Accuracy and interpretability, tree-based machine learning approaches. 3791

M. Wehenkel^{1,2}, P. Geurts¹, C. Phillips^{1,2,3}

¹Department of Electrical Engineering and Computer Science, ²GIGA In Silico Medicine, ³GIGA CRC In Vivo imaging, University of Liège, Belgium

Introduction

Main aims of pattern recognition techniques for neuroimaging: development of accurate diagnosis systems;

• identification of brain regions related to the disease.

Kernel methods (e.g. SVM, MKL) [1,2] commonly used:

- · Good accuracy with linear kernels;
- Good interpretability through feature weight maps [3].

Tree approaches not really popular in neuroimaging but:

- State-of-the-art accuracy on many problems with minimal tuning;
- Results interpretable through variable importance scores.

Aim: to study tree methods and show their good behavior against those of traditional methods such as SVM and MKL.

Methods

Data :

Methods are tested on two datasets :

- IXI [4]:
 - Structural MRI;
 - 170 aged vs. 99 young individuals;
 - > We work in particular with scalar momentums obtained with SPM8, like in [5].
- OASIS [6]:
 - Structural MRI;
 - > 50 demented vs. 50 non-demented old subjects;
 - \succ Age and gender matched;
 - Preprocessing with SPM8.

Machine learning methods :

- · Linear support vector machines (SVM);
- Multiple kernel learning (MKL);
- Single regression tree (ST);
- Random forests [7] (RF);
- Extremely randomized trees [8] (ET);
- Logitboost [9] with ST (LB₁) and with ET (LB₂).
- Assessment :
- Cross-validation (CV);
- 5 folds for IXI & 10 folds for OASIS;
- Nested CV for parameter optimization of SVM, MKL & LB.

Weight map and weight map per region (MpR) built from:

- Weight vector for SVM;
- Feature importance scores for ST, RF & ET;
- Number of times a voxel is choosen to split a node for LB;
- Aggregation of weights with AAL atlas for MpR.

Tree Ensemble Methods :

- Combine the prediction of several trees:
- Trees grown either independently (as RF or ET) or sequentially (Boosting); Improve the bias-variance
- trade-off of single trees.

Example of a decision tree classifying healthy vs. AD subjects from the voxel values of MR images.

Results

Competitive accuracy :		
Method	IXI error rate (%)	OASIS error rate (%)
SVM	1.49	33.00
MKL	3.72	45.00
Single tree	15.24	44.00
Random forests	1.71 ± 0.26	35.50 ± 0.97
Extremely randomized trees	1.86 ± 0.30	33.50 ± 1.51
Logitboost LB ₁	2.23	37.00
Logitboost LB ₂	0.78 ± 0.12	33.60 ± 0.52

Table 1 : Summary of method performance for both datasets.

Good interpretability:

- Similar important regions;
- Sparser models with tree-based methods

Figure 1 : IXI dataset

Rk	Method				
	SVM	MKL	RF	LB_2	
1	Vermis6	TemporalMidL	HeschlR	HeschlR	
2	HeschlR	PostcentralL	CaudateL	ThalamusL	
3	ThalamusL	LingualL	CaudateR	ThalamusR	
4	Vermis7	OccipitalMidL	ThalamusL	CaudateL	
5	ThalamusR	TemporalSupR	HeschlL	HeschlL	
6	ParacentralLobuleR	ThalamusL	ThalamusR	CaudateR	
7	Vermis8	FrontalMidR	PostcentralL	TemporalSupR	
8	HeschlL	PostcentralR	TemporalSupR	PostcentralL	
9	OccipitalSupL	Cerrebelum6L	InsulaR	CingulumMidR	
10	CalcarineR	TemporalMidR	Cerebelum3R	Cerebelum3R	

Table MKL, RF and LB₂ respectively for IXI dataset. We highlighted in bold regions in common with those of LB₂.

Conclusion

We show that tree based methods can achieve competitive accuracy and provide interpretable models for the analysis of neuroimaging data and thus we believe that tree methods are a promising alternative to traditional methods in this area. REFERENCES

[1] Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K. R. (2011). Introduction to machine learning for brain imaging. Neuroimage, 56(2), 387-399. [2] Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer's disease. Brain, 131(3), 681-689. [3] Schrouff, J., Cremers, J., Garraux, G., Baldassarre, L., Mourão-Miranda, J., & Phillips, C. (2013, June). Localizing and comparing weight maps generated from linear kernel machine learning models. In Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on (pp. 124-127). IEEE and and comparing weight maps generated from linear kernel machine learning models. In Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on (pp. 124-127). IEEE and and comparing weight maps funded by EPSRC GR/S21533/02. [5] Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., ... & Mourão-Miranda, J. (2013). PRONTo: pattern recognition for neuroimaging toolbox. Neuroinformatics, 11(3), 319-337. [6] Marcus, D. S., Wang, T. H., Parker, J., Csemansky, J. G., Morris, J. C., & Buckner, R. L (2007). Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience, 19(9), 1498-1507. [7] Breiman, L (2001). Random forests. Machine learning, 45(1), 5-32. [8] Gents, P., Ernst, D., & Wehnekel, L (2006). Extremely randomized trees. Machine learning, 63(1), 3-42. [9] Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the author statistics, 28(2), 337-407 ACKNOWLEDGEMENTS & SPONSORS: Belgian National Fund for Scientific Research (F.R.S-FNRS) – University of Liège (ULg) – Cyclotron Research Centre (CRC)

Université de Liège