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Abstract

This work addresses the problem of predicting a non-linear time-variant leaf area index and soil 
moisture model (LSM) using state estimation. These techniques include the extended Kalman filter 
(EKF), particle filter (PF) and the more recently developed technique, variational filter (VF). In the 
comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the 
layer 1, HUR1 and the volumetric water content of the layer 2, HUR2) are estimated from noisy 
measurements of these variables, and the various estimation techniques are compared by computing 
the estimation root mean square error with respect to the noise-free data. The results show that VF 
provides a significant improvement over EKF and PF.

Keywords: crop model, variational filter, extended Kalman filter, particle filter, LAI, soil moisture 
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Introduction

Crop models such as EPIC (Williams et al., 1989), WOFOST (Diepen et al., 1989), DAISY (Hansen et 
al., 1990), STICS (Brisson et al., 1998), and SALUS (Basso and Ritchie, 2005) are dynamic non-linear 
models that describe the growth and development of a crop interacting with environmental factors 
(soil and climate) and agricultural practices (crop species, tillage type, fertilizer amount, etc.). They 
are developed to predict crop yield and quality or to optimize the farming practices in order to satisfy 
environmental objectives, such as the reduction of nitrogen leaching. More recently, crop models 
have been used to simulate the effects of climate changes on agricultural production. Nevertheless, 
the prediction errors of these models may be important due to uncertainties in the estimates of 
initial values of the states, in input data, in the parameters and in the equations. The measurements 
needed to run the model are sometimes not numerous, whereas the field spatial variability and 
the climatic temporal fluctuations over the field may be high. The degree of accuracy is therefore 
difficult to estimate, apart from numerous repetitions of measurements. For these reasons, the 
problem of state estimation represents a key issue in such non-linear and non-Gaussian crop models 
including a large number of parameters, while measurement noise exists in the data. The estimation 
problem has been addressed with several methods, such as the Kalman Filter (KF) which provides 
an optimal Bayesian solution but is limited by the non-universal Gaussian modeling assumptions. 
An application of this technique to a linear dynamic crop model predicting a single state variable 
‘winter wheat biomass’ is presented in Makowski et al. (2004). The method is computationally 
efficient, but its performance is limited by the non-universal Gaussian modeling assumptions. 
Makowski et al. (2004) showed how the model predictions can be sequentially updated by using 
several measurements, and studied the sensitivity of the results to the variance of the model errors. 
The Ensemble Kalman Filtering (EnKF) (Xiao et al., 2009), Extended Kalman Filtering (EKF) (Calvet, 
2000), and the Unscented Kalman Filtering (UKF) (Wan and Merwe, 2000) have been proposed 
to improve the KF flexibility. Xiao et al. (2009) have developed a real-time inversion technique to 
estimate LAI (Leaf Area Index) from MODIS data using a coupled dynamic and radiative transfer 
model. They used the EnKF technique to update LAI recursively by combining predictions from the 
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dynamic model while MODIS reflectance data predictions from the dynamic model have been used 
with the EnKF method to estimate real-time LAI from time series MODIS reflectance data. Until 
now, there are a few studies, with encouraging results, considering estimation of states where the 
non-linear observed system is assumed to progress according to a probabilistic state space model. 
For most non-linear models and non-Gaussian noise observations, closed form analytic expression 
of the posterior distribution of the state is intractable (Kotecha and Djuric, 2003). Recently, a 
variational filtering (VF) has been proposed for solving the nonlinear parameter estimation problem 
encountered in crop models. Mansouri et al. (2013) used a Bayesian sampling method for modeling 
and prediction of non-linear environmental systems, where the non-linear observed system was 
assumed to progress according to a probabilistic state space model. In this investigation, the state 
vector to be estimated (at any time instant) was assumed to follow a Gaussian model, where the 
expectation and the covariance matrix are constants. The variational filter can be applied to large 
parameter spaces, has better convergence properties and is easier to implement than the particle 
filter. Both of them can provide improved accuracy over the extended Kalman filter. Nevertheless, 
some practical challenges can affect the accuracy of estimated states and/or parameters, namely the 
presence of measurement noise in the data, the restricted availability of the measured data samples, 
and the larger number of model parameters.
In the current work, we propose to extend the variational filter to better handle non-linear and non-
Gaussian processes (where no a priori information about the states and parameters is available), by 
assuming time-varying statistical parameters.
The objectives of the paper are to compare three methods (EKF, PF and VF) for estimating important 
state variables of crop models. The LAI (Leaf Area Index) determines the photosynthetic primary 
production and the plant evapotranspiration and is thus a key state to characterize the plant growth. 
The moisture content of two soil layers (20 and 50 cm) was considered as it affects the capacity of 
plants to extract water and soil nutrients. The comparison will rely on the computation of the RMSE 
and the number of parameters that can be accurately predicted. The model used in this study is mini 
STICS (Makowski et al., 2006). Using mini STICS model has several advantages since: (1) it can 
reduce the computing and execution times of the STICS model; and (2) it has the nice property to 
be a good dynamic model, ensuring the robustness of data processing and estimation.

Problem formulation

In this section, the mathematical formulation of the state estimation problem is developed, according 
to the filtering approach that is studied. In a second step, the dynamic model is presented, and the 
problem is formulated.

Problem statement
Here, the estimation problem of interest is formulated for a general system model. Let a non-linear 
state space model be described as follows:

 (1)

where k is an index corresponding to the time, zk is the vector of state variables assumed to follow 
a Gaussian model where at any time k the expectation μk and the covariance matrix λk are both 
constants. Also, defining the augmented vector, uk is the vector of input variables, θk is a parameter 
vector (assumed to be known), yk is the vector of the measured variables, wk and vk are respectively 
model and measurement noise vectors, g and l are non-linear differentiable functions, the first 
one determines the new state variables as a function of the precedent situation, while the second 
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expresses the dependence of the measurements. We assume that the error terms, wk and vk, have 
normal distributions with zero expectation, and that they are mutually independent.

Instead of the kinematic parametric model which is usually used in estimation problems, we employ 
a time-variant evolution systems (Vermaak et al., 2003). This model is more appropriate to practical 
non-linear and non-Gaussian situations where no a priori information on the state value is available. 
The state variable zk at instant k is assumed to follow a Gaussian model, where the expectation μk and the 
precision matrix λk are both random. Gaussian distribution for the expectation and Wishart distribution 
for the precision matrix form a practical choice for the filtering implementation. The hidden state zk 
is extended to an augmented state αk = (zk, μk λk), yielding a hierarchical model as follows:

 (2)

where the fixed hyper-parameters λ, s and n are respectively the random walk precision matrix, the 
degrees of freedom and the precision of the Wishart distribution. Note that assuming random mean 
and covariance for the state zk leads to a prior probability distribution covering a wide range of tail 
behaviours allowing discrete jumps in the state variable. In fact, the marginal state distribution is 
obtained by integrating over the mean and precision matrix:

 (3)

where the integration with respect to the precision matrix leads to the known class of scale mixture 
distributions (Vermaak et al., 2003). Low values of the degrees of freedom n reflect the heavy tails 
of the marginal distribution .

Simulation results analysis

Crop model description
The data used in this paper derive from an experiment designed to study wheat growth response 
(Triticum aestivum L., cultivar Julius) under different nitrogen fertilization levels during the crop 
season 2008-09. The experimental blocks were prepared on two soil types (loamy and sandy 
loam), corresponding to the agro-environmental conditions of the Hesbaye region in Belgium. The 
measurements were the results of four repetitions by date, nitrogen level and soil type. Each repetition 
was performed on a small block (2×6 m) within the original experiment as a complete randomised 
block distribution, spread over the field within each soil type, to ensure measurement independence. 
A wireless micro-sensor network was used to continuously characterize the soil (water content, 
suction, temperature) at two depths (20 and 50 cm) and the atmosphere (radiation, temperature, 
relative humidity, wind speed) within the vegetation. Pluviometry data were also acquired in the 
experimental field. LAI, biomass and soil nitrogen content were regularly measured manually. The 
model for which the methods were tested is Mini STICS model (Tremblay and Wallach, 2004). Its 
structure can be derived from the basic conservation laws, namely material and energy balances. It 
contains dynamic equations that indicate how each state variable evolves from one day to the next 
as a function of the current values of the state variables, of the input variables and of the parameters 
values. Encoding these equations over time allows one to eliminate the intermediate values of the 
state variables and relate the state variables at any time to the explanatory variables on each day up 
to that time. However, the model involves several parameters that are usually not known, which 
include the radiation use efficiency expressing the biomass produced per unit of intercepted radiation, 
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the maximal value of the ratio of intercepted to incident radiation, the coefficient of extinction of 
radiation, etc. The model parameters determined by Makowski et al. (2004) are presented in Table 
1. Based on the equations described in Makowski et al. (2004), the mathematical model LSM of the 
LAI and Soil Moisture is given by:

 (4)

Where t is the time, f1-3 are the corresponding model functions and θ is the vector of parameters 
driving the simulations (Table 1). LAI is the leaf area index and HUR1 (resp. HUR2) is the volumetric 
water content of the layer 1 (resp. the layer 2). Discretizing the model (15) using a sampling interval 
of Δt (one day), one obtains:

 (5)

where  is a process Gaussian noise with zero mean and known variance . In other words, 
we are forming the augmented state which is the vector that we wish to estimate. It can be given 
by a 3 by 1 matrix:

 (6)

Table 1. Model parameters (Tremblay and Wallach, 2004).

Parameter name Meaning True value

ADENS (-) Parameter of compensation between stem number and plant density -0.8
BDENS (plants/m2) Maximum density above which there is competition between plants 1.25
CROIRAC  

(cm degree − day−1)
Growth rate of the root front 0.25

DLAIMAX (m2 leaves/
m2 soil/degreedays)

Maximum rate of the setting up of LAI 0.0078

EXTIN (-) Extinction coefficient of photosynthetic active radiation in the canopy 0.9
KMAX (-) Maximum crop coefficient for water requirements 1.2
LVOPT (cm root/cm3 s) Optimum root density 0.5
PSISTO (bars) Absolute value of the potential of stomatal closing 10
PSISTURG (bars) Absolute value of the potential of the beginning of decrease in the 

cellular extension
4

RAY ON (cm) Average radius of roots 0.02
TCMIN (°C) Minimum temperature of growth 6
TCOPT (°C) Optimum temperature of growth 32
ZPENTE (cm) Depth where the root density is 1/2 of the surface root density for the 

reference profile
120

ZPRLIM (cm) Maximum depth of the root profile for the reference profile 150
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Sampling data generation
To obtain original dynamic data, the model was first used to simulate the temporal responses 
LAIk, HUR1k, HUR2k on the basis of the recorded climatic variables. The sampling time used for 
discretization was 1 day. Moreover, to characterize the ability of the different approaches to estimate 
both the states and the parameters at the same time, ‘true’ parameter values were chosen (Table 1). 
The advantage of working by simulation rather than on real data is that the true parameter values 
are known. It is thus possible to calculate the quality of the estimated parameters and the predictive 
quality of the adjusted model for each method. The drawback is that the generality of the results is 
hard to know. The results may depend on the details of the model, on the way the data are generated 
and on the specific data that are used. The simulated values, assumed to be noise free, are shown in 
Figure 1. The sampling time used for discretization is 1 day and the LSM model parameters as well 
as other physical properties were determined by Tremblay and Wallach (2004). The evolution of LAI 
during the wheat’s lifecycle presents the three expected phases, growth, stability and senescence. 
Daily variations of shallow ground water show fluctuations that were damped in the subsoil layer. 
These simulated states were then contaminated with zero mean Gaussian errors, i.e. the measurement 
noise 1kv ~ 20 v,N  where ..v 102  

Estimation of state variables from noisy measurements
We consider the state vector that we wish to estimate as:

]2,1,[ kkkk HURHURLAIz  (7)

Eventually, to perform comparison between the techniques, the estimation root mean square errors 
(RMSE) criteria will be used and calculated on the states (with respect to the noise free data):

))ˆ(( 2xxERMSE  (8)

where x (resp. x̂) is the true state (resp. the estimated state).
The simulation results of estimating the three states: the leaf-area index LAIk, HUR1k the volumetric 
water content of the layer 1 and HUR2k the volumetric water content of the layer 2 using EKF, PF and 

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

Times (days)

L
A

I

LAI
Measurements

0 50 100 150 200 250 300
5

10

15

20

Times (days)

H
U

R
1

HUR1
Measurements

0 50 100 150 200 250 300
12

14

16

18

Times (days)

H
U

R
2

HUR2
Measurements

Figure 1. Simulated LSM data used in estimation: state variables (LAI leaf area index, 
HUR1volumetric water content of the layer 1; HUR2 volumetric water content of the layer 2).
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VF are shown in Figure 2(a,b,c), Figure 2(d,e,f) and Figure 2(g,h,i), respectively. Also, the estimation 
root mean square errors (RMSE) for the estimated states are shown in Table 2. It can be observed 
from Figure 2 and Table 2 that EKF resulted in the worst performance of all estimation techniques, 
which is expected due to the limited ability of EKF to accurately estimate the mean and covariance 
matrix of the estimated states through linearization of the non-linear process model. The results 
also show that the VF provides a significant improvement over the PF, which is due to the fact that 
the VF yields an optimal choice of the sampling distribution, ),( 1 kkk yp , by minimizing a KL 
divergence criterion that also utilizes the observed data yk.

Conclusions

In this paper, state estimation techniques are used to predict three state variables (Leaf area index 
(LAI) and soil moisture model for a winter wheat crop). Various state estimation techniques, 
which include the extended Kalman filter (EKF), particle filter (PF), and variational filter (VF), are 
compared as they are used to achieve this objective. In the comparative study, EKF, PF and VF are 
used to estimate the three state variables (Leaf area index (LAI) and the moisture content of the two 

Table 2. Root mean square errors (RMSE) of estimated states.

Technique RMSE

LAI HUR1 HUR2

EKF 0.0634 0.0598 0.0297
PF 0.0358 0.0347 0.0251
VF 0.0190 0.0187 0.0122

Figure 2. Estimation of state variables using various state estimation techniques.
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top soil layers) of the LSM process. The simulation results of comparative studies show that the PF 
provides a higher accuracy than the EKF due to the limited ability of the EKF to deal with highly 
non-linear process models. The results also show that the VF provides a significant improvement 
over the PF. This is because, unlike the PF which depends on the choice of sampling distribution 
used to estimate the posterior distribution, the VF yields an optimum choice of the sampling 
distribution, which also utilizes the observed data. The VF, however, still provides advantages over 
other methods with respect to estimation accuracy.
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