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PASSIVE FLUTTER SUPPRESSION USING A
NONLINEAR TUNED VIBRATION ABSORBER
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Vibration absorbers can suppress aeroelastic limit cycle oscillations

® \/ertical flat plate with 2 rigid DOFs

- pitch (structurally hardening)

- flap (linear) N . eria b
B nertia beam
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® Reduced order model

- pitch and flap DOFs

- linear Wagner aerodynamics
- 2d flow

- direct simulations using RK45
- continuation using MATCONT

Absorpber design

® |inear absorber (LTVA)

The LTVA is made of a mass of 62 to 70
grams attached at the end of a
cantilever beam. Because low stiffness
and high damping are required, the
beam is made of a sandwich of PVC
sheets and viscoelastic tape.

® Nonlinear absorber (NLTVA)

A NLTVA can easily be built using
doubly clamped beam however it was
not tested in the wind tunnel.
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® Structural and aerodynamic nonlinearities in aircraft can cause
aeroelastic limit cycle oscillations. Among them, transonic buzz,
freeplay and bolted connections are the most common.

® Alinear tuned vibration absorber (LTVA) or a nonlinear tuned
vibration absorber (NLTVA) can mitigate or even suppress these
oscillations.

Aeroelastic analysis
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Frequency variation with airspeed e e 0
The system is tested in the wind tunnel _ 2 835 | o
and the results are compared to the ‘ 5 :
model.

Pitch mode

The model and the experiments show
that the pitch frequency decreases until Flap<de
flutter occurs while the flap frequency

HaH

appears to be stable. This frequency

variation with airspeed is challenging 0 05
because the absorber can only be
tuned on a single frequency.
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® Pitch bifurcation diagram

Above the flutter speed, limit cycle
oscillations arise from a super-critical
Hopf bifurcation. Their amplitude
increases gently with the airspeed.
Again, the model and the experiments
agree very well with each other. 0
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® | TVA => increased flutter speed

The experiments and the model exhibit an
improvement of 35% in flutter speed.
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® | TVA => sub-critical bifurcation

Bifurcation analysis shows that according to

the model, the LTVA leads to a sub-critical

— Reference system

bifurcation because it is detuned at high R timal NLTVA
enough pitch angles. No experimental data

was gathered however because it was not 6l

possible to build absorbers with a stiffness low .

enough. S

® NLTVA => super-criticality restored

The addition of the nonlinearity has no effect

on the flutter speed however it restores the 0 ‘ .
it 1 1.35 1.5
super-critically and delays the fold. U/
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