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Accuracy	and	interpretability,	tree-based	machine	
learning	approaches.			
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Methods	

Main aims of pattern recognition techniques for neuroimaging:  
•  development of accurate diagnosis systems; 
•  identification of brain regions related to the disease.  
 
Kernel methods (e.g. SVM, MKL) [1,2] commonly used:  
•  Good accuracy with linear kernels; 
•  Good interpretability through feature weight maps [3].  

Tree approaches not really popular in neuroimaging but: 
•  State-of-the-art accuracy on many problems with minimal 

tuning;  
•  Results interpretable through variable importance scores. 
 
Aim: to study tree methods and show their good behavior 
against those of traditional methods such as SVM and MKL. 

We show that tree based methods can achieve competitive accuracy and provide interpretable models for the analysis of 
neuroimaging data and thus we believe that tree methods are a promising alternative to traditional methods in this area.  
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Tree Ensemble Methods : 
 
•  Combine the prediction of 

several trees; 
•  T r e e s g r o w n e i t h e r 

independently (as RF or ET) 
or sequentially (Boosting); 

•  Improve the bias-variance 
trade-off of single trees. 

Decision	tree	&	Ensemble	methods	

Data :  
Methods are tested on two datasets : 
•  IXI [4]:  

Ø Structural MRI; 
Ø 170 aged vs. 99 young individuals; 
Ø   We work in particular with scalar momentums obtained 

with SPM8, like in [5].   
•  OASIS [6]:  

Ø Structural MRI;   
Ø 50 demented vs. 50 non-demented old subjects; 
Ø Age and gender matched; 
Ø Preprocessing with SPM8.  

Assessment :  
•  Cross-validation (CV); 
•  5 folds for IXI & 10 folds for OASIS; 
•  Nested CV for parameter optimization of SVM, MKL & LB. 
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Machine learning methods :  
•  Linear support vector machines (SVM); 
•  Multiple kernel learning (MKL); 
•  Single regression tree (ST); 
•  Random forests [7] (RF);  
•  Extremely randomized trees [8] (ET); 
•  Logitboost [9] with ST (LB1)  and with ET (LB2) . 

Example of a decision tree classifying healthy 
vs. AD subjects from the voxel values of MRI 
images.  

Competitive accuracy :  

Good interpretability: 
•  Similar important regions;  
•  Sparser models with tree-based methods. 

Weight map and weight map per region (MpR) built from: 
•  Weight vector for SVM;  
•  Feature importance scores for ST, RF & ET;  
•  Number of times a voxel is choosen to split a node for LB; 
•  Aggregation of weights with AAL atlas for MpR.  Table 2 : Ranking of the first ten most contributing regions of AAL brain atlas selected by SVM, MKL, 

RF and LB2 respectively for IXI dataset. We highlighted in bold regions in common with those of LB2. 

Figure 1 : IXI dataset. Figure 2 : OASIS dataset. 

Table 1 : Summary of method performance for both datasets. 

(d) Weight map per region for SVM. (c) Weight map for SVM. 

(b) Weight map per region for LB2. (a) Weight map for LB2. (a) Weight map for LB2. (b) Weight map per region for LB2. 

(c) Weight map for SVM. (d) Weight map per region for SVM. 


