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Argument 

 

Let us consider a (discrete time) symmetrical 

random walk  (��) 

 

 

 

�� = � ��
	

�
�
                  ��~ �−Δ� Δ�12 12 � 

 

with 

- � = � ∙ ∆� 

- independent moves 

- �� = 0 

 

We know that 

 �(��) = 0 

���(��) = (Δ�)�
Δ� ∙ � 

−Δ�      Δ� 



We want to define 

- a continuous time stochastic process 

- with positive constant instantaneous variance 

o if  ���(��) → ∞, too “explosive” : the 

fluctuations will grow to infinity 

o if  ���(��) → 0, no more random 

 

So, we have to 

- let  ∆�  tend to  0 

- in such a manner that  
("#)$

"� ∙ � → % ∙ � 

  

We can choose  % = 1 : if we want another 

constant  &, we will consider  (&��) 

 

Thanks to the CLT, we have 

 

�� = � ��
	

�
�
    →     '(0; �) 

 

Furthermore, a random walk has independent and 

stationary increments … 

Definition 

 

A continuous time stochastic process  ()�)  is a 

standard brownian motion (SBM) if 

- )� = 0 

- ()�)  has independent increments 

- ()�)  has stationary increments 

- )�  ~ '(0; �) 

 

The notation  “)”  is for Wiener 

 

Strictly speaking, a Wiener process on a 

probability space  (Ω, ℱ, Pr, /)  is a SBM adapted 

to the filtration  / 

  



Properties 

 

Elementary properties 

 

a)     A SBM is a Gaussian process 

 

b) If  0 < �,  ()� − )2) ≜ )�42 ~ '(0; � − 0) 

 

c)    We have   �()�) = 0, ���()�) = �  and 

 56�()2, )�) = min (0, �) 

 

Proof : if  0 < �,  

 

  56�()2 , )�) = 56�()2, )� − )2 + )2) 

                          = 56�()2, )� − )2) + 56�()2, )2) 

                          = 0 + 0 

  

Quadratic variation of a SBM 

 

Let us consider a partition  ;	  of the time interval  [0; �]   (0 = �� < �� < ⋯ < �	 = �)  such that   

 ?	 = maxB�� − ��, �� − ��, … , �	 − �	4�D 

 

tends to  0  when  � → ∞ 

 

We define the quadratic variation of the SBM  )�, 

associated with the partition  ;	,  by 

 

E	(�) = �F)�G − )�GHIJ�	

K
�
 

 

  



Property :  when  � → ∞,  we have  E	(�)  L.N.OPQ  � 

 

Lemma : if  �~'(0; &�), then  ���(��) = 2&R 

 

Since  SR = 3&R, we have 

 ���(��) = �(�R) − ��(��) = 3&R − (&�)� 

 

Proof  

 

•         �FE	(�)J = ∑ � VF)�G − )�GHIJ�W	K
�  

                              = ∑ (�K − �K4�)	K
�  

                              = � 

 

 •    ���FE	(�)J = ∑ ��� VF)�G − )�GHIJ�W	K
�                

                              = 2 ∑ (�K − �K4�)�	K
�  

                              ≤ 2?	 ∑ (�K − �K4�)	K
�  

                              = 2�?	 

                              → 0 

 

so that  �((E	(�) − �)�)  → 0 

Regularity properties 

 

a)    The paths of a SBM are continuous 

 

We have to prove that  lim"�→� )�Z"� = )� 

 

We give a proof for limit in probability. Let us 

choose an arbitrary  [ > 0. We will prove that 

 lim"�→� Pr[|)�Z"� − )�| > [] = 0 

 

Since (Chebyshev’s inequality) 

 

Pr^|)�Z"� − )� − 0| > ℎ√Δ�a ≤ 1ℎ� 

 

we have 

 

Pr[|)�Z"� − )�| > [] ≤ Δ�[� → 0 

 

 

 



b) The paths of a SBM are nowhere derivable 

 

)�Z"� − )�  ~ '(0; ∆�) ≜ √∆� ∙ � 

 

with  � ~ '(0; 1) 

 )�Z"� − )�∆� ≜ �
√∆� 

 

that tends to  ±∞, depending on the sign of  � 

 

Interpretation of this property : a SBM is 

unpredictable over short time intervals 

 

  

c)    A SBM has unbounded variations. More 

precisely (with the same notations as for 

quadratic variation), 

 

c� = sup;g
�h)�G − )�GHIh

	

K
�
= +∞        �. 0. 

 

If  c�  were finite  (= %, say), then, for any 

partition  ;	, 

 

 E	(�) = ∑ F)�G − )�GHIJ�	K
�  

             ≤ ∑ h)�G − )�GHIh	K
� ∙ maxi
�,…,	 j)�k − )�kHIj 
             ≤ % ∙ maxi
�,…,	 j)�k − )�kHIj 
 

and the 2
nd

 factor tends to  0  by continuity of the 

paths of the SBM. This is incompatible with the 

property of quadratic variation :  E	(�) →  � 

  



d) Self-similarity of a SBM 

 

(= scaling effect = “fractals” property) 

 

By definition, a stochastic process is l-self-similar 

if, for any  � ≥ 1, ��, … , �	 ∈ o  and  p > 0,  

 

F�q�I , … , �q�g  J ≜ Fpr��I , … , pr��g  J 

 l  is the Hurst index of the stochastic process 

 

Property : a SBM is  
�
�-self-similar : 

 

F)q�I , … , )q�g  J ≜ F√p)�I , … , √p)�I  J 

 

Proof (for  � = 1) :  

 

)q�  ~ '(0;  p�) ≡ √p ∙ '(0;  �) ~ √p ∙ )� 

 

Interpretation : the pattern of any path of a SBM 

has a similar shape, independently of the length of 

the time interval 

Simulation of a  SBM 

 

It is easy to obtain pseudo-random values for the 

law of  �  from  t(0; 1�  pseudo-random values :  

 

uv
4��w� 	≜ � 

 

Pr<uv
4��w� X �= � Pr<w X uv���= � uv��� 

 

 

 



For simulating a path of a SBM, we discretize the 

time variable : let the time interval  <0; �=  be 

partitioned in  �  sub-intervals of length  Δ�  :  
� � � ∙ Δ� 
 

We know that 

 

)"� , �)�"� −)"��, … , �)	"� −)�	4��"�� 
 

are i.i.d. r.v.  ~	'�0; Δ�� 
 

Algorithm : 

- Generate  �  pseudo-random values  x�, … , x	  

values of a  t�0; 1�  r.v. 

- Take the reciprocal of these values to obtain 

pseudo-random normal values 

)i"� −)�i4��"� � uy4��xi 	; 0, Δ�� 
- Cumulate these values 

                    )�"� � ∑ F)i"� −)�i4��"�J
�
i
�  

- Using continuity of the path, connect the 

points by line segments 
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Associated BM 

 

Arithmetic BM 

 

An ABM with drift  z (∈ ℝ)  and volatility  &  (> 0), associated to the SBM  ()�),  is a 

stochastic process  (��)  defined by 

 �� = z� + &)� 

 

Properties 

- An ABM is a Gaussian process 

- Moments : Sv(�) = z� &v�(�) = &�� 5v(0, �) = &� min(0, �) 

 

This process can be generalized for beginning at a 

value  ��  instead of  0 : 

 �� = �� + z� + &)� 

  

Brownian bridge 

 

A Brownian bridge over the time interval  [0; 1], 

associated to the SBM  ()�),  is a stochastic 

process  (��)  defined by 

 �� = )� − �)� 

 

Properties 

- A Brownian bridge is a Gaussian process 

- �� = �� = 0 

- Moments : Sv(�) = 0 &v�(�) = �(1 − �) 5v(0, �) = min(0, �) − 0� 

 

For the covariance function, 

 

            5v(0, �) = 56�()2 − 0)�, )� − �)�) 

                           = min(0, �) − 0 min(1, �) 

                                      −� min(0, 1) + 0� min(1, 1) 

                           = min(0, �) − 0� 

  



Brownian motion and martingales 

 

Let us consider a probability space  (Ω, ℱ, Pr, /)  

where  /  is the natural filtration of a SBM  ()�) 

 

(In this section, we will suppose  0 ≤ 0 < �) 

 

Examples of martingales 

 

a)     ()�)  is a martingale 

 

          �()�|ℱ2) = �()� − )2 + )2|ℱ2) 

                             = �()� − )2|ℱ2) + �()2|ℱ2) 

                             = �()� − )2) + �()2|ℱ2) 

                             = 0 + )2 

 

  

b) ()�� − �)  is a martingale 

 

    �()�� − �|ℱ2) = �()�� − )2� + )2�|ℱ2) − � 

                               = �()�� − )2�|ℱ2) 

                                         +�()2�|ℱ2) − � 

                               = �()�� − )2�|ℱ2) + )2� − � 

 

But,  )�� − )2� = ()� − )2)� + 2)2()� − )2) 

 

so that 

 

   �()�� − )2�|ℱ2) 

        = �(()� − )2)�|ℱ2) + 2�()2()� − )2)|ℱ2) 

        = (� − 0) + 2)2 �()� − )2|ℱ2) 

        = (� − 0) + 2)2 �()2 − )2) 

        = � − 0 

 

and we have 

 �()�� − �|ℱ2) = (� − 0) + )2� − � 

                                         = )2� − 0 

  



c)    Counter-example :  ()�|)  is not a martingale 

 

We know that 

 �(()� − )2)||ℱ2) = �(()� − )2)|) = 0 

 

         0 = �()�| − 3)��)2 + 3)�)2� − )2||ℱ2) 

             = �()�||ℱ2) − 3)2�()��|ℱ2) 

                               +3)2��()�|ℱ2) − )2| 

             = �()�||ℱ2) − 3)2�(()�� − �) + �|ℱ2) +3)2�)2 − )2| 

             = �()�||ℱ2) − 3)2[()2� − 0) + �] + 2)2| 

             = �()�||ℱ2) − )2| + 3)2(0 − �) 

 

so that  �()�||ℱ2) = )2| − 3)2(0 − �) ≠ )2| 

 

 

Reciprocal  (without proof) 

 

If a stochastic process  (��)  is such that  (��)  and  (��� − �)  are martingales, then  (��)  is a SBM 

Exponential Brownian motion 

 

An EBM is a stochastic process  (��)  defined by 

 

�� = ~���4�$��  

 

with  & > 0 

 

Property : an EBM is a martingale 

 

           �(~���|ℱ2) = �F~�(��4��) ∙ ~���|ℱ2J 

                                 = ~��� ∙ �F~�(��4��)|ℱ2J 

                                 = ~��� ∙ �F~�(��4��)J 

                                 = ~��� ∙ ~�$(�H�)$  

so that 

             �(��|ℱ2) = � �~���4�$�$ �ℱ2� 

                               = ~��� ∙ ~�$(�H�)$ ∙ ~4�$�$  

                               = ~��� ∙ ~4�$�$  

                               = �2 



Particular case : if  0 = 0,  

 

� �~���4�$�� � = �� = 1 

 

 

Using BM as a “noise” 

 

Objective : express a stochastic process  (��)  as 

the “superposition” of 

- a deterministic function  �� 

- a non predictable “noise” (= martingale) 

 

We can use 

 

a)     a SBM as an additive random noise : �� = �� + &)� 

 

b) An EBM as a multiplicative random noise : 

�� = �� ∙ ~���4�$��  

 

In both case, �(��) = �� 

Hitting time for a SBM 

 

Definition and property 

 

For any fixed  � > 0, we define the hitting time  o�  

as the first time the SBM  )�  hits the value  � : 

 minB� ∈ o ∶ )� = �D 

 

(and  +∞  if  )� ≠ �  ∀� ∈ o) 

 

Property : the hitting time is a stopping time 

 

 

  



Reflection principle 

 

By symmetry, knowing that  o� ≤ �, the events  [)� > �]  and  [)� < �]  have the same 

probability : 

 

Pr�<)� \ �=|<o� X �=� � Pr�<)� 1 �=|<o� X �=� 

                                            � �

�
 

 

 

  

Distribution of hitting time and maximum 

 

• By total probabilities formula,  

 Pr[)� > �] = Pr([)� > �]|[o� ≤ �]) ∙ Pr[o� ≤ �] 

                       + Pr([)� > �]|[o� > �]) ∙ Pr[o� > �] 

                       = �
� Pr[o� ≤ �] 

So, 

                   u��(�) =  Pr[o� ≤ �] 

                                = 2 Pr[)� > �] 

                                = 2 �1 − Φ V �
√�W� 

                                = 2 Φ V− �
√�W 

 

• If we define  �� = maxB)2 ∶ 0 ≤ 0 ≤ �D, 

 

Pr[�� ≥ �] = Pr[o� ≤ �] = 2 Φ �− �
√�� 

  



Stochastic integral 

 

- Definition  

o Motivation 
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o Choice of a definition 

o Definition 

- Properties 

o Conditions of existence 

o Properties 

  

Definition 

 

Motivation 

 

- The definition of the integral of a function  �(�)  is concerned with small variations of the 

variable  � 

- The definition of the differential of a function  �  (��(�) = �′(�) ∙ ��)  is also concerned 

with small variations of the variable  � 

 

Here, we will look at the time variations “through 

a SBM”, which has 

- unbounded variations 

- non differentiable paths 

 

The convergence being no more defined in the 

classical way, we have to give new definitions 

  



Classical Riemann integral 

 

 

Let  ;	   be a partition of  [�; �= 
 

� � �� 1 �� 1 ⋯ 1 �	4� 1 �	 � � 

 

with 

�K − �K4� � ΔK	 

?	 � max	�Δ�,Δ�, … ,Δ	� 
 

and let choose xK ∈ 	 =�K4�; 	�K< 
 

  

The Riemann integral is defined by 

 

� ��x�	�x = lim	→Z∞�g→�     �  �(xK) ∙ ΔK
	
K
�

�
�  

 

It can be prove that if  �  is sufficiently “regular” 

(continuous by parts e.g.), this integral 

- exists 

- is independent of  ;	 

- is independent of the choice of  xK   in =�K4�;  �K[ 

 

  



Stieltjes-Riemann integral 

 

This is the same notion as ordinary Riemann 

integral, but the measure along horizontal axis is 

no more the length of segments, but the length 

through another function  �  

 

� ��x� ��(x)�
�

= lim	→Z∞�g→�     �  �(xK) ∙ F�(�K) − �(�K4�)J
	

K
�
 

 

This integral has the same properties as the 

ordinary Riemann integral (with, furthermore, 

regularity conditions for  �) 

 

  

Example 

 

� x �uv(x)Z�
4�

= lim	→Z∞�g→�     �  xK ∙ Pr[�K4� < � ≤ �K]
	

K
�= �(�) 

 

Note : from now on, the interval of integration 

becomes  <0; o]  instead of  [�; �] 

  



Generalization ? 

 

Let  ����  be a stochastic process and �)��  a SBM. 

How can we define  � �� �)���   ? 

 

Problems 

 

a)    Convergence “point by point” is the 

convergence a.s. (incompatible with the 

unbounded variation of the SBM) 

� Solution : give a definition with another 

convergence mode (q.m.) 

 

b) The definition is no more independent of the 

choice of  xK   in ]�K4�;  �K[ 

� Solution : make a choice for  xK 
 

Let us examine the particular case of 

 

" � )� �)�
�

� " = lim	→Z∞�g→�     �  )�G ∙ F)�G − )�GHIJ
	

K
�
 

We will need the following lemma 

 

���� − �� = 12 <��� − ��� − �� − ���=��� − �� = 12 <��� − ��� + �� − ���= 
 

• First choice :  xK = �K4� 

 

 " � Wu dWuT0 "   

 = lim	→Z∞�g→�  ∑  )�GHI ∙ F)�G − )�GHIJ	K
�  

 = I$ lim	→Z∞�g→�  ∑  F)�G� − )�GHI� J − F)�G − )�GHIJ�¡	K
�  

 = ��  lim	→Z∞�g→� V)�� − E	�o�W 
 = �� �)�� − o� 
 

(this last convergence is in q.m.) 

 

  



• Second choice :  xK = �K 
 

"� Wu dWu
T

0 " = lim	→Z∞�g→�     �  )�G ∙ F)�G − )�GHIJ
	

K
�
 

 = I$ lim	→Z∞�g→�  ∑  F)�G� − )�GHI� J + F)�G − )�GHIJ�¡	K
�  

 = ��  lim	→Z∞�g→� F)� + E	�o�J 
 = �� �)�� + o� 
 

• Third choice :  xK = �GHIZ�G�  

 

It can be shown that 

 

"� Wu dWu
T

0 " = 12 )�� 

 

Note 

- First choice : Itô integral 

- Third choice : Stratonovich integral 

  

Choice of a definition 

 

•  Stratonovich integral give the same result as in 

the deterministic case : if  ��0� = 0, by integrating 

by parts, 

� ��x� ��(x) = 12 ��(o)�
�  

 

•  Itô integral has two interesting properties 

a)     Non-anticipativity : for the  ¢-th interval  ]�K4�;  �K[, the integrand  ��   is known at time  �K4� 

b) We know that the stochastic process  ()�� − �)  is a martingale ; so is the Itô integral 

 

� Itô integral is chosen for applications in 

finance 

  



Definition 

 

Let  ����  be a stochastic process adapted to the 

natural filtration of the SBM  �)��. We define 

 

£� = � �� �)�
�

� = lim	→Z∞�g→�     £�(	)
 

where 

£��	� =  �  ��GHI ∙ F)�G − )�GHIJ
	

K
�
 

 

More precisely, it can be prove that there exists a 

r.v.  £�  such that 

lim	→Z∞�g→�     � ¤V£�(	) − £�W�¥ = 0 

 

so that  £��	�  converges in q.m. to  £� 

 

Note : the hypothesis implies that  ��GHI  is 

independent of  F)�G −)�GHIJ  

Properties 

 

Condition of existence 

 

If  ����  is a stochastic process adapted to the 

natural filtration of the SBM  �)��, then 

 

� �� �)�
�

�  

 

exists if 

- paths of (��)  are continuous 

- � V� �� �x�� W  is finite 

  



Properties 

 

a)     � Vp������ + p������W  �)���  

= p� � ��(�) �)�
�

� + p� � ��(�) �)�
�

�  

 

b) � V� �� �)��� W = 0 

 

Proof :  

� V��GHIF)�G − )�GHIJW
= �F��GHIJ ∙ �F)�G − )�GHIJ 

          = 0 

 

c)    ��� V� �� �)��� W = � �(���) �x��  

 

Proof : 

 

 ��� V� �� �)��� W = � ¤V� �� �)��� W�¥ 

= lim	→Z∞�g→�    �  
	

K
�
 � V��GHI� F)�G − )�GHIJ�W 

                   +2 lim	→Z∞�g→��  
	

K
�
�  

	

i
�K¦i
� � ��GHIF)�G − )�GHIJ

∙ ��kHI V)�k − )�kHIW� 

 

But 

 � V��GHI� F)�G −)�GHIJ�W= �F��GHI� J ∙ � VF)�G −)�GHIJ�W = �F��GHI� J ∙ ��K − �K4��   
 

and the first term is equal to  � �(���) �x��  

 

Furthermore, for  ¢ < §, 

 

 � ���GHIF)�G − )�GHIJ ∙ ��kHI V)�k − )�kHIW� 

 =  � V��GHIF)�G − )�GHIJ��kHIW ∙ � V)�k − )�kHIW 

 = 0 



d) The stochastic process  (£�)  for  � ∈ [0; o]  is a 

martingale 

 

For  0 < �, 

 

�(£�|ℱ2) = lim	→Z∞�g→�     � � F��GHIF)�G − )�GHIJ|ℱ2J
	

K
�
 

 

• If  0, � ∈ ]��4�;  ��] 

 

 

 

�(£�|ℱ2) = £2 + � F��¨HI()� − )2)|ℱ2J 

                          = £2 + ��¨HI ∙ � ()� − )2|ℱ2) 

                          = £2 + ��¨HI ∙ � ()� − )2) 

                          = £2 

 

• If  0 ∈ ]�i4�;  �i] and  � ∈ ]��4�;  ��]  with  § < © 

 

 

 

��4�               ª         «                 �� 

 �i4�       ª          �i                 ��4�       «               ��  

 �(£�|ℱ2) = £2 + � V��kHI V)�k − )2W |ℱ2W 

                        + � � F��GHIF)�G − )�GHIJ|ℱ2J
�4�

K
iZ�
 

                           +� F��¨HIF)� − )�¨HIJ|ℱ2J 

                 = £2 + (�) + (�) + (5) 

 

(�) = ��kHI ∙ � V)�k − )2|ℱ2W 

  = ��kHI ∙ � V)�k − )2W 

                         = 0 

 

          (�) ∶  � F��GHIF)�G − )�GHIJ|ℱ2J 

                              = � V��GHIF)�G − )�GHIJW 

                              = � F��GHIJ ∙ � F)�G − )�GHIJ 

                              = 0 

 (5) = 0 ∶   same reasoning as (�) 

 

e)     The stochastic process  (£�)  has continuous 

paths  (without proof) 

  



Stochastic differential 
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o Classical stochastic differentials in finance 

  

Definition 

 

In the deterministic case 

 

          ����� = ���� ∙ ��  
                           ⟺   �(�) = �(0) + � �(x)�x��  

 

Generalization ? 

- One term with  “��”  (trend) 

- One term with  “�)�”  (noise) 

 

 

In the stochastic case 

 

If the stochastic processes  ����  and  ����  are 

integrables and adapted to the natural filtration of 

the SBM  �)��, we define 

 ��� = �� ∙ �� + �� ∙ �)� 
by 

�� = �� +� �� �x�
� + � �� �)�

�
�  



Properties 

 

Formal multiplication rules 

 

We will neglect terms smaller than  ��  (= 6����) 
 

•  ����� ≈ 0 

 

•  �� × �)� ≈ 0 

 ���� ∙ �)�� = �� ∙ ���)�� = 0 ������ ∙ �)�� = ����� ∙ �����)�� = ����| 

 

•  ��)��� ≈ �� 
 ����)���� = �����)�� = �� ������)���� = 2F�����)��J� = 2����� 

 

 1 �)� �� 1 1 �)� �� �)� �)� �� 0 �� �� 0 0 

 

Properties 

 

a)     Linearity : if  �������  and  �������  are defined 

w.r.t. the same SBM  �)��,  
 � Vp������ + p������W = p� ���(�) + p� ���(�)

 

 

 

b) Product : if 

 

���(�) = ��(�) ∙ �� + ��(�) ∙ �)�          (© = 1, 2) 

 

then 

 

� V��(�)��(�)W
= ��(�)���(�) + ��(�)���(�) + ��(�)��(�)�� 

 

  



Proof  

 

Taylor formula for  �  variables  � = (��, … , �	)  

 

��(�) ≈ � �#G²  ��K + 12
	

K
�
� � �#G#k²²  ��K  ��i

	

i
�

	

K
�
 

 

applied to  �(��, ��) = ��∙��  give 

 

 � V��(�)��(�)W 

   = ��(�)���(�) + ��(�)���(�) + �
� ∙ 2 V���(�) ∙ ���(�)W 

 

and 

 

    ���(�) ∙ ���(�)
 

            = V��(�)�� + ��(�)�)�W V��(�)�� + ��(�)�)�W 

            = ��(�)��(�)(�)�)� 

  

c)     Compound function (= Itô’s lemma) 

 

If  ��� = �� ∙ �� + �� ∙ �)�  and if  �(�, �)  is a 

deterministic function, derivable (one time w.r.t. �  

and twice w.r.t.  �), then 

 ��(�, ��)  

      = ���²(�, ��) + ���#²(�, ��) + ��$� �##²² (�, ��)� ∙ �� 

                +���#²(�, ��) ∙ �)� 

 

Proof : by Taylor, 

 

 ��(�, ��) 

    = ��² �� + �#² ��� 

        + �
� [���²² (��)� + 2��#²²  (��)(���) + �##²² (���)�] 

    = ��² �� + �#² ��� + �
� �##²² (���)� 

 

and  

 (���)� = (�� ∙ �� + �� ∙ �)�)� = ��� �� 

  



Examples 

 

Simple examples 

 

a)     ���, �) = �(�)�  and  �� = )� 

 �(�(�))�) = �²(�))� �� + �(�) �)� 

 

    � �(�(�))�) = �(o))���  

                             = � �²(�))� �� + � �(�) �)�����  

 

� �(�) �)�
�

� = �(o))� − � �²(�))�  ���
�  

 

(= integration by parts) 

 

  

b) �(�, �) = ��  and  �� = )� 

 

�()��) = 12 2 �� + 2)�  �)� 

 

 � �()��) = )�� = �  �� + 2 � )� �)�������  

 

� )�  �)�
�

� = 12 ()�� − o) 

 

c)    �(�, �) = ~#  and  ��� = ��  �� + �� �)� 

 

     �(~v�) = V��  ~v� + ��$�  ~v�  W �� + �� ~v�  �)� 

                   =  ~v� ³V�� + ��$� W �� + ��  �)�´ 

                   =  ~v� ³��� + ��$� ��´ 

 

 

  



Arithmetic Brownian motion 

 

Definition :  �� = �� + z� + &)� 
 ��� = z �� + & �)� 

 

 

 

 

 

Geometric Brownian motion 

 

Definition :  µ� = µ� ~¶�Z���  

 �(�, �) = µ� ~¶�Z�#  and  �� = )� 

 

�µ� = �Sµ� + &�
2 µ�� �� + &µ�  �)� 

                     = ?µ�  �� +  &µ�  �)� 

 

with  ? = S + �$
�  

 

So, the GBM can be written 

 

µ� = µ� ~��4�$� ��Z���
 

 

Moments :  ~��4�$
$ ��Z���

  being a log-normal r.v.,  

 

�(µ�) = µ� ~��4�$� ��Z�$�� = µ� ~�� 

 

���(µ�) = µ�� ~���4�$� ��Z�$�F~�$� − 1J 

                          = µ�� ~���F~�$� − 1J 

  



Use of the stochastic differential 

 

Evolution of a financial variable 

 ��� = ��  �� + �� �)� 

 

is an equation that describe the evolution of a 

financial variable 

- For an equity, we have solved the equation : 

GBM 

- For an option, we will solve it 

- For a yield curve, the evolution of a state 

variable  ��  will be describe by a stochastic 

differential and we will deduce  ·�(0) 

 

However, we will not study the techniques for 

solving a general SDE 

  

Classical stochastic differentials in finance 

 

For an Itô stochastic differential, the stochastic 

processes  ����  and  ����  are deterministic 

functions of  �  and  �� 
 

Here, these functions do not depend explicitly on 

the time variable  �  
 �� = �����           �� = �(��) 

 

- Arithmetic Brownian motion  ��� = z �� + & �)� 

 

- Geometric Brownian motion ��� = ?�� �� + &��  �)� 

 

- Ornstein-Uhlenbeck process ��� = ?(¸ − ��) �� + & �)� 

 

- Square-root process 

��� = ?(¸ − ��) �� + &¹��  �)� 



Change of probability measure 

 

- Radon-Nikodym theorem 

o Discrete case 

o General case 

- Girsanov theorem 

o Girsanov theorem 

o Generalization 

  

Radon-Nikodym theorem 

 

Discrete case 

 

Let  Ω = {º�, º�, … , º	, … D   be the set of 

possible outcomes in a random situation with 

probability measure  Pr : 

 

 Pr(BºKD) = »K           (∑ »K = 1) 

 

Let  E  be another probability measure for this 

random situation : 

 

 E(BºKD) = ¼K           (∑ ¼K = 1) 

 

The r.v.  ½  is defined by 

 

½(ºK) = ¼K»K  

 

  



This r.v. has the following properties 

- ½  positive 

- �¾(½) = ∑ LG¾G  »K = 1 

- For any r.v.  �, 

 

�L(�) = ∑ �(ºK)¼K = ∑ �(ºK) LG¾G »K = �¾(½ ∙ �)   

 

and, in the particular case where  � = ¿À, 

 E(Á) = �¾(½ ∙ ¿À) 

 

  

General case 

 

Let  Pr  and  E  be two probability measures on  �Ω, ℱ) 

 

We say that  E  is absolutely continuous w.r.t.  Pr  

(E ≪  Pr)  if 

 ∀Á ∈ ℱ,      E(Á) = 0   ⟹   Pr(Á) = 0 

 

If  E ≪  Pr  and   Pr ≪ E, the two measures are 

said equivalent   



Radon-Nikodym theorem  

 E  is absolutely continuous w.r.t.  Pr   

if and only if there exist a positive r.v.  ½  such that 

 

∀Á ∈ ℱ,      E(Á) = � ½(º) �Pr(º)À  

 

or, equivalently,  

 E(Á) = �Ä(¿À) = �ÅÆ(½ ∙ ¿À) 

 ½  is named Radon-Nikodym derivative and one 

writes 

½ = �E�Pr 

 

Property : by putting  Á = Ω, we have 

 

1 = E(Ω) = � ½(º) �Pr(º) = �ÅÆ(½)Ç  

  

Girsanov theorem 

 

Girsanov theorem 

 

The definition of a SBM depends heavily on the 

probability measure : independent and stationary 

increments, normal distribution, … 

 

Let us consider a SBM  �)��  on  �Ω, ℱ, Pr)  for the 

time interval  [0; o]. 

 

The stochastic process  F)È�J, defined by  

)È� = )� + ¼�, is an ABM, but no more a SBM : 

 

�F)È�J = ¼� ≠ 0 

 

The EBM  ½� = ~4L��4É$�$   is a positive stochastic 

process, martingale, with  �¾(½�) = 1. We will use 

it as a Radon-Nikodym derivative 

 

  



Girsanov theorem  

 

• The function 

 

E(Á) = � ½�(º) �Pr(º)À           (Á ∈ ℱ) 

 

is a probability measure 

 

• The  E  measure is equivalent to the  Pr  

measure 

 

•  Under  E, F)È�J  is a SBM, adapted to the 

natural filtration of  ()�) 

 

The  E  measure is the equivalent martingale 

measure 

 

 

  

Generalization 

 

Let  �)��  be a SBM on  �Ω, ℱ, Pr)  for the time 

interval  [0; o]  and  F)È�J  the associated ABM 

with drift  S  and volatility  & : 

 )È� = S� + &)� 

 

Then,  F)È�J  is an ABM with drift  Ê  and volatility  &  under the probability measure 

 

E(Á) = � ½�(º) �Pr(º)À           (Á ∈ ℱ) 

 

where 

½� = ~Ë4¶�$ �È�4�Ë$4¶$
��$ ��

 


