
4. Stochastic calculus
5. Option pricing models
6. Interest rate models

Chapter 4

Stochastic calculus

- Brownian motion
- Stochastic integral
- Stochastic differential
- Change of probability measure

Brownian motion

Definition

- Definition
- Argument
- Definition
- Properties
- Elementary properties
- Quadratic variation of a SBM
- Regularity properties
- Simulation of a SBM
- Associated BM
o Arithmetic BM
- Brownian bridge
- BM and martingales
- Examples of martingales
- Reciprocal
- Exponential BM
- Using BM as a "noise"
- Hitting time for a SBM
- Definition and property
- Reflection principle
- Distribution of hitting time and maximum

Argument

Let us consider a (discrete time) symmetrical random walk (X_{t})

$$
X_{t}=\sum_{k=1}^{n} Z_{k} \quad Z_{k} \sim\left(\begin{array}{cc}
-\Delta x & \Delta x \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

with

- $t=n \cdot \Delta t$
- independent moves
- $X_{0}=0$

We know that

$$
\begin{gathered}
E\left(X_{t}\right)=0 \\
\operatorname{var}\left(X_{t}\right)=\frac{(\Delta x)^{2}}{\Delta t} \cdot t
\end{gathered}
$$

We want to define

- a continuous time stochastic process
- with positive constant instantaneous variance - if $\operatorname{var}\left(X_{t}\right) \rightarrow \infty$, too "explosive" : the
fluctuations will grow to infinity
- if $\operatorname{var}\left(X_{t}\right) \rightarrow 0$, no more random

So, we have to

- let Δt tend to 0
- in such a manner that $\frac{(\Delta x)^{2}}{\Delta t} \cdot t \rightarrow C \cdot t$

We can choose $C=1$: if we want another constant σ, we will consider $\left(\sigma X_{t}\right)$

Thanks to the CLT, we have

$$
X_{t}=\sum_{k=1}^{n} Z_{k} \quad \rightarrow \quad \mathcal{N}(0 ; t)
$$

Furthermore, a random walk has independent and stationary increments ...

Definition

A continuous time stochastic process $\left(W_{t}\right)$ is a standard brownian motion (SBM) if

- $W_{0}=0$
- $\left(W_{t}\right)$ has independent increments
- $\left(W_{t}\right)$ has stationary increments
- $W_{t} \sim \mathcal{N}(0 ; t)$

The notation " W " is for Wiener

Strictly speaking, a Wiener process on a probability space $(\Omega, \mathcal{F}, \operatorname{Pr}, \mathbf{F})$ is a SBM adapted to the filtration \mathbf{F}

Properties

Elementary properties

a) A SBM is a Gaussian process
b) If $s<t,\left(W_{t}-W_{s}\right) \triangleq W_{t-s} \sim \mathcal{N}(0 ; t-s)$
c) We have $E\left(W_{t}\right)=0, \operatorname{var}\left(W_{t}\right)=t$ and

$$
\operatorname{cov}\left(W_{s}, W_{t}\right)=\min (s, t)
$$

Proof: if $s<t$,

$$
\begin{aligned}
\operatorname{cov}\left(W_{s}, W_{t}\right) & =\operatorname{cov}\left(W_{s}, W_{t}-W_{s}+W_{s}\right) \\
& =\operatorname{cov}\left(W_{s}, W_{t}-W_{s}\right)+\operatorname{cov}\left(W_{s}, W_{s}\right) \\
& =0+s
\end{aligned}
$$

Quadratic variation of a SBM

Let us consider a partition \mathcal{P}_{n} of the time interval $[0 ; t]\left(0=t_{0}<t_{1}<\cdots<t_{n}=t\right)$ such that

$$
\delta_{n}=\max \left\{t_{1}-t_{0}, t_{2}-t_{1}, \ldots, t_{n}-t_{n-1}\right\}
$$

tends to 0 when $n \rightarrow \infty$

We define the quadratic variation of the SBM W_{t}, associated with the partition \mathcal{P}_{n}, by

$$
Q_{n}(t)=\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}
$$

Property : when $n \rightarrow \infty$, we have $Q_{n}(t) \xrightarrow{\text { q.m. }} t$
Lemma : if $X \sim \mathcal{N}\left(0 ; \sigma^{2}\right)$, then $\operatorname{var}\left(X^{2}\right)=2 \sigma^{4}$

Since $\mu_{4}=3 \sigma^{4}$, we have

$$
\operatorname{var}\left(X^{2}\right)=E\left(X^{4}\right)-E^{2}\left(X^{2}\right)=3 \sigma^{4}-\left(\sigma^{2}\right)^{2}
$$

Proof

- $\quad E\left(Q_{n}(t)\right)=\sum_{i=1}^{n} E\left(\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) \\
& =t
\end{aligned}
$$

- $\operatorname{var}\left(Q_{n}(t)\right)=\sum_{i=1}^{n} \operatorname{var}\left(\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right)$

$$
\begin{aligned}
& =2 \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \\
& \leq 2 \delta_{n} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) \\
& =2 t \delta_{n} \\
& \rightarrow 0
\end{aligned}
$$

so that $E\left(\left(Q_{n}(t)-t\right)^{2}\right) \rightarrow 0$

Regularity properties

a) The paths of a SBM are continuous

We have to prove that $\lim _{\Delta t \rightarrow 0} W_{t+\Delta t}=W_{t}$
We give a proof for limit in probability. Let us choose an arbitrary $\varepsilon>0$. We will prove that

$$
\lim _{\Delta t \rightarrow 0} \operatorname{Pr}\left[\left|W_{t+\Delta t}-W_{t}\right|>\varepsilon\right]=0
$$

Since (Chebyshev's inequality)

$$
\operatorname{Pr}\left[\left|W_{t+\Delta t}-W_{t}-0\right|>h \sqrt{\Delta t}\right] \leq \frac{1}{h^{2}}
$$

we have

$$
\operatorname{Pr}\left[\left|W_{t+\Delta t}-W_{t}\right|>\varepsilon\right] \leq \frac{\Delta t}{\varepsilon^{2}} \rightarrow 0
$$

b) The paths of a SBM are nowhere derivable

$$
W_{t+\Delta t}-W_{t} \sim \mathcal{N}(0 ; \Delta t) \triangleq \sqrt{\Delta t} \cdot Z
$$

with $Z \sim \mathcal{N}(0 ; 1)$

$$
\frac{W_{t+\Delta t}-W_{t}}{\Delta t} \triangleq \frac{Z}{\sqrt{\Delta t}}
$$

that tends to $\pm \infty$, depending on the sign of Z

Interpretation of this property : a SBM is unpredictable over short time intervals
c) A SBM has unbounded variations. More precisely (with the same notations as for quadratic variation),

$$
V_{t}=\sup _{\mathcal{P}_{n}} \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right|=+\infty \quad \text { a.s. }
$$

If V_{t} were finite ($=C$, say), then, for any partition \mathcal{P}_{n},

$$
\begin{aligned}
Q_{n}(t) & =\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \\
& \leq \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right| \cdot \max _{j=1, \ldots, n}\left|W_{t_{j}}-W_{t_{j-1}}\right| \\
& \leq C \cdot \max _{j=1, \ldots, n}\left|W_{t_{j}}-W_{t_{j-1}}\right|
\end{aligned}
$$

and the $2^{\text {nd }}$ factor tends to 0 by continuity of the paths of the SBM. This is incompatible with the property of quadratic variation: $Q_{n}(t) \rightarrow t$
d) Self-similarity of a SBM
(= scaling effect = "fractals" property)

By definition, a stochastic process is H-self-similar if, for any $n \geq 1, t_{1}, \ldots, t_{n} \in T$ and $\lambda>0$,

$$
\left(X_{\lambda t_{1}}, \ldots, X_{\lambda t_{n}}\right) \triangleq\left(\lambda^{H} X_{t_{1}}, \ldots, \lambda^{H} X_{t_{n}}\right)
$$

H is the Hurst index of the stochastic process

Property : a SBM is $\frac{1}{2}$-self-similar :

$$
\left(W_{\lambda t_{1}}, \ldots, W_{\lambda t_{n}}\right) \triangleq\left(\sqrt{\lambda} W_{t_{1}}, \ldots, \sqrt{\lambda} W_{t_{1}}\right)
$$

Proof (for $n=1$):

$$
W_{\lambda t} \sim \mathcal{N}(0 ; \lambda t) \equiv \sqrt{\lambda} \cdot \mathcal{N}(0 ; t) \sim \sqrt{\lambda} \cdot W_{t}
$$

Interpretation : the pattern of any path of a SBM has a similar shape, independently of the length of the time interval

Simulation of a SBM

It is easy to obtain pseudo-random values for the law of X from $U(0 ; 1)$ pseudo-random values:

$$
\begin{gathered}
F_{X}^{-1}(U) \triangleq X \\
\operatorname{Pr}\left[F_{X}^{-1}(U) \leq t\right]=\operatorname{Pr}\left[U \leq F_{X}(t)\right]=F_{X}(t)
\end{gathered}
$$

For simulating a path of a SBM, we discretize the time variable : let the time interval $[0 ; t]$ be partitioned in n sub-intervals of length Δt :
$t=n \cdot \Delta t$

We know that

$$
W_{\Delta t},\left(W_{2 \Delta t}-W_{\Delta t}\right), \ldots,\left(W_{n \Delta t}-W_{(n-1) \Delta t}\right)
$$

are i.i.d. r.v. $\sim \mathcal{N}(0 ; \Delta t)$

Algorithm :

- Generate n pseudo-random values u_{1}, \ldots, u_{n} values of a $\mathcal{U}(0 ; 1)$ r.v.
- Take the reciprocal of these values to obtain pseudo-random normal values

$$
W_{j \Delta t}-W_{(j-1) \Delta t}=F_{N}^{-1}\left(u_{j} ; 0, \Delta t\right)
$$

- Cumulate these values

$$
W_{k \Delta t}=\sum_{j=1}^{k}\left(W_{j \Delta t}-W_{(j-1) \Delta t}\right)
$$

- Using continuity of the path, connect the points by line segments

Associated BM

Arithmetic BM

An ABM with drift $\alpha(\in \mathbb{R})$ and volatility $\sigma(>0)$, associated to the SBM $\left(W_{t}\right)$, is a stochastic process (X_{t}) defined by

$$
X_{t}=\alpha t+\sigma W_{t}
$$

Properties

- An ABM is a Gaussian process
- Moments :

$$
\begin{gathered}
\mu_{X}(t)=\alpha t \\
\sigma_{X}^{2}(t)=\sigma^{2} t \\
c_{X}(s, t)=\sigma^{2} \min (s, t)
\end{gathered}
$$

This process can be generalized for beginning at a value x_{0} instead of 0 :

$$
X_{t}=x_{0}+\alpha t+\sigma W_{t}
$$

Brownian bridge

A Brownian bridge over the time interval $[0 ; 1]$, associated to the SBM $\left(W_{t}\right)$, is a stochastic process (X_{t}) defined by

$$
X_{t}=W_{t}-t W_{1}
$$

Properties

- A Brownian bridge is a Gaussian process
- $X_{0}=X_{1}=0$
- Moments :

$$
\begin{gathered}
\mu_{X}(t)=0 \\
\sigma_{X}^{2}(t)=t(1-t) \\
c_{X}(s, t)=\min (s, t)-s t
\end{gathered}
$$

For the covariance function,

$$
\begin{aligned}
c_{X}(s, t)= & \operatorname{cov}\left(W_{s}-s W_{1}, W_{t}-t W_{1}\right) \\
= & \min (s, t)-s \min (1, t) \\
& \quad-t \min (s, 1)+s t \min (1,1) \\
= & \min (s, t)-s t
\end{aligned}
$$

Brownian motion and martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \operatorname{Pr}, \mathbf{F})$ where \mathbf{F} is the natural filtration of a SBM $\left(W_{t}\right)$
(In this section, we will suppose $0 \leq s<t$)

Examples of martingales

a) $\left(W_{t}\right)$ is a martingale

$$
\begin{aligned}
E\left(W_{t} \mid \mathcal{F}_{s}\right) & =E\left(W_{t}-W_{s}+W_{s} \mid \mathcal{F}_{s}\right) \\
& =E\left(W_{t}-W_{s} \mid \mathcal{F}_{s}\right)+E\left(W_{s} \mid \mathcal{F}_{s}\right) \\
& =E\left(W_{t}-W_{s}\right)+E\left(W_{s} \mid \mathcal{F}_{s}\right) \\
& =0+W_{s}
\end{aligned}
$$

b) $\left(W_{t}^{2}-t\right)$ is a martingale

$$
\begin{aligned}
E\left(W_{t}^{2}-t \mid \mathcal{F}_{s}\right)= & E\left(W_{t}^{2}-W_{s}^{2}+W_{s}^{2} \mid \mathcal{F}_{s}\right)-t \\
= & E\left(W_{t}^{2}-W_{s}^{2} \mid \mathcal{F}_{s}\right) \\
& \quad+E\left(W_{s}^{2} \mid \mathcal{F}_{s}\right)-t \\
= & E\left(W_{t}^{2}-W_{s}^{2} \mid \mathcal{F}_{s}\right)+W_{s}^{2}-t
\end{aligned}
$$

But, $W_{t}^{2}-W_{s}^{2}=\left(W_{t}-W_{s}\right)^{2}+2 W_{s}\left(W_{t}-W_{s}\right)$
so that

$$
\begin{aligned}
& E\left(W_{t}^{2}-W_{s}^{2} \mid \mathcal{F}_{s}\right) \\
& \quad=E\left(\left(W_{t}-W_{s}\right)^{2} \mid \mathcal{F}_{s}\right)+2 E\left(W_{s}\left(W_{t}-W_{s}\right) \mid \mathcal{F}_{s}\right) \\
& \quad=(t-s)+2 W_{s} E\left(W_{t}-W_{s} \mid \mathcal{F}_{s}\right) \\
& \quad=(t-s)+2 W_{s} E\left(W_{s}-W_{s}\right) \\
& \quad=t-s
\end{aligned}
$$

and we have

$$
\begin{aligned}
E\left(W_{t}^{2}-t \mid \mathcal{F}_{s}\right) & =(t-s)+W_{s}^{2}-t \\
& =W_{s}^{2}-s
\end{aligned}
$$

c) Counter-example : $\left(W_{t}^{3}\right)$ is not a martingale

We know that

$$
\begin{aligned}
& E\left(\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right)=E\left(\left(W_{t}-W_{s}\right)^{3}\right)=0 \\
& 0=E\left(W_{t}^{3}-3 W_{t}^{2} W_{s}+3 W_{t} W_{s}^{2}-W_{s}^{3} \mid \mathcal{F}_{s}\right) \\
& =E\left(W_{t}^{3} \mid \mathcal{F}_{s}\right)-3 W_{s} E\left(W_{t}^{2} \mid \mathcal{F}_{s}\right) \\
& +3 W_{s}^{2} E\left(W_{t} \mid \mathcal{F}_{s}\right)-W_{s}^{3} \\
& =E\left(W_{t}^{3} \mid \mathcal{F}_{s}\right)-3 W_{s} E\left(\left(W_{t}^{2}-t\right)+t \mid \mathcal{F}_{s}\right) \\
& +3 W_{s}^{2} W_{s}-W_{s}^{3} \\
& =E\left(W_{t}^{3} \mid \mathcal{F}_{s}\right)-3 W_{s}\left[\left(W_{s}^{2}-s\right)+t\right]+2 W_{s}^{3} \\
& =E\left(W_{t}^{3} \mid \mathcal{F}_{s}\right)-W_{s}^{3}+3 W_{s}(s-t)
\end{aligned}
$$

so that

$$
E\left(W_{t}^{3} \mid \mathcal{F}_{s}\right)=W_{s}^{3}-3 W_{s}(s-t) \neq W_{s}^{3}
$$

Reciprocal (without proof)

If a stochastic process $\left(X_{t}\right)$ is such that $\left(X_{t}\right)$ and $\left(X_{t}^{2}-t\right)$ are martingales, then $\left(X_{t}\right)$ is a SBM

Exponential Brownian motion

An EBM is a stochastic process $\left(X_{t}\right)$ defined by

$$
X_{t}=e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}
$$

with $\sigma>0$

Property : an EBM is a martingale

$$
\begin{aligned}
E\left(e^{\sigma W_{t}} \mid \mathcal{F}_{s}\right) & =E\left(e^{\sigma\left(W_{t}-W_{s}\right)} \cdot e^{\sigma W_{s}} \mid \mathcal{F}_{s}\right) \\
& =e^{\sigma W_{s}} \cdot E\left(e^{\sigma\left(W_{t}-W_{s}\right)} \mid \mathcal{F}_{s}\right) \\
& =e^{\sigma W_{s}} \cdot E\left(e^{\sigma\left(W_{t}-W_{s}\right)}\right) \\
& =e^{\sigma W_{s}} \cdot e^{\frac{\sigma^{2}(t-s)}{2}}
\end{aligned}
$$

so that

$$
\begin{aligned}
E\left(X_{t} \mid \mathcal{F}_{s}\right) & =E\left(\left.e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}} \right\rvert\, \mathcal{F}_{s}\right) \\
& =e^{\sigma W_{s}} \cdot e^{\frac{\sigma^{2}(t-s)}{2}} \cdot e^{-\frac{\sigma^{2} t}{2}} \\
& =e^{\sigma W_{s}} \cdot e^{-\frac{\sigma^{2} s}{2}} \\
& =X_{S}
\end{aligned}
$$

Particular case : if $s=0$,

$$
E\left(e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}\right)=X_{0}=1
$$

Using BM as a "noise"

Objective : express a stochastic process $\left(X_{t}\right)$ as the "superposition" of

- a deterministic function f_{t}
- a non predictable "noise" (= martingale)

We can use

a) a SBM as an additive random noise :

$$
X_{t}=f_{t}+\sigma W_{t}
$$

b) An EBM as a multiplicative random noise :

$$
X_{t}=f_{t} \cdot e^{\sigma W_{t}-\frac{\sigma^{2} t}{2}}
$$

In both case, $E\left(X_{t}\right)=f_{t}$

Hitting time for a SBM

Definition and property

For any fixed $a>0$, we define the hitting time T_{a} as the first time the SBM W_{t} hits the value a :

$$
\min \left\{t \in T: W_{t}=a\right\}
$$

(and $+\infty$ if $W_{t} \neq a \forall t \in T$)

Property : the hitting time is a stopping time

Reflection principle

By symmetry, knowing that $T_{a} \leq t$, the events [$W_{t}>a$] and $\left[W_{t}<a\right.$] have the same probability :

$$
\begin{aligned}
\operatorname{Pr}\left(\left[W_{t}>a\right] \mid\left[T_{a} \leq t\right]\right) & =\operatorname{Pr}\left(\left[W_{t}<a\right] \mid\left[T_{a} \leq t\right]\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Distribution of hitting time and maximum

- By total probabilities formula,

$$
\begin{aligned}
\operatorname{Pr}\left[W_{t}>a\right] & =\operatorname{Pr}\left(\left[W_{t}>a\right] \mid\left[T_{a} \leq t\right]\right) \cdot \operatorname{Pr}\left[T_{a} \leq t\right] \\
& +\operatorname{Pr}\left(\left[W_{t}>a\right] \mid\left[T_{a}>t\right]\right) \cdot \operatorname{Pr}\left[T_{a}>t\right] \\
& =\frac{1}{2} \operatorname{Pr}\left[T_{a} \leq t\right]
\end{aligned}
$$

So,

$$
\begin{aligned}
F_{T_{a}}(t) & =\operatorname{Pr}\left[T_{a} \leq t\right] \\
& =2 \operatorname{Pr}\left[W_{t}>a\right] \\
& =2\left(1-\Phi\left(\frac{a}{\sqrt{t}}\right)\right) \\
& =2 \Phi\left(-\frac{a}{\sqrt{t}}\right)
\end{aligned}
$$

- If we define $M_{t}=\max \left\{W_{s}: 0 \leq s \leq t\right\}$,

$$
\operatorname{Pr}\left[M_{t} \geq a\right]=\operatorname{Pr}\left[T_{a} \leq t\right]=2 \Phi\left(-\frac{a}{\sqrt{t}}\right)
$$

Stochastic integral

- Definition
- Motivation
- Classical Riemann integral
- Stieltjes-Riemann integral
\circ Generalization ?
- Choice of a definition
- Definition
- Properties
- Conditions of existence
- Properties

Motivation

- The definition of the integral of a function $f(x)$ is concerned with small variations of the variable x
- The definition of the differential of a function $f\left(d f(x)=f^{\prime}(x) \cdot d x\right)$ is also concerned with small variations of the variable x

Here, we will look at the time variations "through a SBM", which has

- unbounded variations
- non differentiable paths

The convergence being no more defined in the classical way, we have to give new definitions

Classical Riemann integral

Let \mathcal{P}_{n} be a partition of $[a ; b]$

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

with

$$
\begin{gathered}
t_{i}-t_{i-1}=\Delta_{i} \\
\delta_{n}=\max \left(\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}\right)
\end{gathered}
$$

and let choose

$$
\left.u_{i} \in\right] t_{i-1} ; t_{i}[
$$

The Riemann integral is defined by

$$
\int_{a}^{b} f(u) d u=\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} \sum_{i=1}^{n} f\left(u_{i}\right) \cdot \Delta_{i}
$$

It can be prove that if f is sufficiently "regular" (continuous by parts e.g.), this integral

- exists
- is independent of \mathcal{P}_{n}
- is independent of the choice of u_{i} in] $t_{i-1} ; t_{i}[$

Stieltjes-Riemann integral

This is the same notion as ordinary Riemann integral, but the measure along horizontal axis is no more the length of segments, but the length through another function g

$$
\begin{aligned}
& \int_{a}^{b} f(u) d g(u) \\
&=\lim _{\substack{n \rightarrow+\infty \\
\delta_{n} \rightarrow 0}} \sum_{i=1}^{n} f\left(u_{i}\right) \cdot\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right)
\end{aligned}
$$

This integral has the same properties as the ordinary Riemann integral (with, furthermore, regularity conditions for g)

Example

$$
\begin{array}{rl}
\int_{-\infty}^{+\infty} u & d F_{X}(u) \\
& =\lim _{\substack{n \rightarrow+\infty \\
\delta_{n} \rightarrow 0}} \sum_{i=1}^{n} u_{i} \cdot \operatorname{Pr}\left[t_{i-1}<X \leq t_{i}\right] \\
& =E(X)
\end{array}
$$

Note : from now on, the interval of integration becomes $[0 ; T]$ instead of $[a ; b]$

Generalization ?

Let $\left(X_{t}\right)$ be a stochastic process and $\left(W_{t}\right)$ a SBM. How can we define $\int_{0}^{T} X_{u} d W_{u}$?

Problems

a) Convergence "point by point" is the convergence a.s. (incompatible with the unbounded variation of the SBM)
\rightarrow Solution : give a definition with another convergence mode (q.m.)
b) The definition is no more independent of the choice of u_{i} in $] t_{i-1} ; t_{i}$ [
\rightarrow Solution: make a choice for u_{i}

Let us examine the particular case of

$$
" \int_{0}^{T} W_{u} d W_{u} "=\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} \sum_{i=1}^{n} W_{u_{i}} \cdot\left(W_{t_{i}}-W_{t_{i-1}}\right)
$$

We will need the following lemma

$$
\left\{\begin{array}{l}
a(b-a)=\frac{1}{2}\left[\left(b^{2}-a^{2}\right)-(b-a)^{2}\right] \\
b(b-a)=\frac{1}{2}\left[\left(b^{2}-a^{2}\right)+(b-a)^{2}\right]
\end{array}\right.
$$

- First choice : $u_{i}=t_{i-1}$

$$
\begin{aligned}
& " \int_{0}^{T} W_{u} d W_{u} " \\
& =\lim _{n \rightarrow+\infty} \sum_{i \rightarrow 1}^{n} W_{t_{i-1}} \cdot\left(W_{t_{i}}-W_{t_{i-1}}\right) \\
& =\frac{1}{2} \lim _{n \rightarrow+\infty} \sum_{i=1}^{n}\left\{\left(W_{t_{i}}^{2}-W_{t_{i-1}}^{2}\right)-\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right\} \\
& =\frac{1}{2} \lim _{\substack{n \rightarrow+\infty \\
\delta_{n} \rightarrow 0}}\left(W_{T}^{2}-Q_{n}(T)\right) \\
& =\frac{1}{2}\left(W_{T}^{2}-T\right)
\end{aligned}
$$

(this last convergence is in q.m.)

- Second choice : $u_{i}=t_{i}$
$" \int_{0}^{T} W_{u} d W_{u} "=\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} \sum_{i=1}^{n} W_{t_{i}} \cdot\left(W_{t_{i}}-W_{t_{i-1}}\right)$
$=\frac{1}{2} \lim _{n \rightarrow+\infty} \sum_{i=1}^{n}\left\{\left(W_{t_{i}}^{2}-W_{t_{i-1}}^{2}\right)+\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right\}$
$=\frac{1}{2} \lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}}\left(W_{T}+Q_{n}(T)\right)$
$=\frac{1}{2}\left(W_{T}^{2}+T\right)$
- Third choice : $u_{i}=\frac{t_{i-1}+t_{i}}{2}$

It can be shown that

$$
" \int_{0}^{T} W_{u} d W_{u} "=\frac{1}{2} W_{T}^{2}
$$

Choice of a definition

- Stratonovich integral give the same result as in the deterministic case : if $f(0)=0$, by integrating by parts,

$$
\int_{0}^{T} f(u) d f(u)=\frac{1}{2} f^{2}(T)
$$

- Itô integral has two interesting properties
a) Non-anticipativity: for the i-th interval $] t_{i-1} ; t_{i}\left[\right.$, the integrand X_{t} is known at time t_{i-1}
b) We know that the stochastic process ($W_{t}^{2}-t$) is a martingale ; so is the Itô integral
\rightarrow Itô integral is chosen for applications in finance

Note

- First choice : Itô integral
- Third choice : Stratonovich integral

Definition

Let $\left(X_{t}\right)$ be a stochastic process adapted to the natural filtration of the SBM $\left(W_{t}\right)$. We define

$$
I_{T}=\int_{0}^{T} X_{u} d W_{u}=\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} I_{T}^{(n)}
$$

where

$$
I_{T}^{(n)}=\sum_{i=1}^{n} X_{t_{i-1}} \cdot\left(W_{t_{i}}-W_{t_{i-1}}\right)
$$

More precisely, it can be prove that there exists a r.v. I_{T} such that

$$
\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} E\left[\left(I_{T}^{(n)}-I_{T}\right)^{2}\right]=0
$$

so that $I_{T}^{(n)}$ converges in q.m. to I_{T}

Note : the hypothesis implies that $X_{t_{i-1}}$ is independent of $\left(W_{t_{i}}-W_{t_{i-1}}\right)$

Condition of existence

If $\left(X_{t}\right)$ is a stochastic process adapted to the natural filtration of the SBM $\left(W_{t}\right)$, then

$$
\int_{0}^{T} X_{u} d W_{u}
$$

exists if

- paths of $\left(X_{t}\right)$ are continuous
- $E\left(\int_{0}^{T} X_{u} d u\right)$ is finite

Properties

a) $\int_{0}^{T}\left(\lambda_{1} X_{u}^{(1)}+\lambda_{2} X_{u}^{(2)}\right) d W_{u}$

$$
=\lambda_{1} \int_{0}^{T} X_{u}^{(1)} d W_{u}+\lambda_{2} \int_{0}^{T} X_{u}^{(2)} d W_{u}
$$

b) $E\left(\int_{0}^{T} X_{u} d W_{u}\right)=0$

Proof :

$$
\begin{aligned}
& E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right)\right) \\
& \quad=E\left(X_{t_{i-1}}\right) \cdot E\left(W_{t_{i}}-W_{t_{i-1}}\right) \\
& \quad=0
\end{aligned}
$$

c) $\operatorname{var}\left(\int_{0}^{T} X_{u} d W_{u}\right)=\int_{0}^{T} E\left(X_{u}^{2}\right) d u$

Proof :

$$
\operatorname{var}\left(\int_{0}^{T} X_{u} d W_{u}\right)=E\left[\left(\int_{0}^{T} X_{u} d W_{u}\right)^{2}\right]
$$

$$
\begin{aligned}
= & \lim _{\substack{n \rightarrow+\infty \\
\delta_{n} \rightarrow 0}}
\end{aligned} \sum_{i=1}^{n} E\left(X_{t_{i-1}}^{2}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right), ~\left(\lim _{\substack{n \rightarrow+\infty \\
\delta_{n} \rightarrow 0}} \sum_{i=1}^{n} \sum_{\substack{j=1 \\
i<j}}^{n} E\binom{X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right)}{\cdot X_{t_{j-1}}\left(W_{t_{j}}-W_{t_{j-1}}\right)}\right) ~ l
$$

But

$$
\begin{aligned}
E\left(X_{t_{i-1}}^{2}\right. & \left.\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right) \\
& =E\left(X_{t_{i-1}}^{2}\right) \cdot E\left(\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}\right) \\
& =E\left(X_{t_{i-1}}^{2}\right) \cdot\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

and the first term is equal to $\int_{0}^{T} E\left(X_{u}^{2}\right) d u$

Furthermore, for $i<j$,

$$
\begin{aligned}
& E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right) \cdot X_{t_{j-1}}\left(W_{t_{j}}-W_{t_{j-1}}\right)\right) \\
& =E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right) X_{t_{j-1}}\right) \cdot E\left(W_{t_{j}}-W_{t_{j-1}}\right) \\
& =0
\end{aligned}
$$

d) The stochastic process $\left(I_{t}\right)$ for $t \in[0 ; T]$ is a martingale

For $s<t$,

$$
E\left(I_{t} \mid \mathcal{F}_{s}\right)=\lim _{\substack{n \rightarrow+\infty \\ \delta_{n} \rightarrow 0}} \sum_{i=1}^{n} E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right) \mid \mathcal{F}_{s}\right)
$$

- If $\left.s, t \in] t_{k-1} ; t_{k}\right]$

$$
\begin{aligned}
E\left(I_{t} \mid \mathcal{F}_{s}\right) & =I_{s}+E\left(X_{t_{k-1}}\left(W_{t}-W_{s}\right) \mid \mathcal{F}_{s}\right) \\
& =I_{s}+X_{t_{k-1}} \cdot E\left(W_{t}-W_{s} \mid \mathcal{F}_{s}\right) \\
& =I_{s}+X_{t_{k-1}} \cdot E\left(W_{t}-W_{s}\right) \\
& =I_{s}
\end{aligned}
$$

- If $s \in] t_{j-1} ; t_{j}$] and $\left.t \in\right] t_{k-1} ; t_{k}$] with $j<k$

$$
\begin{aligned}
& E\left(I_{t} \mid \mathcal{F}_{s}\right)= I_{s}+ \\
&+ E\left(X_{t_{j-1}}\left(W_{t_{j}}-W_{s}\right) \mid \mathcal{F}_{s}\right) \\
&+\sum_{i=j+1}^{k-1} E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right) \mid \mathcal{F}_{s}\right) \\
&+E\left(X_{t_{k-1}}\left(W_{t}-W_{t_{k-1}}\right) \mid \mathcal{F}_{s}\right) \\
&=I_{s}+(a)+(b)+(c) \\
&(a)= X_{t_{j-1}} \cdot E\left(W_{t_{j}}-W_{s} \mid \mathcal{F}_{s}\right) \\
&= X_{t_{j-1}} \cdot E\left(W_{t_{j}}-W_{s}\right) \\
&= 0
\end{aligned}
$$

(b) : $E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right) \mid \mathcal{F}_{s}\right)$

$$
=E\left(X_{t_{i-1}}\left(W_{t_{i}}-W_{t_{i-1}}\right)\right)
$$

$$
=E\left(X_{t_{i-1}}\right) \cdot E\left(W_{t_{i}}-W_{t_{i-1}}\right)
$$

$$
=0
$$

(c) $=0$: same reasoning as (b)
e) The stochastic process $\left(I_{t}\right)$ has continuous paths (without proof)

Stochastic differential

- Definition
- In the deterministic case
- In the stochastic case
- Properties
- Formal multiplication rules
- Properties
- Examples
- Simple examples
- Arithmetic Brownian motion
- Geometric Brownian motion
- Use of the stochastic differential
o Evolution of financial variables
- Classical stochastic differentials in finance

In the deterministic case

$$
\begin{aligned}
d X(t)= & f(t) \cdot d t \\
& \Leftrightarrow X(t)=X(0)+\int_{0}^{t} f(u) d u
\end{aligned}
$$

Generalization ?

- One term with " $d t$ " (trend)
- One term with " $d W_{t}$ " (noise)

In the stochastic case

If the stochastic processes $\left(a_{t}\right)$ and $\left(b_{t}\right)$ are integrables and adapted to the natural filtration of the SBM $\left(W_{t}\right)$, we define

$$
d X_{t}=a_{t} \cdot d t+b_{t} \cdot d W_{t}
$$

by

$$
X_{t}=X_{0}+\int_{0}^{t} a_{u} d u+\int_{0}^{t} b_{u} d W_{u}
$$

Properties

Formal multiplication rules

We will neglect terms smaller than $d t(=o(d t))$

- $(d t)^{2} \approx 0$
- $d t \times d W_{t} \approx 0$

$$
\begin{gathered}
E\left(d t \cdot d W_{t}\right)=d t \cdot E\left(d W_{t}\right)=0 \\
\operatorname{var}\left(d t \cdot d W_{t}\right)=(d t)^{2} \cdot \operatorname{var}\left(d W_{t}\right)=(d t)^{3}
\end{gathered}
$$

- $\left(d W_{t}\right)^{2} \approx d t$

$$
\begin{gathered}
E\left(\left(d W_{t}\right)^{2}\right)=\operatorname{var}\left(d W_{t}\right)=d t \\
\operatorname{var}\left(\left(d W_{t}\right)^{2}\right)=2\left(\operatorname{var}\left(d W_{t}\right)\right)^{2}=2(d t)^{2}
\end{gathered}
$$

	1	$d W_{t}$	$d t$
1	1	$d W_{t}$	$d t$
$d W_{t}$	$d W_{t}$	$d t$	0
$d t$	$d t$	0	0

Properties

a) Linearity : if $\left(X_{t}^{(1)}\right)$ and $\left(X_{t}^{(2)}\right)$ are defined w.r.t. the same SBM $\left(W_{t}\right)$,

$$
d\left(\lambda_{1} X_{t}^{(1)}+\lambda_{2} X_{t}^{(2)}\right)=\lambda_{1} d X_{t}^{(1)}+\lambda_{2} d X_{t}^{(2)}
$$

b) Product : if

$$
d X_{t}^{(k)}=a_{t}^{(k)} \cdot d t+b_{t}^{(k)} \cdot d W_{t} \quad(k=1,2)
$$

then

$$
\begin{aligned}
& d\left(X_{t}^{(1)} X_{t}^{(2)}\right) \\
& \quad=X_{t}^{(1)} d X_{t}^{(2)}+X_{t}^{(2)} d X_{t}^{(1)}+b_{t}^{(1)} b_{t}^{(2)} d t
\end{aligned}
$$

Proof

Taylor formula for n variables $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
d f(x) \approx \sum_{i=1}^{n} f_{x_{i}}^{\prime} d x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f_{x_{i} x_{j}}^{\prime \prime} d x_{i} d x_{j}
$$

applied to $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$ give

$$
\begin{aligned}
& d\left(X_{t}^{(1)} X_{t}^{(2)}\right) \\
& =X_{t}^{(1)} d X_{t}^{(2)}+X_{t}^{(2)} d X_{t}^{(1)}+\frac{1}{2} \cdot 2\left(d X_{t}^{(1)} \cdot d X_{t}^{(2)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& d X_{t}^{(1)} \cdot d X_{t}^{(2)} \\
& \quad=\left(a_{t}^{(1)} d t+b_{t}^{(1)} d W_{t}\right)\left(a_{t}^{(2)} d t+b_{t}^{(2)} d W_{t}\right) \\
& \quad=b_{t}^{(1)} b_{t}^{(2)}\left(d W_{t}\right)^{2}
\end{aligned}
$$

c) Compound function (= Itô's lemma)

If $d X_{t}=a_{t} \cdot d t+b_{t} \cdot d W_{t}$ and if $f(t, x)$ is a deterministic function, derivable (one time w.r.t. t and twice w.r.t. x), then

$$
\begin{aligned}
& d f\left(t, X_{t}\right) \\
& \qquad \begin{array}{l}
=\left(f_{t}^{\prime}\left(t, X_{t}\right)+a_{t} f_{x}^{\prime}\left(t, X_{t}\right)+\frac{b_{t}^{2}}{2} f_{x x}^{\prime \prime}\left(t, X_{t}\right)\right) \cdot d t \\
\quad+b_{t} f_{x}^{\prime}\left(t, X_{t}\right) \cdot d W_{t}
\end{array}
\end{aligned}
$$

Proof: by Taylor,

$$
\begin{aligned}
& d f\left(t, X_{t}\right) \\
& =f_{t}^{\prime} d t+f_{x}^{\prime} d X_{t} \\
& \quad+\frac{1}{2}\left[f_{t t}^{\prime \prime}(d t)^{2}+2 f_{t x}^{\prime \prime}(d t)\left(d X_{t}\right)+f_{x x}^{\prime \prime}\left(d X_{t}\right)^{2}\right] \\
& =f_{t}^{\prime} d t+f_{x}^{\prime} d X_{t}+\frac{1}{2} f_{x x}^{\prime \prime}\left(d X_{t}\right)^{2}
\end{aligned}
$$

and

$$
\left(d X_{t}\right)^{2}=\left(a_{t} \cdot d t+b_{t} \cdot d W_{t}\right)^{2}=b_{t}^{2} d t
$$

Examples

Simple examples

a) $f(t, x)=g(t) x$ and $X_{t}=W_{t}$

$$
d\left(g(t) W_{t}\right)=g^{\prime}(t) W_{t} d t+g(t) d W_{t}
$$

$$
\begin{aligned}
\int_{0}^{T} d\left(g(t) W_{t}\right) & =g(T) W_{T} \\
& =\int_{0}^{T} g^{\prime}(t) W_{t} d t+\int_{0}^{T} g(t) d W_{t}
\end{aligned}
$$

$\int_{0}^{T} g(t) d W_{t}=g(T) W_{T}-\int_{0}^{T} g^{\prime}(t) W_{t} d t$ (= integration by parts)
b) $f(t, x)=x^{2}$ and $X_{t}=W_{t}$

$$
d\left(W_{t}^{2}\right)=\frac{1}{2} 2 d t+2 W_{t} d W_{t}
$$

$$
\int_{0}^{T} d\left(W_{t}^{2}\right)=W_{T}^{2}=\int_{0}^{T} d t+2 \int_{0}^{T} W_{t} d W_{t}
$$

$$
\int_{0}^{T} W_{t} d W_{t}=\frac{1}{2}\left(W_{T}^{2}-T\right)
$$

c) $f(t, x)=e^{x}$ and $d X_{t}=a_{t} d t+b_{t} d W_{t}$

$$
\begin{aligned}
d\left(e^{X_{t}}\right) & =\left(a_{t} e^{X_{t}}+\frac{b_{t}^{2}}{2} e^{X_{t}}\right) d t+b_{t} e^{X_{t}} d W_{t} \\
& =e^{X_{t}}\left[\left(a_{t}+\frac{b_{t}^{2}}{2}\right) d t+b_{t} d W_{t}\right] \\
& =e^{X_{t}}\left[d X_{t}+\frac{b_{t}^{2}}{2} d t\right]
\end{aligned}
$$

Arithmetic Brownian motion

Definition : $X_{t}=X_{0}+\alpha t+\sigma W_{t}$

$$
d X_{t}=\alpha d t+\sigma d W_{t}
$$

Geometric Brownian motion

Definition : $S_{t}=S_{0} e^{\mu t+\sigma W_{t}}$

$$
\begin{aligned}
& f(t, x)=S_{0} e^{\mu t+\sigma x} \text { and } X_{t}=W_{t} \\
& \begin{aligned}
d S_{t} & =\left(\mu S_{t}+\frac{\sigma^{2}}{2} S_{t}\right) d t+\sigma S_{t} d W_{t} \\
& =\delta S_{t} d t+\sigma S_{t} d W_{t}
\end{aligned}
\end{aligned}
$$

So, the GBM can be written

$$
S_{t}=S_{0} e^{\left(\delta-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}}
$$

Moments : $e^{\left(\delta-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}}$ being a log-normal r.v.,

$$
E\left(S_{t}\right)=S_{0} e^{\left(\delta-\frac{\sigma^{2}}{2}\right) t+\frac{\sigma^{2} t}{2}}=S_{0} e^{\delta t}
$$

$$
\begin{aligned}
\operatorname{var}\left(S_{t}\right) & =S_{0}^{2} e^{2\left(\delta-\frac{\sigma^{2}}{2}\right) t+\sigma^{2} t}\left(e^{\sigma^{2} t}-1\right) \\
& =S_{0}^{2} e^{2 \delta t}\left(e^{\sigma^{2} t}-1\right)
\end{aligned}
$$

with $\delta=\mu+\frac{\sigma^{2}}{2}$

Use of the stochastic differential

Evolution of a financial variable

$$
d X_{t}=a_{t} d t+b_{t} d W_{t}
$$

is an equation that describe the evolution of a financial variable

- For an equity, we have solved the equation : GBM
- For an option, we will solve it
- For a yield curve, the evolution of a state variable r_{t} will be describe by a stochastic differential and we will deduce $R_{t}(s)$

However, we will not study the techniques for solving a general SDE

Classical stochastic differentials in finance

For an Itô stochastic differential, the stochastic processes $\left(a_{t}\right)$ and $\left(b_{t}\right)$ are deterministic functions of t and X_{t}

Here, these functions do not depend explicitly on the time variable t

$$
a_{t}=a\left(X_{t}\right) \quad b_{t}=b\left(X_{t}\right)
$$

- Arithmetic Brownian motion

$$
d X_{t}=\alpha d t+\sigma d W_{t}
$$

- Geometric Brownian motion

$$
d X_{t}=\delta X_{t} d t+\sigma X_{t} d W_{t}
$$

- Ornstein-Uhlenbeck process

$$
d X_{t}=\delta\left(\theta-X_{t}\right) d t+\sigma d W_{t}
$$

- Square-root process

$$
d X_{t}=\delta\left(\theta-X_{t}\right) d t+\sigma \sqrt{X_{t}} d W_{t}
$$

Change of probability measure

- Radon-Nikodym theorem
- Discrete case
- General case
- Girsanov theorem
- Girsanov theorem
- Generalization

Discrete case

Let $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots\right\}$ be the set of possible outcomes in a random situation with probability measure Pr:

$$
\operatorname{Pr}\left(\left\{\omega_{i}\right\}\right)=p_{i} \quad\left(\sum p_{i}=1\right)
$$

Let Q be another probability measure for this random situation :

$$
Q\left(\left\{\omega_{i}\right\}\right)=q_{i} \quad\left(\sum q_{i}=1\right)
$$

The r.v. L is defined by

$$
L\left(\omega_{i}\right)=\frac{q_{i}}{p_{i}}
$$

This r.v. has the following properties

- L positive
- $E_{p}(L)=\sum \frac{q_{i}}{p_{i}} p_{i}=1$
- For any r.v. X,

$$
E_{q}(X)=\sum X\left(\omega_{i}\right) q_{i}=\sum X\left(\omega_{i}\right) \frac{q_{i}}{p_{i}} p_{i}=E_{p}(L \cdot X)
$$

and, in the particular case where $X=\mathbf{1}_{A}$,

$$
Q(A)=E_{p}\left(L \cdot \mathbf{1}_{A}\right)
$$

General case

Let Pr and Q be two probability measures on (Ω, \mathcal{F})

We say that Q is absolutely continuous w.r.t. Pr ($Q \ll \operatorname{Pr}$) if

$$
\forall A \in \mathcal{F}, \quad Q(A)=0 \Rightarrow \operatorname{Pr}(A)=0
$$

If $Q \ll \operatorname{Pr}$ and $\operatorname{Pr} \ll Q$, the two measures are said equivalent
Q is absolutely continuous w.r.t. Pr if and only if there exist a positive r.v. L such that

$$
\forall A \in \mathcal{F}, \quad Q(A)=\int_{A} L(\omega) d \operatorname{Pr}(\omega)
$$

or, equivalently,

$$
Q(A)=E_{Q}\left(\mathbf{1}_{A}\right)=E_{\operatorname{Pr}}\left(L \cdot \mathbf{1}_{A}\right)
$$

L is named Radon-Nikodym derivative and one writes

$$
L=\frac{d Q}{d \mathrm{Pr}}
$$

Property : by putting $A=\Omega$, we have

$$
1=Q(\Omega)=\int_{\Omega} L(\omega) d \operatorname{Pr}(\omega)=E_{\operatorname{Pr}}(L)
$$

Girsanov theorem

Girsanov theorem

The definition of a SBM depends heavily on the probability measure : independent and stationary increments, normal distribution, ...

Let us consider a SBM $\left(W_{t}\right)$ on $(\Omega, \mathcal{F}, \operatorname{Pr})$ for the time interval $[0 ; T]$.

The stochastic process $\left(\widetilde{W}_{t}\right)$, defined by $\widetilde{W}_{t}=W_{t}+q t$, is an ABM, but no more a SBM :

$$
E\left(\widetilde{W}_{t}\right)=q t \neq 0
$$

The EBM $L_{t}=e^{-q W_{t}-\frac{q^{2} t}{2}}$ is a positive stochastic process, martingale, with $E_{p}\left(L_{t}\right)=1$. We will use it as a Radon-Nikodym derivative

Girsanov theorem

- The function

$$
Q(A)=\int_{A} L_{T}(\omega) d \operatorname{Pr}(\omega) \quad(A \in \mathcal{F})
$$

is a probability measure

- The Q measure is equivalent to the Pr measure
- Under $Q,\left(\widetilde{W}_{t}\right)$ is a SBM, adapted to the natural filtration of $\left(W_{t}\right)$

The Q measure is the equivalent martingale measure

Generalization

Let $\left(W_{t}\right)$ be a SBM on $(\Omega, \mathcal{F}, \operatorname{Pr})$ for the time interval $[0 ; T]$ and $\left(\widetilde{W}_{t}\right)$ the associated ABM with drift μ and volatility σ :

$$
\widetilde{W}_{t}=\mu t+\sigma W_{t}
$$

Then, $\left(\widetilde{W}_{t}\right)$ is an ABM with drift v and volatility σ under the probability measure

$$
Q(A)=\int_{A} L_{T}(\omega) d \operatorname{Pr}(\omega) \quad(A \in \mathcal{F})
$$

where

$$
L_{t}=e^{\frac{v-\mu}{\sigma^{2}} \widetilde{w}_{t}-\left(\frac{v^{2}-\mu^{2}}{2 \sigma^{2}}\right) t}
$$

