its effect on cholesterol 

level, linoleic acid (C18:2 cis-9, cis-12), the most important in the ω-6 family, improves the 

sensibility to insulin and thus reduces the incidences of type 2 diabetes (Hu et al. 2001). This FA 

has also bactericidal impact on Lysteria monocytogenes (Petrone et al. 1998). Western diets are 

known to be deficient in ω-3 and excessive in ω-6. This disequilibrium promotes many diseases, 

such as cardiovascular diseases, cancer, and inflammatory or autoimmune diseases (Simopoulos 

2002). So, reaching and keeping a lower ratio of ω-6 to ω-3 is important. This ratio is usually 

higher than 12 in industrialized societies. Current dietary recommendations propose dietary ω-

6: ω-3 lower than 5 to reduce the risk of cardiovascular diseases, cancer, autoimmune disorders, 

allergies, obesity, some mental disorders, etc. (Sabikhi 2004). Excess of ω-6 can lead to 
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disruption of the biosynthesis of prostaglandins and consequently to inflammation, obesity, high 

blood pressure, irritation of the digestive tract, depressed immune function, and other 

disorders. Deficiency in ω-3 can also lead to other physiologic disorders, such as asthma and 

heart diseases (Sabikhi 2004). This ratio is naturally low in milk products (1.6; Haug et al. 2007). 

Dairy and beef products are rich sources of conjugated linoleic acid (CLA) (2.5–18.0 mg g–1 of fat 

in bovine milk), which is a mixture of positional and geometric isomers of C18:2 cis-9, cis-12. 

This structural variability explains the several functions, sometimes contradictory, attributable 

to CLA (Lock and Bauman 2004; Parodi 1997; Whale et al. 2004). The most important isomers 

are the rumenic acid, C18:2 cis-9, trans-11, which represents about 75–90% of the total CLA, 

and C18:2 trans-10, cis-12. According to several animal models, CLA exhibits anti-atherogenic, 

antiobesity, and anticarcinogenic proprieties (e.g. Corl et al. 2001, MacDonald 2000; McGuire 

and McGuire 2000, Parodi 1997). CLA are also able to modulate the immune response and bone 

growth, to promote cell growth, etc. (e.g. Keating et al. 2005; Lock and Bauman 2004; 

MacDonald 2000; Tanaka 2005; Whale et al. 2004). More details can be found in many reviews 

about the effects of FAs on human health (e.g., Hu et al. 2001; Chilliard et al. 2000). 

Basing on these health aspects, it would be interesting to modulate the quality of milk fat, 

and then to promote the production of some FAs in relation to the others. Even if the 

consumption of dairy products is lower than recommended [450–600 mL of milk and 20–40 g of 

cheese (Devriese et al. 2006)], the improvement of nutritional quality of milk could have a 

significant impact only in the context of a balanced diet. Numerous investigations described the 

feeding effects on milk fat composition (e.g., Chilliard et al. 2000), but information about 

genetic effects on the FA profile of bovine milk is scarce in the literature. The aim of this paper 

was to review the impact of genetic factors on the FA composition of bovine milk fat. 
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3.3. Quantitative approach 

 

3.3.1. Breed differences 

 

Several authors observed breed differences in the milk FA profile. Table 1 summarizes 

the breed differences in FA concentrations in milk fat, observed in various studies and expressed 

in comparison with Holstein (Soyeurt et al. 2008a). The papers referenced in Table 1 are some 

examples of available studies on breed differences in FAs. Holstein and Jersey milk fats present 

the greatest differences. Higher concentrations of SFAs, especially of FAs with short and 

medium carbon chains, are observed in Jersey milk fat (e.g., Hermansen and Lund 1990; 

Beaulieu and Palmquist 1995; White et al. 2001; Table 1). However, DePeters et al. (1995) 

reported that the concentrations of FAs with short and medium chains did not differ. Moreover, 

the proportion of C16:0 did not differ significantly between Holstein and Jersey milk fat. 

According to Lawless et al. (1999), Normande and Montbeliarde produce milk fat with the 

highest proportions of C18:0. In contrast to Normande, however, Montbeliarde milk fat has 

higher CLA content, as compared to Dutch Holstein milk fat (Table 1).  

Unfortunately, the studies focusing on the breed differences in FA composition analyzed 

generally small numbers of milk samples and cows (Table 1). This is related to the cost of the gas 

chromatographic analysis needed to measure FA concentrations in bovine milk. Recently, 

Soyeurt et al. (2006a) showed the possibility to estimate the FA concentrations by mid-infrared 

spectrometry. This technology is faster and cheaper than the reference chemical analysis. 

Thanks to these estimations of FAs by infrared, Soyeurt et al. (2006b and 2008b) studied the 

differences across dairy breeds on a large dataset using mixed models. The obtained results for 

Jersey, Montbeliarde, and Normande breeds were generally in agreement with those 

mentioned in Table 1. Those authors also observed that the milk fat produced by dual-purpose 

Belgian Blue cows had the highest concentrations of unsaturated FAs. The observed breed 

differences were partly explained by the values of C14:1 cis-9/C14:0, C16:1 cis-9/C16:0, and 

C18:1/C18:0, reflecting the activity of delta-9 desaturase.  
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  Differences of fatty acid contents compared to Holstein (in %) 

 Guernsey
 

 Jersey
 

  Brown-Swiss  Montbeliarde
  

Normande 

 Stull
1
  Stull

1 
Beaulieu

2 
DePeters

3 
White  DePeters 

3
 

Kelsey
4 

 Lawless
5  

Lawless
5
 

 
N=25  N=10 N=8 N=23 N=18  N=29 N=106  N=29  N=27 

C4:0    -2.43 

* 

-4.90 +3.81 
(**)

  -1.47 +12.36
(***)

  -5.50  -2.75 

C6:0 +20.73  +8.54 +16.67 
(*)

 +3.32 
(*)

 +16.33
(**)

  +2.21 +7.32
(**)

  -2.54  +0.85 

C8:0 +13.16  +15.79 +38.46 
(**)

 +7.55 
(**)

 +27.17
(**)

  +5.03 
(**)

 +13.13
(***)

  +1.02  +5.10 

C10:0 +14.29 
(**)

  +34.10 
(**)

 +43.33 
(***)

 +13.59 
(**)

 +34.00
(**)

  +4.08 
(**)

 +14.22
(***)

  +6.98  +9.30 

C10:1 +12.5  +70.83        -16.67  0.00 

C12:0 +7.59 
(**)

  +36.90 
(**)

 +42.86 
(***)

 +16.90 
(**)

 +34.19
(**)

  +6.34 
(**)

 +14.41
(***)

  +6.46  +10.77 

C14:0 +5.64  +9.26 +8.62 
(*)

 +2.36 +10.71
(**)

  +2.14 +4.66
(*)

  +2.61  +1.87 

C14:1 cis -11.31  -4.76   +1.69   -1.64  -28.09  -10.11 

C15:0 -6.80  -2.04      -6.76
(**)

     

C16:0 +7.20 
(**)

  +5.63 
(**)

 -6.79 
(*)

 -1.24 -1.11  -1.70 +0.96  -11.49  -8.15 

C16:1 9-cis -7.14 
(**)

  -16.67 
(**)

  -9.55 -10.71
(**)

  -1.51 -13.08
(***)

     

C18:0 +4.64  +1.12 +12.50 +6.61 
(**)

 +0.72  -6.83 
(**)

 -3.42  +10.89  +14.93 

C18:1 9-cis -11.15 
(**)

  -12.92 
(**)

 -12.72 
(**)

 -9.51 -10.35
(**)

  +3.91 -1.96
(***)

  +5.37 
*  

+1.37 
* 

C18:2  -4.92  -4.64 0.00 +1.58 0.00  -4.74 -5.80
(***)

  +5.94  +3.96 

CLA      -21.95
(**)

   -6.82
(***)

  +13.07  -5.11 

C18:3  -19.79  -32.29 -16.67 +15.50 
(*)

 -2.63  -6.98 -2.56  +1.22  -6.10 

Table 1. Breed differences of fatty acid profile on bovine milk fat obtained by different studies from a limited number of cows (N) fed with the 
same diet (Soyeurt et al., 2008). 
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5
 Lawless et al (1999);

6
 White et al. (2001) * = P<0.05; ** = P < 0.01 

and *** = P < 0.001 
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Delta-9 desaturase (SCD), also named stearoyl coenzyme-A desaturase (E.C. 1.14.19.1), 

catalyses the introduction of a cis-double bond between carbons 9 and 10 of SFAs with a chain 

length of 10-18 carbons (Bauman et al. 1999; Thomson et al. 2003). So, it converts specific 

medium- and long-chain SFAs into the corresponding MUFAs (Reh et al. 2004). This last activity 

is an essential step in the synthesis of unsaturated FAs. Up to 90% of the CLA in bovine milk is 

formed due to the activity of this enzyme in the mammary gland (Keating et al. 2005). According 

to Feng et al. (2007) and Lock and Garnsworthy (2003), the C14 desaturase index is considered 

as the best indicator of desaturase activity. In fact, 90% of C14:1 cis-9 is the result of SCD activity 

(Mosley and McGuire 2007). The total concentrations of MUFAs and CLA should increase in fat if 

SCD activity rises, improving in this way the nutritional quality of milk. Some studies estimated 

SCD activity by specific FA indices, defined as ratios of FAs dependent on this enzymatic activity: 

product/substrate (e.g., Lock and Garnsworthy 2003), substrate/product (e.g., Chouinard et al. 

1999) or product/(substrate + product) (e.g., Kelsey et al. 2003). Kelsey et al. (2003) observed 

that Holstein cows showed higher FA indices compared to Brown-Swiss cows, except for CLA 

index. The greatest concentrations of MUFAs and CLA observed by those authors for Holstein 

breed could be explained by this enzymatic activity (Table 1). Soyeurt et al. (2008b) observed 

the greatest FA indices for the dual-purpose Belgian Blue, explaining partially the greatest 

concentrations of unsaturated FAs observed for this breed. In the same way, the FA indices of 

Jersey cows were lower, compared to Holstein cows, explaining partly the high SFA content 

observed in this breed.  

 

3.3.2. Individual genetic variability 

 

The effects of feeding on FA composition of bovine milk are well known. For a few years, 

some Belgian and Dutch breeders used specific feeding to increase the concentrations of 

unsaturated FAs in their milk, especially of ω-3 and CLA. Although this method is efficient, the 

effects are not durable. If the feeding supplementation stops, the improvement of FA 

composition disappears. So, animal selection using the genetic variability of FAs should transmit 

from generation to generation this nutritional improvement. For this purpose, a selection index 
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needs to be developed. The estimation of genetic parameters for FA concentrations in bovine 

milk is the first step. 

The heritability values mentioned in Table 2 differ between the cited studies. The 

number of analysed samples and the methodology used for estimating the genetic parameters 

could explain these differences. This section presents the heritability values obtained in various 

studies, describes the particularities of each study, and discusses all the obtained results. 

To our knowledge, Edwards et al. (1973) were the first authors who estimated the 

genetic parameters of FA concentrations in bovine milk fat. They expressed FA concentrations 

as molar percentage. The genetic parameters were calculated from 50 winter milk samples (2 × 

10 samples from Ayrshire monozygotic twins and 2 × 15 samples from Ayrshire dizygotic twins). 

Heritabilities were high and ranged between 0.64 and 0.98 (Table 2). This may be partly due to 

the specific unit, but these values can also be considered as overestimated because of the low 

number of analyzed samples and the biased hypothesis used to calculate the variance 

components. Environmental variance was estimated from the variance component within 

monozygotic pairs. The variance components within dizygotic pairs represented the 

environmental variance and half of the genetic variance. In spite of these overestimated values, 

this study was the first one showing high heritability for each FA in milk fat.  

One year later, Renner and Kosmack (1974a) estimated the genetic parameters of 

various groups of FAs based on 2082 milk samples collected from the progeny of 10 AI sires by 

using a sire model. They obtained some heritability estimates of 0.26, 0.06 and 0.04 for the 

concentrations of FA classes with short and medium carbon chains and of C18 family in milk fat, 

respectively. Heritability values were 0.26, 0.25 and 0.02 for the same classes of FAs in milk, 

respectively. From these estimates, it appears that the FA concentrations in milk seem to be 

more heritable than the concentrations of FAs in milk fat. 
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Fat or fatty acids Heritability estimates of fat content and fatty acids content 
 Karijord

1 
 Soyeurt

2  
Soyeurt

3 
 Stoop

4 
 Bobe

5 

 N=7000  N=40,007 
 

N=52,950  N=1,918  N=592 

 g/100 g 

fat 

 g/100g 

milk
 

g/100g fat 
 

g/100g fat  %wt
 

 g/L milk %wt 
%Fat 0.09  0.32 0.32  0.33  0.47  nd nd 
C4:0 nd  nd nd  nd  0.35  0.01 0.00 
C6:0 0.11  nd nd  nd  0.39  0.19 0.00 
C8:0 0.13  nd nd  nd  0.48  0.37 0.18 
C10:0 0.16  nd nd  nd  0.54  0.40 0.22 
C12:0 0.17  0.29 0.09  nd  0.35  0.36 0.18 
C14:0 0.07  0.31 0.19  0.15  0.49  0.18 0.00 
C14:1 0.26  nd nd  0.20  nd  nd nd 
C16:0 0.15  0.38 0.20  0.15  0.31  0.20 0.09 
C16:1 0.12  nd nd  0.22  nd  0.34 0.49 
C18:0 0.15  0.30 0.28  0.16  0.19  nd 0.24 
C18:1 0.06  0.05 0.15  0.17  0.18  0.25 0.06 
C18:2 0.11  0.20 0.15  nd  0.13  0.27 0.00 
CLA nd  nd nd  nd  0.21  nd nd 
C18:3 0.09  nd nd  nd  0.09  nd nd 

            
SAT nd  0.36 0.14  nd  nd  0.27 0.05 

MONO nd  0.15 0.24  0.17  nd  0.09 0.08 
POLY nd  nd nd  nd  nd  0.25 0.00 

Table 2. Heritability of fatty acid composition in bovine milk and milk fat. 

 

 

 

 

 

 

 

 

 

 

1
Edwards et al. (1973) ; 

2
Karijord et al. (1982); 

3
 Soyeurt et al. (2007); 

4
Soyeurt et al. (2008b); 

5
Stoop et al. (2008); 

7
 Bobe et al. (2008); %wt= fatty acid (FA) 

weights as a proportion of Total fat weight; CLA= conjugate linoleic acid; MUFAs =monounsaturated FAs; PUFAs= polyunsaturated FAs; SFAs= saturated fatty 

acids; nd= no data 
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Renner and Kosmack (1974a), Karijord et al. (1982) used also a sire model to estimate 

the genetic parameters but they calculated the heritability values for the major individual FAs. A 

total of 7000 milk samples collected from about 30 daughters of each of the 114 selected AI test 

bulls between January 1979 and August 1979 were used in this study. As in the previous studies, 

concentrations of FAs were measured by gas chromatography. The heritability values of the FA 

concentrations in fat (g/100g of fat) ranged from 0.06 to 0.26 (Table 2). The comparison of the 

studies conducted by Renner and Kosmack (1974) and Karijord et al. (1982) with the one of 

Edwards et al. (1973) is impossible because the methods and units used were clearly different. 

Compared to the methodology used by Edwards et al. (1982), the sire model used by Renner 

and Kosmack (1974) and Karijord et al. (1982) gave more accurate variance components. 

Using an animal model instead of a sire model permits to estimate directly the genetic 

effects of all relatives. Further, this model permits to take into account the performances of 

ancestors, descendants and collateral relatives, and thus improves the accuracy of the 

estimation. More recent studies, such as Soyeurt et al. (2007a and 2008b), Stoop et al. (2008) 

and Bobe et al. (2008), used an animal model to estimate the genetic parameters of FAs. 

The previous studies used gas chromatography to measure FA concentrations in milk fat. 

Although this method is efficient, it requires skilled staff, expensive reagents, and takes time, so 

only small numbers of samples were analyzed. The estimation of the genetic parameters needs 

a large amount of data; hence Soyeurt et al. (2006a) proposed to use mid-infrared spectrometry 

to predict the FA concentrations directly in bovine milk. Thanks to the large data set including 

the spectral data and, thus, the FA concentrations estimated by applying the developed 

calibration equations on these collected spectra, Soyeurt et al. (2007a) estimated the genetic 

parameters of FAs by using a multi-trait test-day animal mixed model. A total of 7700 milk 

samples were collected in 25 herds between April 2005 and May 2006, and analyzed by mid-

infrared spectrometry. The generated spectra were recorded. To increase the number of 

contemporaries, milk history of studied animals and herds was added. The final edited data set 

contained 40 007 records on 2047 cows. Heritability estimates ranged from 0.05 to 0.38 for the 

individual FA concentrations in milk (g 100g–1 of milk) and from 0.09 to 0.32 for FA 

concentrations in fat (g 100g–1 of fat) (Table 2). One year later, the same authors (Soyeurt et al. 
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2008b) used the same model but with a larger data set containing 52 950 records (including 10 

401 spectral data collected from April 2005 to December 2006) from 3217 cows. Only FA 

concentrations (g 100g–1 of fat) related to the delta-9 activity were estimated (C14:0 to C18:1 

and MUFAs). Heritability values ranged from 0.15 to 0.33. The results were slightly lower than 

those estimated previously by the same authors except for C18:1. These differences could be 

explained mainly by the data (the second data set contained spectral data from a larger number 

of winter milk samples) and partly by the improvements of the calibration equations (78 

reference milk samples used to build the calibration equations instead of 49 used in the 

previous study). 

Stoop et al. (2008) used a single-trait animal mixed model to calculate the heritability of 

the individual FA measured by gas chromatography and expressed as %wt (FA weight as a 

proportion of total fat weight), based on 1918 milk samples collected from 1918 cows between 

February and March 2005. The benefit of using gas chromatography instead of mid-infrared 

spectrometry is a more accurate measurement of FAs with low concentrations in bovine milk 

fat. In fact, if the concentration of an individual FA in bovine milk decreases, the accuracy of its 

prediction by mid-infrared spectrometry decreases (Soyeurt et al. 2006a). Stoop et al. (2008) 

studied a large number of various FAs, especially of several isomers of C18:1. The various 

studied isomers showed similar heritabilities, ranging between 0.11 and 0.18. Heritability values 

for the major FAs ranged from 0.09 to 0.54 (Table 2). 

Bobe et al. (2008) calculated the genetic parameters of FAs measured by gas 

chromatography, using single-trait mixed animal models based on 592 milk samples collected 

between August 1993 and July 1994 from 233 cows. Heritability values ranged between 0.01 

and 0.40 in milk (g L–1 of milk) and between 0.00 and 0.49 in fat (%wt) (Table 2). 

The comparison of results among the cited studies is difficult because of the diversity of 

the units used to express the concentrations of FAs, the model used, and the amount of data 

available. However, some observations made by various authors can be compared. All of these 

studies confirmed the existence of the genetic variability of the FA concentrations in bovine milk 

and fat, suggesting a potential future animal selection. Results obtained by Soyeurt et al. 
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(2007a) and Bobe et al. (2008) and presented in Table 2 suggest that the concentrations of FAs 

in milk (expressed as g 100g–1 of milk and g L–1 of milk) are generally more heritable than the 

concentrations of FAs in milk fat (expressed as g 100g–1 of fat and %wt). Renner and Kosmack 

(1974a) also observed this trend. This observation was expected because the fat content of 

bovine milk is strongly heritable. Heritability of fat percentage ranged from 0.32 to 0.47 (Table 

2). Karijord et al. (1982) found a lower value, equal to 0.09. Stoop et al. (2008) as Renner and 

Kosmack (1974a) suggested a relation between FA length and the heritability estimates. The 

other cited studies did not observe the same trend. 

The improvement of models used to describe the variability of FAs is related to the 

facilities needed to obtain the FA data. Gas chromatography is too expensive to be used on a 

large scale to develop the tools needed for the implementation of animal selection based on FA 

concentrations. The use of mid-infrared spectrometry to predict the FA concentrations in bovine 

milk is a good alternative method, even if the prediction of FAs with low concentrations in milk 

is not accurate enough. The implementation of this methodology in the different milk labs used 

to collect the data for the routine milk recording is a crucial point before thinking about 

developing a selection program based on the FA profile. Currently, the Walloon and 

Luxembourg milk recordings are, to our knowledge, the only ones that record the spectral data 

during the routine milk infrared analysis used to measure the concentrations of fat, protein, 

lactose, and urea. However, recently, Foss (Hillerod, Denmark) proposed different calibration 

equations to predict the FA concentrations in milk. All this suggests that in the near future a 

larger number of labs could predict the FA concentrations needed for a selection program. 

Thanks to a larger data set, a test-day animal mixed model could be used to describe the 

variability of FAs, as done by Soyeurt et al. (2007a, 2007b, 2008b). The use of this type of model 

presents some advantages, such as a more efficient use of the collected data, a genetic model 

that accounts better for the biology of dairy cows, a better accounting for short-term 

environmental effects at each test-day milk recording, and finally, more accurate estimations of 

cow indices (Schaeffer et al. 2000; Mayeres et al. 2004; Muir et al. 2007). Also due to the 

availability of data, the model could be improved by the addition of some regressions, to take 

into account the variation of genetic parameters throughout the lactation. So, parametric 
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curves, such as the Ali-Schaeffer curve, the Wilmink curve, or orthogonal polynomials, could be 

used to model the random regressions. However, the disadvantage of the test-day model is the 

computation time, cost, or both (Druet et al. 2003). 

The number of FAs is very large: 406 registered currently (Debry 2001). Consequently, it 

could be interesting to find an indicator that reflects the most important information contained 

in the FA variability, especially to decrease the computation cost and time. By its implication in 

the production of MUFAs and CLA, the FA indices could reflect the nutritional quality of bovine 

milk fat. Royal and Garnsworthy (2005) reported heritability values of 0.30, 0.19, and 0.29 for 

C14:1/(C14:0+C14:1), C18:1 cis-9/(C18:1 cis-9+C18:0), and C18:2 cis-9, trans-11/(C18:2 cis-9, 

trans-11+C18:1 trans-11), respectively. Only C16:1/(C16:0+C16:1) showed a heritability equal to 

0.01. Heritability for C14:1 cis-9/C14:0, C16:1 cis-9/C16:0, and C18:1 cis/C18:0 obtained by 

Soyeurt et al. (2008b) were equal to 0.20, 0.20, and 0.03, respectively. These results showed the 

individual genetic variability of the FA indices. 

The FA composition influences the nutritional quality of milk fat but also the 

technological properties of butter (Soyeurt et al. 2007b). Increasing the concentrations of 

unsaturated FAs and short-chain FA improves butter spreadability (Bobe et al. 2007). Bobe et al. 

(2003) suggested that the phenotypic variation of FA composition was sufficient to modify the 

textural properties of butterfat. One of the indicators used to determine the hardness of 

butterfat is the ratio of SFAs to unsaturated FAs. Heritability of this ratio estimated by Soyeurt 

et al. (2007b) was equal to 0.22. Stoop et al. (2008) found a heritability of 0.20. As expected, the 

genetic variability of the ratio of SFAs to unsaturated FAs exists. 

 

3.3.3. Molecular approach 

 

Few authors pointed out the SCD gene level expression as one of the possible origins of 

FA variation in milk (e.g., Baumgard et al. 2002; Keating et al. 2005). The bovine SCD mRNA, 

completely cloned and sequenced, spans 5.1 kb and codes for a 355-amino-acid enzyme. The 



CHAPTER III: GENETIC VARIABILITY OF MILK FATTY ACIDS 

 
 

47 
 

SCD gene is identified in various species (e.g., Tabor et al. 1998, Kuchel et al. 2004). Currently, 

two SCD genes are identified on BTA6 and BTA26 (Campbell et al. 2001; Lengi and Corl 2007). 

The first SCD gene is expressed in several tissues and organs, principally in mammary glands and 

adipose tissue, but also in the liver, muscle, lung, brain, heart, etc. The second one is principally 

expressed in the brain (Ward et al. 1998; Yahyaoui et al. 2001). Medrano et al. (1999) identified 

8 single-nucleotide polymorphisms (SNP) in various bovine breeds (Holstein, Jersey, and Brown-

Swiss): 3 SNPs were detected on exon 5 and the others in the 3’ UTR of the SCD gene. Keating et 

al. (2005) have characterized the bovine SCD gene promoter and studied its regulation on 9 

Holstein cows having high and low concentrations of CLA and on 10 cows of various dairy 

breeds. According to their results, no polymorphic sites between the bovine SCD promoters of 

these 19 cows were shown by the sequence comparison. Keating et al. (2005) concluded that 

the variations in the levels of CLA in milk could not be explained by polymorphisms of the SCD 

promoter regions. However, these variations could be explained by other hypotheses, such as 

differences in ruminant synthesis of CLA (or CLA precursors), differences in the regulatory 

proteins themselves, or by polymorphisms in the coding sequences of the bovine SCD gene 

(Keating et al. 2005). Moioli et al. (2007) and Mele et al. (2006) studied the effect of the SNP 

(C/T) located on exon 5 of the SCD gene from 79 cows belonging to 3 breeds (27 Piedmontese, 

27 Valdostana, and 25 Jersey) and from 297 Holstein Italian Friesian cows, respectively. They 

concluded to a higher enzymatic activity of SCD polymorphism essentially on C14:0 and 

caproleic acid (C10:1). Recently, Schennink et al. (2008) observed that the SCD1 V allele was 

related to higher concentrations of C10:0, C12:0, C14:0, C16:1 cis-9 and CLA in milk fat. 

The diacylglycerol O-acyltransferase (DGAT-1) is also implied in the FA composition of 

bovine milk (Schennink et al. 2007). DGAT-1 is considered as a microsomal enzyme (E.C. 

2.3.1.20) able to catalyze the only committed step in triacylglycerol synthesis by using 

diacylglycerol and fatty acyl CoA as substrates (Cases et al. 1998). Situated on BTA14, the DGAT1 

gene encodes 489 amino acids and comprises 17 exons. By sequencing the bovine DGAT1 gene, 

a non-conservative lysine to alanine substitution was observed at position 232 (K232A) and 

seems to influence the major milk production traits, such as milk yield and milk composition 

(Grisart et al. 2004; Thaller et al. 2003; Winter et al. 2002). Winter et al. (2002) observed that 
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the lysine variant is associated with greater milk fat content than the alanine variant. According 

to results of Schennink et al. (2007), K232A led to a larger fraction of C16:0 in milk fat but less 

C14:0, less unsaturated C18 and less CLA. Further, K232A had a positive effect on the ratio of 

SFAs to unsaturated FA. This could be explained by the fact that the presence of alanine residue 

at position 232 could inhibit the acyl-CoA-binding capacity of this enzyme, and this leads to a 

greater activity or an alteration of specificity of DGAT-1 (Schennink et al. 2007; Winter et al. 

2002) 

 

3.3.4. Impact on animal selection 

 

As mentioned previously, thanks to the development of FA calibration equations 

(Soyeurt et al. 2006a) and the possibility to record all spectra generated during the infrared 

analysis executed during the milk recording, the creation of a large database including the FA 

profile is now possible. This data set should permit the development of selection indexes to 

improve the nutritional quality of milk fat. Which FA should be included in this selection index? 

The answer to this question is not easy. The genetic correlations among some FAs are high 

(Soyeurt et al. 2007a; Stoop et al. 2008). This relationship is explained by the similarities in their 

metabolic production processes. For instance, it will be impossible to increase the 

concentrations of C18:2 cis-9, cis-12 without increasing the concentrations of C18:3 cis-9, cis-12, 

cis-15. Besides the relationships among FAs, these milk components are also related to the 

traditional production traits, such as milk yields, fat or protein contents, and fat or protein 

yields. The FA composition of milk fat is influenced by fat and protein contents. Negative genetic 

correlations were observed between the unsaturated FAs and the fat and protein contents 

(Karijord et al. 1982; Soyeurt et al. 2007a; Stoop et al. 2008). Consequently, as the fat and 

protein contents influence positively the milk payment, increasing the concentrations of 

unsaturated FAs should have negative economic impacts for farmers. A new procedure of milk 

payment needs to be developed, basing on, e.g. the concentrations of some FAs. Thanks to that, 

many farmers should be interested in improving the nutritional quality of their milk fat, and thus 
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a large selection program could be developed, basing on the genetic variability of FA 

concentrations in dairy cattle. 

During the last few decades, quantitative genetics permitted important genetic progress 

without knowing the genes responsible for livestock performance. Even if molecular approach is 

expensive, it permits to identify these genes, so it complements the quantitative approach. For 

instance, molecular approach permits the quality control of selection, the major gene 

identification, and development of new methods enabling better estimates of animal 

performance. Currently, several genetic marker maps are available for many species, and 

various QTL regions have been identified. Marker-assisted selection is useful in many situations, 

especially when the accuracy of conventional selection is low, e.g. when studied traits have low 

heritability or are measured late in life. Some SNPs have been identified on DGAT1 and SCD 

genes, permitting early selection of animals. Molecular analyses are interesting for the testing 

animals. For global animal selection on FA composition, the molecular and quantitative 

approaches should be associated. 
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This thesis aimed to investigate the opportunity of using milk (fat) composition as an 

innovative, robust and practical management tools. Development of such tools could help dairy 

farmers in their daily decisions. 

As explained in Chapter II, the milk, and more especially, the milk fat composition could 

be used in routine as a practical tool allowing the early detection of metabolic or management 

problem. 

In order to develop such a tool based on milk fat composition, a second literature 

review, presented in Chapter III, was proposed. It summarized the current available information 

about the genetic variability of milk FA. Further, this review described also the impact of genetic 

factors on the FA composition of bovine milk.  

Therefore, the first objective of the present thesis was to investigate the development of 

a genetic evaluation for milk FA. The current genetic evaluation model for production traits in 

the Walloon region of Belgium is a multiple-lactation, multiple-trait random regression test-day 

model using second-order Legendre polynomials. However, according to the available literature, 

this kind of model using Legendre polynomials present undesirable properties, as an 

overestimation of variances at the edges of lactation. On the other hand, some previous 

researches have reported that splines might be less sensitive to the data that Legendre 

polynomials. Consequently, splines could be considered as a good alternative to polynomials. 

The objective of this study was to compare different models used for estimating genetic 

parameters of milk saturated fatty acids production. This comparison was based on the 

goodness of models fit and concerned 3 functions: 1) Legendre polynomials; 2) linear splines 

with 10 knots and 3) linear splines with the same 10 knots reduced to 3 variables. The obtained 

results were presented in Chapter V, and published in the Journal of Dairy Science.  

Next Chapter, Chapter VI, was also concerned by the development of models. In 

Luxembourg, CONVIS s.c. is the current milk recording organization. The standard milk recording 
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scheme consists in a physical visit to each participating dairy herd every 4 weeks, and milk 

samples are collected from all milked cows during consecutive PM and AM milkings. This 

standard scheme is called “S”. Some alternative recording schemes are proposed to interest 

dairy farmers. So, milk samples could be also collected every 2, 4 or 6 weeks, during only PM or 

only AM milkings (scheme “M”) or during on alternate monthly PM and AM milkings (scheme 

“T”). These alternative schemes present several advantages for dairy farmers. Indeed, they are 

less disruptive to the daily routine and present an interesting reduce of costs.  

However, the use of different sampling schemes could also influence the development of 

management tools. Indeed, it is well known that phenotypic differences exist in milk 

composition between AM and PM milkings. Further, very few literatures exist about the impact 

of milking moment on genetics parameters. So, the Chapter VI, concerns the study of effect of 

the milking recording time (AM or PM) on genetic parameters of milk yield and milk fat 

composition (fat and fatty acids groups). These results were presented at ADSA 2012 and 

recently submitted. 

The use of different sampling schemes represents another obstacle to the development 

of above mentioned tools. Indeed, to develop robust management tools, it is very important 

that the used phenotypic data were homogenous. However, the use of different sampling 

methods can bring heterogeneity, and, consequently prevents the comparison of all 

productions on the different dairy farms.  

One possibility is to develop methods allowing the standardization of the milk 

composition. Chapter VII investigates estimations of milk and milk FA groups productions on 24 

hours. The originality of this study was to develop some equations permitting the estimation of 

FA daily production based only on accurate and available data.  

In 2000, ICAR approved a model able to estimate daily milk, fat and protein yields based 

on AM or PM milking. At our knowledge, nothing is done currently about FA. So, the second 
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innovative aim of this study was, therefore, to develop equations to estimate the daily yields of 

the major FA present in milk. Results and conclusions of this study were published in Animal. 

The last part of the thesis (Chapter VIII) discussed globally the possibility to use obtained 

results in order to develop the previous mentioned management tools. This last chapter also 

formulates perspectives of this research. 
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5.1. Abstract 

 

Random regression test-day models using Legendre polynomials are commonly used for 

the estimation of genetic parameters and genetic evaluation for test-day milk production traits. 

However, some researchers have reported that these models present some undesirable 

properties such as the overestimation of variances at the edges of lactation. Describing genetic 

variation of saturated fatty acids expressed in milk fat might require the testing of different 

models. Therefore, 3 different functions were used and compared to take into account the 

lactation curve: (1) Legendre polynomials with the same order as currently applied for genetic 

model for production traits; 2) linear splines with 10 knots; and 3) linear splines with the same 

10 knots reduced to 3 parameters. The criteria used were Akaike’s information and Bayesian 

information criteria, percentage square biases, and log-likelihood function. These criteria 

identified Legendre polynomials and linear splines with 10 knots reduced to 3 parameters 

models as the most useful. Reducing more complex models using eigenvalues seemed appealing 

because the resulting models are less time demanding and can reduce convergence difficulties, 

because convergence properties also seemed to be improved. Finally, the results showed that 

the reduced spline model was very similar to the Legendre polynomials model.  

 

Keywords: spline, Legendre polynomials, random regression test-day model  
 

Random regression test-day models (RRTDM) using Legendre polynomials (LP) remain a 

commonly used methodology for the estimation of genetic parameters and genetic evaluation 

for daily milk production traits (Misztal, 2006; Bohmanova et al., 2008). The current genetic 

evaluation model for production traits in the Walloon region of Belgium is a multiple-lactation, 

multiple-trait RRTDM using second-order LP (constant, linear, quadratic) for additive genetic 

and environmental effects (herd × year of calving and permanent environmental). Jamrozik and 

Schaeffer (2002) showed that RRTDM with orthogonal polynomials outperform models using 
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lactation curves based on the Wilmink function (Wilmink, 1987) and the Ali and Schaeffer 

function (Ali and Schaeffer, 1987), even using the same number of parameters for additive 

genetic and environmental effects. Nevertheless, Bohmanova et al. (2008) reported that RRTDM 

using LP have undesirable properties, mainly the overestimation of variances at the edges of 

lactation, which could be explained by lack of asymptotes of LP. López-Romero et al. (2004) 

reported also that LP models resulted in poor performance of fitting data at the extremes of 

lactations.  

Mathematically speaking, splines are piecewise polynomial functions. They are defined 

as curves that consist of individual segments themselves connected in “knots.” The simplest 

case of a spline function is the linear spline where the segments are fitted by linear polynomials. 

Some previous research established that splines might be less sensitive to the data than LP and 

have been considered as a good alternative to polynomials (Druet et al., 2003; Meyer, 2005; 

Bohmanova et al., 2008).  

For the new fatty acid traits expressed in milk fat (g/100 g of fat), models required are 

still under scrutiny. Recently, Soyeurt et al. (2008) estimated genetic parameters for content of 

saturated and unsaturated fatty acids using a RRTDM with the similar order of LP for genetic 

and environmental effects. The current study aimed to compare different models to study 

genetic parameters of the milk saturated fatty acids production. Three functions were tested 

and compared to take into account the lactation curve: 1) Legendre polynomials with the same 

order as currently applied for genetic model for production traits, 2) linear splines with 10 

knots, and 3) linear splines with the same 10 knots reduced to 3 variables. The comparison will 

be based on the goodness of models fit.  

A total of 57,953 milk samples were collected between March 2005 and December 2007 

from 3,140 primiparous Holstein (>84% Holstein blood) cows in 98 herds. Samples were 

collected during the official Walloon milk recording managed by the Walloon Breeders 

Association (Ciney, Belgium). The samples were analyzed by mid-infrared spectrometry using a 
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Foss Milkoscan FT600 (Foss, Hillerød, Denmark) by the milk committee (Battice, Belgium). 

Records collected before 5 or after 365 DIM were discarded. Only test-day records from cows 

with age at first calving between 640 and 1,500 d were kept. 

Test-day saturated fatty acid (SFA) content in fat (g/100 g of milk fat) was estimated 

from collected mid-infrared spectra using the calibration equation developed by Gembloux 

Agro-Bio Tech (Animal Science Unit, University of Liege, Gembloux, Belgium) and Walloon 

Research Centre (Quality Department, Gembloux, Belgium). 

Figure 1. Saturated fatty acids content in fat (g/100 g of milk fat) from 5 to 365 DIM. The number of 
observations ranged from 10 to 83 for each DIM and from 301 to 930 for each class of 15 DIM. 

 

Figure 1 displays the variation of SFA throughout the first lactation. The content of SFA in 

fat increased until DIM 85 and then decreased with a slight increase at the end of the lactation. 

A similar trend was observed in reports in the literature (e.g., Soyeurt et al., 2008) for most SFA 

expressed in bovine milk fat. The mean value of test-day SFA was 64.99 (SD = 5.98; g/100 g of 

fat). The minimum and maximum values were 33.70 and 81.35 g/100 g of fat, respectively. 



CHAPTER V:  SHORT COMMUNICATION: GENETIC VARIATION OF SATURATED FATTY ACIDS IN HOLSTEINS IN WALLOON 

REGION OF BELGIUM 

 
 

70 
 

The data were analyzed with 3 RRTDM. The general matrix notation for these models 

was 

y= Xβ+ Q(Za+Zp+Wh) + e, 

 

where y was the vector of observations (SFA content in milk, g/100 g of fat), β was the vector of 

fixed effects (herd × test day, stage of lactation: 20 classes of DIM, age at calving: 20 classes); a 

was the vector of additive genetic animal effect; p was the vector of permanent environment 

random effect; h was the vector of herd-year of calving. The Q matrix, which was the matrix of 

regressors, was different for the 3 models studied containing LP of order 2 (model LP), linear 

splines with 10 knots (model SP10) or linear splines reduced to 3 transformed variables (model 

SP3); X, Z, and W were incidence matrices; and e was the vector of random residual effects. 

 

In the SP10 model, 10 knots were equally spaced on the lactation curve (interval of 40 

DIM). The chosen knots [T(i)] were 5, 45, 85, 125, 165, 205, 285, 325, and 365 DIM. Coefficients 

of linear splines were calculated as the interpolation coefficient between 2 adjacent knots as 

(Misztal, 2006): 

if DIM = T(i),then φ(i)= 1, 

 

if DIM is between T(i)and T(i+1), then φ(i)=(
𝑇(𝑖+1)−𝐷𝐼𝑀

𝑇(𝑖+1)−𝑇(𝑖)
)= α, and φ(i+1)= 1 – α, 

 

where φ(i)was the i th covariate at DIM t, and T(i)was the i th knot. 

 

With linear spline coefficients, all φ(i) are equal to zero except when DIM is between T(i) 

and T(i+1). Therefore, φ(i) vector had, at most, 2 nonzero elements, and the sum of all elements 

was equal to 1. 

Computational requirements for the SP10 model were obviously very high. To reduce 

the complexity of that model, it was reduced toward the SP3 model based on the reduction of 
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the 10 knots applied to only 3 variables. To reduce the number of parameters, the eigenvectors 

of the obtained covariance matrices were calculated. In preliminary studies, it was shown that 

the first 3 eigenvectors of the genetic, permanent environment, and herd × year of calving 

(co)variance components were the 3 most important. This fact is in accordance with results 

reported by Druet et al. (2003) and Torres and Quaas (2001). The method applied to do the rank 

reduction was based on the elimination of dimensions with very small eigenvalues. In this study, 

the 3 retained eigenvalues explained 99.3% of the genetic variability. The different steps were 

as follows: 

 

Step 1. Let G, H, and P be the 10 × 10 matrix of (co)variance components between the 10 

genetic, herd × year of calving, and permanent environmental linear splines, 

respectively. These matrices were summed to a matrix of phenotypic (co)variance 

components (S) representing the (co)variances among the regressors. 

Step 2. Create a 10 × 10 matrix R containing φ(i) values for DIM included between DIM 5 and DIM 

365. The dimensions of this matrix were (361, 10). 

Step 3. Compute the (co)variance matrix V among the 361 test-days:  

V= RSR’. 

Step 4. Compute the eigenvalues and eigenvectors of V matrix. Let the matrix of eigenvectors be 

Vsp and that of the eigenvalues Dsp; Vsp is a 10-rank matrix. 

Step 5. Create Vsp_red by choosing the 3 dimensions with highest eigenvalues. 

Step 6. Re-estimate new matrices Gred, Hred, and Pred for these new regressions based on Vsp_red. 

These matrices are 3-rank matrices. 

For the 3 models, the genetic parameters for SFA were estimated by REML (Misztal, 

2007). Average heritability values as the ratio of genetic variance (𝜎𝐺
2) to the sum of variances 

obtained for the genetic effect (𝜎𝐺
2), the herd × year of calving (𝜎𝐻

2), the permanent environment 

(𝜎𝑃
2), and the residual effect (𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

2 ) for DIM for SFA were defined as follows: 
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Heritability= 
(𝜎𝐺

2) 

(𝜎𝐺
2+ (𝜎𝐻

2 )+(𝜎𝑃
2)+(𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

2 )  
 

 

The choice of optimal RRTDM was based on statistical criteria. Akaike’s information 

criterion (AIC), developed by Akaike (1973), is a measure of the goodness of fit of an estimated 

statistical model. This criterion is widely used in statistics for comparing models (e.g., Druet et 

al. 2003). Akaike proposed a simple and useful criterion for selecting the best-fit model among 

alternative model. In the general case, the AIC presents the following form: 

 

AIC = 2k− 2ln(L), 

 

Where k is the number of parameters in the statistical model, and L is the maximized value of 

the likelihood function for the estimated model. The model with the lower AIC, and thus with 

the highest value [ln(L)] for the number of parameters corrected log-likelihood, is considered as 

the best. The models were also compared by Bayesian information criterion (BIC) values. 

Several competing models may be ranked according to their BIC values, with the one having the 

lowest BIC being the best. In statistics, BIC is very closely related to AIC. However, the penalty 

for additional parameters is stronger than that of the AIC. The BIC is a criterion for model 

selection among a class of parametric models with different numbers of parameters. It was 

calculated as 

 

BIC = −2ln(L) + kln(λ), 

 

Where L is the maximized value of the likelihood function for the estimated model, k is 

the number of variance components estimated, and λ is the number of samples. The 

interpretation of BIC is analogous to AIC. Both correct for the number of parameters, but BIC 

also corrects for samples. Despite this correction, the basis of minus twice the logarithm of the 

likelihood (−2logL) is another useful measure to evaluate the fitness of models. In statistics, the 
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likelihood function is a function of the parameters of a statistical model that plays a key role in 

statistical inference: 

Log-likelihood function = −2log (L), 

 

where L is the maximized value of the likelihood function for the estimated model. Models with 

the lowest Log-likelihood function and therefore the highest log (L) are the best. 

The last criterion is for the analysis of residuals. The percentage square biases (PSB; Ali 

and Schaeffer, 1987) was computed as 

 

𝑃𝑆𝐵 =
∑ (𝑦𝑟−𝑥𝑟)²𝑛

𝑟=1

∑ (𝑦𝑟)²𝑛
𝑟=1

x 100, 

 

where yr was the rth observed record, xr was the rth predicted record, and n was the number of 

records. The model with the lowest PSB is the best one. The models were also compared 

according to EBV. Sires with more than 10 daughters were ranked according to their EBV. 

Spearman rank correlation coefficients were computed for all models to assess the similarity (or 

lack thereof) between sire rankings obtained with the different applied models. 

 

Table 1 reports model selection criteria. The AIC of the SP10 model was 23 and 28% 

higher than that for the SP3 and the LP models, respectively. The BIC of that model was also 

28% higher than the BIC of LP model. In general, the AIC and the BIC values of SP3 model were 

closer to the values of LP model (AIC and BIC of LP were only 7 and 3% lower, respectively, than 

their corresponding values for the SP3 model). This was expected because the SP3 model had 

the same number of parameters as the LP model. The third criterion was the basis of −2logL. 

Similar observations were realized for the log-likelihood function. The obtained value for the 

SP10 model was approximately 28% higher than those obtained for the SP3 and LP models. 

These last 2 models were very close (less than 1% of difference). The PSB criterion evaluated the 

3 models differently. Indeed, the lowest value of PSB was obtained for the SP10 model. This was 
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expected because fitting 10 knots created a better fit, but at the expense of many more 

parameters. In general, the comparison of models based on AIC, BIC, and log-likelihood function 

favored the LP model. 

Trends of estimated genetic (co)variances among the first lactation for SP3, SP10, and LP 

models are shown in Figure 2. The overall obtained shape of the variance functions was similar 

among models with higher variances at the beginning. The model SP10 and, to a lesser extent, 

model SP3 showed very high variances at the beginning of the lactation. All models showed a 

tendency to increase at the end of the lactation, with LP reaching levels comparable to those at 

the beginning. As expected from the way linear splines are defined for the SP10 model, some 

parabolic shapes were observed in the genetic variance function. According to Bohmanova et al. 

(2008), this parabolic shape is specific to linear splines and does not translate to a biological 

mechanism. Results for SP10 were most likely influenced by the way knots were distributed 

throughout the lactation. In this study, knots were equally spaced on the lactation curve 

(intervals of 40 DIM) and no efforts were made to optimize their location. As shown in the 

literature, the general shape of a spline variance function is usually influenced by the number of 

knots (e.g., Bohmanova et al., 2008). It can be also noticed that the SP3 shape is smoother than 

the SP10 shape. This seems to be logical because the SP3 model was obtained by reducing 10 

knots (SP10 model) to 3 regressions. As reported earlier, the genetic variance for LP model 

showed a U shape, despite the fact that a herd × year of calving effect was introduced in the 

model. For production traits, Gengler and Wiggans (2001) had shown that the inclusion of this 

effect could better catch variance at the beginning and at the end of the lactation. 

Unreasonably high variances at the beginning of the lactation were also reported in several 

studies, such as by Bohmanova et al. (2008) for production traits and by Soyeurt et al. (2008) for 

milk quality traits. 

Figure 3 depicts the change of heritability values throughout the lactation. Large changes 

of heritability values for SFA in fat were observed throughout the first lactation. The SP10 model 
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on one hand and the LP and SP3 models on the other hand showed different patterns 

throughout the first lactation. The shape followed by the SP10 model was very different from 

the shape obtained for the 2 remaining models. The trend of genetic variance obtained for the 

SP10 model was much smoother than the obtained trend of heritability. The irregularity of the 

trend of heritability could be explained by the permanent environmental component (not 

shown).  

Table 1. Estimates of Akaike’s information criterion (AIC), Bayesian information criterion (BIC), −2 log-
likelihood, and percentage of squared bias (PSB) 
 

Item  SP10 SP3 LP 

AIC 87.415 67.463 62.916 

BIC 88.339 80.228 63.139 

-2Log(L) 87.083 62.878 62.836 

PSB 432.76 642.139 619.83 

 

1SP10 = splines with 10 knots; SP3 = linear splines with the same 10 knots reduced to 3 parameters; LP = Legendre polynomials. 
 

 

 

 

Figure 2. Variation of estimated genetic (co)variance over the first lactation. LP = Legendre polynomials; 
SP10 = splines with 10 knots; and SP3 = linear splines with the same 10 knots reduced to 3 parameters. 
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For LP and SP3 models, the highest value of heritability was observed at the beginning of 

the lactation (0.33). The minimum was close to 0.12 and was found around 140 DIM for the LP 

model. For the SP3 model, the lowest value was observed at the end and around 140 DIM of 

lactation and was close to 0.11. This observation could be due to the changes of energy status 

of the cow throughout the lactation. Energy balance is known to be negative at the beginning of 

the lactation, causing mobilization of adipose fatty acids. This could explain why the genetic part 

is higher in the early stage of lactation (Stoop et al., 2009). At the end of lactation, the LP and 

SP3 models present different shapes. Heritability estimates by the LP model increased at the 

end of the first lactation compared with estimates by SP3 model, which decreased. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of heritability values over the first lactation. LP = Legendre polynomials; SP10 = 
splines with 10 knots; and SP3 =linear splines with the same 10 knots reduced to 3 parameters. 
 

Average heritability estimates throughout the lactation were 0.12, 0.16, and 0.20 for LP, 

SP3, and SP10 models respectively. Heritability for SFA obtained in this study was similar to the 

value of 0.24 reported by Soyeurt et al. (2008), who used LP with the same polynomials as in the 

current study. According to a literature review done by Arnould and Soyeurt (2009), the 

estimates of heritability for milk quality traits differ very much among the studies. Also, few 

authors have reported heritability values of the milk quality trait defined here (SFA expressed in 
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fat, g/100 g of fat). The ranking of animals for EBV using SP10, SP3, and LP did not change very 

much, which supports the use of simpler models such as SP3 and LP with reduced number of 

parameters.  

This study aimed to compare different models to study genetic parameters of milk SFA 

production. The presented models gave similar overall shape of the genetic variance function. 

However, the trend of heritability was very different between models. The AIC, BIC, and log-

likelihood function identified the LP and SP3 models as the most useful models. Model SP10 was 

the worst model for each function. Indeed, all function estimates were less favorable for this 

model. Using 10 splines (regressions) was also very computationally demanding. Indeed, LP and 

SP3 models needed the least time to converge (2 h 50 min and 17 h 10 min, respectively) and 

had the lowest number of rounds (1,153 and 978). Convergence rate of SP10 model was much 

slower (more than 1 month and more than 5,000 rounds).  

Finally, SP10, SP3, and LP did not differ in the ranking of sires with respect to Spearman 

rank correlation. Hence, the 3 methods showed the same ability to rank sires based on their 

EBV.  

Based on results from this study, the reduced SP3 model was very similar to the LP 

model. Except for the PSB value that was lowest for SP10 model (indicating that this model had 

the best fit), the AIC, BIC and, −2log(L) ranked the models in the same way. However, SP3 was 

not found to be superior to LP. These 2 models require the same limited number of parameters. 

Results of this study indicated, therefore, that LP was the best among the compared models. 

Therefore, it can be expected that LP-based models could be used to model production of SFA in 

fat. However, our results for SP10 were most likely influenced by the way knots were 

distributed throughout the lactation. Recently, Jamrozik et al. (2010) studied the selection of 

locations of knots for linear splines in RRTDM. They concluded that optimal locations of knots 

(for linear splines) could vary according to the studied population, lactation, and trait and 
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according to the random effects. As work with new traits is in progress, additional research on 

this topic is required. 
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6.1. Abstract 

 

For quality control and monitoring purposes in milk production, proportionate samples 

are typically collected from morning (AM) and evening (PM) milkings. Although the International 

Committee for Animal Recording (ICAR) guidelines allow a single sample to be collected from 

either the morning or evening milkings, the composition of AM- and PM-collected milk can 

differ. Thus, the records generated by such sampling schemes could affect differentially genetic 

traits, potentially impacting animal rankings. Here, we tested whether milking time (AM or PM) 

interacts with genetic parameters and whether correlations exist among AM and PM milk yields 

and fatty traits (fat content and saturated, monounsaturated, unsaturated, short chain, medium 

chain, and long chain fatty acids (FA)). Using an AM/PM alternating sampling scheme, a total of 

58,540 test-day records were collected from Holstein cows. Using a bivariate modeling 

approach, we identified relatively larger phenotypic differences for unsaturated fatty acids (FAs) 

than for saturated FAs (7% vs. 2%, respectively). Daily h² estimated from AM records for 

unsaturated FAs were always higher (0.24 on average) than those estimated from PM records 

(~0.01). Greatest AM/PM differences were observed for saturated FAs (0.04). Daily estimates of 

the genetic correlations between the AM and PM records ranged from 0.93 to 0.94. Small 

relative genetic variance differences were detected between AM and PM unsaturated FAs (on 

average 2%: lower AM genetic variance). The relative genetic variance differences were 3-fold 

larger for saturated than unsaturated FA traits (mean 8%, lower PM genetic variance). However, 

these FA differences were much smaller than those detected for milk yield (28%). Taken 

together, our results suggest that milking time has a limited impact on the estimation of genetic 

parameters of FA contents. Therefore, we propose that either AM or PM samples could be used 

reliably in evaluation models for genetic purposes. 

Keywords: milk, fatty acid, genetic parameter 

Fatty acid (FA) composition affects the nutritional quality of milk and the technological 

properties of butter (Couvreur et al., 2006; Soyeurt et al. 2007a). Moreover, knowledge of any 
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changes in FA content can be useful for farm management purposes (Arnould et al., 2013). 

Previous studies have investigated the genetic variability of milk FA composition (Arnould and 

Soyeurt 2009; Karijord et al. 1982; Soyeurt et al. 2007a, 2007b and 2008; Stoop et al. 2008; 

Bastin et al. 2011). The daily heritability (h²) values of saturated and monounsaturated FAs 

estimated by Soyeurt et al. (2008) (0.14 and 0.42 g/dL of milk respectively) suggest that 

considerable genetic progress is possible for these traits. Precise trait definitions are required 

during breeding program development. Therefore, milk samples intended for such applications 

should be collected using comparable sampling methods. However, there has been a recent 

global trend for milk recording organizations to increase the flexibility of their allowed sampling 

procedures. For instance, CONVIS s.c. (Ettelbruck, Luxembourg) allows three alternative milk 

sampling schemes: 1) the conventional approach, where in milk samples are collected from all 

milked cows during consecutive evening (PM) and morning (AM) milkings (Scheme S); 2) 

consistent collections being made during only PM or AM milking (Scheme M); or 3) collections 

being made in PM and AM milkings in alternating months (Scheme T). Such alternative milking 

schemes can be less disruptive and more cost-effective (Everett and Wadell, 1970) than the 

conventional scheme. However, Liu et al. (2000) have reported that the use of alternative 

sampling schemes introduces heterogeneity into studied traits (e.g., milk yield, fat and protein 

content). AM and PM milks differ in their composition (Forsbäck et al., 2010; Liu et al. 2000). 

However, the influence of AM/PM milk FA composition on the estimation of genetic parameters 

of FA traits has yet to be investigated. Moreover, it is unclear whether the observed differences 

between AM and PM milks also have genetic components, which could confound current 

approaches. Here, we aimed to compare the AM and PM genetic parameters estimated for milk 

yield, fat content, and the main FA groups in bovine milk (g/dL of milk) from primiparous 

Holstein cows and to estimate correlations among these traits. 

Data. Milk samples were collected in Luxembourg from 13,854 first parity Holstein cows 

belonging to 492 herds during routine milk recording between October 2007 and February 2011 

(Scheme T). These samples, composed of AM- and PM-collected milk, were analyzed by mid-
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infrared spectrometry using a Foss MilkoScanFT6000 (Hillerod, Denmark) at CONVIS s.c. 

(Ettelbruck, Luxembourg). Milk fat content was predicted by the MIR equation provided by the 

manufacturer. The milk saturated FA (SFA), monounsaturated (MUFA), unsaturated (UFA), short 

chain (SCFA), medium chain (MCFA), and long chain (LCFA) FA contents (g/dL of milk) were 

predicted by applying the updated equations of Soyeurt et al. (2011) to the recorded spectra 

(Grelet et al., 2014). Given the current lack of International Committee for Animal Recording 

(ICAR) norms for FA traits, records were considered to be outliers and discarded if their values 

were lower or higher than the mean ± 3 times the observed standard deviation. The final 

dataset contained up to 29,936 AM test-day records and up to 28,604 PM test-day records. 

Model. Inspired by similar models (e.g., Croquet et al., 2006), we applied a bivariate 

random regression test-day model (i.e., AM and PM records were considered different traits) as 

follows: 

y=Xβ+Q(Z1p+Z2a)+e 

where y is the vector of observations for one of the studied traits [AM and PM milk (kg/milking), 

FAT, SFA, MUFA, UFA, SCFA, MCFA, and LCFA(g/dL of milk)]; β is the vector of the following fixed 

effects: herd × test-date, age at calving (3 classes: <29, 29–32 and >32 months-old), and 

lactation stage [24 classes of 15 days in milk (DIM)]; p is the vector of permanent environmental 

random effects; a is the vector of genetic animal effects; e is the vector of residuals; X, Z1, and Z2 

are incidence matrices assigning observations to effects; and Q is the covariate matrix for 

second-order Legendre polynomials. The estimation of variance components was first 

performed using the Expectation Maximization-Restricted Maximum Likelihood algorithm (EM-

REML), as implemented in the REML software by Misztal (2012). The Average Information-REML 

(AI-RELM) algorithm, as implemented by Misztal (2012), was used to obtain the standard errors 

of variance components, taking the results obtained by EM-REML as priors. This strategy 

combined stable estimations from EM-REML with the availability of the Hessian matrix from AI-

REML, allowing the derivation of standard errors of variance components. Daily h², defined as 
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the ratio of the genetic variance to the sum of genetic, permanent environment and residual 

variances, was estimated for each DIM comprised between n 5 and 365. The average daily h² 

used in this study was computed as the average of all daily h² values. Genetic and permanent 

environmental correlations were estimated using the obtained co-variance components. The 

standard error of h² (seh²) and correlation (serr) were estimated as proposed by Klei and Tsuruta 

(2008).  

Descriptive statistics. The skewness and kurtosis values were close to zero for all studied 

traits (Table 1), therefore the data can be assumed to be normally distributed. We detected 

differences in the means of the measured values between AM and PM records. AM milk yield 

was higher than PM milk yield (Table 1), which is in line with the findings of Everett and Wadell 

(1970), Gilbert et al. (1972), and Quist et al. (2008). Fat content was marginally higher in PM 

than in AM milk samples, which was also described by Quist et al. (2008) and Gilbert et al. 

(1972). Milk FA content was also lower in AM than in PM milk samples, as noted by Arnould et 

al. (2015). We detected greater AM/PM variation in UFA, MUFA, and LCFA than unsaturated FAs 

(Table 1). FAs in bovine milk are thought to be either produced de novo in the mammary gland 

or derived from the diet and body fat mobilization. Generally, 4:0 to 14:0 and some 16:0 FAs are 

produced de novo (Grummer, 1991). These de novo synthesized FAs (e.g., SFA, SCFA, and MCFA) 

had the lowest relative differences (2.1, 2.6, and 1.4% respectively), whereas UFA (7.7%), MUFA 

(7.3%) and LCFA (7.0%) had the highest AM/PM differences. These observations suggest that de 

novo synthesized FAs are under stronger genetic control than those produced from plasma 

lipids (Bastin et al., 2011; Grummer, 1991) and that they, therefore, have lower AM/PM 

variability. 

The FA content heritabilities calculated here for Luxembourg dairy cattle (Table 2) were 

similar to those reported previously for Walloon cattle (Bastin et al., 2011). The average daily 

heritabilities for milk were 0.23 (AM) and 0.20 (PM) and those for fat were 0.30 (AM) and 0.32 

(PM). Our estimates indicated that the FA groups (SFA, SCFA, and MCFA) were more heritable 

than LCFA and UFA, with heritabilities of 0.31 (AM) and 0.35 (PM) for SFA, 0.31 (AM) and 0.35 
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(PM) for SCFA, 0.32 (AM) and 0.36 (PM) for MCFA, 0.23 (AM) and 0.22 (PM) for LCFA, and 0.24 

(AM) and 0.23 (PM) for UFA. Heritability estimates decreased with FA chain length, as described 

by Bastin et al. (2011). Indeed, heritability values reflect the physiological processes involved in 

the production of milk FAs. Thus, heritability values can be interpreted biologically. The h² 

values observed here could be explained by the similarities in their origin of production. FAs 

with high h² (SFA and SCFA) are synthesized de novo in the mammary gland, whereas the FAs 

with lower h² values (essentially long carbon chains) are synthesized from the blood, indirectly 

from feeding. MCFAs are partially extracted from the blood and partially synthesized de novo by 

the mammary gland (Chilliard et al., 2001). A further distinction can be made between saturated 

and unsaturated FA contents. Compared to saturated FA contents (SFA, SCFA, and MCFA), h² 

estimated for unsaturated FAs from AM milk samples were slightly higher than those estimated 

from PM milks. Although by taking into account the estimated standard errors, no statistically 

significant differences were observed between the daily AM and PM h² values for saturated and 

unsaturated fats, mean differences between the AM and PM h² values were higher for 

saturated FAs (0.04) than for unsaturated FAs (0.01–0.02). 
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Table 1. Descriptive statistics of data during morning (AM) milking and evening (PM) milking for milk yield and the 

content in milk (g/dL of milk) of fat, saturated (SFA), monounsaturated (MUFA), unsaturated (UFA), short chain 

(SCFA), medium chain (MCFA), and long chain (LCFA) fatty acids milk contents. 
 

    N Mean SD Min. Max. Skewness Kurtosis 

Milk  

(kg/milking) 

  

AM 30,092 11.5 3.14 2.0 26.2 0.11 -0.002 

PM 28,768 10.2 2.95 2.0 34.0 0.23 0.24 

Relative absolute differences 4.5% 12.0% 6.2% 0.0% 25.9% 
  

FAT 

 (g/dL milk) 

  

AM 29,936 4.23 0.76 1.65 7.19 0.41 0.57 

PM 28,604 4.4 0.77 1.64 7.17 0.38 0.46 

Relative absolute differences 4.6% 3.9% 1.3% 0.6% 0.3% 
  

SFA  

(g/dL milk) 

  

AM 29,955 2.82 0.59 0.85 4.93 0.36 0.3 

PM 28,621 2.88 0.60 0.86 4.93 0.33 0.2 

Relative absolute differences 4.6% 2.1% 1.7% 1.2% 0.0% 
  

UFA  

(g/dL milk) 

  

AM 29,958 1.38 0.27 0.44 2.59 0.76 1.54 

PM 28,548 1.49 0.28 0.93 2.60 0.67 0.92 

Relative absolute differences 4.8% 7.7% 3.6% 71.5% 0.4% 
  

MUFA 

 (g/dL milk) 

AM 29,956 1.19 0.24 0.30 2.28 0.8 1.65 

PM 28,542 1.28 0.25 0.31 2.28 0.7 0.98 

Relative absolute differences 4.8% 7.3% 4.1% 3.3% 0.0% 
  

SCFA  

(g/dL milk) 

  

AM 29,965 0.38 0.08 0.11 0.67 0.33 0.37 

PM 28,630 0.39 0.08 0.11 0.67 0.31 0.25 

Relative absolute differences 4.6% 2.6% 0.0% 0.0% 0.0% 
  

MCFA  

(g/dL milk) 

  

AM 29,994 2.20 0.50 0.58 3.95 0.31 0.16 

PM 28,662 2.23 0.50 0.59 3.95 0.29 0.06 

Relative absolute differences 4.5% 1.4% 0.0% 1.7% 0.0% 
  

LCFA  

(g/dL milk) 

  

AM 29,948 1.65 0.35 0.39 3.18 0.72 1.26 

PM 28,529 1.77 0.37 0.36 3.18 0.65 0.76 

Relative absolute differences 4.9% 7.0% 5.6% 8.0% 0.0% 
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Daily genetic parameters. The average daily genetic correlations estimated between the 

AM and PM studied traits were strong (Table 2), ranging from 0.90 to 0.96. The highest genetic 

correlation was observed for milk yield. The genetic correlation observed between AM and PM 

FA traits were globally similar and always ≥ 0.93. Compared to h², no difference in terms of 

genetic correlations was observed between saturated and unsaturated FA contents in milk. 

The average daily correlations between AM and PM FA traits for permanent 

environmental effect were significantly lower than their corresponding genetic correlations 

(Table 2), suggesting a moderate difference in the non-genetic factor between AM and PM FA 

traits. This difference could be accounted for by the biological processes involved in the 

production of milk FAs. Indeed, milk FA composition is influenced by a range of conditions, 

including feeding regime (Larsen et al., 2012). Lower values of average daily correlation 

between AM and PM samples for permanent environmental effects could be explained by a 

feeding effect. Indeed, according to Sahana et al. (2008), cows consuming the major part of 

their feed between the AM and PM milking and not being fed for the last 8 hours before 

morning milking, present a higher fat content and a higher content of C18 unsaturated FA in the 

afternoon milk compared with the morning milk, whereas the content of de novo synthesized 

FA C6:0 to C16:0 was reported to be lower. Based on our results, our hypothesis is that the 

underlying genetic effect does not vary strongly throughout the day. Conversely, the non-

genetic (permanent environment) effect did vary between AM and PM FA traits, though the 

magnitude of this variation was only moderate.  
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Table 2. Average daily heritability and genetic and permanent environmental correlations (and their corresponding 

standard error) for each studied trait (milk (g/dL of milk) of fat, saturated (SFA), monounsaturated (MUFA), 

unsaturated (UFA), short chain (SCFA), medium chain (MCFA), and long chain (LCFA) fatty acids milk contents). 
 

  
 

Average daily estimate   
 Average daily correlation 

between AM and PM    

Trait 
 

h² AM h² PM   Genetic 
Permanent 

environment   

Milk (kg/milking) values 0.23 0.20 

 

0.96 0.97 

 

 

SE 0.02 0.02 

 

0.08 0.04 

 Fat (g/dL milk) values 0.30 0.32 

 

0.90 0.78 

 

 

SE 0.04 0.04 

 

0.11 0.11 

 SFA (g/dL milk) values 0.31 0.35 

 

0.93 0.84 

   SE 0.04 0.04   0.11 0.11 

 UFA (g/dL milk) values 0.24 0.23  0.94 0.75  

 SE 0.02 0.01  0.06 0.06  

MUFA(g/dL milk) values 0.24 0.22 

 

0.94 0.75 

 

 

SE 0.02 0.01 

 

0.07 0.06 

 SCFA (g/dL milk) values 0.31 0.35  0.94 0.84  

 SE 0.02 0.02  0.06 0.06  

MCFA (g/dL milk) values 0.32 0.36  0.94 0.86  

 SE 0.02 0.02  0.05 0.06  

LCFA (g/dL milk) values 0.23 0.22  0.94 0.77  

 SE 0.02 0.01  0.06 0.06  

 

Table 3 shows the average estimates and average standard errors of variance for 

permanent environmental and genetic effects for each studied trait, as well as the minimal and 

maximal AM/PM variance estimates. Notable value ranges were observed for each studied trait, 

regardless of the sampling time. Table 3 also shows the variance values estimated for 
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permanent environmental effects. The mean daily estimates were higher for AM estimates than 

for PM estimates: milk yield [244.7 (AM) vs.191.8 (PM)*10 kg²/milking²]; FAT [1225.8 (AM) vs. 

1156.4 (PM)*100 g²/dL milk²]; SFA [683.7 (AM) vs. 595.8 (PM)*100 g²/dL milk²]; SCFA [13.9 

(AM)vs. 12.2 (PM)*100 g²/dL milk²];and MCFA [415.4(AM) vs. 370.9 (PM)*100 g²/dL milk²]. The 

opposite trend was observed for the unsaturated FA contents, which also showed the highest 

relative differences between the AM and PM daily estimates (+19% vs. -12% on average for 

unsaturated and saturated FAs, respectively). The range of variation was also greater for 

unsaturated FA contents. By comparison, the observed relative difference of the daily 

permanent environmental variances for milk yield was 22%.  

Compared to permanent environmental variances (Table 3), lower differences were 

observed between the AM and PM genetic estimated variances (Table 3, +2% and -8% for 

unsaturated and saturated FA contents respectively). At the genetic level, the daily variance 

estimates for unsaturated FA traits were greater for AM milk than for PM milk. Excepted for 

milk yield, this pattern was opposite to the situation observed for permanent environmental 

variance estimates. This inverse tendency was also observed for all studied saturated FA traits.  



CHAPTER VI:  SHORT COMMUNICATION: EFFECTS OF ALTERNATIVE MILK RECORDING SCHEMES ON THE GENETIC PARAMETERS OF MILK FATTY ACIDS. 

 
 

Table 3. Average estimate and average standard error of variance for genetic and permanent environmental effect for each studied trait (milk (g/dL of milk) of 

fat, saturated (SFA), monounsaturated (MUFA), unsaturated (UFA), short chain (SCFA), medium chain (MCFA), and long chain (LCFA) fatty acids milk contents). 
 

 
 Genetic Permanent environment 

 
 AM PM  AM PM 

Trait  Value Min Max Value Min Max  Value Min Max Value Min Max 

Milk (*10 kg²/milking²) 
Value 

SE 

111.5 

10.0 
88.0 166.2 

80.4 

7.4 
61.3 125.2  

244.7 

10.6 
189.8 538.0 

191.8 

8.3 
141.9 421.2 

FAT(*100 g²/dL milk²) 
Value 

SE 

1274.9 

183.7 
736.3 1815.8 

1364.4 

183.9 
721.4 1976.2  

1225.8 

168.9 
821.7 3723.3 

1156.4 

169.6 
716.6 4055.2 

SFA (*100 g²/dL milk²) 
Value 

SE 

763.6 

102.7 
402.2 1103.8 

821.8 

103.1 
479.9 1084.7  

683.7 

93.7 
544.5 1475.4 

595.8 

93.4 
464.9 1244.4 

UFA (*100 g²/dL milk²) 
Value 

SE 

122.3 

9.2 
75.8 313.1 

119.4 

8.5 
77.1 224.5  

148.0 

9.7 
46.20 810.5 

178.2 

9.9 
48.7 1049.6 

MUFA (*100 g²/dL milk²) 
Value 

SE 

95.5 

7.7 
57.3 264.4 

93.2 

7.2 
58.8 194.8  

123.1 

8.2 
37.7 681.0 

145.3 

8.3 
40.29 854.5 

SCFA (*100 g²/dL milk²) 
Value 

SE 

14.5 

0.9 
6.7 23.6 

16.0 

1.0 
9.9 22.4  

13.9 

0.9 
10.8 30.8 

12.2 

0.9 
9.1 28.7 

MCFA (*100 g²/dL milk²) 
Value 

SE 

492.1 

28.9 
271.6 679.6 

527.2 

29.9 
315.9 683.8  

415.4 

28.0 
329.4 917.1 

370.9 

26.4 
285.7 764.7 

LCFA (*100 g²/dL milk²) 
Value 

SE 

188.8 

14.4 
122.4 457.2 

185.0 

13.6 
121.9 325.1  

236.5 

15.7 
86.0 1195.0 

280.6 

16.1 
90.4 1554.2 
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6.2. Conclusions 
 

From the obtained results, different conclusions and consequences for genetic evaluations 

can be drawn. First, unsaturated FAs displayed 1) the largest phenotypic differences between 

values for AM and PM FA records; 2) a range of differences between AM and PM daily 

permanent environmental variances similar to the range observed for milk yield and greater 

than the range observed for saturated FA traits; and coupled with a low permanent 

environmental correlation, and 3) slight genetic variance differences coupled with a high genetic 

correlation. Saturated FA traits showed 1) a limited phenotypic differences between AM and PM 

FA records (>2-fold lower than for unsaturated FAs), 2) a small permanent environmental 

differences (12%) which was almost 2-fold lower than the one observed for milk yield, and 3) a 

small genetic variance differences (2-fold higher than the one observed for unsaturated FAs but 

3-fold lower than the differences observed for milk yield). Currently, when records come from 

different sampling time points, milk yield records are corrected before genetic evaluations 

(ICAR, 2014). However, the range of differences observed for all studied fat and FA traits were 

largely lower than that observed for milk yield. Moreover, by taking into account the standard 

error, the differences in terms of heritability, correlations and variances were often not 

statistically significant. Both mean and variance differences can be considered with appropriate 

modeling. Sampling type in the evaluation model can be included in the applied genetic model 

with the use of appropriate fixed effects which allow the correction of mean differences. This 

correction can be done indirectly because the milk sampling at a given herd x test-day is always 

done AM or PM for all milking cows, or directly by including a sampling moment x sampling type 

fixed effect in the model. FA trait heteroscedasticity can also be taken into account. Various 

adjustment strategies for milk yield, as summarized by Gengler et al. (2005), can also be applied 

to FA traits. However our results showed that heterogeneity of variances of AM/PM records was 

very different among random effects, therefore adapted corrections should be considered. 

Gengler et al. (2005) proposed a transformation of random regressions to take into account this 

problem. 
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7.1. Simple summary 
 

Reducing the frequency of milk recording decreases the costs of official milk recording. 

However, this approach can negatively affect the accuracy of predicting daily yields. Equations 

to predict daily yield from morning or evening data were developed in this study for fatty milk 

components from traits recorded easily by milk recording organizations. The correlation values 

ranged from 96.4% to 97.6% (96.9% to 98.3%) when the daily yields were estimated from the 

morning (evening) milking. The simplicity of the proposed models which do not include the 

milking interval should facilitate their use by breeding and milk recording organizations. 

 

7.2. Abstract 
 
 

Reducing the frequency of milk recording would help reduce the costs of official milk 

recording. However, this approach could also negatively affect the accuracy of predicting daily 

yields. This problem has been investigated in numerous studies. In addition, published 

equations take into account milking intervals (MI), and these are often not available and/or are 

unreliable in practice. The first objective of this study was to propose models in which the MI 

was replaced by a combination of data easily recorded by dairy farmers. The second objective 

was to further investigate the fatty acids (FA) present in milk. Equations to predict daily yield 

from AM or PM data were based on a calibration database containing 79,971 records related to 

51 traits [milk yield (expected AM, expected PM, and expected daily); fat content (expected AM, 

expected PM, and expected daily); fat yield (expected AM, expected PM, and expected daily; 

g/day); levels of seven different FAs or FA groups (expected AM, expected PM, and expected 

daily; g/dL milk), and the corresponding FA yields for these seven FA types/groups (expected 

AM, expected PM, and expected daily; g/day)]. These equations were validated using two 

distinct external datasets. The results obtained from the proposed models were compared to 

previously published results for models which included a MI effect. The corresponding correlation 

values ranged from 96.4% to 97.6% when the daily yields were estimated from the AM milkings 
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and ranged from 96.9% to 98.3% when the daily yields were estimated from the PM milkings. 

The simplicity of these proposed models should facilitate their use by breeding and milk 

recording organizations. 

Keywords: milk recording; fatty acid groups; prediction model; single milking 

7.3. Introduction 
 

According to Arnould et al. [1], milk yield, and, particularly, milk fat composition, may 

facilitate the development of strategies to prevent and monitor milk production dysfunction in 

dairy cattle, and may improve the sustainability of dairy production systems. Correspondingly, 

various milk fatty acids (FA) have shown a relationship with methane production in dairy cattle. 

For example, positive correlations between saturated FA (SFA) and methane output has been 

observed (r = 0.87–0.91) [2]. Another example involves ketosis detection. In reports by van 

Healst et al. and Gross et al. [3, 4]), a high proportion of long chain FA (LCFA; especially if 

combined with a lower proportion of medium chain FA (MCFA)), and especially a high 

proportion of C18:1 cis-9, in milk fat were found to be good predictors of subclinical ketosis. 

Therefore, a regular quantification of FA in milk is relevant. 

Recent studies have demonstrated that mid-infrared spectrometry (MIR) has the potential 

to quantify the FA content of milk [5-7]). Therefore, the creation of spectral databases 

represents valuable resources for determining the FA profile of test-day samples collected from 

lactating cows that are routinely monitored using specific MIR calibration equations. For 

instance, this is currently realized by the Belgian (Walloon Breeding Association, Ciney, Belgium) 

and Luxembourg (CONVIS s.c., Ettelbruck, Luxembourg) milk recording organizations. Thanks to 

the easy acquisition of spectral data, other countries will realize the same work in a near future. 

To develop robust management tools, the used phenotypic data should be homogenous. 

However, the use of different sampling methods can bring heterogeneity. Milk recording 
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organizations in many countries use more and more often an alternate morning (AM) and 

evening (PM) testing scheme since it is less expensive than analyzing one milk sample per cow 

that includes 50% of a representative AM milking fraction and 50% of a representative PM 

milking fraction. Since the 1970s, numerous equations have been evaluated for their capacity to 

estimate total daily yields for traditional production traits (i.e., milk, fat, and protein) from 

alternate protocols. For example, Lee and Wardrop [8] studied the effects of milking interval 

(MI; the duration between two consecutive milkings, expressed in h or min; AM or PM) and 

stage of lactation on daily milk, fat, and protein yields, and fat and protein content. In 1986, 

adjustment factors for daily milk, fat, and protein yields were reported [9], and these remain the 

most widely used factors based on their ability to take into account heterogeneous means and 

variances between MIs and classes of days in milk (cDIM). In 2000, this model was modified 

[10], and the changes were approved by the International Committee for Animal Recording [11]. 

At our knowledge, nothing is done currently about FA. The general aim of this paper is therefore 

to develop equations to estimate the daily yields of the major FAs present in milk, including SFA, 

unsaturated FA (UFA), mono-unsaturated FA (MUFA), short-chain FA (SCFA), MCFA, and LCFA 

from a single milking. In addition, C18:1 cis-9 was also studied because this FA is interesting for 

management purposes [1]. 

Most of the studies mentioned in the above paragraph included an MI parameter in their 

predictive models. However, such information might be difficult to collect on a farm since the 

time and duration of milking is often inconsistent. In a previous report [12], it is mentioned that 

changes in milk composition can occur according to the MI primarily due to a dilution effect. 

Thus, a high volume of milk produced during one milking would be predicted to contain less fat 

and protein compared to a smaller volume of milk. Based on this concept, MIs could affect the 

levels of detected milk components. Therefore, an additional aim of the present study was to 

compare the results obtained using the models of Liu [10] and Berry [13] that include an MI 

effect for milk, fat, and protein yields with the results obtained from models that include only 

factors related to milk composition and production. Potentially, such models could provide a 
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straight forward prediction of daily yields for production traits from more readily available 

information (i.e., fat and protein content and other MIR predicted traits). 

 

7.4. Materials and methods 
 

7.4.1. Available Data 
 

7.4.1.1. Overall strategy 
 

To develop equations which permit the estimation of FA daily yields from one milking, 

measurements of milk yield and milk composition at each milking are needed, as well as milk 

composition data from 50% AM and 50% PM milk samples. Unfortunately, separate AM and PM 

milk samples at the same test day were never collected by the Luxembourg milk recording 

(CONVIS s.c., Ettelbruck, Luxembourg). Therefore, the innovative part of this study was to create 

a calibration set including AM and PM expected values estimated using selection index theory 

from available mixed samples. Then, the equations developed using these expected phenotypes 

were validated using real data. Indeed, a sampling including AM, PM and mixed milk samples 

was performed on a limited number of cows and herds in order to create a validation set. More 

details are given in the following sections. 

 

7.4.1.2. Calibration Data 
 

The calibration dataset included milk samples collected in Luxembourg between October 

2007 and April 2013 during routine conventional milk testing (data S). These milk samples were 

composed of 50% morning milk and 50% evening milk and were collected from 21,582 Holstein 

cows in 163 herds. All of the milk samples were analyzed by MIR spectrometry using a Foss 

MilkoScan FT6000 (Hillerod, Denmark) at CONVIS s.c. (Ettelbruck, Luxembourg). MIR analysis of 
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the milk samples provided spectral data and the quantities of major milk components, including 

fat and protein content. By applying the updated equations of Soyeurt et al. [7], SFA, MUFA, 

UFA, SCFA, MCFA, LCFA, and C18:1 cis-9 content in each milk sample (g/L) were determined. As 

a result, the ratio of the standard error of cross-validation to the standard deviation (SD) of gas 

chromatography FA values used in the calibration set (referred to as a RPD parameter) greater 

than five was observed. Table 1 shows the statistical parameters of the calibration equations 

used. The data used to build the mid-infrared FA equations were not related to the data used in 

this study. 

Table 1. Estimated statistical parameters for each calibration equation that estimated the 

concentration of fatty acids (FAs) in milk (g/dL of milk). 

FA N Mean SD SECV R²cv RPD 

SFA 1176 2.69 0.79 0.051 0.9958 15.34 

MUFA 1180 1.04 0.34 0.047 0.9805 7.18 

UFA 1179 1.20 0.39 0.051 0.9828 7.62 

SCFA 1185 0.35 0.10 0.020 0.9613 5.10 

MCFA 1187 2.06 0.65 0.086 0.9824 7.53 

LCFA 1188 1.50 0.52 0.087 0.9718 5.96 

C18:1 cis-9 1194 0.71 0.26 0.051 0.9610 5.06 

 

FA = fatty acid; SD = standard deviation; SECV = standard error of cross-validation; R²cv = cross-validation 

coefficient of determination; RPD = ratio of standard error of cross-validation to standard deviation; SFA = 

saturated fatty acids; MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SCFA= short 

chain fatty acids, MCFA=medium chain fatty acids; LCFA=long chain fatty acids. 

 

Records were discarded from the dataset if test-day records were lower or higher than 

mean ± three times the observed SD. Furthermore, only spectral data with known production 

factors such as DIM, and parity were kept. After these edits, the final calibration dataset 

contained 79,971 records. 
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Data from the S milk recording scheme included observed FAT50/50, SFA50/50, MUFA50/50, 

UFA50/50, SCFA50/50, MCFA50/50, LCFA50/50, and C18:1 cis-9 50/50. This dataset also contained AM, 

PM, and 24h milk yields. However, this dataset did not contain records for milk composition 

related to AM or PM milking. Therefore, a method similar to that of the selection index theory 

was used to calculate expected values for: SFAAM, SFAPM, MUFAAM, MUFAPM, UFAAM, UFAPM, 

SCFAAM, SCFAPM, MCFAAM, MCFAPM, LCFAAM, LCFAPM, and C18:1 cis-9AM, C181 cis-9PM. This 

method was based on a linear combination of phenotypic data and the following two equations: 

PMAM valuevaluetraitobserved  5.05.0_ 50/50
 (1) 

)_,_(_exp PMor  AMPMor  AMPMor  AM yieldfatyieldmilkftraitected   (2) 

Equation (1) assumes that the milk samples contained 50% AM milk and 50% PM milk. In 

addition, a non-zero correlation between milk fat composition during the AM or PM milking and 

the milk and fat yields during the same milking were also assumed (Equation (2)). 

Equations (1) and (2) can then be combined to generate Equation (3): 
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where i is the vector that contains the AM and PM values that will be used to build the 

equations to predict daily yield from AM or PM data for the trait considered and A is the matrix 

containing the coefficients used to combine observed studied_trait50/50 with the 

expected_traitAMorPM, these values being equal to b × milk_yieldAMorPM. The b coefficients for 

each studied traits were calculated based on regression analyses performed using Statistical 

Analysis System (SAS) software where the yield of the studied trait (calculated as content × milk 

yield) for the AM (PM) milking is the dependent variable and the milk yield observed after the 

AM (PM) milking is the independent variable. 

The b coefficients were obtained from a second dataset that included 225,890 milk 

samples collected between October 2007 and February 2013 during the Luxembourg routine 

alternative milk recording (type T) from 31,510 cows (Holstein) in 491 herds (data T). During this 

milk testing, only one milk sample was collected per cow at one milking (AM or PM). Therefore, 

FATAM (FATPM), SFAAM (SFAPM), MUFAAM (MUFAPM), UFAAM (UFAPM), SCFAAM (SCFAPM), MCFAAM 

(MCFAPM), LCFAAM (LCFAPM), and C18:1 cis-9AM (C181 cis-9PM) were available for dataset T. This 

dataset also contained the AM or PM milk yield. 

Based on this approach, expected AM and PM records were obtained for the dataset S. 

The daily average quantities (g/day) for all of the studied traits were estimated as the sum of 

yields after both milkings (AM and PM). Therefore, the final calibration dataset contained 

79,971 records related to 51 traits [milk yield (expected AM, expected PM, and expected daily); 

fat content (expected AM, expected PM, and expected daily); fat yield (expected AM, expected 

PM, and expected daily; g/day); levels of seven different FAs or FA groups (expected AM, 

expected PM, and expected daily; g/dL milk), and the corresponding FA yields for these seven 

FA types/groups (expected AM, expected PM, and expected daily; g/day)]. 
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7.4.1.3. Validation Data 
 

The equations to predict daily yields were validated using two distinct external validation 

datasets that included data for representative milk samples collected during two successive 

milkings in Luxembourg (between February and April 2013) and in the Walloon Region of 

Belgium (from October 2007 to June 2012). 

The first validation dataset included representative milk samples (50 mL) collected from 

two consecutive milkings from 687 dairy cows (Holstein) belonging to 43 herds between 

February 2013 and April 2013 by CONVIS s.c. (Ettelbruck, Luxembourg; LUX data). This dataset 

contained observed yields from consecutive AM and PM milkings. Daily yields were also 

calculated. These samples were analyzed by MIR spectrometry using a FOSS Milkoscan FT6000 

(Foss, HillerØd, Denmark). FA content (g/dL of milk) was estimated by applying the MIR 

calibration equations described in Table 1. 

The second validation dataset included milk samples composed of 50% morning milk and 

50% evening milk. These samples were collected from 138,141 Holstein cows belonging to 1291 

herds that participated in the Walloon milk recording system from October 2007 to June 2012. 

Samples were collected from all of the cows milked in the herds on a given test day, and these 

samples were analyzed using MIR spectrometry (MilkoScan FT6000; FOSS, 2005) according to 

the normal milk recording procedure [11]. The final Walloon validation dataset contained 

1,079,318 records (WAL data). AM and PM values were estimated by the same methodology 

used to create the calibration set. 

 

7.4.2. Development of Statistical Models for Estimating Daily Yields from AM or PM 
milking 

 

Models were developed to investigate whether daily yields can be estimated by 

replacing the MI effect [10] with different traits that are easily recorded and that are related to 



CHAPTER VII  PREDICTIONS OF DAILY MILK AND FAT YIELDS, MAJOR GROUPS OF FATTY ACIDS, AND C18:1 CIS-9 FROM 

SINGLE MILKING DATA WITHOUT A MILKING INTERVAL 

 

109 
 

changes in milk composition. Several variation factors were tested in order to build a robust 

model that uses information easily collected by milk recording organizations, including: stage of 

lactation (DIM), parity, yield traits (g/milking) during AM and PM milking, and the month of 

recording [14]. Stage of lactation is known to be one of the most influential factors affecting 

milk composition [10, 15, 16], and a month of recording was included in order to consider the 

season effect, and, indirectly, the feeding effect which affects the FA composition of milk [17, 

18]. Considering that not all of these influential factors may have statistically significant effects 

on all of the traits examined, an appropriate subset of variables for each model was determined 

using the stepwise GLMSELECT procedure in the SAS/STAT software package [19]. The data used 

to develop the models came from the calibration set. The TEST dataset required by the 

GLMSELECT procedure was the LUX validation dataset collected in Luxembourg and including 

real observed AM/PM data. The VAL dataset, required by the GLMSELECT procedure, 

corresponded to the WAL validation dataset which was collected in the Walloon Region of 

Belgium. This procedure allowed a model to be selected from the framework of general linear 

models. All of the models that were developed were compared for all of the studied traits: milk 

yield, FAT, SFA, MUFA, UFA, SCFA, MCFA, LCFA, and C18:1 cis-9. 

The accuracy of the AM-PM predictions was evaluated using two criteria. First, root 

mean squared error (RMSE) was calculated (Equation (4)), which represents the SD of the 

difference between observed and estimated daily yields. The model with the smallest RMSE and 

the highest coefficient of determination (or correlation) was considered to provide the best fit. 

pn
SSERMSE




 

(

4) 

where n is the number of observations in the statistical model, p is the number of parameters 

(including the intercept), and SSE is the error sum of squares (i.e., the sum of the squared 

differences between each observation and its predicted value) for the estimated model. 
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The second criterion was R², defined as the coefficient of determination. The square root 

of this value is the correlation (Ry,ŷ) which represents the relationship between the observed 

and predicted values. Statistical parameters were calculated using the GLMSELECT procedure in 

the SAS/STAT software package [19]. 

A validation was applied on the best fitted model using the two available validation sets. 

The estimated statistical parameters were RMSE, the standard deviation of prediction (σŷ) and 

Ry,ŷ. 

 

7.5. Results and discussion 
 

7.5.1. Available data 
 

Tables 2–4 present descriptive statistics of the traits studied. Daily average values showed 

the same direction for the three datasets except for milk production. The origins of each dataset 

could explain these differences. For example, the calibration dataset (Table 2) and the first 

validation set (Table 3) were obtained from Luxembourg, with the latter including milk samples 

that were collected over a short period of time (between February 2013 and April 2013). In 

contrast, the second validation dataset (Table 4) was generated from cows recorded in the 

Walloon Region of Belgium from October 2007 to June 2012. 
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Table 2. Descriptive statistics of the calibration dataset (N = 79,971). 

Variable Collection of 

milk sample 
Mean SD Min Max. Mean SD Min Max 

Milk 

(kg/day) 

Expected AM 12.79 4.27 1.20 37.30     

Expected PM 13.57 4.41 1.20 39.20     

Expected Daily 26.36 8.33 2.40 72.80     

  g/dL milk g/day 

Fat 

Expected AM 4.11 0.71 1.01 7.23 515.31 164.29 22.13 1629.96 

Expected PM 4.55 0.78 1.12 8.00 605.64 191.21 24.48 1822.35 

Expected Daily 4.34 0.75 1.07 7.67 1120.94 340.33 46.61 3345.67 

SFA 

Expected AM 2.76 0.56 0.51 6.95 344.33 111.28 14.49 1272.59 

Expected PM 2.95 0.60 0.54 7.44 392.11 127.91 15.51 1268.89 

Expected Daily 2.86 0.58 0.53 7.21 736.41 229.39 30.00 2482.20 

MUFA 

Expected AM 1.15 0.24 0.29 3.84 144.14 53.26 6.08 678.89 

Expected PM 1.36 0.29 0.35 4.56 181.38 64.96 7.22 963.86 

Expected Daily 1.26 0.27 0.32 4.22 325.55 114.28 13.31 1562.22 

UFA 

Expected AM 1.34 0.27 0.37 4.25 168.57 61.34 7.14 765.02 

Expected PM 1.59 0.32 0.44 5.02 210.87 73.76 8.45 1047.49 

Expected Daily 1.47 0.29 0.40 4.66 379.44 130.42 15.59 1700.99 

SCFA 

Expected AM 0.38 0.08 0.10 1.02 47.77 16.50 1.63 200.32 

Expected PM 0.40 0.08 0.10 1.08 53.83 18.69 1.73 188.64 

Expected Daily 0.39 0.08 0.10 1.06 101.57 33.93 3.36 388.96 

MCFA 

Expected AM 2.16 0.47 0.06 5.77 268.89 87.51 6.98 975.09 

Expected PM 2.29 0.50 0.06 6.11 302.83 99.40 9.45 937.77 

Expected Daily 2.22 0.49 0.06 5.96 571.72 179.28 16.43 1891.53 

LCFA 

Expected AM 1.58 0.35 0.31 5.47 198.89 75.77 6.65 1028.49 

Expected PM 1.87 0.42 0.37 6.48 249.47 92.22 7.88 1352.77 

Expected Daily 1.73 0.39 0.34 6.01 448.39 162.72 14.53 2195.18 

C18:1 

cis-9 

Expected AM 0.75 0.19 0.07 2.97 94.13 38.48 4.51 501.97 

Expected PM 0.91 0.23 0.09 3.59 120.85 48.53 5.46 777.79 

Expected Daily 0.83 0.21 0.08 3.30 214.98 84.65 9.96 1251.72 

Min: minimum; Max: maximum; AM = morning milking; PM = evening milking, Daily = daily content; SFA = 

saturated fatty acids; MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SCFA = short chain 

fatty acids; MCFA = medium chain fatty acids; LCFA = long chain fatty acids.  
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In the calibration set, the average milk production between October 2007 and April 2013 

(Table 2) was 26.36 kg/day, with 4.34 g fat/dL milk having a saturated part equal to 65.9%. 

Based on the WAL dataset, the average production was 24.11 kg milk/day, with 4.25 g fat/dL 

milk composed of 68.2% SFAs (Table 4). These values for fat and SFA content were slightly 

higher than those observed for the calibration set (Table 2). Overall, the quantities and content 

of individual FAs present in the milk samples and fat were consistent with those previously 

reported for the Walloon data [20-22]. The milk and fat yields had similar descriptive statistics 

compared to the results mentioned by Liu et al. [10] from their calibration set. 

  



CHAPTER VII  PREDICTIONS OF DAILY MILK AND FAT YIELDS, MAJOR GROUPS OF FATTY ACIDS, AND C18:1 CIS-9 FROM 

SINGLE MILKING DATA WITHOUT A MILKING INTERVAL 

 

113 
 

Table 3. Descriptive statistics of the Luxembourg (LUX) validation dataset (N = 687). 

Variable 
Collection of 

milk sample 
Mean SD Min Max Mean SD Min Max 

Milk 

(kg/day) 

AM 12.83 4.46 2.40 30.10     

PM 15.13 5.18 2.80 33.00     

Daily 27.96 9.41 5.20 57.00     

  g/dL milk g/day 

Fat 

AM 4.27 0.80 1.05 7.51 537.47 187.33 115.64 1257.44 

PM 4.68 0.80 1.59 7.51 695.33 239.95 165.56 1550.10 

Daily 4.49 0.71 2.33 7.33 1232.80 404.26 321.01 2656.58 

SFA 

AM 2.91 0.59 0.74 5.03 364.69 126.28 80.44 801.65 

PM 3.14 0.59 1.13 5.90 465.74 159.42 96.15 1075.73 

Daily 3.03 0.53 1.50 5.22 830.43 268.59 181.14 1698.26 

MUFA 

AM 1.18 0.29 0.27 3.67 148.79 61.37 29.71 448.47 

PM 1.33 0.30 0.39 3.37 198.17 85.18 52.20 763.26 

Daily 1.26 0.27 0.62 3.02 346.97 139.58 111.48 1094.06 

UFA 

AM 1.40 0.32 0.33 4.08 176.17 70.56 36.82 506.42 

PM 1.56 0.34 0.49 3.75 233.58 97.09 61.22 853.54 

Daily 1.49 0.30 0.75 3.37 409.75 159.88 128.22 1229.88 

SCFA 

AM 0.40 0.08 0.10 0.71 51.00 18.47 7.36 112.88 

PM 0.44 0.08 0.17 0.79 65.16 23.18 8.80 145.92 

Daily 0.42 0.07 0.24 0.71 116.16 39.48 16.16 240.74 

MCFA 

AM 2.30 0.47 0.56 3.95 288.14 98.17 53.54 622.87 

PM 2.47 0.47 0.94 4.11 365.12 121.71 67.72 799.04 

Daily 2.39 0.42 1.15 3.78 653.33 206.66 121.27 1314.99 

LCFA 

AM 1.66 0.41 0.46 5.29 209.24 87.77 48.90 669.326 

PM 1.86 0.44 0.55 5.09 278.76 122.40 71.67 1123.44 

Daily 1.77 0.39 0.80 4.49 488.00 200.03 147.86 1582.02 

C18:1 cis-9 

AM 0.81 0.23 0.21 2.85 102.13 46.85 23.20 361.59 

PM 0.91 0.24 0.27 2.54 136.21 65.34 35.44 593.22 

Daily 0.86 0.22 0.43 2.27 238.35 107.11 75.06 852.25 

Min: minimum; Max: maximum; AM = morning milking; PM = evening milking, Daily = daily content;  

SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SCFA = short chain 

fatty acids; MCFA = medium chain fatty acids; LCFA = long chain fatty acids.  
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Table 4. Descriptive statistics of the Walloon (WAL) validation dataset (N = 1,079,318). 

Variable 
Collection of 

milk sample 
Mean SD Min Max Mean SD Min Max 

Milk 

(kg/day) 

AM 11.41 4.27 0.20 49.00     

PM 12.70 4.63 0.40 49.00     

Daily 24.11 8.64 3.00 75.40     

  g/dL milk g/day 

Fat 

Expected AM 4.00 0.70 0.09 6.61 448.07 166.73 7.21 2730.67 

Expected PM 4.47 0.79 0.11 7.40 558.72 204.05 12.86 3418.45 

Expected Daily 4.25 0.75 0.10 7.22 1006.79 360.00 30.89 4640.37 

SFA 

Expected AM 2.78 0.56 0.00 5.35 311.57 119.42 0.62 1590.42 

Expected PM 3.00 0.60 0.01 5.79 375.79 142.26 0.42 1854.17 

Expected Daily 2.90 0.58 0.00 5.56 687.55 254.50 1.05 2792.34 

MUFA 

Expected AM 1.06 0.24 0.05 3.79 117.76 48.00 1.80 1022.04 

Expected PM 1.27 0.29 0.06 4.56 157.73 62.68 3.98 1458.89 

Expected Daily 1.17 0.27 0.06 4.18 275.49 107.92 8.62 1943.96 

UFA 

Expected AM 1.20 0.26 0.03 3.72 134.10 54.00 2.10 1127.60 

Expected PM 1.44 0.32 0.04 4.47 179.10 70.40 2.80 1588.10 

Expected Daily 1.33 0.29 0.03 4.10 313.10 121.30 5.50 2117.50 

SCFA 

Expected AM 0.36 0.08 0.01 0.93 40.79 17.00 0.67 191.11 

Expected PM 0.38 0.08 0.01 0.99 48.52 19.90 0.57 221.20 

Expected Daily 0.37 0.08 0.01 0.96 89.31 36.03 1.25 383.54 

MCFA 

Expected AM 2.18 0.49 0.00 4.49 243.85 94.77 0.63 1095.67 

Expected PM 2.36 0.53 0.01 4.86 294.22 113.42 0.43 1257.14 

Expected Daily 2.27 0.51 0.00 4.71 538.08 202.61 1.06 2125.97 

LCFA 

Expected AM 1.46 0.35 0.04 4.41 163.50 68.96 1.50 1503.15 

Expected PM 1.73 0.41 0.04 5.23 215.80 88.64 0.71 2066.22 

Expected Daily 1.60 0.38 0.04 4.83 379.30 153.91 2.21 2762.95 

C18:1 

cis-9 

Expected AM 0.75 0.20 0.01 2.67 83.99 36.72 0.31 820.82 

Expected PM 0.89 0.23 0.02 3.17 110.90 47.33 0.29 1185.75 

Expected Daily 0.83 0.21 0.01 2.97 194.89 82.20 0.60 1585.61 

Min: minimum; Max: maximum; AM = morning milking; PM = evening milking, Daily = daily content; SFA 

= saturated fatty acids; MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SCFA = short 

chain fatty acids; MCFA = medium chain fatty acids; LCFA = long chain fatty acids. 
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7.5.2. Phenotypic Correlation 
 

Table 5 shows the correlations identified between AM and PM collection times, and for 

daily contents and yields, for all of the studied traits. Correlations between AM and PM values 

varied according to trait and were lower than one, suggesting that AM and PM records 

represent two distinct types of traits, and, therefore, need to have individual equations 

developed for estimating daily yield and content. Correlation values between yield traits were 

higher than those observed between content traits. For both units of expression, the 

correlations were lower for the fatty traits than milk yield. Moreover, for both content and yield 

traits, the PM milking records showed higher or similar correlation values with daily traits 

compared with the AM milking records. The same observation was done also by Berry et al. [13] 

from fat content and yield. However, Liu et al. [10] observed globally similar correlations 

between AM and PM values with a very slight tendency to have higher correlations for AM 

values. 

Correlations between milking and daily yield traits varied from 92.4% (SFA; AM-DY) to 

97.9% (milk yield; PM-DY). The strong positive correlations between daily and AM or PM yields 

observed in Table 5 suggest that it may be possible to estimate daily FA yields from AM or PM 

FA yields. 

The FAT content and FAT yield correlation values were similar than those observed by 

Liu et al. [10]. These authors found correlation values equal to 59.0%, 86.4%, and 85.8% for 

AM/PM, AM/daily content (DC) and PM/DC correlations related to the fat content, respectively. 

The correlation values for the fat yield observed by these authors for the AM/PM, AM/daily 

yield (DY) and PM/DY were 83.9%, 92.7%, and 92.2%, respectively. Similar results were also 

obtained for milk yield. Liu et al. [10] found 90.8%, 97.9%, and 97.5% for AM/PM, AM/DY, and 

PM/DY correlations, respectively. The correlation values obtained by Berry et al. [13] were often 

lower than the ones found in this study. For fat content (yield), these authors calculated AM-
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PM, AM-DC, and PM-DC correlations equal to 36% (54%), 80% (84%), and 84% (90%), 

respectively. As observed in this study, the correlations related to fat yield were higher 

compared to the one observed for fat content. The same observation was done also by Liu et al. 

[10]. For milk yield, Berry et al. [13] found 85%, 97%, 95% for AM-PM, AM-DY, and PM-DY 

correlation values, respectively. The milk correlations between AM and PM values and between 

AM and PM values were slightly lower than the ones observed in this study but can be both 

considered as strong positive correlations. The differences in term of correlation values 

between Berry et al. [13] and Liu et al. [10] or our study can be probably explained by 

differences of herd management (feeding system), milking interval and milk production. 

Table 5. Correlation values among morning (AM), evening (PM), and daily records for each 

studied trait expressed in g/dL of milk and kg/day. The values were obtained from LUX 

data (i.e., real observations, N = 687). 

 
g/dL of milk kg/day 

Studied Trait AM-PM AM-DC PM-DC AM-PM AM-DY PM-DY 

Milk 
   

90.4 97.2 97.9 

Fat 55.9 86.6 89.3 78.7 93.0 95.8 

SFA 58.1 87.5 89.8 76.4 92.4 95.3 

MUFA 63.7 88.3 92.1 80.9 93.3 96.6 

UFA  63.3 88.3 92.0 81.4 93.6 96.6 

SCFA  58.0 87.0 90.2 79.4 93.4 95.9 

MCFA 60.8 88.3 90.6 76.4 92.5 95.2 

LCFA 63.4 88.2 92.1 80.6 93.2 96.6 

C18:1 cis-9 65.9 89.0 92.7 81.8 93.6 96.8 

AM = morning milking; PM = evening milking; DC = daily content; DY=daily yield; SFA = saturated fatty acids; 

MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SCFA = short-chain fatty acids; MCFA = 

medium-chain fatty acids; LCFA = long chain fatty acids. 

 

As also shown by Liu et al. [10] and Berry et al. [13] for milk fat, all correlations considered in 

Table 5 were lower for fatty traits compared to milk yield. This suggests that the prediction of 

daily yield or content from AM-PM records will be less accurate for fatty traits than milk yield. 
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7.5.3. Models Selected Using PROC GLMSELECT 
 

Table 6 describes the equations that were selected using the GLMSELECT procedure for 

all of the studied traits. In other words, the models provided the best fit of data are described in 

Table 6. These models showed the smallest RMSE and the highest correlation between 

observed and estimated values. 

Based on these results, it appears that there were similarities between the effects 

included in the equations that used AM records and the ones included in the equations that 

used PM records for each studied trait. This observation suggests that PM and AM values had a 

similar evolution pattern but the differences came only from a question of scale. Indeed, PM 

values were always higher than AM values (Tables 2–4). 

The PROC GLMSELECT procedure selected always combined effects. There were not 

individual effects such as only DIM or only lactation number in the selected equations. Such 

complexity of equations was not mentioned in previous studies [9, 10, 13]. However, Berry et al. 

[13] mentioned heterogeneous means and variances for 24-h yield over different parities, 

season of calving and DIM. Therefore, they realized 54 subclasses taken into account the parity, 

DIM and the season of calving. For all of these subclasses, they estimated the coefficients of 

regression. The same methodology was previously used by Liu et al. [10]. Based on the 

composition of selected equations mentioned in Table 6, this study confirmed this 

heterogeneity because separate regression coefficients were estimated following DIM, parity 

and month of test. 
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Table 6. Models selected by PROC GLMSELECT procedure. 

Studied 

trait 

Milking 

moment 

Selected models 

Milk 
AM a+b* DIM+c*month of test+d*(milk_AM*DIM* parity*month of test) 

PM a+b* DIM+c*month of test+d*(milk_PM* DIM* parity*month of test) 

Fat 

AM a+b*(qFAT_AM*milk_AM* DIM)+c*( parity)+d*( milk_AM* 

parity)+e*(qFAT_AM*milk_AM* parity) 

PM a+b*(milk_PM* DIM)+c*(qFAT_PM*milk_PM* DIM)+d* 

parity+e*(qFAT_PM*milk_PM*month of test) 

SFA 

AM a+b*(qSFA_AM*milk_AM* DIM)+c* parity+d*(milk_AM* 

parity)+e*(milk_AM*month of test) 

PM a+b*(milk_PM* DIM)+c*(qSFA_PM*milk_PM* DIM)+d*( parity)+e*month of test 

MUFA 

AM 
a+b*(milk_AM* DIM)+c*(milk_AM* parity)+d*(qMUFA_AM*milk_AM* DIM* 

parity)+e*(qMUFA_AM*milk_AM*month of test) 

PM a+b*(milk_PM* DIM)+c* parity+d*(qMUFA_PM*milk_PM* DIM* 

parity)+e*(milk_PM*month of test) 

UFA 

AM a+b*(milk_AM* DIM)+c*(qUFA_AM*milk_AM* DIM)+d* parity+e*(milk_AM* 

parity) 

PM 
a+b*(milk_PM* DIM)+c*(qUFA_PM*milk_PM* DIM* parity)+d*(milk_PM*month of 

test)+e*(qUFA_PM* DIM* parity*month of test) 

SCFA 

AM a+b*(qSCFA_AM*milk_AM* DIM)+c* parity+d*(milk_AM* parity)+e*month of test 

PM 
a+b*(qSCFA_PM*milk_PM* DIM)+c*(milk_PM* parity)+d*(milk_PM*month of 

test)+e*(qSCFA_PM* DIM* parity*month of test) 

MCFA 

AM 
a+b*(qMCFA_AM*milk_AM* DIM)+c* parity+d*(qMCFA_AM*milk_AM*month of 

test)+e*(qMCFA_AM* DIM* parity*month of test) 

PM 
a+b*(milk_PM* DIM)+c*(qMCFA_PM*milk_PM* DIM)+d*(milk_PM* 

parity)+e*month of test+f*(qMCFA_PM* DIM* parity*month of test) 

LCFA 

AM 

a+b*(milk_AM* DIM* parity)+c*(qLCFA_AM*milk_AM* DIM* 

parity)+d*(milk_AM*month of test)+e*(qLCFA_AM*milk_AM*month of test) + f* 

(qLCFA_AM* DIM* parity*month of test) 

PM 
a+b*(milk_PM* DIM)+c*(qLCFA_PM*milk_PM* DIM* parity)+d*(milk_PM* 

parity*month of test)+e*(qLCFA_PM* DIM* parity*month of test) 

C18:1 

cis-9 

AM 

a+b*(milk_AM* DIM)+c*(milk_AM* parity)+d*(qC18:1 cis9_AM*milk_AM* DIM* 

parity)+e*(qC18:1 cis9_AM*milk_AM* parity*month of test)+f*(qC18:1 cis9_AM* 

DIM* parity*month of test) 

PM 

a+b*(milk_PM* DIM)+c*( qC18:1 cis9_PM*milk_PM* DIM* parity)+d*month of 

test+e*(qC18:1 cis9_PM*milk_PM*month of test)+ f*(qC18:1 cis9_PM* DIM* 

parity*month of test) 
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7.5.4. Goodness of Fit 
 

Table 7 shows the correlation values calculated between the observed and estimated 

daily yields (Ry,ŷ), RMSE, and SDs of the daily yield predictions (σŷ) for each studied trait 

estimated from the milk samples collected during the AM or PM milking using the calibration set 

and the two available validation sets. The tested models were the models selected by PROC 

GLMSELECT and described in Table 6. 

In order to appreciate the good fitting of a model, Liu et al. [10] indicated that σŷ should 

be close to the SD of the observed daily yield but must not be greater. In the present study, all 

of the estimates had smaller σŷ values than the observed SD values (Tables 2–4). 

Except for milk yield, the observed correlations suggested that the estimations of daily 

yield were better when PM milking data were used. Indeed, the calibration correlation values 

were found to range from 96.4% to 97.6%, and from 96.9% and 98.3%, when estimations were 

realized from AM or PM milkings, respectively (Table 7). Except for milk yield, this is not in 

agreement with the observations made by Liu et al. [10] and Berry et al. [13]. However, the 

differences between AM and PM Ry,ŷ values were lower than 0.8%. 
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Table 7. Calibration and validation statistics (correlation values between true and estimate 

daily yield (Ry,ŷ), root mean square errors (RMSE) and standard deviation for each studied 

predicted trait (σŷ)) for the best model selected by PROC GLMSELECT. Ry,ŷ were 

expressed in % and RMSE and σŷ were expressed in kg/day for milk and g/day for the 

remaining studied traits. 

Milking 

moment 

Studied 

trait 

σŷ RMSE Ry,ŷ 

Calib LUX WAL Calib LUX WAL Calib LUX WAL 

AM 

MILK 8.08 8.81 8.48 2.03 2.67 2.25 97.0 96.8 96.5 

FAT 328.00 385.88 350.93 90.52 160.62 98.47 96.4 92.7 96.2 

SFA 221.70 255.19 248.40 58.93 113.88 66.51 96.6 92.1 96.6 

MUFA 110.95 133.37 105.22 27.42 51.30 28.22 97.1 93.2 96.5 

UFA 127.50 152.31 118.81 32.40 58.14 32.36 96.9 93.4 96.4 

SCFA 32.95 37.34 35.37 8.10 15.90 8.58 97.1 93.1 97.1 

MCFA 173.37 198.66 195.92 45.66 89.12 52.81 96.7 92.0 92.7 

LCFA 158.29 188.74 151.19 37.72 73.34 38.71 97.3 93.3 96.8 

C18:1 82.63 105.13 82.50 18.53 38.66 20.11 97.6 97.0 93.4 

PM 

MILK 8.00 9.36 8.22 2.26 2.57 2.41 96.5 97.5 97.0 

FAT 331.70 405.91 352.63 85.49 124.65 91.27 96.8 95.6 97.1 

SFA 222.38 272.71 247.44 56.30 90.49 61.22 96.9 95.0 97.4 

MUFA 111.80 144.42 106.43 23.82 38.28 24.33 97.8 96.4 97.8 

UFA 127.39 165.01 119.82 27.91 43.56 27.98 97.7 96.5 97.7 

SCFA 33.01 40.71 35.09 7.85 13.01 8.06 97.3 95.5 97.7 

MCFA 173.77 207.82 198.22 44.13 70.49 49.00 96.9 94.8 97.4 

LCFA 159.35 208.85 151.48 32.95 55.78 33.06 97.9 96.4 97.9 

C18:1 83.21 109.27 79.94 15.54 27.81 16.41 98.3 96.7 98.1 

Calib= calibration set including expected Luxembourg records (N=79,971); LUX = Validation set including real 

collected Luxembourg records (N=687); WAL= Validation set including expected Walloon records 

(N=1,079,318); AM= morning milking; PM = evening milking; SFA = saturated fatty acids;  

MUFA = monounsaturated fatty acids; UFA = unsaturated fatty acids; SFCA = short-chain fatty acids;  

MCFA = medium-chain fatty acids; LCFA = long chain fatty acids.  
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Regarding the estimations of daily milk yield, the calibration correlation values were 

slightly lower than those obtained by Liu et al. [10] (e.g., 97.0% vs. 97.7% and 96.5% vs. 97.4% 

for the AM and PM milking data, respectively) (Table 7). The σŷ and RMSE values were also 

slightly higher in our study (for the AM and PM milking data: 8.08 and 8.00 kg/day vs. 7.85 and 

7.83 kg/day for the σŷ values, respectively; and 2.03 and 2.26 kg/day vs. 1.72 and 1.84 kg/day 

for the RMSE values, respectively) (Table 7). 

For the estimates of daily fat yield, obtained values for Ry,ŷ, and RMSE corresponded with 

a better fit of the model compared with Liu et al. [10] (for the AM and PM milking data: 96.4% 

vs. 94.3% and 96.8% vs. 94.0% for Ry,ŷ, respectively; and 90.52 vs. 106.0 g/day and 85.49vs. 

109.0 g/day for RMSE, respectively). The σŷ values were slightly higher in the present study 

(328.0 vs. 301.6 g/day and 331.7vs. 300.6 g/day, respectively) (Table 7). 

Better AM/PM predictions were observed for milk yield compared to fat content and 

yield. It was also observed by Liu et al. [10] and Berry et al. [13]. These last authors suggested 

that factors were missing in their equations permitting to predict AM/PM values for fat traits. 

However, in this study, the differences in terms of Ry,ŷ between milk and fat were lower. This is 

explained by a better fitting of fat traits in the current study. 

Observed AM/PM calibration Ry,ŷ values for fatty acid traits were all within the same 

range and were higher than 96% suggesting a good prediction. 

 

7.5.5. Model Validation 
 

As expected, validation Ry,ŷ values obtained from the two validation sets were lower 

than calibration Ry,ŷ values. Validation RMSE values were higher than the observed calibration 

RMSE values (Table 7). However, RMSE observed for the LUX validation set (i.e., real observed 

data) were bigger than the WAL validation set (i.e., expected daily records). One hypothesis is 

that these differences were due to the initial step used to predict AM/PM values for the 
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calibration set. A potential confirmation of this hypothesis comes from the fact that small 

differences were observed between the RMSE or Ry,ŷ observed from the first and second 

validation data sets for the equations predicting daily milk yield whose AM and PM milk records 

were always observed. However, the predictability stayed good with Ry,ŷ never lower than 

92.0%. 

Small differences observed between calibration and WAL validation results (i.e., these 

results were predicted using the same methodology as the one used for the calibration set) 

suggest a good robustness of the developed equations which was the main interest of the 

proposed methodology to build the calibration dataset. Indeed, as the first validation set which 

was composed of real records, was not large enough to cover the entire lactation, many 

parities, herds or cows, the theory of selection index was used to predict AM–PM records from 

50% AM/50% PM collected records. Better results could be obtained by using only real 

observations but a large sampling procedure (larger than the one conducted for the LUX data) 

should be conducted to present a sufficient variability for DIM, parity, month of test as well as 

studied traits. The advantage of the selection index theory applied in this study is to use data 

routinely available at large scale to build the predictive models and, therefore, to require a 

smaller dataset containing real observations to validate the obtained models. 

 

7.5.6. Milking Interval 
 

The models proposed in the present study demonstrated that it is possible to estimate 

milk, fat, and FA yields without the use of MI recorded on site. To explain this observation, 

different regressions including the effects and covariates related to changes in milk were tested 

in order to estimate MI values (Table 8). An R2 value of 0.86% was observed between MI and 

milk daily yield. Additional covariates and fixed classification effects can be included in the 

regression model (such as milk and fat yields obtained during one milking record) if we assume 
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that the milk composition is also influenced by the MI due to the dilution effect. To predict daily 

yields for milk, fat, and protein, Berry et al. [13] introduced milk yield and fat yields of one 

milking a day. By using this approach, the obtained R2 increased to 17.6% (Table 8). When the 

stage of lactation was added, the R2 obtained was 18.2% (Table 8), while inclusion of the parity 

effect resulted in an R2 value of 18.4%. All of the effects proposed to describe variations in MI 

were significant. Therefore, nearly 20% of the MI variability observed can be explained by a 

combination of effects related to milk composition and production. Consequently, we can 

assume that the MI effect can be partially replaced by a combination of data that are generally 

available and are easily recorded by milk recording organizations. In addition, the accuracy of 

reported MI can be problematic because, with increasing herd sizes and milking times, the 

actual MI for a given cow can be very different from the reported herd MI. Indirect predictors as 

used in this study have the advantage that they will be always known very precisely on an 

individual level. 

Table 8. Regression coefficients (in %) for the regressions explaining the milking interval 

(MI) in function of milk production, fat (g/milking or /day), dim, and parity (N = 79,971). 

MI R
2
 

Milk daily yield 0.86 

Milk daily yield + Milk (AM or PM) yield 17.22 

Milk daily yield + Milk (AM or PM) yield +FAT (AM or PM) (g/dL of milk) 17.64 

Milk daily yield + Milk (AM or PM) yield +FAT (AM or PM) (g/dL of milk) + DIM 18.23 

Milk daily yield + Milk (AM or PM) yield +FAT (AM or PM) (g/dL of milk) + DIM + parity 18.40 

MI: milking interval; AM= morning milking; PM = evening milking; DIM= Days in milk. 

 

7.6. Conclusions 
 

The main objective of this study was to propose a practical, simple, and robust method for 

accurately estimating daily FA yields from a single milking (i.e., AM or PM milking). The obtained 

results show the interest to use the theory of the selection index to construct the calibration set 

in order to have more robust equations thanks to a large calibration set. With validation Ry,ŷ 
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higher than 92% obtained from observed records for all studied traits, the results are promising, 

although further studies are needed to confirm these results by using a larger database. 

Moreover, the results obtained also shows that it is possible to replace the MI parameter with a 

combination of more reliable parameters such as: milk production and fat content, stage of 

lactation classes, the test month, and calving month. The application of the models developed in 

this study has the potential to reduce the number of collected samples per test-day (i.e., only 

one AM or PM sample is necessary instead of the two samples needed for the 50/50 sample), 

thereby reducing the costs associated with official milk recording (i.e., only one visit of the milk 

recorder in the farm), while still maintaining a high accuracy of predicted daily yields. 
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8.1. General Discussion 

 

The main objective of this thesis is to contribute to the development of innovative 

management tools for dairy farmers helping them to improve the sustainability of their dairy 

production systems and the quality of milk and dairy products. Indeed, development of such 

tools could help dairy farmers in their daily decisions. 

To achieve this objective, several necessary conditions must be fulfilled: 

Condition 1: The selected traits (or combination of traits) must be relevant in order to 

develop management tools allowing an improvement of dairy production system and product 

quality; 

Condition 2: The selected traits must be easily available for the milk recording organization, 

and therefore the dairy farmers, at low (free) cost, on a large scale and at individual level; 

Condition 3: The used records must be comparable to allow a comparison between 

practices of farmers, whatever the adopted milk recording scheme. 

Condition 4: The selected traits must be phenotypically and genetically variable. Indeed, 

the development of management tools takes profit of the genetic and phenotypic variability of 

these selected traits.  

 

8.1.1. Condition 1: Relevant traits for management purposes 

 

Dairy farmers need management tools for helping them in their daily decisions (culling, 

feeding or preventing metabolic diseases) and to improve their product quality and reducing 

environmental impact of dairy production systems. 
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Throughout the first review (Chapter II), we demonstrated that milk composition could 

be interpreted as a mirror of the dairy cow’s health or of the efficiency of the management 

system. This review aimed to determine the practical aspect of using milk composition and milk 

FA profile in order to build an interesting (i.e., easy, useful, cheap) management tool to help 

dairy farmers in their daily decisions. 

The high plasticity of milk fat composition is very well known in literature. Indeed, milk 

FA profiles may be significantly altered through numerous interventions, such as changes in diet 

(e.g. Chilliard et al., 2000 and 2001; Grummer, 1991) but also through animal health (e.g. Gross 

et al., 2011; Van Haelst et al., 2008) or through animal genetic selection as discussed in Chapter 

III. 

Among others, two practical cases should be again outlined. Firstly, milk composition can 

be used in order to avoid or to prevent metabolic diseases. For example, according to the 

available literature (e.g. Fleischer et al., 2001; Gross et al., 2011; Mulligan et al., 2006; Van 

Haelst et al., 2008), some FAs, such as LCFA, MCFA, and C18:1 cis-9 can be used as relevant 

predictors/indicators of subclinical ketosis. Knowing and detecting abnormal increases of LCFA, 

and C18:1 cis-9 (especially if it is combined with a decrease of MCFA content) could be helpful 

to dairy farmers and veterinarians to develop preventive measures. An effective prevention 

system for common dairy disease would limit labor investment, medical treatment costs and 

animal suffering. Indeed, the earlier health problems are identified, the higher the chance of 

successful health management, with numerous positive consequences for farm management, 

economical, ecological, and animal welfare issues. 

Secondly, recent studies have shown that FA profiles may be also used as indicators for 

the “environmental quality of milk” (e.g. Chilliard et al., 2009; Dehareng et al., 2012; Dijkstra et 

al., 2011). These papers present FA profile as a valuable tool for reducing methane emissions of 

dairy cattle. In fact, dairy cattle are considered to contribute to about one third to the total 

emissions of GHG. Unfortunately, few papers focus on this subject matter. In Chapter II, we 
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showed that some recent studies such as Chilliard et al. (2009) or Dijkstra et al. (2011) 

presented FA profile as a valuable tool for reducing GHG emissions. 

According to this review, milk fat composition could be interpreted as a relevant mirror 

of the dairy cow’s health or of the management system efficiency. Knowing that, understanding 

the variation in milk fat composition can be useful for providing information about the dairy 

production system. Our observations indicated that FA could be used separately as indicators of 

metabolic or management malfunctions. In order to build more relevant and reliable tools, a 

solution could be to combine several selected FAs or other milk components. For instance, as 

mentioned before, several studies (e.g. Gross et al., 2011; Van Haelst et al., 2008) showed that 

abnormal increases of LCFA and C18:1 cis-9 content could be interpreted as an interesting 

indicator of subclinical ketosis, especially if it is combined with decreasing MCFA content. 

Finally, some threshold values are already available in literature. However, it would 

seem to be important to use these thresholds carefully as they would need to be adapted to the 

particular dairy cow population under study. This aspect will be developed in the perspective 

section. 

 

8.1.1. Condition 2 : Easy and cheap acquisition of large-scale individual 

traits 

 

The second advantage to use milk composition as an indicator of management system 

efficiency is the availability of data. Indeed, according to the milk recording scheme selected by 

Luxembourg dairy farmers, information about the milk composition and FA profile are available 

by MIR every 2, 4 or 6 weeks without any extra-cost.  

Several papers (e.g. Rutten et al., 2009; Soyeurt et al., 2006; 2008a; 2008b and 2011) 

have presented the potential value of MIR spectrometry for quantifying FAs. MIR spectrometry 
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is an interesting alternative to the reference gas chromatography, with advantages such as a 

very high throughput (up to 500 samples/h), the convenience of use, and availability. Moreover, 

this versatile technology can be used to estimate various traits quantitatively based on 

calibration equations (Soyeurt et al., 2006). Consequently, thanks to the use of this technology, 

these management tools may be easily implemented in practice and are relatively cheap. In the 

field, milk recording agencies or dairy advisors (as CONVIS s.c.) would be able to alert farmers 

whenever threshold values for diseases or malfunction were reached. This kind of alert allows 

dairy producers to check their management system and therefore to improve their dairy 

production on numerous (economical, ecological and animal (welfare)) points of view. 

The availability of data has allowed the development of a first practical tool for CONVIS 

s.c. Milk recording data are compiled once a month into a table for each registered farm, and 

for each milk recording scheme. Monthly, descriptive statistics are obtained for milk production 

and traditional and novel milk composition traits (especially fat, protein, urea, lactose, cells and 

major groups of FAs). These statistics are available for each dairy farm independent of the milk 

recording scheme and allow the CONVIS s.c. farm advisors to study the evolution of milk 

composition within a specific herd, or to compare a given herd’s production to the national 

mean. 

 

8.1.2. Condition 3: Easy comparison between used data independent of 

the recording system 

 

ICAR guidelines allow the use of different sampling procedures (ICAR, 2014). 

Consequently, milk recording organizations around the world are able to increase flexibility in 

their recordings. In Luxembourg, two principal schemes are applied. The first one: the scheme 

“T” consists in one milk sample of only one milking (AM or PM milking). The second one is the 

scheme “S”, consisting in one proportionate sample of all daily milking (50% morning and 50% 
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evening milking). Two other schemes are proposed to dairy farmers: milk samples could be also 

collected every 2, 4 or 6 weeks, during only AM or only PM milking (scheme “M”). The last 

scheme relates to milking robots. 

For a practical point of view, the adoption of an alternative testing scheme could be an 

interesting response to increasing pressure to reduce breeding costs. Indeed, implementing 

such an alternate scheme presents several practical advantages: it is less disruptive to the daily 

routine, and presents reduced economical costs compared to the conventional milk testing 

scheme (“S”) (Everett and Wadell, 1970). 

To develop robust management tools, the used phenotypic data should be homogenous. 

However, the use of different sampling schemes impacts significantly on the milk fat 

composition (Liu et al., 2000) and, therefore, brings heterogeneity. 

Data used in Chapter VI were recorded in Luxembourg from October 2007 to February 

2011 from 13,854 first parity Holstein belonging to 492 herds. These samples were composed of 

AM or PM collected milk (“T” scheme). According to our observations, we detected phenotypic 

differences in the means of the obtained values between AM and PM records independent of 

the studied trait. For instance, AM milk yield (11.5 kg) was higher than PM milk yield (10.2 kg). 

This first observation was confirmed by the findings of other authors as Gilbert et al. (1972) and 

Quist et al. (2008). We observed several other differences for the studied traits. Unlike milk 

yield, milk fat content appeared lower in AM than in PM milk samples (4.3 vs. 4.4 g/dL of milk, 

respectively for AM and PM milking; 3.9% of relative difference). Further, greater AM/PM 

variations were detected in UFA (1.38 vs. 1.49; 7.7% of relative difference), MUFA (1.19 vs. 1.28; 

7.3% of relative difference), and LCFA (1.65 vs. 1.77; 7.0% of relative difference) than 

unsaturated FAs such as SCFA (0.38 vs. 0.39; 2.6% of relative difference). These observations 

were confirmed by Liu et al. (2000). These differences could be explained by the different 

origins of these FAs. The first one is the novo synthesis. These FAs are synthesized in the 

mammary gland and consist in short chain FA (<15 carbon), while about half of the total FA (a 

portion of C16 and ≥ C17) are synthesized from dietary lipids and adipose tissues reserves (e.g. 
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Bauman et al., 1999; Samkova et al., 2012). These de novo synthesized FAs (e.g., SFA, SCFA, and 

MCFA) had the lowest relative differences (2.1, 2.6, and 1.4% respectively), whereas UFA (7.7%), 

MUFA (7.3%) and LCFA (7.0%) had the highest AM/PM differences. As mentioned in Chapter VI, 

these observations suggest that de novo synthesized FAs are under stronger genetic control 

than those produced from plasma lipids (Bastin et al., 2011; Grummer, 1991) and that they, 

therefore, have lower AM/PM variability. 

Consequently, to develop robust management tools, the used phenotypic data should be 

collected by using comparable sampling methods. A suggested solution is to propose some 

equations allowing the estimation of daily milk, fat and FA yields from single milking data. The 

advantage of this daily estimation is the possible comparison between dairy breeding using 

different sampling scheme, and further, the comparison throughout the lactation in dairy 

breeding using alternate sampling scheme. 

The development of such equations is presented in Chapter VII. These new developed 

equations present several particularities. Numerous papers studying this issue are available in 

scientific literature since 1970’s (e.g. Berry et al., 2006; Delorenzo and Wiggans, 1986; Liu et al., 

2000). Anyhow, during the conception of the CONVIS s.c. research database, some breeding 

data appeared as missing, hard to collect or unreliable. Milking interval was one of these cited 

data. Nevertheless, the majority of authors working on the issue of conversion equation used 

the milking interval in their predictive models. Based on the results of Ouweltjes (1998), the 

milking interval considers as an influent factor on the milk composition, due to the dilution 

effect. Therefore, a high volume of milk produced during one milking should contain lower 

contents of fat compared to the milk composition obtained from a lower amount of milk (dairy 

cows milked twice a day). Our first difficulty, considering the poor reliability of milking interval 

parameter, was to find how to replace this parameter by another one or combination of reliable 

parameters to build practical conversion equations. So, based on the conclusions of Ouweltjes 

(1998), the milking interval could be reflected by the content of specific milk components. In 

order to propose such a combination of parameters, several regressions including effects 
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related to the change of milk composition were tested to estimate the milking interval 

parameter. The obtained results show the possibility to replace this problematic parameter by a 

combination of more reliable parameters. Among these parameters, we can find the milk yield, 

fat and protein contents, classes of stage in lactation, month of test and month of calving. These 

parameters present the advantage to be more reliable and available than milking interval. 

Despite the large number of papers considering the 24h-conversion equations of milk 

composition, none of them propose this kind of equation for other traits than milk yield, fat or 

protein production. So, our second objective was to enlarge the scope by developing 24h-

conversion equations on records from alternate milk recording schemes to predict the daily 

production of the major groups of FAs. 

The presented results in this paper (Chapter VII) were very promising. Daily estimations 

based on PM records were slightly higher (R comprised between 97.9 and 98.4) than daily 

estimation based on AM records (R ranged from 97.0 to 97.3). Further, some comparisons were 

realized between our proposed equations and the equations of Liu et al. (2000). Obtained 

results for accuracy of prediction criteria (such as R, RMSE, AIC, BIC, and ASE) were similar for all 

the tested equations (Liu’s ones). Thus, on the basis of our observations, it is possible to 

estimate daily milk, fat and FA yields without the use of milking interval. 

A first perspective of this study will be to validate proposed models on larger databases 

in order to confirm obtained results and to refine suggested equations. Indeed, the validation of 

such models requires more important, complete, and reliable databases than the one used in 

this thesis. Unfortunately, collecting enough samples from both, AM and PM milkings and 

recording all these data from a sufficient number of dairy cows could represent a very 

important, expensive, and potentially long term work. Currently, the used validation databases 

were not sufficient to confirm the proposed equations in routine. 

Even if the development of conversion equations could allow the phenotypic comparison 

between used data independent of the recording system, the use of different sampling schemes 
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could also influence the estimation of genetic parameters of milk and milk fat composition and, 

therefore, have a potential impact on the genetic parameters and the ranking of animals. 

Unfortunately, unlike the phenotypic differences between the AM and PM milk composition 

none or very few information about the influence of the time of milking on the genetic 

parameters of milk yield, milk and milk fat composition is reported in literature. 

Chapter VI was dedicated to this topic, and was focused on the effect of the time of milk 

recording (AM or PM) on the genetic parameters of milk yield and milk fat composition. In this 

study, a total of 58,540 test-day records were collected from primiparous Holstein cows in 

Luxembourg. 

Firstly, heritabilities of FA content were calculated. Heritability values obtained from the 

Luxembourg database were similar to those reported previously by Bastin et al. (2011) carrying 

out work on Walloon cattle. Our results indicate that the average daily heritabilities for milk 

were higher in the morning than in the evening (0.23 vs. 0.20, respectively for AM and PM). 

Unlike milk yield, fat content presented higher heritability values during PM (0.32) than for AM 

(0.30) milking. Although few or no statistically significant differences were observed between 

heritability values for FA content between AM and PM, mean differences between the AM and 

PM heritabilities were higher for saturated FAs (0.04) than for unsaturated FAs (0.02). According 

to obtained results, estimated heritabilities for saturated FAs from PM milk samples are slightly 

higher than those estimated from AM milk samples. 

Further, we observed that the average daily genetic correlations estimated between AM 

and PM studied FAs traits were globally ≥ 0.93. These values were higher than those obtained 

for the average daily correlations between AM and PM FAs traits for permanent environmental 

effects. This difference could be explained by the numerous biological processes involved in the 

production of milk FAs. As mentioned previously, milk FAs profile is influenced by a large range 

of conditions such as diet (Larsen et al., 2012). Lower values of average daily correlation 

between AM and PM samples for permanent environmental effects could be explained by a 

feeding effect. Indeed, according to available literature (e.g. Sahana et al. (2008)), cows 
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consuming the major part of their feed between the AM and PM milking present a higher fat 

content and a higher content of unsaturated FAs in the afternoon milk compared with the 

morning milk, whereas the content of de novo synthesized FAs is reported to be lower. 

Consequently, based on our results, our hypothesis is that the underlying genetic effect does 

not vary strongly throughout the day.  

From the obtained results, by taking into account the standard error, the differences in 

terms of heritability and correlations were often not statistically significant. Consequently, both 

mean and variance differences can be corrected with appropriate modeling. Sampling type in 

the evaluation model can be included in the applied genetic model with the use of appropriate 

fixed effects which allow the correction of mean differences. Our first suggestion of correction is 

to include a sampling moment x sampling type fixed effect in the model. Secondly, FAs trait 

heteroscedasticity can also be taken into account as it is done for milk yield (Gengler et al., 

2005). However, the observed differences were largely lower than the ones observed for milk 

yield, for example. So, these results suggest a very limited impact of the time of milking on the 

genetic evaluation of FA traits. 

 

8.1.3. Condition 4: Genetic and phenotypic variability of selected traits 

 

FAs present the most important part of milk fat, and constitute about 90% of its weight 

(Samkova et al., 2012). They differ in carbon chain length, on degree of unsaturation, position 

and number of double bonds. A particularity of milk fat is its high plasticity, compared to the 

other milk constituents. The milk FA profile can be easily altered using factors changing milk fat 

composition. These factors could be classified in three main groups: feeding, animal and 

environment (Samkova et al., 2012). It is well known that milk fat composition is also 

significantly altered through herd management intervention such as changes in feeding (e.g. 

Chilliard et al., 2000 and 2001; Grummer et al., 1991). While the effect of cow nutrition on FA 
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composition is well documented in literature, information about the effect of animal factors is 

more limited. Breed, stage of lactation and cow individuality are the most frequently studied 

animal factors affecting milk fat profile (e.g. Kelsey et al., 2003; Soyeurt et al., 2006). Several 

papers have reported that breed is an important factor affecting milk fat composition. Further, 

according to Kelsey et al. (2003) and Soyeurt et al. (2006), milk FA profile varies also within a 

breed.  

Data used in Chapter VII were recorded from Luxembourgish dairy herds between 

October 2007 and April 2013 during conventional milk testing (“S”). These milk samples are 

composed of 50% AM milk and 50% PM milk and are collected from 21,582 Holstein cows in 163 

herds. The observed average milk production was 26.36 kg/day. The fat content was 4.34 g/dL 

milk having a saturated part equal to 65.9%. Overall, the quantities and content of individual 

FAs present in the milk samples and fat were consistent with those previously reported for 

Walloon data (Bastin et al., 2011). The milk and fat yields had similar descriptive statistics 

compared to the results mentioned by Liu et al. (2008). 

We reported previously that milk composition and milk yield could vary with the time of 

milking (AM or PM). Indeed, milk FA profile from AM milk or PM milk were different. This could 

be partly explained by the effect of diet. Indeed, the feeding effect is well known and largely 

described in available literature (e.g. Chilliard et al., 2009; Sahana et al., 2008). A second 

important factor is the individual animal in terms of breed, lactation number, DIM, etc (e.g. 

Kelsey et al., 2003; Liu et al., 2000; Mayeres et al., 2004; Soyeurt et al., 2006; Stoop et al., 2008). 

In Chapter III, the effect of breed on the milk composition is described using a non-exhaustive 

comparison of differences in FA concentrations in milk fat according to the breed. Holstein and 

Jersey milk fats present the greatest differences. Higher concentrations of SFAs, especially of 

FAs with short and medium carbon chains, are observed in Jersey milk fat (e.g., Beaulieu and 

Palmquist 1995; White et al., 2001). The proportion of C16:0 do not differ significantly between 

Holstein and Jersey milk fat. According to Lawless et al. (1999), Normande and Montbeliarde 

cows produce milk fat with the highest proportions of C18:0.  
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DIM is considered as another important factor affecting milk yield and composition. The 

stage of lactation or DIM are known as one of the largest factors affecting milk composition 

(Kelsey et al., 2003; Liu et al., 2000; Stoop et al., 2009). The inclusion of month of test is aimed 

to catch the effect of season and, indirectly, the feeding effect whose impact on the milk FA 

composition is largely described in the literature (e.g. Arnould and Soyeurt, 2009; Chilliard et al., 

2000). As reported by Arnould et al. (2012), milk yield varies through lactation. Similar 

observations were found for FA contents. Indeed, according to Figure 1 of Chapter V, SFA 

content in fat (expressed in g/100g of milk fat) increased until DIM 85 with a decrease at the 

end of the lactation. According to additional non-published results, we observed a strong 

decrease in fat content until 45 DIM when fat is at its lowest level. Mean fat and SFA tended to 

follow the typical curves obtained for milk components decreasing in early lactation and rising 

again as DIM increased, in contrast to the curve obtained for milk yield. De Vries and Veerkamp 

(2000), Quist et al (2008), and Soyeurt et al. (2008) obtained similar curves.  

Another important effect is the effect of parity. Although the literature data on the 

effect of parity on the milk FA profile are limited, it is unquestionable that this factor also affects 

milk fat composition (e.g. Craninx et al., 2008; Kelsey et al., 2003; Samková et al., 2012; Soyeurt 

et al., 2008). Most available papers categorise cows into two groups, primiparous and 

multiparous cows. According to the available data, first-calves produce milk fat with a higher 

proportion of UFA and lower proportion of SFA than cows in second and further lactations 

(Craninx et al., 2008; Samková et al., 2012; Thomson et al., 2003). Wathes et al. (2007) suggest 

that there are differences between primiparous and multiparous cows in the control of tissue 

mobilisation which may promote nutrient partitioning between growth and milk production 

during the first lactation.  

Consequently, information like the individual animal, breed, herd, parity and stage of 

lactation effects must be taken into account during the development of models. So, in order to 

limit the effect of animal on the milk FA profile and to optimize the evaluation of genetic 

parameters, we only kept data from Holstein primiparous cows. 
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Random regression test-day models (RRTDM) remain a commonly used methodology for 

the estimation of genetic parameters and genetic evaluation for daily milk production traits 

(Bohmanova et al., 2008; Misztal, 2006). The basic idea of RRM consists of fitting average 

lactation curves, while random animal specific curves describe deviations from these average 

curves (Bohmanova et al., 2008). For that, several functions can be used to fit fixed and random 

regressions. Early applications used parametric functions and lactational shape functions such as 

the Ali and Schaeffer (1987)and Wilmink (1987) functions. However, those functions, especially 

for random effects, were subsequently replaced by LP. Models with LP as regressions are 

orthogonal and, therefore, have better convergence properties than models with parametric or 

lactational shape functions (Bohmanova et al., 2008). However, to fit the shape of lactation 

appropriately, higher order polynomials are required. Nevertheless, Bohmanova et al. (2008) 

reported that RRTDM using LP present undesirable properties, mainly the overestimation of 

variances at the edges of lactation, which could be explained by lack of asymptotes of LP. 

Recently, splines have been advocated as a good alternative to LP for analyzing test-day yields in 

RRM (Bohmanova et al., 2008; Druet et al., 2003; Meyer, 2005). Indeed, some previous research 

established that splines might be less sensitive to the data than LP and higher flexibility of fitting 

lactation curves (Misztal, 2006). Mathematically speaking, splines are piecewise polynomial 

functions. They are defined as curves that consist of individual segments themselves connected 

in “knots”. The simplest case of a spline function is the linear spline where the segments are 

fitted by linear polynomials. Consequently, coefficients of linear splines are simple interpolation 

coefficients between the 2 knots adjacent to the record and 0 between all other knots. Because 

a maximum of 2 coefficients may be nonzero for a given record, the system of equations with 

splines is sparser than with LP (Bohmanova et al., 2008; Misztal, 2006).  

The study, presented in Chapter V, aimed to compare different models to study genetic 

parameters of milk SFA production. Throughout this study, three functions were tested and 

compared to take into account the lactation curve: 1) LP with the same order as currently 

applied for genetic evaluations of production traits (LP), 2) linear splines with 10 knots (SP10), 

and 3) linear splines with the same 10 knots reduced to 3 variables (SP3). 
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The choice of optimal test-day RRM was based on statistical criteria such as Akaike’s 

information criterion (AIC) which is widely used in statistics for comparing models (e.g., Druet et 

al. 2003); Bayesian information criterion (BIC) values which was very close to AIC (the BIC is a 

criterion for model selection among a class of parametric models with different numbers of 

parameters); Log-likelihood function, and the analysis of residuals (percentage square biases or 

PSB). Another criterion was the overall shape of the genetic variance function. Results are 

available in Chapter V.  

As expected, the AIC, BIC, and log-likelihood function identified the LP and SP3 models as 

the most useful models. Model SP10 was the worst model for each parameter. Further, LP and 

SP3 models needed the least time to converge (2 h 50 min and 17 h 10 min, respectively) and 

need the lowest number of rounds (1,153 and 978). Convergence rate of SP10 model was much 

slower (more than 1 month and more than 5,000 rounds). Based on results from this study, the 

reduced SP3 model was very similar to the LP model. Therefore, LP was the best among the 

compared models. It can be expected that LP-based models could be used to model production 

of FA in milk fat for the next researches of this thesis. 

The FA content heritability values presented in Chapter VI were similar to those reported 

previously for Walloon cattle (Bastin et al., 2011). Firstly, according to results, heritability 

estimates seemed to decrease with FA chain length. Indeed, FA groups (SFA, SCFA, and MCFA) 

were more heritable than LCFA and UFA, with heritabilities of 0.31 (AM) and 0.35 (PM) for SFA, 

0.31 (AM) and 0.35 (PM) for SCFA, 0.32 (AM) and 0.36 (PM) for MCFA, 0.23 (AM) and 0.22 (PM) 

for LCFA, and 0.24 (AM) and 0.23 (PM) for UFA. These findings were already reported by Bastin 

et al. (2011). This is easily explained by physiological processes involved in the production of 

milk FAs. It seems logical that FAs synthesized de novo in the mammary gland (SFA and SCFA; 

0.31 for both FAs) presented higher heritabilities than those synthesized from blood, so, 

indirectly from feeding (LCFA; 0.23 and UFA; 0.24). This hypothesis was also confirmed by 

Chilliard et al. (2001) and Bobe et al. (2008). However, some differences can be noticed with 

literature values and explained by the origin or the quality of used databases, by the 
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improvements of the calibrations equations and by the applied genetic model. Indeed, using an 

animal model instead of a sire model permits to estimate directly the genetic effects of all 

relatives. Further, this model permits to take into account the performances of ancestors, 

descendants and collateral relatives, and thus improves the accuracy of the estimation. More 

recent studies, such as Bobe et al. (2008), Soyeurt et al. (2008b) and, Stoop et al. (2008), used 

an animal model to estimate the genetic parameters of FAs. These papers reported similar 

heritability values than those presented in the current thesis.  

 

8.2. Conclusion 

 

Milk FAs, which can be altered by genetics and management practices, are useful indicators 

of the metabolic status of dairy cows, the nutritional quality of their milk and their 

environmental impact. The bovine milk FA profile presents interesting properties which could 

be taken into account in the development of management tools. Indeed, the use of information 

collected within milk recording can be more than the reporting of performances or the 

estimation of breeding values. By using milk records differently, value is added to the available 

data. This thesis proposes methodologies to acquire and to model these traits in view of their 

use as management tools. This thesis showed the complexity and the heterogeneity of data 

acquisition due to alternative sampling scheme and proposed two levels of correction: 

phenotypically by using conversion equations and genetically by modeling separately morning 

and evening data. For this last correction, the use of Legendre polynomials based models were 

the most efficient compared to splines based models. The results of this thesis are available for 

further use in the development of management tools by CONVIS sc. 
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8.3. Perspectives 

 

A first practical tool was proposed to CONVIS s.c. within this thesis. Monthly descriptive 

statistics were obtained for milk production and traditional and novel milk composition traits 

(especially fat, protein, urea, lactose, cells and major groups of FAs). These statistics were 

available for each dairy farm regardless the milk recording scheme. A first prototype is under 

scrutiny at CONVIS s.c. The next step will be to apply the 24h-conversion equations obtained in 

this thesis. As explained previously, this will allow a comparison between dairy farms using 

different sampling schemes. This thesis contributes also to a better understanding of the 

phenotypic and genetic variation of FA and to the interpretation of milk fat profile as indicators 

of dairy cattle system efficiency. 

In order to develop practical, useful and innovative tools, some conditions have been 

presented previously. These four conditions are necessary but not sufficient. Indeed, a fifth 

condition must be fulfilled. In order to develop a useful tool and to improve the interpretation 

of milk composition patterns, a reference system must be set up allowing an easy interpretation 

of available data. Indeed, values obtained and presented in the current studies are only be valid 

for a given dairy cow population/herd and may not be used as reference values for different 

dairy herds or cow populations. Some threshold values (e.g. for diseases (Van Haelst et al., 

2008)) are already available in literature. However, it would seem to be important to use these 

thresholds with caution. Indeed, they need to be adapted to the particular dairy cow population 

under study and validated in the field. Consequently, it is very important to study each dairy 

cow population separately and to adapt the threshold values accordingly. Finally, the 

measurement of milk composition is presented as both a monitoring and a prevention tool. So, 

it can never replace close monitoring of a herd by the farmer and appropriate veterinary care, 

but may be used as an efficient alert system for preventing health disorders in cows. 

As explained previously, CONVIS s.c. proposes several sampling procedures to increase 

flexibility in their recordings. We already discussed the topic of the milking moment. Another 
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issue could be the frequency of sampling. Indeed, milk samples could be collected every 2, 4 or 

6 weeks. However, 6 weeks interval between two successive milk samplings could be 

considered as a too long interval, and consequently, decrease the effectiveness of proposed 

management tools. Further, some diseases such as ketosis could occur, in dairy cattle, in the 

first few weeks of lactation. Therefore, it could be interesting to apply such management tool 

more frequently during the first period of lactation (until the week 9). 

The development of management tools based on the methodologies proposed in this thesis 

would open new perspectives for dairy management. This should allow the detection of some 

metabolic diseases (e.g. hyperketonemia) due to management system deficiencies. Indeed, in 

2004, Mayeres et al. showed the possibility to predict, with reasonable accuracy, the production 

of milk, fat and protein production for the next test day by using test-day model (Gillon et al., 

2010; Mayeres et al, 2004). This prediction model permits to develop useful management tools. 

Indeed, the prediction of such values enables a direct comparison between the actual and the 

expected performances of a cow on each test day specifically for the considered farm. In 

practice, routine management of milk components during milk recording provides assistance for 

strategic and management decision. Cows with suspicious production records might be looked 

after or treated immediately after milking, meeting their individual needs more precisely, thus 

saving on medical treatment costs and expenses caused by lost milk increasing productivity in 

the long term. On the herd level, this comparison between actual and estimated production 

values might be an indicator for malfunctioning of milking equipment, for the existence of 

general health problem, or for a global management error in the milking herd (Gillon et al., 

2010; Mayeres et al., 2004).  

There is a real interest to extend such study to the bovine milk FA. Indeed, milk FA profile 

could be used as sustainability, monitoring, and prevention tools for several pathologies or 

health disorders in dairy cattle (Arnould et al., 2013). For example, the FA composition of milk 

could be used to detect ketosis, a metabolic disorder that affects high-producing cows and 

causes a loss of production and infertility (De Marchi et al., 2014). At the beginning of lactation, 
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the dairy cow must cope with an important increase in energy demand by the mammary gland 

for milk production. This is achieved partly by increasing feed intake and partly by fat 

mobilization from the cow’s adipose tissue. However, excessive fat mobilization may induce an 

imbalance in hepatic carbohydrate and fat metabolism, characterized by elevated 

concentrations of ketone bodies (ß-hydroxybutyrate, acetoacetate, and acetone), a state called 

hyperketonemia.  

Subclinical ketosis and negative energy balance are closely linked. Numerous studies are 

focusing on the energy metabolism (Arnould et al., 2013). The milk fat profile has been shown 

to substantially change during the first weeks of production (from week 1 to week 12) and to 

remain unchanged thereafter (Gross et al., 2011). For all these reasons, and as mobilization of 

adipose tissue precedes the development of ketosis and incorporation of mobilized FAs into 

milk fat, changes in milk FA composition might be an early indicator of hyperketonemia (Van 

Der Drift et al., 2012; Van Haelst et al., 2008). Several studies (e.g. Gross et al., 2011; Van Haelst 

et al., 2008) have proposed relative increases in the proportions of LCFA, and especially, C18:1 

cis9 (g/100g fat) as an interesting indicator of subclinical ketosis (Arnould et al. 2013). 

In conclusion, thanks to the study of variability of milk FA profile and to the use of MIR 

spectrometry, the current PhD thesis opened new promising perspectives for the dairy herd 

management. 
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