
1 INTRODUCTION  

Tower cranes are designed to transport heavy 
weights. Over the last years, a large number of crane 
collapses has been recorded and massively reported 
in the media, e.g. in New-York in 2012 under storm 
Sandy (Figure 1). Many others are available on ded-
icated websites (Christie, 2012) and (Mok, 2008). 
 

 
Figure 1. Crane failure in New-York, 2012 (Christie, 2012). 

 
 

Although the behavior of cranes is a widely stud-
ied problem in the literature, most research works 
focus on the study of structures in use, i.e. during lift 
operations. The dynamic behavior of a crane lifting 
weights is studied by Ghigliazza by analogy with a 
pendulum with moving support (Ghigliazza & 

Holmes, 2002) while the planning and modeling of 
the path traveled by the crane and its load are stud-
ied in (Sakawa & Nakazumi, 1985) and 
(Hamalainen, et al., 1995) respectively. As tower 
cranes are high-rise and lattice structures, wind is an 
important excitation. In case of high wind velocities, 
the crane is out-of-service and left free to rotate as a 
weathervane in order to avoid overturning of the 
structure. The corresponding out-of-service wind 
speed is studied in (Eden, et al., 1981), (Eden, et al., 
1983) and (Sun, et al., 2009). In opposition with all 
the previous research about tower cranes in use, 
Voisin performed experimental analysis in order to 
understand and characterize other crane instabilities 
under wind excitation and determine the susceptibil-
ity of a tower crane to autorotation when it is out-of-
service. This experiment consists in the determina-
tion of a probability of autorotation of the jib in a 
given environment. This method allows to validate 
or not a configuration by experimental campaigns 
(Voisin, 2003) and (Voisin, et al., 2004). 

A wide variety of tools already exists concerning 
wind loading, stochastic processes, dynamic analysis 
of structures and can be combined to analyze and 
better understand the behavior of tower cranes in a 
stochastic wind velocity field. A conceptual model 
of this problem will help catching the impact of the 
different geometrical, structural and wind parame-
ters and their effect on autorotation. In this perspec-
tive, the crane is represented by a single degree-of-
freedom model composed of a rigid jib rotating 
around a fixed pivot (Vanvinckenroye, 2015). This 
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mechanism is similar to a pendulum. As the wind 
loading depends on the angular position and velocity 
of the crane through aerodynamic forces and pres-
sure coefficients, the wind excitation is called auto-
parametric which is a characteristic of the pendulum 
as well. Assuming no damping, the dimensionless 
governing equation of this system submitted to an 
external force w(t) and a parametric force u(t) is 
given by: 

�̈� + (1 + 𝑢(𝑡)) sin 𝑥 = 𝑤(𝑡) (1) 

Poulin studies the evolution of unstable regions 
for an excitation that varies continuously from peri-
odic to stochastic (Poulin & Flierl, 2008). A wide 
variety of excitations are specifically tested in the 
literature. Gitterman studies the stability and the pe-
riod of the pendulum under deterministic and sto-
chastic excitation of its support in (Gitterman, 
2010a) and (Gitterman, 2010b). He observes that an 
increasing stochasticity of the excitation induces 
larger, but of lower energy unstable ranges of pa-
rameters.  

 
Figure 2. Phase portrait of the non-excited Mathieu equation 
(Gitterman, 2010b). 

 
 
The simplest case of a pendulum submitted to the 

vertical gravitational acceleration provides the ener-
gy curves presented in Figure 2. Assuming no damp-
ing, the pendulum will describe oscillations or rota-
tions depending on its energy level H. Bishop, 
Garira, Xu and Clifford developed analytical solu-
tions to approach the separatrix thanks to the har-
monic balance method, the perturbation method and 
the critical velocity criterion (Garira & Bishop, 
2003), (Clifford & Bishop, 1994), (Bishop & 
Clifford, 1996) and (Xu & Wiercigroch, 2006). Nar-
row band and random phase excitations are investi-
gated by Alevras and Yurchenko in (Yurchenko, et 
al., 2013) and (Alevras, et al., 2013) through a nu-
merical path integration providing stability lobes 
when the support is submitted to a vertical harmonic 
excitation. Xu presents similar results in (Xu, et al., 
2005) for a harmonically excited pendulum by evi-
dencing the basins of attraction in the phase plane. 

(Mallick & Marcq, 2004) present an analytical 
method providing an expression for the asymptotic 
probability distribution function of the energy.  

This work aims to study the susceptibility of a 
crane to reach this instability zone when excited by 
Gaussian white noise excitations u(t)  and w(t). If 
the stability is governed by the energy, i.e. the sys-
tem is quasi-Hamiltonian, the probability of instabil-
ity can be studied as the time needed to reach that 
critical energy level. As the excitation is stochastic, 
the first passage time is a random variable. An as-
ymptotic expansion method was developed by 
Moshchuk in (Moshchuk, et al., 1995a) and 
(Moshchuk, et al., 1995b) to approximate the mean 
first passage time of a nonlinear stochastic process 
representing a ship motion on random sea waves. 
Chunbiao and Liu developed in respectively 
(Chunbiao & Bohou, 2000) and (Liu, et al., 2013) 
the stochastic averaging method for quasi-non-
integrable-hamiltonian systems submitted to Gaussi-
an and Poisson white noises and Li extended this 
approach to stochastic fractional derivative systems 
with power-form restoring force in (Li, et al., 2015). 
The first passage time can also be estimated through 
a multi-level Monte Carlo algorithm (Primozic, 
2011). In this work, the asymptotic expansion is de-
veloped for the linearized form of relation (1) taking 
the form of a stochastic Mathieu equation: 

�̈� + (1 + 𝑢(𝑡))𝑥 = 𝑤(𝑡)  (2) 

The quasi-Hamiltonian system is characterized by 
a set of Itô differential equations (Schuss, 2010) and 
the first passage time is obtained by solution of the 
corresponding Pontryagin equation (Moshchuk, et 
al., 1995a) and (Moshchuk, et al., 1995b). Finally, 
the accuracy of the expansion is illustrated by com-
parison with Monte Carlo simulations of the motion. 

2 AVERAGE FIRST PASSAGE TIME 

The problem is governed by equation (2) where u(t) 
and w(t) are Brownian white noises of low intensity 
Su and Sw, and x is the rotational position of the 
crane. This problem can be represented in the state 
space by its Itô formulation: 

𝑑𝒙 = 𝒇(𝒙, 𝑡)𝑑𝑡 + 𝒃(𝒙, 𝑡)𝑑𝑩 (3) 

where 𝒙 = (
𝑞
𝑝),  𝒇 = (

𝑝
−𝑞), 𝒃 = (

0 0
−𝑞 1

) and 

𝑩 = (
𝐵𝑢

𝐵𝑤
) is the vector of Brownian motions u and 

w characterized by the intensity matrix  

𝑺 = (
𝑆𝑢 0
0 𝑆𝑤

) = 𝜀𝝂 = ε (
𝜈𝑢 0
0 𝜈𝑤

) (4) 

As the white noise excitation is small, the system 
is quasi-Hamiltonian, which means that the Hamil-
tonian of the system given by 



H =
p2

2
+

𝑞2

2
 (5) 

varies slowly in time. 
The unperturbed system describes a closed trajec-

tory of constant energy H called a homoclinic orbit. 
This motion presents a period 

𝑇 = 2 ∫
𝑑𝑞

�̇�

𝑞2

𝑞1
= 2 ∫

1

√2𝐻−𝑞2
𝑑𝑞 = 2𝜋

√2𝐻

−√2𝐻
. (6) 

The average first passage time through a level of 
energy Hc from an initial energy level H is the exit 
time U(x) from a region 𝐷 = {(𝑥, �̇�)|𝐻(𝑥, �̇�) ≤ 𝐻𝑐} 
and satisfies the Pontryagin partial differential equa-
tion (7): 

𝐿𝑈(𝒙) = −1 (7) 

where L is the backward Kolmogorov operator and 
is given by (Schuss, 2010): 

𝐿[∙] =
1

2
𝑻𝒓 {[

𝜕

𝜕𝒙

𝜕

𝜕𝒙
(∙)] 𝝈} + 𝒇(𝒙, 𝑡)

𝜕∙

𝜕𝒙
 (8) 

where σ=εb(x,t)νbT(x,t). This operator can be de-
composed in two operators: 

𝐿[∙] = 𝐿1[∙] + 𝜖𝐿2[∙]. (9)  

with 

{
𝐿1[∙] = 𝑝

𝜕∙

𝜕𝑞
− 𝑞

𝜕∙

𝜕𝑝

𝐿2[∙] =
1

2
(𝑞2𝜈𝑢 + 𝜈𝑤)

𝜕2∙

𝜕𝑝2

 (10)  

The first operator represents the derivative along 
the direction of the conservative system, i.e. along 
the homoclinic H.  

The asymptotic expansion method developed by 
Moshchuk in (Moshchuk, et al., 1995a) and 
(Moshchuk, et al., 1995b) solves equation (7) for an 
approximate form of the first passage time: 

𝑈(𝑝, 𝑞) ~ 𝑈𝑛(𝑝, 𝑞) + 𝐺𝑛(𝑝, 𝑞) (11) 

where Un is the regular asymptotic outer solution 
and is of the form 

𝑈𝑛(𝑝, 𝑞) =
1

𝜖
𝑢0(𝑝, 𝑞) + 𝑢1(𝑝, 𝑞) + ⋯ + 𝜖𝑛−1𝑢𝑛(𝑝, 𝑞) (12) 

and Gn stands for the inner solution in the boundary 
layer at the limit of the domain D so that LUn=-1 
and LGn=0. This boundary layer solution will be de-
veloped with the second-order term u1. 

Collecting terms of likewise powers of ε in rela-
tion (7) yields: 

𝐿1𝑢0 = 0 (13a) 
𝐿1𝑢1 + 𝐿2𝑢0 = −1 (13b) 
𝐿1𝑢2 + 𝐿2𝑢1 = 0 (13c) 

2.1 Leading order solution 

The leading order equation (13a) means that u0 is 
constant along each homoclinic orbit and is conse-
quently a function of the Hamiltonian H only.  

The averaging along a period of Equation (13b) 
provides the information to determine u0(H). Indeed, 
as the homoclinic orbits are closed, averaging along 
this curve gives zero and equation (13b) becomes 

〈𝐿2𝑢0〉 = −1 (14a) 
1

2
[〈𝑞2𝜈𝑢 + 𝜈𝑤〉

𝑑𝑢0

𝑑𝐻
+ 〈𝑝2(𝑞2𝜈𝑢 + 𝜈𝑤)〉

𝑑2𝑢0

𝑑𝐻2 ] = −1 (14b) 

 where the following relations have been used for the 

partial derivatives: 

𝑢0 = 𝑢0(𝐻) → {

𝜕𝑢0

𝜕𝑝
= 𝑝

𝑑𝑢0

𝑑𝐻

𝜕2𝑢0

𝜕𝑝2 =
𝑑𝑢0

𝑑𝐻
+ 𝑝2 𝑑2𝑢0

𝑑𝐻2

 (15) 

and the operator 〈 ∙ 〉 represents the average over one 
period of the unperturbed motion: 

〈 ∙ 〉 =
1

2𝜋
∫  ∙  𝑑𝑡

2𝜋

0
. (16) 

The averaged second-order Pontryagin equation 
therefore reads: 

(
𝐻

2
𝜈𝑢 +

1

2
𝜈𝑤)

𝑑𝑢0

𝑑𝐻
+ (

𝐻2

4
𝜈𝑢 +

𝐻

2
𝜈𝑤)

𝑑2𝑢0

𝑑𝐻2 = −1, (17) 

with the boundary conditions u0(Hc)=0 and 
│U(0)│<∞, equation (17) provides the following 
solution: 

u0(𝐻) =
4𝜖

𝑆𝑢
𝑙𝑜𝑔 (

𝐻𝑐𝑆𝑢+2𝑆𝑤

𝐻𝑆𝑢+2𝑆𝑤
). (18) 

This solution presents two limit formulations 
when u(t) and w(t) are respectively equal to zero, 

𝑆𝑢 → 0 ∶ 𝑢0 → 2𝜖
𝐻𝑐−𝐻

𝑆𝑤
   (19a) 

𝑆𝑤 → 0 ∶  𝑢0 → 4𝜖
log (𝐻𝑐)−log (𝐻)

𝑆𝑢
 (19b) 

2.2 Second order solution 

As the leading order solution u0 is known, equation 
(13b) is used to determine the second order compo-
nent u1.  

The variables q and p are changed into energy-
phase variables k and θ assuming following expres-
sions: 

{
𝑝 = 2𝑘 cos 𝜃
𝑞 = 2𝑘 sin 𝜃

 (20)  

so that the Hamiltonian H is now equal to 2k2. 
Itô formulation (3) taking into account the Wong-

Zakai correction terms δi detailed in (Schuss, 2010), 
becomes: 

𝑑𝒙∗ = 𝒇∗(𝒙, 𝑡)𝑑𝑡 + 𝒃∗(𝒙, 𝑡)𝑑𝑩 (21) 

where 𝑑𝒙∗ = (𝑑𝑘
𝑑𝜃

), 𝒇∗ = (
𝜎22

𝜕2𝑘

𝜕𝑝2

1 + σ22
𝜕2𝜃

𝜕𝑝2

) = ( 𝛿1
1+𝛿2

), 



𝒃∗ = (
−𝑘 cos 𝜃 sin 𝜃

cos 𝜃

2

sin2 𝜃 −
sin 𝜃

2𝑘

) and the operators 

L1 and L2  become thanks to σ*=εb*(x*,t)νb*T(x*,t): 

{
𝐿1[∙] =

𝜕∙

𝜕𝜃

𝐿2[∙] = 𝛿1
𝜕∙

𝜕𝑘
+ 𝛿2

𝜕∙

𝜕𝜃
+

1

2
𝜎11

∗ 𝜕2∙

𝜕𝑘2 +
1

2
𝜎22

∗ 𝜕2∙

𝜕𝜃2 + 𝜎12
∗ 𝜕2∙

𝜕𝑘𝜕𝜃

 (22) 

Equation (13b) provides the following expres-
sion: 

𝐿1𝑢1 = −1 − 𝐿2𝑢0 = 〈𝐿2𝑢0〉 − 𝐿2𝑢0 (23) 

= 𝑘2𝜈𝑢 cos 2𝜃
𝑑𝑢0

𝑑𝐻
+ (𝑘2 cos 4𝜃 𝜈𝑢 − cos 2𝜃 𝜈𝑤)

  𝑑2𝑢0

𝑑𝐻2
    

Integration of expression (23) with respect to θ 
provides a decomposition of u1 into two components 
with the constant of integration u12(k): 

𝑢1(𝑘, 𝜃) = 𝑢11(𝑘, 𝜃) + 𝑢12(𝑘)  (24) 

with 

𝑢11(𝑘, 𝜃) =
𝑘2𝑆𝑢 sin 2𝜃

2(𝑘2𝑆𝑢+𝑆𝑤)2 ((cos 2𝜃 − 2)𝑘2𝑆𝑢 − 3𝑆𝑤). (25) 

The averaging of equation (13c) over one period 
of the unperturbed motion provides: 

〈𝐿1𝑢2〉 + 〈𝐿2𝑢12〉 + 〈𝐿2𝑢12〉 = 0

〈𝐿2𝑢12〉 =
1

16
(𝑘2𝜈𝑢 + 𝜈𝑤)

𝑑2𝑢12

𝑑𝑘2 +
3𝑘2𝜈𝑢+𝜈𝑤

16𝑘

𝑑𝑢12

𝑑𝑘
= 0,

(26) 

and u12(k) takes the following form: 

𝑢12(𝑘) =
𝐶1𝜖

𝑆𝑤
𝑙𝑜𝑔 (

𝑘2𝜖

𝑘2𝑆𝑢+𝑆𝑤
) + 𝐶2 (27) 

The first constant of integration C1 is equal to ze-
ro in order to respect the solvability condition 
│U(0)│<∞. The second constant C2 will be de-
termined together with the boundary layer solution 
in order to respect the boundary conditions. 

2.3 Boundary layer 

The boundary layer equation is: 

𝐿𝐺𝑛 = 0 (28) 

The coordinate stretching is classical in the 
boundary layers problems (Denoël & Detournay, 
2010). The boundary layer solution Gn is written as a 
function of the stretched coordinate ξ = (H-Hc)/√ε, 

𝐺𝑛(𝜉, 𝜃) = 𝑔1(𝜉, 𝜃) + √𝜖𝑔2(𝜉, 𝜃) + ⋯ + 𝜖
𝑛−1

2 𝑔𝑛(𝜉, 𝜃). (29) 

Similarly, the operator L is transformed via de 
Taylor expansion of the functions σi* and δi in the 
neighborhood of H=Hc: 

𝛿𝑖(𝐻, 𝜃) = 𝛿𝑖(𝐻𝑐, 𝜃) + √𝜖𝜉𝛿𝑖
(1)(𝐻𝑐, 𝜃) + ⋯

𝜎𝑖
∗(𝐻, 𝜃) = 𝜎𝑖

∗(𝐻𝑐, 𝜃) + √𝜖𝜉𝜎𝑖
∗(1)(𝐻𝑐, 𝜃) + ⋯

 (30) 

The backward Kolmogorov operator becomes: 

𝐿[∙] =
𝜕∙

𝜕𝜃
+ 4𝐻𝑐𝜎1

∗(𝐻𝑐, 𝜃)
𝜕2∙

𝜕𝜉2 (31) 

+ √𝜖 [[2√2𝐻𝑐𝛿1(𝐻𝑐, 𝜃) + 2𝜎1
∗(𝐻𝑐 , 𝜃)]

𝜕 ∙

𝜕𝜉

+ 2√2𝐻𝑐𝜎12
∗ (𝐻𝑐 , 𝜃)

𝜕2 ∙

𝜕𝜉𝜕𝜃

+ 4𝐻𝑐𝜉𝜎1
∗(1)

(𝐻𝑐, 𝜃)
𝜕2 ∙

𝜕𝜉2] + ⋯ 

= Λ0[∙] + √𝜖Λ1[∙] + 𝜖Λ2[∙] + ⋯ 

so that the governing equation (28) becomes: 

𝐿𝐺𝑛 = (Λ0 + √𝜖Λ1 + ⋯ )[𝑔1 + √𝜖𝑔2 + ⋯ ] 

         = Λ0𝑔1 + √𝜖[Λ0𝑔2 + Λ1𝑔1] + ⋯ = 0 (32) 

Balancing again the similar powers of ε provides 
the expression of the functions gi(ξ,θ). In particular, 
the first order solution g1(ξ,θ)  is the solution of the 
following diffusion equation: 

Λ0𝑔1 =
𝜕𝑔1

𝜕𝜃
+ 4𝐻𝑐𝜎1

∗(𝐻𝑐, 𝜃)
𝜕2𝑔1

𝜕𝜉2 = 0 (33) 

with the boundary conditions g1(0,θ)=-u1(Hc,θ) 
and  g1(ξ,θ)→0 when ξ→-∞. The solution of this 
equation is given by (Moshchuk, et al., 1995b): 

𝑔1(𝜉, 𝜃) = b0 + ∑ 𝑏𝑛𝑒
√

𝑛𝑐1
2

𝜉
cos (𝑛𝛼(𝜃) − √

𝑛𝑐1

2
𝜉)

∝

𝑛=1
 

                          + ∑ 𝑎𝑛𝑒
√

𝑛𝑐1
2

𝜉
sin (𝑛𝛼(𝜃) − √

𝑛𝑐1

2
𝜉)∝

𝑛=1  (34) 

with  

𝑐1 = 2𝜋/ ∫ 4𝐻𝑐𝜎1
∗(𝐻𝑐, 𝑠)𝑑𝑠

𝑇

0

𝛼(𝜃) = 𝑐1 ∫ 4𝐻𝑐𝜎1
∗(𝐻𝑐, 𝑠)𝑑𝑠

𝜃

0

𝑏0 = −
1

2𝜋
∫ 𝑢1(𝐻𝑐, 𝜃(𝛼))𝑑𝛼

2𝜋

0

𝑏𝑛 = −
1

𝜋
∫ 𝑢1(𝐻𝑐, 𝜃(𝛼)) cos(𝑛𝛼) 𝑑𝛼

2𝜋

0

𝑎𝑛 = −
1

𝜋
∫ 𝑢1(𝐻𝑐, 𝜃(𝛼)) sin(𝑛𝛼) 𝑑𝛼

2𝜋

0

 (35) 

Because of the second boundary condition, it fol-
lows that b0=0 : 

−
1

2𝜋
∫ 𝑢1(𝐻𝑐, 𝜃(𝛼))𝑑𝛼

2𝜋

0
= 0. (36) 

Finally, averaging (24) with respect to variable α, 
the constant of integration C2 is obtained: 

〈𝑢12(𝑘)〉 = 𝐶2 = −
1

2𝜋
∫ 𝑢11(𝐻𝑐, 𝛼)𝑑𝛼

2𝜋

0
= 0 (37) 

Adapted to relation (35), only the even coeffi-
cients an are non zero. 

All in all, the solution including the first two 
terms is obtained as  

𝑈 =
1

𝜖
𝑢0 + 𝑢11 + 𝑢12 + 𝑔1 (38) 

with u0, u11 and u12 given by (18), (25) et (27). 



3 RESULTS AND CONCLUSION 

Figure 3 presents the average first passage time of 
the energy barrier Hc=0.1 as a function of the initial 
energy level for three different white noise intensi-
ties of u and w. If Su=0, the relation is linear while 
it is logarithmic if Sw=0. It can be observed from re-
lations (17) and (24) that the effects of u and w on 
the first passage time have the same order of magni-
tude if Su has the same order as HcSw. This is con-
firmed in Figure 3. The results obtained with 2,000 
Monte Carlo simulations are very close to the ana-
lytical result obtained with first- and second-order 
expansion terms.  

 
Figure 3. Comparison of theoretical (solid line) and simulated 
(dotted line) first-passage times with Hc=0.1 and θ=3π/4. 

 
 
Figure 4 represents the contributions of the sec-

ond-order term u1 as well as the boundary layer g1. 
The second order term has a contribution independ-
ent on the energy level H and the boundary layer is a 
correction on the second order term close to H=Hc 
that keeps a first passage time equal to zero at this 
point. 

 
Figure 4. Comparison of the first-order, second-order and 
boundary layer terms with with Su=0, Sw=0.001, Hc=0.1 and  
θ=3π/4. 

 

 
Finally, Figure 5 presents the boundary layer con-

tribution in the (H,θ)-plane. The correction vanishes 
when the initial energy level H is getting away from 
the barrier Hc. Close to the barrier, the correction is 
either positive or negative depending on the initial 
phase θ. 

 
As a conclusion, the second order expansion pro-

vides a concluding approximation of the first pas-
sage time. Second order terms are of small order but 
the boundary layer contribution ensures the respect 
of the limit conditions. 
(Vanvinckenroye, 2015)

 
Figure 5. Evolution of the boundary layer solution g1, with  
Su=0, Sw=0.001 and Hc=0.1. 
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