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Abstract
Fix some n ∈ N and let X1, X2, . . . , Xn be independent random

variables drawn from the uniform distribution on [0, 1]. A decision
maker is shown the variables sequentially and, after each observation,
must decide whether or not to keep the current one, with payoff the
overall rank of the selected observation. Decisions are final: no recall
is allowed, no regret is tolerated. The objective is to act in such a
way as to minimize the expected payoff. In this note we give the ex-
plicit solution to this problem, known as Robbins’ problem of optimal
stopping, when n = 4.

1 Introduction
Robbins’ problem (of optimal stopping) consists in studying the mathemat-
ical properties of the optimal strategy in the following sequential selection
problem.

Fix some n ∈ N and let X1, X2, . . . , Xn be independent random
variables drawn from the uniform distribution on [0, 1]. A de-
cision maker is shown the variables sequentially and, after each
observation, must decide whether or not to keep the current one.
The payoff is Rk, the overall rank of the selected observation, with
the convention

Rk =
n∑
i=1

I(Xi ≤ Xk)

(and I(A) the indicator function of A). Decisions are final: no
recall is allowed, no regret is tolerated. The total number of ob-
servations is known to the decision maker. The objective is to
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act in such a way as to minimize the expected overal rank of the
selected observation.

In the sequel we use the shorthand RP (n) to refer to the above problem
with n arrivals. Solving Robbins’ problem consists in describing τ ?n, the
optimal stopping rule, computing v(n), the optimal expected rank obtainable
with n observations, understanding the main traits of τ ?n as n grows large
and obtaining the limiting value limn→∞ v(n) = v. Coaxed by Prof. Herbert
Robbins in the early 1990’s (see Bruss 2005), several independent teams
devoted a significant amount of effort on this seemingly innocuous problem.
All have come to the conclusion that the problem is “very hard”. So much
so that a complete solution to Robbins’ problem still eludes us to this date.

Robbins and coauthors (see Chow et al. 1964) solve a no-information
version of the problem, in which the decision maker is not given the values
of the observations but only their relative ranks. Denoting W (n) the cor-
responding expected rank, Chow et al. (1964) provide the optimal strategy
and manage an analytic tour de force to prove that W (n)→ W ≈ 3.8695, as
n→∞. Clearly W (n) ≥ v(n) for all n ≥ 1, and hence we deduce that

v ≤ 3.8695.

Of course the full-information RP (n) is much more favorable to the decision
maker and we thus expect v(n) and v to be, in fact, much smaller thanW (n)
and W , respectively.

Taking advantage of the knowledge of the values of the arrivals it is nat-
ural to consider the class of stopping rules of the form

τ (n) = inf
{
k ≥ 1 |Xk ≤ c

(n)
k

}
, (1)

which we will call memoryless threshold rules. Bruss and Ferguson (1996)
prove that there exists a unique optimal sequence (that is, optimal among
memoryless threshold rules) which is stepwise increasing in n. Also it is
shown in Assaf and Samuel-Cahn (1996) and in Bruss and Ferguson (1993)
that if τ (n) is given by a sequence of increasing thresholds 0 < a1 ≤ a2 ≤
. . . ≤ an = 1, then

E (Rτ (n)) = 1 + 1
2

n−1∑
k=1

(n− k)a2
k

k−1∏
j=1

(1− aj) + 1
2

n∑
k=1

k−1∏
j=1

(1− aj)
k−1∑
j=1

(ak − aj)2

1− aj

with Rτ (n) the rank of the observation selected by applying the stopping rule
τ (n). Clearly v(n) ≤ E (Rτ (n)) for all n. It is straightforward to optimize this
expression over all possible thresholds (at least numerically) to obtain the val-
ues for V (n) = infτ (n) E (Rτ (n)) reported in Table 1. See Bruss and Ferguson
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n 1 2 3 4 5 20 50
V 1 1.25 1.4009 1.5065 1.5861 1.9890 2.1482

Table 1: Values of the memoryless optimal expected rank

(1996, Table 1b) (up to a minor correction of a typo for their V (4)) or Bruss
and Ferguson (1993) where the computations are pushed as far as the case
n = 800. Assaf and Samuel-Cahn (1996) further explore rules based on sub-
optimal thresholds of the form a

(n)
k = ∑m

j=0 cjk
j/(n− k + c)∧ 1 and mention

numerical computations showing that for m = 2 the optimal coefficients are
c0 = 1.77, c1 = 0.54 and c2 = −0.27 yielding V = limn→∞ V (n) ≤ 2.3268 · · ·
(our conclusion is slightly different to their value 2.3267; this is perhaps due
to rounding errors in their computation) and therefore

v ≤ 2.3268

(which is already an important improvement on the optimal no-information
value). Although we still do not know the exact value of V , Bruss and
Ferguson (1993) extrapolate V = 2.32659 and Assaf and Samuel-Cahn (1996)
prove that V ≥ 2.29558, hence not much improvement on v can be hoped
for by further exploring memoryless threshold rules of the form (1).

Intriguingly we know that there must exist rules which provide strict
improvement on those of the form (1) because Bruss and Ferguson (1993)
prove that v(n) < V (n) for all n ≥ 1, i.e. even the optimal memoryless rule
is strictly sub-optimal at every n for RP (n). Meier and Sögner (2014) study
variations on the memoryless threshold rules wherein relative ranks are taken
into account and manage to lower the upper bound to obtain an expected
rank of 2.31301. This improvement is, however, not significant enough even
to answer whether or not v is strictly smaller than V or not.

Several authors (e.g. Gnedin 2007, Bruss and Swan 2009 and Gnedin
and Iksanov 2011) have considered an alternative approach to Robbins’s
problem by embedding it in a Poisson process. Gnedin (2007) proves that
the memoryless stopping rules remain sub-optimal even in a Poisson limiting
model, i.e. there must exist stopping rules which take the history of the
arrival process into account and which provide a strict improvement (even
in a Poissonian limit) on the optimal memoryless threshold rule. As can be
seen from Bruss and Swan (2009), embedding the problem in a Poisson arrival
process yields several advantages and opens several new veins of research on
this fascinating problem (see also Gnedin and Iksanov 2011) but still does
not provide satisfactory solutions to the original problem.
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Backward induction guarantees the existence of an optimal strategy τ (n)
?

and provides, in principle, a way to compute it. Hence for each n ≥ 1 there
must exist threshold functions h(n)

k : [0, 1]k−1 → [0, 1], k = 1, . . . , n − 1 such
that the optimal stopping rule is

τ (n)
? = inf

{
k |Xk ≤ h

(n)
k (X1, . . . , Xk−1)

}
.

Bruss and Ferguson (1993, 1996) prove that the threshold functions are point-
wise increasing but depend in a non-monotone way on all the values of the
previous arrivals and any loss of information results in the loss of optimal-
ity. This last point is referred to as full history dependence of the optimal
policy. A consequence is that any direct computations related to this opti-
mal strategy are fiendishly complicated and even computer simulations with
modern-day technology cannot bring any intuition even for moderate values
of n (double exponential complexity). We refer the reader to Bruss (2005)
for further information on the problem and its history.

To this date the optimal policy was only explicitly known in the case
n = 2 (basically trivial) and n = 3 (provided by Assaf and Samuel-Cahn
1996), with values v(2) = 1.25 and v(3) = 1.3915 · · · , respectively. The
purpose of this note is to provide a modest complement to the literature by
solving the case n = 4. We will derive the optimal threshold functions h(4)

1 ,
h

(4)
2 (x1) and h

(4)
3 (x1, x2), whose behaviour is a complicated function of the

past data, see Section 3 for details) and compute the value v(4) = 1.4932 · · ·
which is remarkably close to the optimal memoryless value V (4) = 1.5065
from Table 1. For the sake of completeness we also provide a proof for the
optimal strategies and values in the cases n = 2 and n = 3. As far as we can
see there is no easy way to generalize our result to higher values of n.

2 Solution for the cases n = 2 and n = 3
The case n = 2 is nearly trivial. Indeed the threshold value at step 2 must
be taken as 1, and only h1 needs to be computed (here and throughout we
drop the superscript (n) for the thresholds). Define G(h) as the expected
rank of the selected value by using a strategy with threshold h1 = h. This
expression is minimal for h1 = 1/2 and we immediately conclude v(2) = 5/4
(which is obviously the same value as V (2) in Table 1).

We now tackle the case n = 3. We know that h3 = 1 and must determine
the thresholds h1 and h2(x1). Define, in the same fashion as above, Gx1(h)
as “the expected rank of the selected variable given X1 = x1 if we start to
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play at step 2 by using a threshold value set to h”. Direct computations yield

Gx1(h) = 3
2 + h2 − h+ (1− x1)(1− h) + (h− x1)+, (2)

where y+ = max(y, 0).

Case A1

Gx1(h)

h
x1

Case A2

Gx1(h)

h
x1

Case A3

Gx1(h)

h
x1

Figure 1: The three generic situations we must study in order to find the
expression of the minimizer of Gx1 .

Minimizing in h this expected rank we find that we must distinguish three
cases (see Figure 1) to get

argmin
h∈[0,1]

Gx1(h) =


1−x1

2 if 0 ≤ x1 <
1
3 (case A1)

x1 if 1
3 ≤ x1 <

2
3 (case A2)

1− x1
2 if 2

3 ≤ x1 ≤ 1 (case A3)
, (3)

from which we deduce h2(x1), the optimal threshold at step 2.
By the optimality principle, the value of the threshold h1 must be a

solution to the indifference equation

1 + 2h1 = Gh1(h2(h1)) (4)

(i.e. the expected rank for choosing an arrival with value h1 is the same as for
continuing and acting optimally thereafter). Solutions of (4) are outside of
[0, 1] both when h1 < 1/3 (case A1) and 2/3 ≤ h1 ≤ 1 (case A3). In situation
A2 the equation becomes

1 + 2h1 = 3
2 + h2

1 − h+ (1− h1)2,

with solution h1 = (5−
√

13)/4. This leads to the same conclusion as Assaf
and Samuel-Cahn (1996), namely that the optimal thresholds for RP (3) are

h1 = 5−
√

13
4 , h2(x1) =

x1 if h1 ≤ x1 ≤ 2
3

1− x1/2 if 2
3 ≤ x1 ≤ 1
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(and h3 = 1) providing us with the value

v(3) = 341
144 −

13
48
√

13 = 1.39155 · · ·

which is remarkably close to the corresponding memoryless value V (3) in
Table 1.

3 Solution for the case n = 4
As anticipated, in this section we prove the main contribution of this note,
namely

v(4) = 1.4932 · · · . (5)

The dynamic programming approach requires to find the optimal be-
haviour at some specific step k given a length k − 1 history, by letting k go
backwards from n to 1. Our plan is thus simple : we start considering the
best action at time k = 4, then we proceed backwards and end with the case
k = 1. For each k, we fix a history X1 = x1, X2 = x2,. . . , Xk−1 = xk−1.
We know from Bruss and Ferguson (1993) that the optimal action is de-
fined by a threshold hk(x1, . . . , xk−1): keep Xk if less than hk(x1, . . . , xk−1),
otherwise discard it. Our purpose is to determine the exact expressions for
hk(x1, . . . , xk−1), k = 1, 2, 3, 4.
Step 4. Suppose that (X1, X2, X3) = (x1, x2, x3) has been observed and we
only enter the game at step 4 before learning the value of X4. Since this
is the last step, we must accept it whatever its value may be. This is the
optimal behaviour, and h4(x1, x2, x3) = 1, for all (x1, x2, x3) ∈ [0, 1]3.
Step 3. Suppose that (X1, X2) = (x1, x2) has been observed and we enter
the game at step 3 before learning the value of X3. Define Rx1,x2(h) as the
rank of a value chosen using threshold h at step 3 given the history (x1, x2).
Its expected value is

Gx1,x2(h) := E(Rx1,x2(h)), (6)

which can be computed directly to get

Gx1,x2(h) = 3
2 + h2 − h+ (2− x1 − x2)(1− h) +

2∑
i=1

(h− xi)+ (7)

where y+ = max(y, 0), for all y ∈ R. Then the optimal threshold h3(x1, x2)
must be given by

h3(x1, x2) = argmin
h∈[0,1]

Gx1,x2(h). (8)
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For each history (x1, x2), the graph of Gx1,x2(·) is composed of the reunion of
three parabolae, as illustrated in Figure 2. In this Figure we read also that
the behaviour of the minimum (mainly on which of the the three parabolae
it is to be found) depends on the region of the square [0, 1]2 the pair (x1, x2)
lies in, as illustrated in Figure 3. We do not go into detail.

Gx1,x2(h)

hx(1) x(2)

Figure 2: Graph of Gx1,x2(·) for one particular history. As in the case n = 3,
the minimum will be given by the minimizer of one of the parabolae or by
one of the past observations. In our case (n = 4), this leads to 5 cases.

Similarly as in the previous section for RP (3) we need to distinguish 5
cases, and obtain

h3(x1, x2) =



x(1) for (x1, x2) ∈ A1

x(2) for (x1, x2) ∈ A2

x̃1 = 3−(x1+x2)
2 for (x1, x2) ∈ B1

x̃2 = 2−(x1+x2)
2 for (x1, x2) ∈ B2

x̃3 = 1−(x1+x2)
2 for (x1, x2) ∈ B3

. (9)

where the Ai’s and Bi’s are shown on Figure 3, and where x(1) and x(2) are
respectively min(x1, x2) and max(x1, x2).
Step 2. Suppose that X1 = x1. The optimal threshold h2(x1) must be
such that, if X2 = h2(x1), then the same payoff is obtained by selecting
X2 or rejecting it and acting optimally thereafter. In other words, h2(x1)
is the indifference value for X2. Consequently the threshold h2(x1) must be
solution to

1 + 2h2 + 1(h2 > x1) = g(x1, x2), (10)
with g(x1, x2) := Gx1,x2(h3(x1, x2)). The decomposition of h3 given in (9)
allows us to obtain the explicit expression of g(x1, x2), on each of the regions
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B3

A2

B2

B2

A1

B1

x1

x2

0 1

1

1/3

2/3

1/3 2/3

Figure 3: The regions A1, A2, B1, B2, B3 are circumscribed by the borders
of [0, 1]2 and the lines x2 = (3 − x1)/3, x2 = (2 − x1)/3, x2 = (1 − x1)/3,
x2 = 3− 3x1, x2 = 2− 3x1, x2 = 1− 3x1.

A1, A2, B1, B2, and B3. After some work one notices that the optimal thresh-
old h2(x1) can be obtained explicitly by discussing separately over 6 different
intervals for x1.

When the history is X1 = 0, we are faced with a RP(3) on {X2, X3, X4}.
Therefore the value of h2(0) is equal to the value of h1 in a RP (3), and (see
Section 2)

h2(0) = 5−
√

13
4 =: a. (11)

Similarly, if X1 = 1, then we find again a RP (3), hence

h2(1) = a. (12)

The endcases are therefore covered.
We now study h2(x1) for small values of x1. We know that h2(x1) is a

continuous functions of x1 (see Bruss and Ferguson 1993). The graph of h2
starts at (0, a) which lies in A2 (because a > 1/3) and ends at (1, a) which lies
in A1 (for the same reason). We can therefore determine h2 on the interval
[0, β1] where β1 is the first coordinate of the intersection of the graph of h2
with one of the boundaries of the regions B2 or B3. For this reason we use
the expression Gx1,x2(x(2)) in (10) and the fact that h2 > x1 when we are
close to x1 = 0. Note that it is possible that the graph of h2 intersects the
line x2 = x1 before it reaches the border of B2 or B3. We find that the
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graph of h2 intersects first the border between A2 and B3 at the point with
x-coordinate equal to β1 = 3

2

√
2− 2. Therefore,

h2(x1) = 1
4

(
5− x1 −

√
x2

1 + 6x1 + 13
)

=: h21(x1), (13)

on [0, β1].
Next, on some interval [β1, β2] with β2 to be determined, we consider (10)

with g(x1, x2) = Gx1,x2(x̃3) because the graph entered the region B3. The
value of β2 is either the x-coordinate of the point at which the graph of h2
enters a new region, or the point at which the solution h2 of (10) stops being
strictly larger than x1. Therefore, on [β1, β2], we have

h2(x1) =
√

8x1 + 54− x1 − 7 =: h22(x1), (14)

and we can also check that h21(β1) = h22(β1). We find that the graph of h2
crosses the line x2 = x1 before it reaches another region. Therefore β2 is the
solution of h22(x1) = x1, thus β2 =

√
30−5
2 .

By symmetry, these arguments also apply for large values of x1 (i.e. close
to 1). One finds easily that

h2(x1) =



3
2 −

1
4(x1 +

√
x2

1 − 4x1 + 16) for x1 ∈ [β5, 1]
√

12x1 + 42− 6− x1 for x1 ∈ [β4, β5]

−(4x2
1 − 6x1 + 5)
2(x1 − 4) for x1 ∈ [β3, β4]

(15)

where

β3 = 7−
√

19
6 , β4 = 1

2(11− 3
√

11), β5 = 1
2(7− 3

√
3). (16)

The left-hand-side of (10) was equal to 1 + 2h2 as we started at x1 = 1 and
moved to the left. At β3, we have h2(x1) = x1. At this point, h2(x1) is not
strictly lower than x1 anymore.

Finally we need to obtain h2 for intermediate values of x1 ∈ [β2, β3]; to this
end we need to consider separately the cases x1 ∈ [β2, 1/4) and x1 ∈ [1/4, β3].
We get the dichotomy (i) h2 < x1 then the lhs of (10) is strictly smaller than
its rhs, (ii) h2 > x1 then the lhs of (10) is strictly larger than its rhs. This
can be interpreted in a probabilistic way: if h2 is taken smaller than x1, the
expected payoff is better if we could stop on this value (lhs<rhs), while it
is a bad choice to stop on X2 = h2 if h2 > x1 since the expected payoff is
then worse than what expected if one continues the game (lhs>rhs). From
these two observations, we conclude that h2 = x1.
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a a

1

10 β1 β2 β3 β4 β5

Figure 4: Plot of h2(x1) for x1 ∈ [0, 1] = [0, β1]∪ [β1, β2]∪ [β2, β3]∪ [β3, β4]∪
[β4, β5]∪ [β5, 1]. Although there are 6 different expressions, it can be checked
that h2(·) is differentiable at βi for i ∈ {1, 4, 5}.

We therefore know the expression of h2 for all values of x1 on [0, 1]; this
is represented in Figure 4.
Step 1. The much sought-after threshold h1 is solution to

1 + 3h1 = g(h1), (17)

where g(x1) is the expected rank of the selected variable if one starts the
game at step 2 with the history X1 = x1 and acts optimally thereafter.

Let us try to find a solution h1 ∈ [0, ε]. The right-hand-side of (17) is
an integral where the integrating variable represents the value of X2; when
X2 = u ≤ h2(h1), one must accept X2, while one must reject X2 = u if
u > h2(h1). The behaviour when one moves on to step 3 depends on the
region the history (h1, u) lies in: A2, B2, or B3. The expression of Gh1,u will
depend on this.

For the sake of concision, we will only write out the complete expression
of the integral for the smaller values of h1. We thus have

g(h1) =
∫ h1

0
(1 + 2u) du+

∫ h2(h1)

h1
(2 + 2u) du

+
∫ (2−h1)/3

h2(h1)
Gh1,u(u) du

+
∫ 1

(2−h1)/3
Gh1,u((1− (h1 + u))/2) du.
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The function h2(·) is defined on 6 different intervals. Thus the need
to write at least 6 integrals in order to keep explicit expressions around.
Also look at the change in the path made vertically through the regions
A1, A2, B1, B2, B3. When the regions or the order of the regions in which
we cross them changes, we must write a separate integral. Summing things
up, we need 11 divisions of [0, 1] on which the expression of the integral is
each time different. The solution to (17) is found on [β2, β3], with β2 and
β3 defined above. The software Mathematica came in handy for this task,
yielding

h1 =
(

6
1849

√
123199− 87150

79507

)1/3
− 846

1849

(
6

1849

√
123199− 87150

79507

)−1/3
+ 53

43

= 0.27502 · · · .

Wrapping up we finally obtain (computations not included)

V (4) = −5553791
8640 + 767

80
√

3
+ 2609

√
11

216 + 3281
√

19
216 − 59(53− α1 + α2)

1548

+ 85(53− α1 + α2)2

44376 − 53(53− α1 + α2)3

2862252 + (53− α1 + α2)4

11449008
+ 1

192(842− 532
√

3 + 31
√

13 + 216 ArcCsch(2
√

3)

− 216 ArcSinh(3−
√

3
4 )− 2025 log(12)

8 + 2025 log(252)
8

+ 1
288(2586985− 779844

√
11

+ 72900 log(3
7(−1 +

√
11)))− 2025

8 log(17 +
√

19)

= 1.49329 · · · ,

with

α1 =
(

5076
14525 + 43

√
123199

)1/3

,

α2 =
(
6(−14525 + 43

√
123199)

)1/3
.

All Mathematica computations are available on Yvik Swan’s webpage.1

1https://sites.google.com/site/yvikswan/
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Summarizing, we have obtained the following optimal thresholds :

h1 =
(

6
1849

√
123199− 87150

79507

)1/3
− 846

1849

(
6

1849

√
123199− 87150

79507

)−1/3
+ 53

43 ,

h2(x1) =



1
4

(
5− x1 −

√
x2

1 + 6x1 + 13
)

if x1 ∈ [0, 3
2

√
2− 2]

√
8x1 + 54− x1 − 7 if x1 ∈ [3

2

√
2− 2,

√
30−5
2 ]

x1 if x1 ∈ [
√

30−5
2 , 7−

√
19

6 ]

−(4x2
1 − 6x1 + 5)
2(x1 − 4) if x1 ∈ [7−

√
19

6 , 1
2(11− 3

√
11)]

√
12x1 + 42− 6− x1 if x1 ∈ [1

2(11− 3
√

11), 1
2(7− 3

√
3)]

3
2 −

1
4(x1 +

√
x2

1 − 4x1 + 16) if x1 ∈ [1
2(7− 3

√
3), 1]

,

h3(x1, x2) =



x(1) if (x1, x2) ∈ A1

x(2) if (x1, x2) ∈ A2

x̃1 = 3−(x1+x2)
2 if (x1, x2) ∈ B1

x̃2 = 2−(x1+x2)
2 if (x1, x2) ∈ B2

x̃3 = 1−(x1+x2)
2 if (x1, x2) ∈ B3

,

and, of course, h4 = 1. Approximate values of the βi’s, rounded to the 5th
decimal:

β1 = 0.12132, β2 = 0.23861, β3 = 0.44018, β4 = 0.52506, β5 = 0.90192.
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