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Abstract

Hall, Deckert and Wiseman (2014) recently proposed that quantum theory can be
understood as the continuum limit of a deterministic theory in which there is a large,
but finite, number of classical “worlds.” A resulting Gaussian limit theorem for particle
positions in the ground state, agreeing with quantum theory, was conjectured in Hall,
Deckert and Wiseman (2014) and proven by McKeague and Levin (2016) using Stein’s
method. In this article we propose new connections between Stein’s method and Many
Interacting Worlds (MIW) theory. In particular, we show that quantum position prob-
ability densities for higher energy levels beyond the ground state arise as distributional
fixed points in a new generalization of Stein’s method. These are then used to obtain a
rate of distributional convergence for conjectured particle positions in the first energy
level above the ground state to the (two-sided) Maxwell distribution; new techniques
must be developed for this setting where the usual “density approach” Stein solution
(see Chatterjee and Shao (2011)) has a singularity.

1 INTRODUCTION

Hall, Deckert and Wiseman (2014) proposed a many interacting worlds (MIW) the-
ory for interpreting quantum mechanics in terms of a large but finite number of
classical “worlds.” In the case of the MIW harmonic oscillator, an energy minimiza-
tion argument was used to derive a recursion giving the location of the oscillating
particle as viewed in each of the worlds. Hall et al. conjectured that the empirical
distribution of these locations converges to Gaussian as the total number of worlds N
increases. McKeague and Levin (2016) recently proved such a result and provided a
rate of convergence. More specifically, McKeague and Levin showed that if x1, . . . xN
is a decreasing, zero-mean sequence of real numbers satisfying the recursion relation

xn+1 = xn −
1

x1 + · · ·+ xn
, (1.1)

then the empirical distribution of the xn tends to standard Gaussian when N →∞.
Here xn represents the location of the oscillating particle in the nth world, and the
Gaussian limit distribution agrees with quantum theory for a particle in the lowest
energy (ground) state.

The energy minimizing principle only applies to the ground state, but the hy-
pothesized correspondence with quantum theory suggests that stable configurations
should also exist at higher energies in the MIW theory. Moreover, the empirical
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distributions of these configurations should converge to distributions with densities
of the form

pk(x) =
(Hk(x))2

k!
ϕ(x), x ∈ R, (1.2)

where ϕ(x) is the standard normal density,

Hek(x) = (−1)kex
2/2 d

k

dxk
e−x

2/2

is the (probabilist’s) kth Hermite polynomial, and k is a non-negative integer. The
ground state discussed above corresponds to k = 0 and has the standard Gaussian
limit. However, the question of how to characterize higher energy MIW states
corresponding to k ≥ 1 is still unresolved as far as we know.

The energy minimization approach of Hall, Deckert and Wiseman (2014) starts
with an analysis of the Hamiltonian for the MIW harmonic oscillator:

H(x,p) = E(p) + V (x) + U(x),

where the locations of particles (having unit mass) in the N worlds are specified by
x = (x1, . . . , xN) with x1 > x2 > . . . > xN , and their momenta by p = (p1, . . . , pN).
Here E(p) =

∑N
n=1 p

2
n/2 is the kinetic energy, V (x) =

∑N
n=1 x

2
n is the potential

energy (for the parabolic trap), and

U(x) =
N∑
n=1

(
1

xn+1 − xn
− 1

xn − xn−1

)2

is the hypothesized “interworld” potential, where x0 =∞ and xN+1 = −∞.
In the ground state, there is no movement because all the momenta pn have to

vanish for the total energy to be minimized. In this case, as mentioned above, Hall,
Deckert and Wiseman (2014) showed that the particle locations xn satisfy (1.1) and
McKeague and Levin (2016) showed that the empirical distribution tends to a stan-
dard Gaussian distribution. However, when the total energy is greater than in the
ground state, the particles will move in a complex manner governed by Hamilton’s
equations, and a study of the time-dependent behavior of the system would require
numerically solving these equations. ODE solvers that preserve the total energy
of a Hamiltonian system (known as symplectic integrators) are readily available,
but the actual solutions are analytically intractable. Therefore, the problem of iso-
lating stationary solutions of the MIW harmonic oscillator to serve as parallels to
higher-energy states (eigenstates) of the quantum harmonic oscillator appears to be
analytically intractable.

Our proposed way around this impasse is to formulate a definition of MIW higher
energy states based on a distributional fixed point property that has an analogous
interpretation to the eigenstates of quantum theory. For the ground state, our
approach leads to the same result as the existing MIW solution (1.1). We will focus
on the second stationary state (the case k = 1), and obtain a recursion for the
particle position that is in asymptotic agreement with the corresponding eigenstate
of quantum theory. More specifically, we show that the fixed point property in this
case leads to the recursion

x3n+1 = x3n − 3N(N − 1)−1

(
n∑
i=1

1

xi

)−1
, (1.3)
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and that if x1, . . . , xN is a decreasing, zero-mean solution, then the empirical distri-
bution of the xn converges to the (two-sided) Maxwell distribution having density
p1(x) = x2e−x

2/2/
√

2π. We also give a rate of convergence using a new extension
of Stein’s method. Our approach is generalizable to recursions that converge to
the distributions of other higher energy states of the quantum harmonic oscillator,
although we do not pursue such extensions here.

Stein’s method (see Stein (1986), Chen, Goldstein and Shao (2010) and Ross
(2011)) is a well established technique for obtaining explicit error bounds for dis-
tributional limit theorems. The usual “density approach” (see Chatterjee and Shao
(2011)) for applying Stein’s method to arbitrary random variables does not seem
to apply in cases where the density function vanishes at a point (here we have
p1(0) = 0); in this case the solution to the Stein equation will have a singularity and
unbounded smoothness, and this therefore requires the new technique we give here
to handle such distributions.

If MIW theory is to provide a satisfactory interpretation of quantum mechanics,
it needs to “explain” how measurements arise from particular states of the system.
In the classical Copenhagen interpretation of quantum mechanics, when position is
measured the wave function is viewed as being projected onto a random eigenstate
(“wave function collapse”). Eigenstates for position are fixed points of the Hamil-
tonian (operator) after normalization by the corresponding eigenvalue, which is in
parallel to our idea of a MIW distributional fixed point, as introduced below. It
is therefore reasonable to expect that a MIW measurement consisting of a random
draw from the empirical distribution of x1, . . . , xN should agree in the limit with the
distribution of the corresponding eigenstate. In the sequel we refer to such sequences
x1, . . . , xN as canonical configurations.

To formalize the idea of a canonical configuration, in Section 2 we introduce the
notion of a generalized zero-bias transformation, and show that the distributional
properties of eigenstates of the quantum harmonic oscillator can be characterized in
terms of fixed points of this transformation. Next, we derive the generalized zero-
bias distribution for an empirical distribution on general configurations. In Section
3 we introduce the idea of a canonical configuration by stipulating that a smoothed
version of its empirical distribution satisfies a fixed point property for the corre-
sponding generalized zero-bias transformation. Section 4 develops general methods
aimed at showing convergence of empirical distributions on canonical configurations
based on the new extension of Stein’s method.

2 GENERALIZED ZERO-BIAS TRANSFORMATIONS

Let W be a symmetric random variable and b : R→ R a non-negative function such
that σ2 = E[W 2/b(W )] < ∞. Goldstein and Reinert (1997) gives a distributional
fixed point characterization of the Gaussian distribution, which we generalize in the
definition below.

Definition 2.1. If there is a random variable W ? such that

σ2
E

[
f ′(W ?)

b(W ?)

]
= E

[
Wf(W )

b(W )

]
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for all absolutely continuous functions f : R→ R such that E|Wf(W )/b(W )| <∞,
we say that W ? has the b-generalized-zero-bias distribution of W .

Remark 2.2. Goldstein and Reinert (1997) study the case b(x) = 1 and show that
W ? has the same distribution as W if and only if W has a Gaussian distribution.
Distributional fixed point characterizations for exponential, gamma and other non-
negative distributions and the connection with Stein’s method have been studied in
Peköz and Röllin (2011), Peköz, Röllin and Ross (2013a), and Peköz, Röllin and
Ross (2015).

Remark 2.3. By a routine extension of the proof of Proposition 2.1 of Chen, Gold-
stein and Shao (2010), it can be shown that there exists a unique distribution for
W ?, and it is absolutely continuous with density

p?(x) =
b(x)

σ2
E

[
W

b(W )
1W>x

]
.

We note in passing that the σ2 is misplaced in the first display of Chen et al.’s propo-
sition, which corresponds to b(x) = 1, the usual zero-bias distribution of W . The
composition of the b-generalized-zero-bias transformation with the (1/b)-generalized-
zero-bias transformation is the usual zero-bias transformation.

Remark 2.4. With b a ϕ-integrable function, if W has density

p(x) = b(x)ϕ(x), (2.1)

then its distribution is a fixed point for the b-generalized-zero-bias transformation,
since

σ2 =

∫ ∞
−∞

t2

b(t)
p(t) dt =

∫ ∞
−∞

t2ϕ(t) dt = 1

and

p?(x) = b(x)

∫ ∞
x

t

b(t)
p(t) dt = b(x)

∫ ∞
x

tϕ(t) dt = p(x).

The following result gives the b-generalized-zero-bias distribution of the uniform
distribution on N points.

Proposition 2.5. Given an integer N > 1, let x1 > x2 > . . . > xN be such that
b(xn) > 0 for all n. Let PN be the empirical distribution of the xn:

PN(A) =
#{n : xn ∈ A}

N

for any Borel set A ⊂ R. Under the symmetry condition xn = xN−n+1 for n =
1, . . . , N , the b-generalized-zero-bias distribution P?N of PN is defined, and has density

p?(x) = b(x)

[
n∑
i=1

xi
b(xi)

][
N∑
j=1

x2j
b(xj)

]−1

for xn+1 < x ≤ xn (n = 1, . . . , N − 1), and p?(x) = 0 if x > x1 or x ≤ xN .
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Proof. Immediate from the definition of the b-generalized-zero-bias density.

Recall the following distances between distribution functions F and G. The
Kolmogorov distance is

dK(F,G) = sup
x∈R
|F (x)−G(x)|,

and the Wasserstein distance is

dW(F,G) = sup
h∈H

∣∣∣∣∫
R

h dF −
∫
R

h dG

∣∣∣∣
where

H = {h : R→ R Lipschitz with ‖h′‖ 6 1}

and ‖ · ‖ is the supremum norm. By assembling results from Gibbs and Su (2002),
these two metrics are seen to be related by

dK(F,G) 6 1.74
√
dW(F,G).

Restricting attention to the special case b(x) = x2, we can now state our main
result, along with an important corollary.

Theorem 2.6. Suppose W ? is constructed on the same probability space as the zero-
mean random variable W and is distributed according to the x2-generalized-zero-bias
distribution of W . Let Z have the two-sided Maxwell density x2e−x

2/2/
√

2π. Then
there exist positive finite constants c1, c2, c3 and c4 such that

dW(L (W ),L (Z)) ≤ c1E |W −W ?|+ c2E [|W | |W −W ?|]

+ c3E
∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣+ c4E
∣∣∣∣1− W ?

W

∣∣∣∣ . (2.2)

Proof. The result follows immediately from Theorem 4.3 below.

The following corollary gives a rate of convergence of the solution to (1.3) to the
two-sided Maxwell distribution in terms of the Wasserstein distance; we postpone
the proof until Section 4.3.

Corollary 2.7. Suppose x1, . . . xN is a monotonic, zero-mean, finite sequence of
real numbers satisfying (1.3), let PN be the empirical distribution of these values,
and let Z be as in Theorem 2.6. Then there is a constant c > 0 such that

dW(PN ,L (Z)) ≤ c

√
logN

N
.

3 CANONICAL CONFIGURATIONS

As discussed in the Introduction, we will formulate a suitable definition of a canonical
configuration {xn, n = 1, . . . , N} based on a fixed point property. Our proposed
approach is to adapt the b-generalized-zero-bias transformation to this purpose.
Note from Proposition 2.5 that PN (being a discrete distribution) can never be
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a fixed point of the b-generalized-zero-bias transformation (since P?N is absolutely
continuous). Nevertheless, by mapping PN and P?N to slightly smoother forms we
can achieve a fixed point definition as follows. Consider the following smoothed
version P̃N of PN defined by the piecewise-constant density

p̃(x) = [(N − 1)(xn − xn+1)]
−1

for xn+1 < x ≤ xn. We will refer to P̃N as the local-smooth of PN . Similarly, define
the local-smooth P̃?N of the b-generalized-zero-bias distribution P?N by the piecewise-
constant density

p̃?(x) = b̃(x)

[
n∑
i=1

xi
b(xi)

][
N∑
j=1

x2j
b(xj)

]−1
,

where

b̃(x) =

∫ xn

xn+1

b(u) du
[
xn − xn+1

]−1
for xn+1 < x ≤ xn. Here b̃ is the approximation to b that minimizes the L2-norm
under the restriction that its integral over each interval (between successive xn)
agrees with that of b. This leads to our definition of a canonical configuration based
on the fixed point property of the b-generalized-zero-bias transformation after local
smoothing.

Definition 3.1. A configuration {xn, n = 1, . . . , N} with x1 > x2 > . . . > xN
is b-canonical if it is symmetric and the local-smooth of its empirical distribution
PN coincides with the local-smooth of its b-generalized-zero-bias distribution, i.e.
P̃N = P̃?N .

We surmise that in MIW quantum theory, such canonical configurations play an
analogous role to the eigenstates of standard quantum theory. Combining the above
expressions, the existence of a b-canonical configuration is now seen to reduce to
showing the existence of a symmetric solution to the recursion relation∫ xn

xn+1

b(u) du =
1

N − 1

[
N∑
j=1

x2j
b(xj)

][
n∑
i=1

xi
b(xi)

]−1
(3.1)

for n = 1, . . . , N − 1.
For the ground state of the MIW harmonic oscillator (k = 0), we have b(x) = 1

and p? = p̃, and the recursion relations (3.1) takes the simple form (1.1) under the
normalization condition

∑N
j=1 x

2
j = N−1. As shown by McKeague and Levin (2016),

there is a unique decreasing zero-mean solution to this recursion, which coincides
with the unique ground state of the system, and that satisfies the normalization
condition and is symmetric.

For the second energy state of the MIW harmonic oscillator (k = 1) we have
b(x) = x2. In this case, we can only apply the recursion when N is even; if N is
odd, the median m = x(N+1)/2 vanishes under symmetry, so b(m) = 0. When N is
even, the median m = (xN/2 + x(N/2)+1)/2 also vanishes under symmetry (and the
converse is also true, as we show below), but in this case b(xn) never vanishes. The
recursion (3.1) simplifies to (1.3). Fig. 1 displays the density p̃ having mass 1/(N−1)
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uniformly distributed over the intervals between successive xn, compared with the
Maxwell density p1(x) = x2ϕ(x). For higher-order energy states with k ≥ 2, it is
not possible to solve the recursions explicitly, but they can be solved numerically.
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Figure 1: Example with b(x) = x2, N = 22, showing the piecewise constant density p̃ of
P̃N , the local-smooth of PN , compared with the Maxwell density, where the breaks in the
histogram are the successive xn satisfying the recursion (1.3).

The following lemma provides the basic properties we need to ensure the exis-
tence of a canonical configuration as a solution of the Maxwell recursion (1.3), as
well as ensuring that the solution is unique. This result is analogous to Lemma 1 of
McKeague and Levin (2016) concerning solutions of (1.1), but the difference here is
that the variance is 3, agreeing with the Maxwell distribution (rather than close to
standard normal in the case of (1.1)).

Lemma 3.2. Suppose N is even. Every zero-median solution x1, . . . , xN of (1.3)
satisfies:

(P1) Zero-mean: x1 + . . .+ xN = 0.

(P2) Maxwell variance: x21 + . . .+ x2N = 3N .

(P3) Symmetry: xn = −xN+1−n for n = 1, . . . , N .

Further, there exists a unique solution x1, . . . , xN such that (P1) and

(P4) Strictly decreasing: x1 > . . . > xN

hold. This solution has the zero-median property, and thus also satisfies (P2) and
(P3).

Proof. The proof follows identical steps to the proof of Lemma 1 of McKeague and
Levin (2016), apart from the variance property (P2), which is proved using (P1)
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and (P3) as follows. Denote Sn =
∑n

i=1 x
−1
i for n = 1, . . . , N , and set S0 = 0. Using

(1.3) we can write

3N =
3N

N − 1

N−1∑
n=1

SnS
−1
n =

N−1∑
n=1

Sn(x3n − x3n+1) =
N−1∑
n=1

[(Sn−1 + x−1n )x3n − Snx3n+1]

=
N−1∑
n=1

[Sn−1x
3
n − Snx3n+1 + x2n]

= x21 + . . .+ x2N−1 − SN−1x3N ,

where we used the recursion in the second equality, and the last equality is from a
telescoping sum. (P3) implies SN = 0, so −SN−1 = 1/xN , and (P2) follows.

4 THE STEIN EQUATION AND ITS SOLUTIONS

4.1 General considerations

Let X have a density as in (2.1). The first step is to identify an appropriate “Stein
equation” and bound its solutions. Let h̃ be such that E[h̃(X)] = 0. There are
many possible starting points. The well known “density approach” (see Chatterjee
and Shao (2011)) starts with the Stein equation

f ′(x) +
p′(x)

p(x)
f(x) = h̃(x)

which is easily solved to yield

f(x) =
1

b(x)ϕ(x)

∫ ∞
x

h̃(u)b(u)ϕ(u) du.

If b vanishes at a point, as it does in the two-sided Maxwell case where b(0) = 0,
then this solution f will have a singularity and we cannot carry on with the usual
program for applying Stein’s method. For these types of distributions we propose
a new approach; the price we pay here is the necessity to bound several additional
quantities concerning the couplings we obtain. The explicit nature of the recursion
here allows us to compute these quantities.

In view of Definition 2.1 it is natural to consider the Stein equation

f ′(w)

b(w)
− wf(w)

b(w)
= h̃(w) (4.1)

which can be solved using the usual normal approximation solution, but the resulting
estimates will again rest on properties of f/b which is unbounded in the cases we
are interested in. Because of this, we introduce an original route which leads to the
correct order bounds we are seeking.

First, following Ley, Reinert and Swan (2016) we introduce the integral operator
associated to the Gaussian density:

h̃ 7→ T −1ϕ h̃(w) :=
1

ϕ(w)

∫ ∞
w

h̃(u)ϕ(u) du
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(called the “Gaussian Stein inverse operator”), which maps functions with Gaussian-
mean zero and sufficiently well behaved tails into bounded functions. Next define
the “Stein kernel” of X (or, equivalently, of p) by

τX(x) =
1

p(x)

∫ ∞
x

up(u) du.

The Stein kernel satisfies the integration by parts formula

E [τX(X)f ′(X)] = E [Xf(X)] (4.2)

for all sufficiently regular functions f .

Remark 4.1. As mentioned in the Introduction, our concern in this paper is with

symmetric densities of the form pk(x) =
H2

k(x)

k!
ϕ(x) := bk(x)ϕ(x). The Stein kernel of

such a pk is τk(x) =
∫∞
x
uH2

k(u)ϕ(u) du/(ϕ(x)H2
k(x)), k ≥ 0, and direct integration

leads to

τ1(x) =
x2 + 2

x2
, τ2(x) =

x4 + 2x2 + 5

(x2 − 1)2
, τ3(x) =

x6 + 9x2 + 18

(x3 − 3x)2
. (4.3)

The next Proposition below applies to general densities, but in the following sections
we focus on further results for the special case τ1(x).

We aim to assess the proximity between the law of X and some W by estimating
the Wasserstein distance between their distributions. Suppose that there exists a
W ? following the b-generalized-zero-bias distribution of W and defined on the same
probability space as W . To each integrable test function h we associate the function
f := fh, the solution to (4.1) with h̃ = h−Eh(X). This association is unique in the
sense that there exists only one absolutely continuous version of f satisfying (4.1)
at all points x, see e.g. Chen, Goldstein and Shao (2010). We then write (supposing
here and in the sequel that σ2 = 1)

E [h(W )]−E [h(X)] = E

[
f ′(W )

b(W )
−W f(W )

b(W )

]
= E

[
f ′(W )

b(W )
− f ′(W ?)

b(W ?)

]
. (4.4)

As mentioned above, the function f in (4.4) is not necessarily sufficiently well-
behaved for our purposes. We will therefore use the following alternative approach.

Proposition 4.2. Let x 7→ b(x) be a nonnegative even function with support in
(−∞,∞) such that limx→±∞ b(x)ϕ(x) = 0. Suppose furthermore that b is absolutely
continuous and integrable w.r.t. ϕ with integral

∫∞
−∞ b(x)ϕ(x) dx = 1. Let X be a

random variable with density x 7→ b(x)ϕ(x). Then

τX(x) = 1 +
T −1ϕ b′(x)

b(x)
(4.5)

under the convention that the ratio is set to zero at all points x such that b(x) = 0
and T −1ϕ b′(x) 6= 0. Further, with h̃ defined by (4.1),

gh(x) =

∫∞
x
b(u)h̃(u)ϕ(u) du

b(x)ϕ(x) +
∫∞
x
b′(u)ϕ(u) du

(4.6)
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is the unique bounded solution of the ODE

τX(x)g′(x)− xg(x) = h̃. (4.7)

Proof. The first claim (as well the necessary conditions under which this claim holds)
follows from integrating by parts in the identity∫ +∞

x

yp(y) dy =

∫ ∞
x

b(y)(−ϕ′(y)) dy.

To see the second claim note how any bounded solution to (4.7) must be of the form

g(x) =
1

τX(x)ϕ(x)b(x)

∫ ∞
x

h̃(y)b(y)ϕ(y) dy,

so that the claim follows by applying (4.5).

Intuition (supported e.g. by Stein (1986, Lesson VI) or the more recent work
Döbler (2015)) encourages us to claim that functions such as (4.6) will have satis-
factory behavior. It is thus natural to seek a connection between equations of the
form (4.1) and (4.7). To this end we introduce a function g = gf , say, such that

f ′(x)− xf(x)

b(x)
= τX(x)g′(x)− xg(x).

Since
f ′(x)− xf(x)

b(x)
=

(f(x)ϕ(x))′

b(x)ϕ(x)

and

τX(x)g′(x)− xg(x) =
(b(x)τX(x)g(x)ϕ(x))′

b(x)ϕ(x)

at all x for which b(x) 6= 0, we deduce that f and g are mutually defined by
f = (bτX)g. This in turn gives

f ′(x)

b(x)
=

(
b′(x)

b(x)
τX(x) + τ ′X(x)

)
g(x) + τX(x)g′(x) =: ψ(x)g(x) + τX(x)g′(x)

which, combined with ψ(x) = x(τX(x)− 1) (that is easily derived using the various
definitions involved), leads to the useful identity

f ′(x)

b(x)
= x(τX(x)− 1)g(x) + τX(x)g′(x). (4.8)

Plugging (4.8) into (4.4), we finally obtain

E [h(W )]−E [h(X)] = E [W (τX(W )− 1)g(W )−W ?(τX(W ?)− 1)g(W ?)]

+E [τX(W )g′(W )− τX(W ?)g′(W ?)] . (4.9)

It then remains to find bounds on the two terms on the rhs of (4.9).
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4.2 Approximating the two-sided Maxwell distribution

Theorem 4.3. Let b(x) = x2, p(x) = x2ϕ(x), and take f to be a solution of the
Stein equation

f ′(w)/b(w)− wf(w)/b(w) = h̃(w), (4.10)

where h̃ a function having bounded first derivative and zero-mean under p. Then
there exist positive finite constants λ1, λ2, λ3 and λ4 such that∣∣∣∣E [f ′(W )

(W )2
− f ′(W ?)

(W ?)2

]∣∣∣∣ ≤ λ1E |W −W ?|+ λ2E [|W | |W −W ?|]

+ λ3E
∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣+ λ4E
∣∣∣∣1− W ?

W

∣∣∣∣ . (4.11)

These constants are

λ1 = ‖χ‖, λ2 = ‖χ′‖, λ3 = 2 (‖g‖+ ‖χ‖) and λ4 = 2 (‖g′‖+ ‖χ′‖)

where

g(x) =

∫∞
x
h̃(u)p(u) du(

1 + 2
x2

)
p(x)

and χ(x) =
g′(x)

x
. (4.12)

Proof. If b(x) = x2 then τX(x) = 1 + 2/x2 and ψ(x) = 2/x so that (4.9) becomes

= E
[

2

W ?
g(W ?)− 2

W
g(W )

]
+ E

[(
1 +

2

(W ?)2

)
g′(W ?)−

(
1 +

2

(W )2
g′(W )

)]
= 2E

[(
1

W ?
− 1

W

)
g(W ?)

]
+ 2E

[
1

W
(g(W ?)− g(W ))

]
+ E [g′(W ?)− g′(W )] + 2E

[
1

(W ?)2
g′(W ?)− 1

(W )2
g′(W )

]
.

The first two terms are dealt with easily to get

2

∣∣∣∣E [( 1

W ?
− 1

W

)
g(W ?)

]
+ 2E

[
1

W
(g(W ?)− g(W ))

]∣∣∣∣
≤ 2‖g‖E

[∣∣∣∣ 1

W ?
− 1

W

∣∣∣∣]+ 2‖g′‖E
[

1

|W |
|W ? −W |

]
.

For the last two terms we introduce the function

χ(x) = g′(x)/x

to get on the one hand

E [g′(W ?)− g′(W )] = E
[
W ? g

′(W ?)

W ?
−W g′(W )

W

]
= E [(W ? −W )χ(W ?)] + E [W (χ(W ?)− χ(W ))]

so that

|E [g′(W ?)− g′(W )]| ≤ ‖χ‖E [|W ? −W |] + ‖χ′‖E [|W (W ? −W )|]

11



and, on the other hand

E
[

1

(W ?)2
g′(W ?)− 1

(W )2
g′(W )

]
= E

[
1

W ?
χ(W ?)− 1

W
χ(W )

]
= E

[(
1

W ?
− 1

W

)
χ(W ?)

]
+ E

[
1

W
(χ(W ?)− χ(W ))

]
so that

2

∣∣∣∣E [ 1

(W ?)2
g′(W ?)− 1

(W )2
g′(W )

]∣∣∣∣ ≤ 2‖χ‖E
[∣∣∣∣ 1

W ?
− 1

W

∣∣∣∣]+ 2‖χ′‖E
[

1

|W |
|W ? −W |

]
.

Combining these different estimates we obtain (4.11). The finiteness of the constants
λ1, λ2, λ3 and λ4 follows from Proposition 4.4 below.

It remains to bound λ1, λ2, λ3 and λ4 in a non trivial way. First note that if
X ∼ p then E[h(X)] = E[N2h(N)] with N ∼ ϕ a standard Gaussian random
variable. It will be useful to rewrite g as

g(x) =
g0(x)

x2 + 2
, (4.13)

with g0 a solution to the Stein equation

g′0(x)− xg0(x) = x2
(
h(x)−E[N2h(N)]

)
. (4.14)

Such a function g0 exists because∫ ∞
−∞

u2
(
h(u)−E[N2h(N)]

)
ϕ(u) du = E[N2h(N)]−

∫ ∞
−∞

u2ϕ(u) duE[N2h(N)] = 0,

so (4.14) does indeed possess a solution. The following identity will be useful:

ex
2/2

∫ ∞
x

u2e−u
2/2 du = x+ ex

2/2

∫ ∞
x

e−u
2/2 du (4.15)

(this follows e.g. by integration by parts). We are now ready to provide bounds on
‖g‖, ‖g′‖, ‖χ‖ and ‖χ′‖.

Proposition 4.4. Let h be integrable with respect to x2ϕ(x), let h̃ = h−EN2h(N)
and set c0 = ‖h̃‖ and c1 = ‖h′‖ if h is absolutely continuous, c1 = +∞ otherwise.
Then

λ1 = ‖χ‖ ≤ 2 min(c0, 2c1) + min
(
c0,
√

2/π
)
,

λ2 = ‖χ′‖ ≤ 4 min(c0, c1) +
√

2/π +
c1
2
,

λ3 = 2(‖g‖+ ‖χ‖) ≤ 8 min(c0, 2c1) + 2 min
(
c0,
√

2/π
)
,

λ4 = 2(‖g′‖+ ‖χ′‖) ≤ 8 min(c0, c1) + 2
√

2/π + c1.

12



Proof. Step 1: a bound on ‖g‖. It follows (by a similar argument as Chen, Goldstein
and Shao (2010, Proof of Lemma 2.4, page 39)) that

|g0(x)| ≤
{
ex

2/2
∫ x
−∞ u

2|h̃(u)|e−u2/2 du if x ≤ 0

ex
2/2
∫∞
x
u2|h̃(u)|e−u2/2 du if x ≥ 0

≤ ex
2/2 min

(
c0

∫ ∞
|x|

u2e−u
2/2 du, c1

∫ ∞
|x|

u2
(
|u|+ 2

√
2/π
)
e−u

2/2 du

)
.

Using (4.15) for the first term and a similar argument for the second term we can
rewrite the above as

|g0(x)| ≤ min

{
c0

(
|x|+ ex

2/2

∫ ∞
|x|

e−u
2/2 du

)
,

c1

(
x2 + 2

√
2

π
|x|+ 2 + ex

2/2

∫ ∞
|x|

e−u
2/2 du

)}
.

Applying the well-known bound

ex
2/2

∫ ∞
|x|

e−u
2/2 du ≤

√
π/2

we get

|g0(x)| ≤ min

{
c0

(
|x|+

√
π

2

)
, c1

(
x2 + 2

√
2

π
|x|+ 2 +

√
π

2

)}
.

Finally using the easily established facts

|x|+
√
π/2

x2 + 2
≤ 1 and

x2 + 2
√

2
π
|x|+ 2 +

√
π
2

x2 + 2
≤ 2

we can conclude

|g(x)| =
∣∣∣∣ g0(x)

x2 + 2

∣∣∣∣ ≤ min (c0, 2c1) (4.16)

and thus (we multiply the first term by 2 in order to simplify future expressions)

‖g‖ ≤ 2 min (c0, c1) . (4.17)

Step 2: a bound on ‖g′‖. Taking the derivative of (4.13) we get

g′(x) =
g′0(x)

x2 + 2
− 2x

(x2 + 2)2
g0(x).

We bound the two terms separately. For the second we use the fact that

|2x|
x2 + 2

≤
√

2

2
≤ 1

13



so that ∣∣∣∣ 2x

(x2 + 2)2
g0(x)

∣∣∣∣ ≤ |g0(x)|
x2 + 2

and we can apply (4.16). For the first term we again follow Chen, Goldstein and
Shao (2010, Proof of Lemma 2.4, page 39) to conclude that

|g′0(x)|
x2 + 2

≤ x2

x2 + 2

∣∣h(x)−E[N2h(N)]
∣∣+ c0

x

x2 + 2
xex

2/2

∫ ∞
x

u2e−u
2/2 du.

A similar argument holds for x ≤ 0 and we conclude∣∣∣∣ g′0(x)

x2 + 2

∣∣∣∣ ≤ 2c0. (4.18)

If h is only absolutely continuous then we need to adapt the corresponding part
of Chen, Goldstein and Shao (2010, Proof of Lemma 2.4, page 39). Following this
proof we obtain the bound

|g′0(x)|
x2 + 2

≤ c1

(
x2 −

√
2πxex

2/2(1− Φ(x))
∫ x
−∞ y

2ϕ(y) dy
)

x2 + 2

+ c1

(
x2 +

√
2πxex

2/2Φ(x)
∫∞
x
y2ϕ(y) dy

)
x2 + 2

≤ 2c1 (4.19)

(here we use the notation Φ(x) =
∫ x
−∞ ϕ(y) dy). Combining (4.18) and (4.19) we

conclude ∣∣∣∣ g′0(x)

x2 + 2

∣∣∣∣ ≤ min(2c0, 2c1). (4.20)

Combining (4.20) and (4.16) leads to

‖g′‖ ≤ 4 min(c0, c1). (4.21)

Step 3: a bound on χ(x) = g′(x)/x. Using (4.14) we know that

g′(x) =
g′0(x)

x2 + 2
− 2x

(x2 + 2)2
g0(x)

=
xg0(x) + x2 (h(x)−E[N2h(N)])

x2 + 2
− 2x

(x2 + 2)2
g0(x)

so that

χ(x) =

(
1− 2

x2 + 2

)
g0(x)

x2 + 2
+

x

x2 + 2

(
h(x)−E[N2h(N)]

)
.

Using ∣∣∣∣1− 2

x2 + 2

∣∣∣∣ ≤ 1

14



as well as (4.16) we deduce

‖χ‖ ≤ min(c0, 2c1) +

∥∥∥∥ x

x2 + 2

(
h(x)−E[N2h(N)]

)∥∥∥∥ .
Also ∥∥∥∥ x

x2 + 2

(
h(x)−E[N2h(N)]

)∥∥∥∥ ≤ min

(
|x|

x2 + 2
c0,

|x|
x2 + 2

(c1|x|+ 2
√

2/π

)
≤ min

(c0
2
, c1 +

√
2/π
)

(4.22)

so that
‖χ‖ ≤ 2 min(c0, 2c1) + min

(
c0,
√

2/π
)
. (4.23)

Step 4: a bound on ‖χ′‖. Direct computations yield

χ′(x) = −2x(x2 − 2)

(x2 + 2)2
g0(x)

x2 + 2
+

(
1− 2

x2 + 2

)
g′0(x)

x2 + 2

+
2− x2

x2 + 2

1

x2 + 2

(
h(x)−E[N2h(N)]

)
+

x

x2 + 2
h′(x).

Using
|2x(x2 − 2)|

(x2 + 2)2
≤ 1,

∣∣∣∣1− 2

x2 + 2

∣∣∣∣ ≤ 1 and
2− x2

x2 + 2
≤ 1

as well as (4.16) and (4.20) and a bound similar to (4.22) we get

‖χ′‖ ≤ min(c0, 2c1) + 2 min(c0, c1) + min
(c0

2
, c1 +

√
2/π
)

+
c1
2
.

which we approximate (rather roughly) with

‖χ′‖ ≤ 4 min(c0, c1) +
√

2/π +
c1
2
. (4.24)

Remark 4.5. It can be seen that g′′ is not bounded. Also throughout the proof we
imposed no condition on the derivative of h and it is only at the very last step (in
the bound (4.24)) that we restrict to smooth test functions.

4.3 Verifying the moment conditions

In this section we find bounds on the moments in Theorem 2.6 in order to prove
Corollary 2.7. We will make use of the following lemma.

Lemma 4.6. If x1, . . . , xN is the unique strictly decreasing zero-mean solution of
(1.3), then x1 = O(

√
logN).
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Proof. To simplify the notation, note that it suffices to consider the rescaled recur-
sion x3n+1 = x3n−S−1n , where Sn is defined in the proof of Lemma 3.2. By expressing
x31 as a telescoping sum,

x31 =
m−1∑
n=1

(x3n−x3n+1)+x3m =
m−1∑
n=1

S−1n +x3m ≤
m−1∑
n=1

(n/x1)
−1+x3m ≤ x1(1+logm)+x3m,

where we have used Euler’s approximation to the harmonic sum for the last inequal-
ity. By the variance property (P2) (in this rescaled case x21 + . . .+ x2N = N − 1) we
have that x1 is bounded away from zero (as a sequence indexed by N) and xm is
bounded, so x2m/x1 is bounded. Dividing the above display by x1, we then obtain
x1 = O(

√
logN).

We now prove Corollary 2.7.

Proof. (of Corollary 2.7)). From Lemma 4.6 we have

E|W −W ?| ≤ 1

N − 1

N−1∑
n=1

(xn − xn+1) =
2x1
N − 1

= O

(√
logN

N

)
. (4.25)

Second, using |W | ≤ x1 = O(
√

logN) it follows immediately that

E[|W ||W −W ?|] = O

(
logN

N

)
.

Third, the zero-median property gives

2x3m = x3m − x3m+1 = S−1m ≥ (m/xm)−1 = xm/m,

where m = N/2 + 1, so xm ≥ 1/
√
N . By symmetry

E

∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣ = E

∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣ 1W ?∈(xm+1,xm] + 2
m−1∑
n=1

E

∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣ 1W ?∈(xn+1,xn].

From its definition, p?(x) ∝ x2 for x ∈ (xm+1, xm] and puts total mass 1/(N − 1) on
that interval, so the first term above can be written

6

x3m(N − 1)

∫ xm

0

(
1

x
− 1

xm

)
x2 dx ≤ 3

xm(N − 1)
= O

(
1√
N

)
.

The second term is bounded above by the telescoping sum

2

N − 1

m−1∑
n=1

(
1

xn+1

− 1

xn

)
=

2

N − 1

(
1

xm
− 1

x1

)
= O

(
1√
N

)
,

so we have

E

∣∣∣∣ 1

W
− 1

W ?

∣∣∣∣ = O

(
1√
N

)
.

Fourth,

E

∣∣∣∣1− W ?

W

∣∣∣∣ ≤ √N E|W −W ?| = O

(√
logN

N

)
using |W | ≥ xm ≥ 1/

√
N and (4.25). The Corollary follows now from Theorem

2.6.
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C. Döbler (2015). Stein’s method of exchangeable pairs for the beta distribution
and generalizations, Electron. J. Probab. 20, 1–34.

A. L. Gibbs, and F. E. Su. (2002). On choosing and bounding probability metrics.
International Statistical Review 70, 419–435.

L. Goldstein and G. Reinert (1997). Stein’s method and the zero bias transformation
with application to simple random sampling. Ann. Appl. Probab. 7, 935–952.

M. J. W. Hall, D. A. Deckert and H. M. Wiseman (2014). Quantum phenomena
modeled by interactions between many classical worlds. Phys. Rev. X 4, 041013.

C. Ley, G. Reinert and Y. Swan (2016). Stein’s method for comparison of univariate
distributions http://arxiv.org/abs/1408.2998

I. W. McKeague and B. Levin (2016). Convergence of empirical distributions in
an interpretation of quantum mechanics. http://arxiv.org/abs/1412.1563, Ann.
Appl. Probab. to appear.
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E. Peköz, A. Röllin and N. Ross (2013a). Degree asymptotics with rates for prefer-
ential attachment random graphs. Ann. Appl. Probab. 23, 1188–1218.
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