

Prof. A. Léonard

¹PEPs (Products, Environment, Processes) Department of CHEMICAL ENGINEERING University of Liège

Wastewater sludge: production and quantities

Sludge's origin

- Urban residual sludges
 - Activated sludge wastewater treatment plant (WWTP)

Oupeye - 446 500 PE

www.aide.be

Structure of a WWTP

Wastewater

Screening

Sand and grease removal

Sludge draining and mechanical dewatering

> **Treated** water

Evacuation of dewatered sludges

> « Pasty material» 70 to 85% water !!

Biological treatment Activated sludge reactor

Separation between treated water and sludge Settling tank

Structure of a WWTP

- Sludge processing
 - Applied to excess biomass produced by the biological treatment
 - Thickening
 - Stabilisation
 - Liming
 - Digestion (biomethanation)
 - Mechanical dewatering
 - Centrifugation
 - Belt filter
 - Press filter
 Drying
 Valorisation

Quantities

Countries	Sludge Production Volume Tds/a		
	2010 estimate	2020 estimate	
USA	7.000.000	10.000.000	
Austria	273.000	280.000	
UK	1.640.000	1.640.000	
Scotland	200.000	200.000	
Spain	1.280.000	1.280.000	
Sweden	250.000	250.000	
France	1.300.000	1.400.000	
Germany	2.000.000	2.000.000	
Italy	1.500.000	1.500.000	
Romania	165.000	520.000	
Portugal	420.000	750.000	
Poland	520.000	950.000	
Hungary	175.000	200.000	
EU27	11.500.000	13.500.000	

Global production > 50 million T DS/year

Europe: About 50 to 60 million tons of humid sludge

> The Netherlands About 351 000 tons of dry sludge

Sludge valorisation

Sludge valorisation

Valorisation in agriculture

- Mineral and organic elements
 - Humic value
 - Fertilizer

Energy valorisation

- Incineration in a specific furnace
- Co-incineration with domestic waste
- Incineration in cement kilns
- Biomethanation \rightarrow cogeneration
- Pyrolysis/gazification \rightarrow cogeneration

Land filling

Banned

Wallonia - 2013 Incineration: 53% Agriculture: 47% Europe - 2011 Agriculture: 59% Incineration: 24% Landfill: 10% Others: 7%

Au centre de valorisation des déchets d'IDELUX à Tenneville, les boues déshydratées (mais encore humides à 80% environ) sont collectées à la station d'épuration (1) avant d'être alimentées, sous la forme d'extrudats, dans le sécheur industriel (2). Le produit final est une matière parfaitement sèche (3), qui peut servir de combustible pour la production d'électricité. L'usine est capable de produire 300 Kg de matières sèches par heure.

> The Netherlands - 2011 Incineration: 99% Others: 1%

Sludge drying

Why ? How ? Difficulties ?

Why drying ?

- Valorisation in agriculture: land spreading
 - □ Stabilisation, odor reduction (DS > 90%)
 - Mass and volume reduction
 - Concentration of nutrients
 - Hygienisation
 - Pasty texture →
 solid texture

Why drying ?

- Energy valorisation
 - Drying Increase of lower heating value

30 < DS < 45%: self combustibility

 \Rightarrow Incineration in a specific furnace

60 < DS < 90%: LHV ≅ domestic waste (8400 kJ/kg)

 \Rightarrow Co-incineration

DS > 85% \Rightarrow Pyrolysis or gazification

Sludges, a complex material

Sludge = rheologically complex material

Transition between liquid-pasty-solid states during drying

Increasing siccity					
(% MS)	< 10	10 - 40	40 - 60	60 - 90	> 90
State	Liquid	Viscous liquid – pasty	Glue phase ('sticky')	Granular solid	Dry solid

Sludge rheological behaviour and transition between states is <u>extremely</u> <u>variable</u>:

It depends on: sludge chemical and biological nature

treatment conditions (stabilisation, dewatering, ...)

pumping conditions, storage, ...

Sludge «history»

Complex process depending on

- sludge origin
- rheological properties
- □ composition (organic matter, EPS, fat content, ...)
- treatments underwent within the WWTP
 - flocculation
 - mechanical dewatering
 - liming
 - pumping, conveying ...

Few specialised manufacturers

- Adaptation of existing technologies
- \Box Bad knowledge of the material \rightarrow design errors
- Diffusion of good practices !!

Influence of sludge origin

Influence of pumping

Influence of liming

Influence of mixing

Mixing \rightarrow increase of drying time 30% CaO post-liming \rightarrow "recovery" of initial drying behaviour

Influence of storage

Slowing down of drying kinetics with increasing storage times

Convective dryers

Dryer type	Operating range (in terms of	Specific drying rate	Specific energy
	water content X, expressed on	$(kg m^{-2} h^{-1})$	consumption
	a dry basis)		(kWh ton¹)
Belt dryer	Full drying	from 5 to 30	700 to 1140
Direct drum	Full drying, with dry product	from 2 to 8	900 to 1100
dryer	backmixing: $0.1 \le X \le 0.54$	1011300	
Flash dryer	Full drying	from 0.2 to 1	1200 to 1400

Belt dryer: Tenneville - Huber

Belt drying: BioCon[®] - Krüger (USA)

Sludge technologies

Conductive dryers

Dryer Type	Operating range (in terms of	Specific drying rate	Specific energy
	water content X, expressed on a	$(\text{kg m}^{-2} \text{h}^{-1})$	consumption
	dry basis)		(kWhton ⁻¹)
Disc dryer	Partial drying: $1.25 \le X \le 4.5$	from 10 to 12	from 855 to 955
	Full drying, with recycling of dry		
	product upstream :	from 7 to 10	
	$0.1 \le X \le 0.54$		
Paddle dryer	Full drying: $0.1 \le X \le 4.5$	from 15 to 20	from 800 to 885
Thin film dryer	Partial drying: $0.54 \le X \le 4.5$	from 25 to 35	from 800 to 900

Disc dryers

Gouda GMF

Hybrid systems: thin film evaporator + belt dryer

Solar dryers → greenhouses Closed, open, combined with heated floor

30 to 200 kWh/t EE – up to 1000 in the case of chemical desodorisation

Sludge drying

How to increase performances?

Reduction of energy invoice

Essential !!

Sludge thermal drying costs distribution

D. Permuy, ECSM 2010, Budapest, Hungary

Reduction of energy invoice

- Inlet siccity increase
- Losses reduction, design and operating conditions optimisation
- Heat valorisation on site
 - Use of biogas
 - Incineration waste heat

D. Permuy, ECSM 2008, Liège, Belgium

Example of energy integration

Incinerator waste heat recovery

Example of energy integration

Cement kiln waste heat recovery

Université

de Liège

Importance of dryer efficiency

Use of a dryer considered as 'efficient'

A. Léonard et al., Efficient sludge thermal processing: from drying to thermal valorization, Modern drying technology, Vol. 4

Importance of dryer efficiency

■ Dewatering/drying coupled optimisation → positive balance

A. Léonard et al., Efficient sludge thermal processing: from drying to thermal valorization, Modern drying technology, Vol. 4

To conclude ...

Tomorrow?

- Development of sludge drying within "zero energy" WWTP
- Vision of the whole site and sludge treatments to reach the energy optimum
- Diffusion of other drying technologies
 - □ SHS, frying, ...
- Research efforts
 - Links between sludge nature/history and drying
 - Low temperature + heat pump
 - Links between the texture of dry product and gasification/pyrolysis
 - ••••

Future events ...

- 4th European Conference on Sludge Management –
 ECSM 2016, November 2016, Aix-en-Provence, France
- 6th European Drying Conference, Liège, 2017
 - Industrial session !!

Thanks for your attention !

