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Summary 

 
The XXI century opened a new ‘Big Data’ era in which, thanks to rapid technological 

advancements and appearance of high throughput technologies, vast amounts of unstructured 

omics data (e.g., transcriptomic, genomic, etc.) are generated every day.  This thesis mainly focuses 

on solving the problems related diverse omics data integration and interaction identification tasks. 

Particular attention is given to useful knowledge extraction in the context of complex diseases 

including pathological mechanisms with the development of software tools and pipelines. The 

diseases covered included glioblastoma multiforme, asthma, and ankylosing spondylitis. 

 

Interactions detection in genomic data requires standardization of the protocols. In Chapter 3, we 

tested the impact of different settings in a genome-wide association interaction study (GWAIS). 

Some of the settings included marker selection strategy, the LD pruning, lower order effects 

adjustment, analytical tool. We were able to show that even small changes in each setting can have 

drastic impacts requiring careful assessment of proper settings and results comparisons across 

several analysis protocols. The greatest impact was attributed to the input dataset composition 

highlighting the importance of the marker selection strategy and use of prior knowledge. 

 

Expression of genes can be affected by nearby (‘cis’) or distant (‘trans’) genotypes. Thus, we 

developed methodology to identify complex trans/cis regulatory mechanisms between expression 

and genotype data in the context of asthma (CAMP data).  Significant overlap between ‘trans’ and 

‘cis’ gene regulatory components related to immune and signaling pathways was clearly identified 

matching asthma disease pathology. The semi-parametric Model-Based Multifactor 

Dimensionality Reduction (MB-MDR) method was applied for the first time in the context eQTL 

study achieving low false discovery and family-wise error rates (FDR and FWER). 

 

Identification of a meaningful data structure from omics data is a pressing topic nowadays. Gene 

regulatory networks (GRN) conveniently summarize large amounts of data allowing for useful 

knowledge generation. GRN inference is especially attractive for deciphering of complex diseases 

mechanisms allowing biologists to formulate a better hypothesis. We were able to generate GRNs 

from a single source (e.g., microarray expression data) using conditional inference forest (CIF) 



 

 

 

with more attractive features compared to classical Random-Forest (RF) including unbiased node 

variable selection even in the context of highly correlated variables particularly relevant in 

transcriptomics.  The CIF methods provided attractive features and performance characteristics 

coupled to valuable pathological insights into type 1 diabetes.  



 

 

 

Résumé 

Le XXIe siècle a ouvert une nouvelle ère du «Big Data». Grâce aux progrès rapides et à l’apparition 

des technologies à haut débit, de vastes quantités de données omiques non structurées (par exemple 

transcriptome, génomique, etc.) sont générées chaque jour. Cette thèse s’axe principalement sur la 

résolution des problèmes liés à l'identification des interactions et l'intégration de divers données 

omiques. Une attention particulière a été accordée à l'extraction de connaissances «utiles» dans le 

contexte des maladies complexes, y compris les mécanismes pathologiques, ainsi qu’au 

développement de logiciels et de pipelines. Les maladies couvertes incluent le glioblastome 

multiforme, l'asthme et la spondylarthrite ankylosante. 

 

La détection des interactions dans les données génomiques exige la standardisation du protocole. 

Nous avons testé l'impact des différents paramètres sur la composition des résultats finaux dans 

une étude d'interaction association pangénomique (GWAIS) sur l'ensemble du génome. Certains 

des paramètres en questions sont la sélection de la stratégie des marqueurs de sélection, le 

déséquilibre de liaison (LD), le faible ajustement des effets principaux et l’outil d'analyse choisi. 

Nous avons pu montrer que chaque paramètre pourrait avoir des effets drastiques qui nécessitent 

une évaluation attentive des paramètres appropriés et d’analyse comparative des résultats entre 

plusieurs pistes. Le plus grand impact a été attribué à la composition de l'ensemble de données lié 

à la stratégie de sélection des marqueurs et à l’utilisation de connaissance préalable. 

 

L'expression des gènes pourrait être affectée par génotypes à proximité (‘cis’) ou à distance 

(‘trans’). Ainsi, nous avons cherché à identifier des mécanismes mixtes trans/cis existants entre 

les données d'expression et de génotypes dans le contexte de l'asthme (données CAMP). Un 

chevauchement important existe entre les composants de régulation ‘trans’ et ‘cis’ liés au système 

immunitaire et à la signalisation correspondant à la pathologie de la maladie de l'asthme. La 

méthode semi-paramétrique Model-Based Multifactorielle Dimensionnalité Réduction (MB-

MDR) a été appliqué pour la première fois dans l'étude eQTL, ce qui a permis d’atteindre un taux 

de faux positifs bas. 

  

La recherche d'une structure de données significatives à partir de plusieurs sources hétérogènes de 

données omiques est un sujet de recherche important à l’heure actuelle. Les réseaux de régulation 



 

 

 

des gènes (GRN) résument facilement de grandes quantités de données permettant la production 

de connaissances utiles. L’inférence GRN est particulièrement attrayante pour déchiffrer des 

mécanismes de maladies complexes permettant aux biologistes de formuler des hypothèses plus 

exactes. Nous avons été en mesure de produire un GRN à partir d'une seule source (par exemple, 

les données de biopuces d’expression) en utilisant des forêts d’inférence conditionnelle (CIF) avec 

des caractéristiques plus attrayantes par rapport à des forêts aléatoires classiques (Random Forests). 

Les avantages comprennent l’impartialité de sélection de variables liées à un noeud, l’impartialité 

même dans le contexte de variables corrélées particulièrement pertinente pour les donnes 

transcriptomique. Les CIF méthodes possèdent des caractéristiques attrayantes et conduisent à de 

bonnes performances. Ces méthodes fournissent des idées sur les mécanismes pathologiques du le 

diabète de type 1. 
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1.INTRODUCTION 

 

 

1. Introduction 

The XXI century is marked by massive amounts of high-dimensional, heterogeneous and complex 

data [1-3]. The rapid technological advancements in IT and biology-related fields made it relatively 

easy to autonomously acquire, store, transmit and analyze massive amounts of unstructured raw 

data presenting new challenges for data processing and visualization [4].  

 

This introductory section provides the general context and terminology associated with the 

biological data handling and integration. This thesis first introduces the complexity of biological 

datasets from the interactions point of view followed by the discussion of different omics data types 

in the context of complex diseases. This Chapter will be concluded by introduction of the central 

topic linked to omics data integration. 

 

1.1. Big Data 

Nowadays many biological fields including genomics, proteomics, molecular biology, statistical 

genetics and others are witnessing arrival of Big Data era. Big Data term has several definitions, 

but in this thesis we define it as an act of collecting vast amounts of data exceeding the processing 

capacity of conventional systems [3]. Velocity, volume, variety, variability and complexity are the 

main characteristics of Big Data present not only in biology-related fields, but also in many others 

some of which include social, financial, business and meteorology sciences [5]. Big corporations, 

such as Facebook and Google, are constantly collecting and analyzing vast amounts of client’s Big 

Data to better understand social behaviour, interaction patterns [6], reduce costs, make smarter 

decisions and to improve personalized recommendation systems (e.g., Netflix, Amazon.com) [7].   

 

Along with many new exciting opportunities mentioned above, Big Data poses new challenges to 

statisticians and bioinformaticicans who need to deal with massive sample sizes, high-

dimensionality of data,  data heterogeneity, scalability issues, transmission and storage bottlenecks 

[1].  
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The data “explosion” is currently witnessed by biological data repositories such as the European 

Bioinformatics Institute (EBI) in Hinxton that, as stated by the 2014 report, stored 2.58 petabytes 

of sequencing data (2,580 TB) [8]. Next Generation Sequencing (NGS) of one human DNA sample 

with 30x coverage requires 310 gigabytes of total data storage [9]. According to recent reports, the 

EBI’s sequencing data doubles in size every year [4]. The Beijing Genomics Institute (BGI) that 

generates 6 terabytes of genomic data every day [4]. New compression algorithms and cloud 

services may provide a promising solution to these problems some of which include storage and 

computational power.  Acquisition and storage of raw and under-analyzed data are of little use to 

society and science requiring concrete solutions and efficient Big Data to Knowledge (BD2K) 

analysis pipelines. Lawrence E. Hunter from the University of Colorado states that “getting the 

most out of the data requires all relevant prior knowledge”[4]. The hypothesis-driven studies can 

greatly reduce the Big Data analysis obstacles by providing specific targets and hypotheses. Prior 

knowledge most often comes from multiple sources including, for example, protein-protein, 

expression, metabolic, clinical data. The hypothesis-free studies are more challenging compared to 

hypothesis-driven ones as the search space can be vast. Therefore, there is a strong need in 

intelligent and computationally efficient algorithms and methodologies to integrate and extract 

useful transferable practical knowledge in a given domain. The data integration will be further 

discussed in detail in the Sections 1.5 and 2.5. 

 

Fortunately, there is a large global investment and efforts in order to mitigate and address the 

pressing issues imposed by ‘Big Data’. The key efforts concentrate in increasing accessibility and 

openness in scientific research. European Union had invested in the European life-sciences 

Infrastructure for biological Information (ELIXIR) project [10] aiming at providing access to large 

biological datasets and computational facilities. Increased accessibility brings obvious benefits 

allowing researchers to compare in-lab generated results on a global scale. For example, results 

obtained on one type of cancer can be compared and contrasted with the other types strengthening 

and possibly adjusting the original hypothesis(es). For example, several integrative studies 

comparing data patterns across several cancers and tissues are being completed using The Cancer 

Genome  Atlas (TCGA) resource [11-13]. In addition, provision of the computational capabilities 

and IT infrastructure by ELIXIR via cloud services and field experts allows labs with limited 

resources and technical skills to contribute meaningfully to large-scale complex research projects.  
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The unprecedented availability of large biological data combined with ever-improving 

communications technologies of the XXI century is changing scientific practices and bringing new 

opportunities and challenges. One of them is the development of effective BD2K pipelines 

implementing creative and computationally efficient solutions addressing the data integration 

needs of heterogeneous and complex biological data. In the ever-increasing effort of “making 

sense” of Big Data, sharing of expertise, valuable ideas and “know-how” from different domains 

is essential, yet there are significant accessibility barriers for less tech-savvy users. Laboratories 

can readily generate data but face significant limitations implementing the BD2K data processing 

pipelines and methodologies. Galaxy platform [14] provides attractive GUI and proper 

documentation allowing users to implement and to share their data processing pipelines more 

efficiently while avoiding complexities associated with software installation and computational 

requirements. Another collaborative BD2K project related to genomic material sequencing is 

EasyGenomicsTM [15] developed by BGI. The platform offers users the ability to easily access and 

to process large amounts of NGS, exome, RNA-seq, miRNA and other types of data along with 

already developed bioinformatics workflows such de novo genome assembly tools among others.   

 

In the next section, we describe properties of biological data focusing over interactions and 

interdependencies between variables and data sources.   

   

1.2.  Biological systems 

Interactions are universal amongst living organisms. They are typically complex and are dependent 

on many hidden and observable variables. By permeating almost every aspect of our everyday life, 

they can be found in the events such as an increase in global temperature, extinction of particular 

species, changes in the quality of life and lifestyle habits. Living organisms can be characterized 

by strong inter-dependency, hierarchy and constant need of interactions (e.g., communications). 

Effective interaction through communication and “emotional intelligence” can significantly 

increase productivity and emotional well-being of the whole group. In the clinical context, it was 

shown that effective communication and interaction between cancer patients, nurses, and doctors 

can significantly decrease emotional distress, improve emotional well-being, increase accuracy and 

completeness of medical data [16]. 
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Interconnectedness is the central concept in systems biology implying that all system components 

are interconnected at some organizational level. Since biological systems are highly organized, the 

notion of hierarchy is essential as it includes allocation of roles and tasks subdivision creating 

smaller interconnected components. The interaction between system components assumes 

circulation of vital information allowing an orchestrated functioning of the whole system as one 

unit. Due to ever-changing conditions, biological systems are also dynamic and adaptive relying 

on rapid communication between its components which can be further logically subdivided into 

information layers represented by biological processes.  Each organizational level interacts with 

the other in organized and controlled manner to maintain the necessary equilibrium and well-being 

(i.e. homeostasis) of the whole system (i.e. organism). The typical homeostatic response to stress 

involves changes in biological networks involving cellular constituents. Changes in internal 

network wiring of any biological system impact the functioning of its cellular components. These 

components often include mRNA, proteins (enzymes, TFs), miRNA and many others. Thus, at 

each organizational level, there is a complex network of inter and intra interactions such as cell-

cell, molecule-cell and many others allowing bi-directional flow of information. These concepts 

are further developed in subsequent paragraphs starting with biological interactions (Section 1.3). 

 

For biological systems, interactions are essential as they underline the basic survival and 

homeostasis principles. The essential components of any living organism are hierarchically 

organized in modules from lower to higher complexity as shown in Figure 1.1. The modularity in 

organization of living organisms increases their adaptability to external environment. For example, 

cancer cells identified in a particular tissue can be isolated and removed without disruption of other 

vital biological processes thanks to modularity design. Thus, any biological system can be 

understood at different levels of abstraction.  

 

Biological systems are dynamic due to ever-changing environment and adaptation stimuli inherent 

to living organisms. One example of a above-mentioned dynamic information flow at the cellular 

level is addressed by “the central dogma of molecular biology”, introduced by Francis Crick in 

1956 [17]. According to this “central dogma”,  the DNA, mostly located inside the nucleus (Figure 

1.2), is translated to mRNA, which is subsequently exported to cytoplasm, where it is finally 

translated to amino acids – the building blocks of any protein (Table 1.1) . Gene expression refers 
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to genes being transcribed into RNA (DNA  RNA). It is a very complex process and involves 

many intermediate steps. Some of the gene expression control mechanisms are discussed in the 

Section 2.1.3. 

 

 

  

Figure 1.1: Hierarchical organization and compartmentalization of living organisms. Arrows represent hierarchical 

ordering from lower to higher complexity / scale. 

 

Table 1.1: Information flows suggested by the central dogma of molecular biology 

Flow of information Process Name Context 

DNA  DNA Replication  Copy of genetic material during cell replication (mitosis) 

DNA  RNA Transcription mRNA production 

RNA  protein Translation Protein production 
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Figure 1.2: Central dogma of molecular biology and cellular compartmentalization with some of the key cellular 

components. 

 

At the cell level, biological processes are compartmentalized into several compartments (i.e. 

organelles) the most important of which are nucleus, endoplasmic reticulum, Golgi, mitochondria 

and others (Figure 1.2).  Each organelle has its unique function such as nucleus which stores 

cellular genome (i.e. DNA). Information flow between cellular entities (genes, proteins, 

metabolites, etc.) and system components is not isolated and involves interactions. In the next 

Section 1.3, we explain what is meant by “interactions” in different contexts. 

 

1.3.  Interactions  

Some of the previously referenced relationships involve biological interactions. Historically 

biologists utilized reductionist approach by focusing on a single cellular component (e.g., protein, 

organelle, and metabolite). Advances in network biology showed that this approach is over-

simplification as biological functions are rarely governed by a single compound, but, instead, 

involve numerous inter and intracellular interactions. Some of such 2-way interactions include 
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protein-protein, protein-DNA, protein-metabolite, transcription factor – target gene (TF-TG) and 

many others.  

 

In 1998 Bruce Albers and Andres Murray highlighted limitations of the reductionist approach and 

suggested to study cellular components as functional groups and modules [18].  This higher order 

view was slowly adopted by systems biology researchers. The current research practices readily 

utilize this new modular hierarchical paradigm to identify and further study protein complexes 

instead of single proteins. These studies proved a presence of higher order interactions in biological 

systems spanning further than a single cellular membrane [19]. Future efforts in systems biology 

related fields focused on developing methodologies to deal with ever-increasing complexities of 

the datasets. Current studies focus on inter-species interactions, group genes into functional groups 

(i.e. modules), involve host-pathogen-drug interactions and many others. 

 

The interactions considered in this thesis are the ones shown in Table 1.2. These interactions are 

quite diverse in nature and span fields of statistical genetics, molecular biology and biochemistry 

amongst others. The transcript-transcript and protein-protein interactions have a physical 

interpretation that is either reflected in mRNA levels or in creation of protein complexes. On the 

other hand, under the context of complex diseases gene-gene (GxG) and gene-environment (GxE) 

interactions are described by statistical models that might not be readily interpretable and provide 

a clear biological or clinical meaningless [20]. Thus, it is important to both interpret interactions 

from both perspectives and verify via wet-lab experiments. 

 

Protein-protein interactions are usually identified with help of protein chips and yeast two-hybrid 

(Y2H) screens. Protein chips provide information on protein quantity while the Y2H screens tell 

whether two proteins physically bind to each other and form a complex. The gene-gene interactions 

are often monitored via mRNA levels with help of microarrays and, most recently, via exome 

sequencing - RNA-seq. One type of gene-gene interaction involves the transcription factor (TF) - 

target gene (TG). Practically, these interactions are identified via chromatin immunoprecipitation 

(ChIP) technology that locates genome regions bound by transcription factor – transcription factor 

binding site (TFBS). The TFBS sequence can identify genes potentially targeted by transcription 

factor via analysis of the 5’-untranslated regions of the potential target genes [21]. The statistical 
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protein-protein interactions can be identified via simple correlation measures but are not in 1 to 1 

correspondence with biological protein-protein interactions [22-24]. 

 

Table 1.2: Interaction examples  

Interaction Source Data type Technology 

gene – gene (GxG) mRNA expression microarrays, RNA-seq 

protein-protein protein expression protein arrays 

gene-environment (GxE) 
mutations / 

environment 

genotypes / 

clinical 
SNP arrays 

gene-gene (SNPxSNP) mutations genotypes SNP arrays 

 

 

Networks or graphs naturally represent pairwise interactions. Graphs are mathematical structures 

used to represent information. The strength of graphs lies in their visual aspect allowing to capture 

entire set of interactions. Graph theory was introduced and developed by mathematicians. In 1736 

Leonid Euler introduced the concept of a graph via Königsberg Bridge problem. Since then, graph 

problems were continuously studied. In the XXI century, the most well-known graph is World 

Wide Web (WWW) linking thousands of web pages and resources on a global scale. Computer 

scientists extensively study the WWW which became a primary global communication medium. 

Graphs are also heavily used in sociology under the context of social network analysis (SNA). The 

most famous contribution of SNA was the “Small World” phenomenon introduced by Stanley 

Milgram in 1967 which states that an average path to connect two strangers is surprisingly very 

low – on average, only 6 degrees of separation [25]. The SNA further developed new analysis tools 

and methods [26]. For example, collaboration graphs with signed edges representing 

friendship/hatred, respectively, are used to predict dynamics of a complex set of relationships in a 

company. Analysis of non-conserved content spread (i.e. information flow) through a social 

network is used in businesses administration and, even, in epidemiology fields. Recent 

epidemiological study predicted the spread of HIV via the human contact patterns/socialization 

habits [27]. These examples from different contexts highlight a convenient generalization nature 

of graphs. The next paragraphs will briefly introduce graph application under biological contexts.  

 



1.INTRODUCTION 

9 

 

Depending on the biological context and involved entities (e.g., proteins, genes, metabolites) there 

are several types of biological networks. The most widely known graphs are protein-protein 

networks that describe physical interactions between proteins. Another kind of graphs are gene 

regulatory networks (GRNs) which describe gene-gene regulatory mechanisms. Some proteins 

exhibit regulatory function (i.e. TFs) impacting target gene mRNA levels. GRNs describe such 

transcription factor  target gene (TF  TG) directional interactions where TG is a gene whose 

expression levels are dependent on TF. The GRNs have directional edges as the reverse direction 

TG  TF is not possible since the TG alone can not impact the TF mRNA levels unless the TG 

also acts as TF with respect to other TG. Finally, gene-gene GxG and gene-environment GxE 

interactions in the context of complex diseases can be described via epistatic networks defined in 

Section 2.4.2.  

 

In molecular and human genetics, interactions can contribute to epistasis (from Greek epistasis - 

the act of stopping) which is defined as the interaction between different genes under biological 

perspective [28]. The term epistasis has many conflicting meanings often lacking precise definition 

[28]. Under classical statistical view that follows Fisher’s definition [29], epistasis can be viewed 

as an interaction between a two loci, X1 and X2, resulting in a non-additive contribution to a 

phenotype/trait (Y). Epistasis from the biological point of view refers to gene-gene interaction 

among biomolecules (mRNA, protein, etc.) in which the phenotypic effect of one gene is being 

modified by the other. This results in a “joint” phenotype incorporating effects of both genes (e.g., 

eye color, metabolic reaction rates, etc.). Another definition of biological epistasis is a departure 

from Mendel's Laws of inheritance in which a pair of epistatic loci results in different from the 

expected phenotypic 9:3:3:1 ratio (in the case of non-interacting loci). Although to the present date 

there exists a limited number of studies on biological epistasis, it is evident that epistasis ubiquity 

underlines complex diseases. Hinkley et al. shown that by considering epistatic effects between 

200 loci associated to HIV-1 drug resistance, the predictive power of the viral replicative capacity 

improves by the 18.3% [30]. It is important to realize that there is no direct 1:1 correspondence 

between statistical and biological epistasis occurring at the population and individual levels, 

respectively [20] (Figure 1.3). The key challenge is to bridge the gap existing between these two 

definitions by the development of novel methodologies supported by the wet-lab experimental data.  
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Figure 1.3: Biological and statistical epistasis differences. Statistical epistasis results are not always readily display 1 

to 1 correspondence to biological epistasis. Legend: star (*) - mutation at particular locus; G1 – gene 1; P1 – protein 

1, etc. Figure adapted from [22]. 

Proper definitions of linear and non-linear statistical epistatic models are particularly relevant in 

the context of complex diseases where higher-order complex multicollinearity (i.e. correlation) 

patterns within and between biological layers are present (see Section 1.5). It is believed that in 

such scenarios non-linear and non-parametric models can better capture the ‘true’ nature of 

correlated and interdependent biological interactions as highlighted by a large number of systems 

biology and functional genomics studies [31-34]. 

 

Complex diseases, caused by a combination of genetic and environmental factors, assume 

interactions between genes. Elucidation of statistical epistasis networks highlighting GxG and GxE 

interactions is an area of an active research aiming at better understanding of a genetic architecture 

of complex diseases. Some of the first efforts in the elucidation of statistical epistasis networks 

[24] in bladder cancer were able to capture the global context of gene-gene interactions allowing 

to better understand the pathology of the disease [24]. Further explanation of epistasis in the context 

of Genome-Wide Interaction Studies (GWAIS) is provided in Section 2.3. 
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1.4.  Complex diseases  

What is understood by a ‘complex disease’? Strictly speaking, complex diseases are those that may 

result from a mixture of genetic and environmental and lifestyle factors (Figure 1.4). Complex 

diseases do not follow classical Mendelian patterns of inheritance. Most of these factors and causal 

mechanisms remain to be identified.  

 

Often the genetic component in these diseases is minor highlighting importance of environment 

and lifestyle factors. Unfortunately, these factors are highly variable from one individual to another. 

In addition, the response to environmental factors greatly varies across population requiring 

population stratification adjustments. Some examples of a complex disease include ankylosing 

spondylitis, Alzheimer's disease, glioblastoma cancer, asthma, Crohn’s disease and many others.  

 

Rather than studying each component separately (Figure 1.4), the complex diseases need to be 

addressed under integrative holistic context taking into account interactions existing between all 

three constituents show in Figure 1.4. Specifically, this thesis will focus on the omics component 

composed of transcriptomics, genomics, methylomics, as well as, other data types. Also, will 

consider phenotypic and environmental components of complex diseases such as asthma and 

ankylosing spondylitis. 

 

 

Figure 1.4: Components of complex diseases: O – omics caused by changes in genomic DNA sequence, expression 

levels of the key marker genes, methyltation profiles and others; E – environmental component including non-genomic 

variables (e.g., smoking), physical characteristics (e.g., weight, sex, BMI) and others. Phenotype (P) – observable 

characteristics of a disease helping in disease sub-phenotyping (e.g., tumor morphology, propagation rate, 

predominance of immune cells). 
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1.5.  Integration of omics data 

Integration means different things to different researchers due to the lack of a solid conceptual 

framework [35]. Some interpret data integration as elimination of redundancies in data; others use 

additional data sources to validate findings; others, meta-analytic efforts to aggregate results across 

datasets. In this section, we will provide partial systematization and survey of different integration 

strategies used by the community.  Statistical and biological epistasis under the context of omics 

data integration is defined in [36]. Perhaps the most general definition of data integration can be 

formulated as an integration of systems components via relationship and mathematical models 

[37,38]. In our case ‘system’ can be considered a biological system – an organism. More generally 

data integration can be also defined as combination and aggregation of various data sources in 

order to provide a unified view of the data. Indeed, one of the purposes of integration is to provide 

a unified and common view to heterogeneous data. In addition, integration naturally complements 

current systematic view of biological systems discussed in previous Sections 1.1-1.4. The 

reductionist view decomposes the complex system into its components obtaining a catalogue of 

elements; meanwhile, integrated view tries to integrate those components providing a bigger and 

more truthful picture of the system. The integrated view tries to understand relationships existing 

between data sources and principles governing those. The main goal of data integration approaches 

is to increase the posterior data utilization via an efficient BD2K integrative pipeline. Another 

support towards the integrated view of biological systems and its components is the presence of 

synergy [39]. Synergy dictates that the whole is greater than the sum of its parts. The new properties 

and functional understanding of the whole system can be achieved by considering additive effects 

of its individual parts. For example, Takahashi et al. systematically studied and successfully 

identified combinations of transcription factors required to reprogram a  somatic cell to 

undifferentiated pluripotent cell [40]. Their success would be limited if they only considered each 

transcription factor in isolation neglecting additive effects. Thus, a full understanding of complex 

biological systems can be only done considering all known layers of omics data ultimately having 

a synergistic impact on the phenotype. A biological system can be decoupled into several 

components that can include genome, epigenome, transcriptome, proteome, metabolome, 

phenome, and others. The inferred model ideally should not only consider interactions between 

individual elements within a given data layer, but also interactions occurring between layers under 

integrative data context. Data integration is a fuzzy term, but in this thesis, it refers to 
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methodologies that effectively collect evidence from different omics layers (i.e. data sources) 

resulting in either one integrative model or several models with a posterior aggregation step. These 

data integration strategies are termed meta-dimensional analysis and multi-staged analysis 

respectively [41] and are further discussed in Section 2.5. The integration term should not be 

confused with data fusion mentioned in Section 2.5. 

 

One type of relationship is between genotypes and phenotypes (Figure 1.4). Genome-wide 

association studies (GWAS) are primary tools to analyze complex diseases. On a genome-wide 

scale, they assess genetic variation in a population in relation to a given phenotype/trait (e.g., 

disease status). In other words, GWAS measures the strength of association between a single locus 

and phenotype (i.e. main effect).  To account for higher order interactions, the genome-wide 

association interaction studies (GWAIS) provide a better alternative to classical GWAS thanks to 

a more realistic disease model which takes into account gene-gene (GxG) and gene-environment 

(GxE) epistatic interactions. In the case of the GxG GWAIS, the association between phenotype 

(i.e. trait) and two loci (i.e. a SNP pair) is being quantified while, in the case of the GxE GWAIS, 

the environmental variable (e.g., sex, age, etc.) together with a single locus is taken into account 

(Figure 1.4). The main challenges associated with GWAIS include small sample sizes, generally 

“weak” epistatic signals and high statistical significance threshold requirements (p-value < 10-13) 

due to an enormous number of hypotheses. One needs to consider all SNP pairs in datasets often 

containing more than 1 million of markers.  

 

Interplay of many system components and processes results in observable phenotypes such as a 

disease. Since a single network can conveniently represent a large number of interactions, network 

biology is trying to systematize and better understand the interplay between each of the system 

components including cell-cell, protein-protein, drug-protein, drug-patient and many others. The 

central role and main challenge of network biology based approaches is to understand the impact 

and dynamics between cell components interactions [42].  Greater understanding of interaction 

dynamics between DNA, RNA, proteins and small molecules greatly improves characterization 

and understanding of living organism dynamics under the variety of contexts. The gained 

knowledge can be used in the production of drugs, more accurate patient classification and 

improved disease risk assessments among other things. An increased understanding of inter-
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dependency and dynamics of biological systems has many benefits including improved quality of 

life, better disease control and management. Unfortunately, biological systems are very complex 

and the research breakthroughs take decades to happen. Nevertheless, with rapidly improving 

technology advancements in many essential fields, new break-troughs are likely to occur at shorter 

time lapse. One of such breakthroughs included sequencing of the human genome [43] and its 

public availability via publicly accessible databases such as NCBI Genome [44]. 

 

Accounting for the interaction context between system components is highly relevant for data 

originating from biological systems. The main methods used to integrate biological data can be 

broadly classified into methods integrating homogeneous and heterogeneous data types (Figure 

1.5). The first type of integration involves homogeneous data types and is not new. Data integration 

has been already pioneered by meta-analytic studies on gene expression data [45,46].  In addition, 

GWAS meta-analytic studies are also gaining popularity. Rare and common complex diseases 

benefit from integration of several GWAS datasets due to increased power in detecting weak 

signals associated to disease risks [47,48]. Commonly the integration in meta-analytic studies 

involves combining p-values from various GWAS studies via Fisher’s method [49]. The second 

type of integration involves heterogeneous data and, perhaps, is the most challenging. Compared 

to homogeneous data integration, heterogeneous data integration is much more problematic. Some 

examples of data integration on heterogeneous data can potentially include expression 

(microarrays), genotype (SNP), methylation, gene copy number variation (CNV). These data are 

measured on continuous and discrete scales. Integration of heterogeneous data generally involves 

scaling and conversion to common format/data space. 

 

Some of the current approaches used to integrate data include kernel based, component-based 

(reduction) and network-based (dynamics and visualization). The kernel based approaches can be 

represented by the two main steps. The first one involves selection of appropriate kernel to 

summarize each data type while the second one involves combining different kernels to represent 

data comprehensively. For example, Lanckriet et al. [50] used SVN kernel-based approach for 

protein classification, while Reverter et al. [51] applied kernel based PCA to integrate successfully 

gene expression and fatty acid concentration data. 
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Figure 1.5: Homogeneous and heterogeneous data integration. Each layer represents a similarity matrix for a data 

source: mRNA (expression), DNA (genotype data), and methylation. “G” refers to genes (e.g., “G1” – gene 1).   

Kernel based methods are computationally intensive and are faced with scaling issues requiring 

data transformation and reductionist approaches such as PCA [51]. In this case, data is plotted 

along new eigenvectors followed by the selection of several eigenvectors resulting in 

dimensionality reduction at the cost of information loss. Nevertheless, the limitation of reductionist 

approaches is that they prevent scientists to account for relationships existing between system 

components. Reductionist approaches such as PCA operate under the principle that complex 

systems or phenomena can be better understood by analysis of simpler individual components [52].  

Data integration approaches face several issues including complexity and heterogeneity of data 

meaning that each system component can be represented by heterogeneous data (e.g., continuous, 

categorical, ordinal). Heterogeneous data integration is the novel area of active research. Bellow I 

will mention some of the key challenges currently faced by the community: 1) relevant data 

discovery (i.e. sources) to support biologically plausible models; 2) inadequate data 

standardization, annotation and storage; 3) strong generalization of biological phenomena while 

ignoring exceptions and individual contexts; 4) lack of user-friendly tools for wider community 

data accessibility and interpretation; 5) different data acquisition platforms that are not readily 

convertible to a common format; 6) others. 

 

Our contribution to this data integration domain is several fold including a proposal of novel 

methodologies (trans-eQTL MB-MDR epistasis protocol,  CIFmean and Regression2Net) ready to 
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deal with homogeneous and heterogeneous omics data integration under different contexts 

exemplified over complex diseases including ankylosing spondylitis, asthma, type 1 diabetes and 

glioblastoma. Chapter 3 will cover integration of clinical and genotype data in the context of 

GWAIS. Chapter 4 will cover integration of genotype and expression data via mining of trans/cis 

epistatic eQTLs and construction of statistical epistasis networks highlighting gene regulatory 

mechanisms in asthma patients.  Chapter 5 will introduce tree-based omics data integration with 

the posterior inference of gene expression regulatory model summarized by gene regulatory 

networks (GRNs).  

 

1.6.  Aims and goals of the thesis 

In this thesis we focus on the problem of interactions identification in biological and clinical data 

under variety of contexts and fields. Specifically, we combined principles of statistics, machine 

learning and systems biology to develop omics-based genetic and epistatic statistical networks. The 

main contributions are summarized by the Figure 1.6. Our global main aim is to develop 

bioinformatics methodologies that integrate different layers (i.e. sources) of information to improve 

gene mapping of complex diseases (Figure 1.5). We investigate role of interactions and effect 

modifiers in gene mapping (i.e. causal disease genes) using the three cases. The first case covered 

in Chapter 3 uses genomic data and disease phenotypes to explore genetic epistasis (Figure 1.6). 

The second case uses genomic and gene expression data to explore intersection of statistical and 

biological epistasis covered in Chapter 4 (Figure 1.6). The third case uses omics data to explore 

gene network inference from single or multiple data sources explored in Chapters 5-6. 

 

The developed epistasis detection methodologies are related to SNP x SNP  disease phenotype, 

trans SNP x cis SNP  gene expression and gene regulatory network inference contexts. Figure 

1.6 provides an integrated ‘Big Picture’ summary view of the data integration based on statistical 

and biological epistatic views.  

 

The first aim is addressed by Chapter 3. There we check the robustness of the previously established 

genome-wide association interaction (GWAIS) protocol [53]. The role of each protocol tuning 

parameter related to data preparation and filtering is investigated (LD pruning, marker pre-
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selection, epistatic method). The discussion is in the context of ankylosing spondylitis (AS).  

Specifically, the assessment of SNP x SNP interaction impact(s) on disease phenotypes is done via 

1) integration of genotype and phenotype data; 2) suggestion of  an optimal GWAIS protocol to 

detect statistical epistasis in genotype data; 3) identification of a biological relevance of epistatic 

SNP x SNP interactions in the context of ankylosing spondylitis.  

 

The second aim covered in Chapter 4 identifies relevant epistatic genotypic SNP x SNP interactions 

and their impact on gene expression levels linked to a complex disease phenotype. Specifically, 

the joint effect of trans- and cis- gene expression regulation via genotypic component is studied in 

the context of asthma. In addition, the global impact of smoking (i.e. environmental variable) on 

the gene-gene interactome is assessed via network-based approaches. Due to extremely large 

number of possible SNP x SNP pairs and interaction hypotheses, the multiple testing correction is 

an issue. To this end, we designed a step-wise methodology to measure 2-way genotype trans SNP 

x cis SNP interaction impact(s) on gene expression via identification of trans/cis eQTLs. The gene 

regulatory mechanisms are inferred from trans/cis gene-gene regulatory network with posterior 

literature validation in the context of asthma. 

 

The third aim gradually covered in Chapters 5-6 and involves the integration of multiple omics 

data types (expression, methylation, genotypes) via tree-based methodology and a gene regulatory 

network (GRN). The advantage of GRNs is that they allow to visualize a large number of 

interactions between genes and their regulators.  Initially, a single data source (e.g., expression) is 

used to assess superior theoretical properties of conditional inference forest (CIF) compared to 

Random Forest (RF). There we identify an alternative to RF tree-based methods, the CIF variants, 

to infer GRNs from expression data. Specifically, we compare the gene regulatory network 

inference performance of CIFs to that of RF (Chapter 5). Finally, the Regression2Net methodology, 

based on penalized regression with inference of a single integrated GRN from multi omics data 

sources, is also presented in contributions section of the thesis - Section 6.3. 
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1.7.   Reader’s guide  

This thesis is divided into 8 chapters , the relationships between some of these are shown in Figure 

1.6. Chapter 2 covers the key concepts related to genome-wide association studies, gene regulation, 

tree-based feature selection, networks and other concepts. Chapter 3 validates and explores the 

impact of the key parameters of the GWAIS protocols on the final outcomes in ankylosing 

spondylitis data from WTCCC2.  Chapter 4 extends the GWAIS protocol to trans/cis eQTL context 

of asthma based on CAMP expression and genotype real-life data. Chapter 5 addresses GRN 

inference via tree-based methods such as conditional inference forests (CIFs) including an 

introduction of the CIFmean method. Chapter 6 presents our contributions to other collaborative 

projects. Section 6.2 will cover patent describing the application of CIFs in the feature selection 

and classification contexts exemplified on asthma VOCs data. Section 6.3  introduces 

Regression2Net – penalized regression-based methodology – applied in the context of expression 

and methylation data integration. Chapter 7 provides a general discussion, conclusions and future 

perspectives of the thesis Chapters 3-6. Finally, Chapter 8 contains a list of all publications 

produced in the context of this thesis, together with author’s curriculum vitae. 
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Figure 1.6: Thesis main topics areas, achievements and paper titles. Chapters 3 and 4 deal will statistical view of 

epistasis followed by Chapters 5,6 and 7 that also incorporate biological views of epistasis in the context of 

transcriptional gene regulatory networks. The Chapter keys are the main topics. 

1.8.  Summary of main achievements 

Our first main contribution is the validation of an earlier proposed GWAIS protocol [53] for the 

detection of detect gene-gene and gene-environment interactions. In particular, we have addressed 

the following questions (Chapter 3):  
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1. What is the impact of slight changes in the GWAIS protocol? 

2. What are time requirements? In particular, can we handle genome-wide scales when MB-

MDR is used in different contexts?  

3. Which GWAIS protocol settings tend to produce the higher number of biologically 

relevant gene-gene interactions? 

4. Which recommendations can we give to data analysts performing a GWAIS? 

 

In an extension of the GWAIS protocol [53], which assumes a single trait and explores gene-gene 

interactions that affect this trait, we investigated trans/cis eQTL interactions. Hence, here we are 

dealing with multiple traits (gene expressions) and SNP-SNP interactions where at least one of the 

SNPs has a significant main effect on the trait. The following questions were addressed in Chapter 

4: 

1. Is MB-MDR suitable to detect trans/cis eQTL interactions? That is, can the false positive 

rate be kept under control? Is the multiple testing approach built in the MBMDR software 

adequate? Does it need to be adapted? 

2. What is the extent of interaction between trans and cis regulatory gene expression 

components? 

3. Can our trans/cis eQTL methodology detect disease relevant gene-gene interactions from 

genotypic and transcriptomic data?  

 

Next, we developed methodologies for GRN inference, allowing the detection of ‘hidden’ structure 

in omics data. In particular, we investigated the use of tree-based approaches to infer GRNs from 

microarray expression data (Chapter 5). We also considered penalized regression approaches to 

infer GRNs from integration such data with epigenetic data (Chapter 6).  The following questions 

were of interest:  

1. Can tree-based techniques such as random forest (RF) and conditional inference forests 

(CIFs) provide suitable GRN inference performance?  

2. What are the advantages of using penalized regression methods for GRN inference? 

3. Can the best characteristics of CIFs and penalized regression based GRN inference be 

combined to give optimal performance? 
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Overall, this thesis addresses a very broad spectrum of problems related to biological and statistical 

interactions. My thesis covers the fields of statistical genomics, machine learning and molecular 

biology. The covered topics, particularly in the areas of omics data integration, merit further 

investigations. 
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2. Background 

This chapter provides a detailed background of the main thesis concepts related to genome-wide 

association studies (GWAS) and genome-wide association interaction studies (GWAIS), network 

inference via tree-based methods, different types of omics data integration and quality control 

before further analysis. We first start with basic concepts associated with both genomics and 

genetics. 

2.1.  Different omic measurement types 

2.1.1.  Single Nucleotide Polymorphisms and modes of inheritance  

Genetic material is stored in cell nucleus by double-stranded deoxyribonucleic acid (DNA). This 

molecule of life is composed of nucleotides that can contain one of the four bases including 

cytosine (C), guanine (G), adenine (A), or thymine (T). Thus, DNA is coded by 4-letter alphabet. 

DNA material is not static, its elementary units, nucleotides, can undergo alterations also known 

as mutations. Mutations can be beneficial, neutral or harmful occurring naturally throughout the 

life of any organism.  

 

Single Nucleotide Polymorphisms (SNPs) can be defined as single nucleotide change (i.e. base) at 

a specific DNA location present within at least >1% of population (Figure 2.1).  SNPs are one type 

of genetic markers, as they can be used to assess genetic differences between individuals. For 

example, let us take DNA sequences from two individuals at the same genomic location and DNA 

strand: ATTCC and ATGCC. Then at the highlighted position 3 there is a bi-allelic T/G SNP 

meaning that there exist two possible bases at that genomic location. In general, an allele is a 

version (variant) of a DNA segment defined by a genetic locus (plural ‘loci’) - the physical DNA 

location (with lengths ranging from 1 to ≥ 1 nucleotides). Since cells in the human body, except 

for gametes, are diploid (i.e. containing two versions for each chromosome), it is possible to 

consider an individual’s combination of alleles or genotype at a particular locus. Based on statistical 

genetics context, genotypes are defined as homogeneous wild type ‘AA’, heterogeneous ‘Aa’, and 

homozygous ‘aa’, when allele ‘A’ is the most frequent genotype. The allele frequency for the least 

frequent allele (‘a’) is referred to as the minor allele frequency and denoted by ‘MAF’.  



2. BACKGROUND 

 

28 

 

 

Figure 2.1: SNP, allele and locus definitions. DNA is represented as double helix respecting base complementarity A-

T and C-G. Eye color is taken as an example of a phenotype. Genotype is a specific set of alleles (e.g., ‘Aa’) with 

potential impact on phenotype. 

A genetic model captures the relationship between an allele or genotype and a phenotype (any 

visible characteristic of an individual or organism) or a trait (coded phenotype). For instance, if the 

risk to a binary trait conferred by an allele is increased k-fold for heterozygotes and k2 (2k)-fold for 

homozygotes, then the corresponding genetic risk model is multiplicative (additive). If the risk on 

a binary trait induced by the ‘Aa’ genotype (heterozygote) individuals lies between that of ‘AA’ 

(wildtype homozygote) and ‘aa’ (minor allele homozygote) individuals, but not in the specific 

relationship of a multiplicative or additive model, the genetic model is codominant.  

 

2.1.2.  Epigenetic markers 

Several mechanisms exist that may change or regulate gene expression. One such mechanism is 

epigenetics. Epigenetic events affect gene expression without making changes in the DNA 

sequence. Two molecular mechanisms are histone modification and DNA methylation. For the 

latter a methyl (CH3) group is added to the DNA (in particular, a cytosine nucleotide). DNA 

sequences with a high number of di-nucleotide CpG repeats, at least 200 bp long, are referred to as 

CpG islands. These islands are often located in the promoter regions of genes. Methylation of CpG 

islands in the vicinity of gene’s coding region usually blocks initiation of transcription. Conversely, 

methylation in the gene’s coding region might stimulate transcription elongation resulting in gene’s 
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activation [1]. In addition to gene expression regulation, methylation plays an essential role in 

embryo development and accessibility to genomic DNA by controlling compaction of the 

heterochromatin [2,3]. Therefore, for a more complete and comprehensive picture of gene 

expression patterns and their links to complex diseases phenotypes, it is also important to consider 

methylation data. 

 

2.1.3.  Gene expression measurements 

Gene expression data referred to as transcriptome, represents the amount mRNA in the sample. 

Following the central dogma of molecular biology, genomic DNA is translated to mRNA after 

recruitment and binding of transcription machinery (which includes RNA polymerase II) to the 

genomic region preceding the transcription start site (TSS) of a given gene. The RNA polymerase 

II synthesises a new strand of mRNA that can be translated to a protein associated with a biological 

function. Thus, the amount of mRNA in the sample represents the expression level of a given gene. 

Changes in gene expression are often associated with the external environmental factors such as 

responses to a drug treatment, smoking, gene knock-outs, and presence or absence of a particular 

disease/phenotype [4].  

 

The human transcriptome is large containing thousands of protein-coding genes (~22 000) that can 

be conveniently monitored via microarrays providing almost a complete coverage [5]. Most of the 

publically available human expression datasets available at Gene Expression Omnibus (GEO) 

contain a limited number of samples averaging at hundreds of individuals.  This means that 

expression datasets are high-dimensional with each gene represented by a handful of samples. To 

improve the quality of biological hypothesis(es) and quality of gene mapping efforts, one needs to 

apply well established and reliable quality control protocol. 

 

Gene expression can be regulated via cis and trans regulatory sequences found outside the protein 

coding sequence – open reading frame (e.g., in the promoter region). These DNA regulatory 

sequences bind regulatory proteins commonly referred to as transcription factors (TFs).  The cis-

regulatory sequences are located in the vicinity of the target gene (TG) approximately within ~200 

bp upstream of the protein coding region binding a selected set of TFs that regulate expression of 
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the TG (Figure 2.2A). The TG gene expression can be also governed by distantly located trans-

regulatory sequences controlling the expression of trans-acting TF (Figure 2.2A). In this case, the 

TG expression is said to be controlled in trans since it is dependent on the expression of the trans 

TF gene (Figure 2.2A). 

 

Locus that controls transcript expression levels (mRNA) is called expression quantitative trait locus 

(eQTL). Different alleles of the locus can impact binding ability of the regulatory proteins, such as 

TFs, and, hence, the TG mRNA levels. If eQTL is associated with a closely located locus with 

respect to the TG (e.g., in a promoter region), then such eQTL acts in cis (Figure 2.2B). In turn, 

trans eQTL involves distantly located locus that controls the expression of the trans-acting TF 

acting on a TG (Figure 2.2B).  Trans locus can be located on the same or even another chromosome. 

Thus, trans eQTL involves either distant or indirect expression regulation of the target gene. 

Typical eQTL analysis treats expression as phenotypic trait (i.e. response) while the loci alleles as 

genotypic predictors. The eQTL analysis links genetic variation and expression considering inter 

layer interactions between genomic and transcriptomic data sources. In particular, eQTL studies 

were useful in providing insights into gene regulatory mechanisms and pathways in cancer linked 

to genotypic variation [6,7].  

 

In Chapter 4 we consider the joint epistatic effects of trans and cis loci on the expression trait 

depicted schematically by Figure 2.2C.  Predicted interaction between a given trans/cis loci eQTL 

pair also has a biological context. There is evidence that epistatic interaction between trans and cis 

loci can occur in biological systems [8]. Due to chromatin looping of DNA segments even distantly 

located loci can be brought closer and jointly regulate gene expression [9]. In contrast to individual 

trans and cis eQTL scenarios (Figure 2.2B) exploring only marginal effects, the trans/cis epistatic 

eQTL screenings search for 2-way interactions associated with the expression phenotype (Figure 

2.2C). While there are a lot of studies analyzing effects of individual markers on expression traits, 

only recently the joint loci effects are being considered to a greater extent [10]. 
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Figure 2.2:  cis and trans gene expression regulation. Black line represents genomic DNA sequence. The orange 

square represents the coding region of the target get (TG) with 0 representing the beginning of the transcription start 

site (TSS). The 200 bp upstream (-200 bp) of the TSS the transcription binding site is located represented by green and 

pink rectangles. The TSS binds transcription factors (TF) modifying expression of the nearby or distant target genes. 

A) TG expression is regulated by nearby cis-regulatory sequence (green square); TG expression is regulated by TF 

expressed by a distant trans gene. B) cis eQTL - the locus (*) located near the protein coding sequence in yellow 

controls gene expression; trans eQTL - the locus (*) controls expression of a distant gene via trans-acting TF. C) 

epistatic trans/cis eQTL showing trans and cis loci (*) affecting the TG expression. Due to interaction, both loci impact 

final mRNA levels of the TG. 
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2.2. Genome-wide association studies (GWAS)  

In the past decade, a considerable effort was devoted to the linkage of the genetic loci to disease 

effects and complex traits. Previously, causal variant studies tried to use linkage analysis together 

with pedigree data in order identify causal mutations that contribute to the disease risk [11]. These 

studies used prior scientific evidence and experimental work suggesting that a given causal locus 

(i.e. SNP) is relevant to a disease trait [11]. Thus, candidate polymorphism studies used a SNP 

functional analysis to determine the impact of genotype on a complex trait - disease status. 

Unfortunately, the scale of these studies was rather limited.  

 

With the advent of high-throughput technologies, it was possible to obtain genotypic information 

simultaneously for a larger number of SNPs and individuals. This promoted an extensive use of 

genome-wide association studies (GWAS). The goal of GWAS is to identify statistically significant 

associations between a genetic marker (or markers) and a trait in a given population. Most 

frequently, the tests that are carried out in GWAS contexts are equivalent to those obtained from a 

regression model, where the genetic marker information at locus i is captured by a variable X  (see 

Eq. 2.1 for a continuous trait (e.g., body mass index ), where β’s are regression coefficients and ci 

is the error term).  GWAS can also be done using related individuals in family-based designs such 

as in [12].  

 

𝑌𝑡𝑟𝑎𝑖𝑡 =  𝛽𝑜 + 𝛽1𝑋𝑙𝑜𝑐𝑢𝑠 𝑖 + 𝑐𝑖  Eq. 2.1 

 

The initial interest to GWAS owns to the advent of SNP arrays and high hopes that single gene 

disorders (e.g.,  muscular dystrophy, cystic fibrosis) can be extrapolated to multigenic complex 

disorders (e.g., diabetes) [11]. Despite several criticisms [11], GWAS were successful in the 

discovery of novel biomarkers and provided new insights into the etiology of complex diseases. 

According to the 2013 statistics, the Catalog of Published Genome-Wide Association Studies 

contained 1778 curated GWAS studies that discovered 12,123 statistically significant SNP-trait 

associations at  5.0 × 10-8 significance level [13]. Unfortunately, the significant SNP-trait 

associations identified by GWAS account only a limited amount of the genetic variance in a 

population, raising a problem of missing heritability [14]. For example, height is 80-90% heritable 
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trait, yet GWAS studies only account 5% of the height heritability. The main causes of missing 

heritability include causal alleles with small effect sizes, rare variants, epigenetic effects, epistatic 

interactions and others [15]. This indicates that 1-dimentsional association tests (Eq. 2.1) in GWAS 

are rather limited and that more advanced epistatic models accounting for gene-gene interactions 

are required to achieve a better performance [16]. 

 

2.3. Genome-wide association interaction studies (GWAIS) 

Detection of epistatic signals is not trivial and is more complicated than in the case of GWAS that 

considers only the main effects (i.e. single locus and a trait interaction). GWAIS are faced with the 

same issues present in GWAS at a greater scale. Identification of true epistatic signals is statistically 

and experimentally challenging [17].  The experimental challenge is linked to the large sample 

sizes requirements due to the extremely large landscape of genetic interactions and low signal-to-

noise ratio. A panel of 100 SNPs (resp. 1000, 10,000) would require assessment of 4950 SNP x 

SNP (resp. 499,500, 49,995,000) interactions. Thus, the number of genetic interactions grows 

exponentially and is typical of large-scale epistatic studies accentuating the ‘curse of 

dimensionality’ problem [18]. In statistics, the ‘curse of dimensionality’ relates to the problem of 

slow convergence of the estimated statistic to the true value in high dimensional space. That is 

additional variables in the model require new samples. The statistical challenge lies in the severe 

penalty incurred due to a large number of statistical tests requiring very small p-values (i.e. strong 

signals) to reach statistical significance [19]. A typical significance threshold for GWAIS is at p-

value 10-13 while that of a GWAS is only of 10-5 [20]. Finally, the computational challenge lies in 

the number of tests to be evaluated raising scalability issues requiring a clever use of information 

storage and information coding/compression that takes into account the computer architecture 

specifics. For example, BOOST exploits bitwise operations allowing a better use of CPU cycles 

while promoting memory and storage efficiency [21].  

 

The complexity of diseases calls for more advanced models accounting for epistatic interactions. 

Indeed, the effect of one locus can be masked or modified by the other reducing the detection power 

of the first locus (Section 1.3). These loci interactions in the context of the phenotype are referred 

to as epistasis that was initially discussed in Section 1.3 and illustrated in Figure 1.3. The epistatic 
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interactions have statistical and biological interpretation introduced in Section 1.3 and Figure 1.3. 

Cordell et al. provides clear definitions and examples of both epistasis types in [22]. 

 

The number of methods to detect epistatic effects in complex human disease is steadily growing 

with the development of novel tools and GWAIS methodologies [21,23-25]. Epistasis is proven to 

exist in model organisms [17], is wide-spread, and should be accounted for in the experimental 

design.  

 

There are a large number of tools allowing identification of epistatic effects [21,24,26]. Parametric 

regression-based approaches are common [19]. The classical approaches use a linear regression-

based framework that not only accounts for main effects, but also for interactions between loci 

pairs (Eq. 2.2), where Xlocus i and Xlocus j refer to the ith and jth loci and β3 measures the interaction 

strength).  For example, FastANOVA [26] uses two-locus ANOVA test to explore the interaction 

space of SNP x SNP interactions via implementation of heuristics during the calculation of the 

upper bound for a group of SNP pairs (e.g., Xlocus i and Xlocus j). 

 

𝑌𝑡𝑟𝑎𝑖𝑡 =  𝛽𝑜 + 𝛽1𝑋𝑙𝑜𝑐𝑢𝑠 𝑖 + 𝛽2𝑋𝑙𝑜𝑐𝑢𝑠 𝑗 +  𝛽3𝑋𝑙𝑜𝑐𝑢𝑠 𝑖 ∗ 𝑋𝑙𝑜𝑐𝑢𝑠 𝑗  + 𝑐𝑖 Eq. 2.2 

 

Regression-based methods cannot always optimally account for the main effects and present 

difficulties when working with ‘rare’ loci (MAF < 0.05). Rare or absent genotypes in high-

dimensional data spaces are particularly problematic to deal with [19]. Other popular epistatic 

methods including BOOST and MB-MDR use alternative methods to cope with these GWAIS 

burdens.  For instance, BOOST [21] tests for significance of the SNP x SNP interaction effect via 

likelihood ratio test while MB-MDR [24] uses semi-parametric dimensionality reduction methods 

discussed in a greater in the subsequent Section 2.3.2. 

 

Finally, the lack of systematic studies, the standardized GWAIS protocol and gold standard data 

complicates methods comparison. To address this void, Gusareva et al. developed GWAIS protocol 

[27]. In this thesis work, we will further test the impact of parameter choices of the GWAIS 

protocol under the context of the complex disease - ankylosing spondylitis (Chapter 3).  
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2.3.1.  Epishell 

I was involved in software testing and improvement of the tool initially developed by Tom Cattaert. 

My involvement included debugging and testing tasks, improvements in the software ability to 

handle genome-wide datasets (> 65,535 markets), inclusion of degrees of freedom in association 

tests and others. This led to the development of improved epistasis detection tool, EpiShell, based 

on popular ‘BOolean Operation-based Screening and Testing’ (BOOST) method [21] with a few 

enhancements related to missing data handling. Compared to classical BOOST [21], the 

significance of the association test statistic is more accurately estimated by taking into account 

missing genotype(s). For this purpose, the degrees of freedom (df) are estimated for each candidate 

SNP pair. EpiShell offers several ways to calculate statistical epistasis including using the score 

and the log-likelihood ratio tests referred to as ‘BOOST’ and ‘MB-MDR like’ modes.  Another 

novelty of the BOOST method lies in Boolean representation of genotype data and bitwise 

operations to obtain SNP x SNP contingency tables in line with the computer hardware design. 

Boolean data representation allows BOOST efficiently store data and efficiently utilize CPU 

resources significantly improving the calculation speed decreasing the overall run-time 

requirements.  

 

In the BOOST-like mode, EpiShell handles binary traits and fits a full generalized linear model 

with the main SNP effects (2 degrees of freedom (df) for each main effect) and SNP x SNP 

interaction effects (4 df). Significant (specific) interactions are identified via a Log-Likelihood 

Ratio Test (LRT) based on 4 df. The Bonferroni correction is proposed as a posteriori multiple 

testing corrective measure (not implemented). For additional details and performance indicators as 

compared to other epistasis detection methods (PLINK, EPIBLASTER and FORCE) in simulated 

data please refer to [28]. The EpiShell binary and its source code can be freely downloaded from 

https://bitbucket.org/kbessonov/epishell and http://www.statgen.ulg.ac.be. 

 

2.3.2.  Model-Based Multifactor Dimensionality Reduction (MB-MDR) 

The Model-based multifactor dimensionality reduction (MB-MDR) method was introduced by 

Calle et al. [29] extending the MDR method of Ritchie et al.[30]. The MB-MDR method can 

currently deal with binary, continuous and censored traits, correct for confounders or lower-order 

https://bitbucket.org/kbessonov/epishell
http://www.statgen.ulg.ac.be/
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effects. The MB-MDR binary can be freely downloaded from 

www.statgen.ulg.ac.be/software.html. The MB-MDR code is written by François Van Lishout 

[31]. Briefly, MB-MDR carries out a dimensionality reduction procedure by pooling risk-alike 

multi-locus genotype combinations together into the low-dimensional construct. Its final test 

statistic contrasts ‘high risk’ versus ‘low-risk’ multi-locus genotypes (H/LO and L/HO) as shown 

in Figure 2.3. While correcting for multiple testing, the significance of the epistatic interaction is 

assessed via the resampling-based strategy proposed by Westfall et al. [32]. 

 

In more detail, a bi-allelic marker has maximum a total of 9 multi-locus genotypes (Figure 2.3). 

Depending on the trait (e.g., binary or continuous), each multi-locus cell is tested against the 

remaining cells using a Student’s t-test or Chi-square test at the 0.1 significance level (p-value < 

0.1). Second, based on the obtained results from such association tests, the genotype cells are 

labeled as high risk (‘H’), low risk (‘L’) and no evidence – ‘O’. Thus, now the interaction between 

two loci can be summarized by this lower dimensional HLO construct since explanatory multi-

locus variable with 9 levels is reduced to 3. Third, the subsequent two association tests comparing 

‘H’ versus ‘L’ and ‘O’ cells and one comparing ‘L’ against ‘H’ and ‘O’ cells are performed. The 

maximum of the two statistics is selected representing the observed statistic Tmax of the SNP x SNP 

association to the trait (Figure 2.3). In step 3, the significance is assessed by adopting a 

permutation-based MAXT correction [32]. The MB-MDR is able to correct for main effects 

minimizing spurious SNP x SNP interactions. To do so, the MB-MDR first regresses out the main 

effects from the trait and uses the resulting residuals as new traits. The two extreme modes of 

correction are implemented including additive and co-dominant.  For more details please refer to 

[24,29,33]. 

 

Figure 2.3: Graphical summary of MB-MDR epistasis detection for a binary response (e.g., case/control).  Each pair 

of SNPs is tested for strength of association to the response variable (i.e. trait) summarized by a permutation-based p-

value. 

http://www.statgen.ulg.ac.be/software.html
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2.3.3.  Highlights  

Recursive Partitioning  

Recursive Partitioning methods are widely used for classification, regression, and variable 

importance assessment tasks (e.g., feature selection). Decision trees [34] are directed acyclic graphs 

used to recursively partition and explore data. They reconstruct a relationship between Y and X 

representing response and prediction variables, respectively.  Decision trees (DT) can also be 

viewed as predictive models represented by a set of rules used to calculate an output (class(es) or 

continuous variable(s)). Their main advantages include ease of interpretation and an intuitive visual 

structure (Figure 2.4A), ability to explore the feature space non-linearly, ability to handle multiple 

outputs, ability to work with heterogeneous data, and others [35]. 

 

The structure of the tree is shown in Figure 2.4A. The ‘root node’ is located on the upper most 

level of the tree and represents the entire learning sample (LS) portion of the dataset. Node N can 

be split into two resulting in left child (NL) and right child (NR) nodes. The source node that 

produced the child nodes is referred to as ‘parental node’ and is located one level higher. The ‘leaf’ 

or ‘terminal’ nodes (Nleaf) do not contain any children nodes and are located at the bottom of the 

tree. The Nleaf nodes are usually assigned to majority class or mean of Y depending on the 

classification or regression contexts. For example, let us consider hypothetical decision tree used 

for classification of smokers and non-smokers based on ‘alcohol per month’ consumption and 

‘jogging’ variables (Figure 2.4B). Initially, the data is split based on the ‘alcohol per month’ 

variable producing left child terminal node 2 and right child node 3 representing subsets of data 

containing nL and nR observations. Node 2 is rather ‘pure’ with 18% of S and 88% NS samples 

equivalent to p(S|Nleaf)=0.18 and p(NS|Nleaf)=0.88 where Nleaf denotes a leaf node. Node 3 assigned 

to jogging binary variable is further split producing terminal nodes 4 and 5. Node 5 attains 

maximum purity being entirely composed of S samples (p(S|Nleaf)=1, p(NS|Nleaf)=0).  Logically the 

Figure 2.4B tree shows that the lifestyle habits have impact on the individual smoking status.  

 

Algorithms that learn decision trees can be dated back to 1984. The two most popular algorithms 

for classification and regression tasks introduced by Braiman et al. were CART [34] and C4.5 [36]. 

Their non-parametric approach, intuitive interpretability and being able to deal with small n large 
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p datasets made these methods popular [35]. The CART utilizes early stopping and tree pruning to 

avoid over-fitting issues. The algorithm searches for the “best” split minimizing I(N) impurity 

function – i.e. splits leading to more pure/homogeneous nodes are preferred. CART and C4.5 offer 

GINI index and entropy as impurity measure, respectively [37]. The downside of CART is the lack 

of a formal statistical test to guide the feature selection process and bias towards features with many 

possible splits [37]. We refer to this issue as threshold selection problem for the candidate list of 

top ranked features. Conditional Inference Forest (CIF) algorithm, introduced in the subsequent 

section, overcomes this limitation by performing association test between response and predictor 

variables (Y~X) reducing the variable selection bias [35].  

 

Trees can grow indefinitely leading to data over-fitting problem. Thus, it is essential to apply 

stopping rules which can include a) minimum number of observations in nodes; b) maximum levels 

in a tree (i.e. depth); c) threshold for the minimum change in the impurity measure and others. 

 

Most of the decision tree based algorithms rely on the concept of node purity and homogeneity in 

order to implement further splits. The change of impurity at node N for a binary split is defined by 

general function ∆I(N) (Eq. 2.3) where I(N), I(NL) and I(NR) represent individual node impurity 

functions of node N and its left and right children (NL and NR). Small nL and nR denote number of 

samples in the left and right nodes. 

 

∆𝐼(𝑁) = 𝐼(𝑁) −
𝑛𝐿

𝑛𝐿 + 𝑛𝑅
𝐼(𝑁𝐿) −  

𝑛𝐿

𝑛𝐿 + 𝑛𝑅
𝐼(𝑁𝑅)    Eq. 2.3 

 

The node impurity common measures are entropy (Eq. 2.4), GINI index (Eq. 2.5),  and variance 

(Eq. 2.6). The maximum purity for GINI is 0 equivalent to 0 entropy. Variance measure also 

referred to as least squares deviation (LSD) [38], is commonly used in regression problems when 

Y is continuous. 

 

where K is the total number of classes and pi is probability of the ith class 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 𝑙𝑜𝑔2𝑝𝑖

𝐾

𝑖=1

    Eq. 2.4 
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𝐺𝐼𝑁𝐼 = 1 − ∑ 𝑝𝑖
2

𝐾

𝑖=1

     Eq. 2.5 

 

  

 

 

where n is the number of samples and ȳ is the mean of the response variable Y 

 

Tree ensembles 

Decision trees show high variance indicating a high dependency on data and lack of robustness to 

outliers [39]. Thus small changes in data strongly impact decision trees inference. Each subsequent 

split of the decision tree depends on previous ones propagating error in case of sub-optimal split 

and increasing variability between trees. Several empirical studies show that ‘tree ensembles’ 

reduce variance by averaging predictions over several trees in the ensemble [40-42]. Thus, the 

power of tree ensembles lies in combining predictions across trees of the ensemble achieving higher 

prediction accuracy. In addition, averaging predictions across the tree ensembles smoothens the 

decision boundaries separately defined by each tree node [35]. 

 

In the scope of this thesis we will consider methods that introduce randomization to tree ensembles 

including well-known random forest (RF) [43] and condition inference forest (CIF) algorithms 

[44,45]. 

 

Random Forest 

Most of the classical GWAS analyses are univariate since they analyze a single genetic marker 

with relation to the trait. Random Forest can accommodate large number of variables and build 

complex models of epistatic interactions making them ideal for analysis of biological data. Winham 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑦𝑖 − ȳ)

𝑛

𝑖=1

 Eq. 2.6 
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et al. demonstrated that RFs have higher power to detect especially non-interacting SNPs in genetic 

data [46].  

 

 

Figure 2.4: Decision trees: A) structure of a typical decision tree; B) hypothetical tree applied to smokers (S) and non-

smokers (NS) classification problem based on heterogeneous types of variables:  ‘alcohol per month’ consumption on 

continuous and ‘jogging’ activity on binary scales.  

 

The logic behind RF is as follows, the random forest builds ensembles of trees utilizing 

bootstrapping that is sampling with replacement meaning that some samples can occur more than 

once. The n bootstrap samples are drawn creating n learning samples (LS). One tree is built for 

each bootstrap sample. Keeping in mind that each individual tree is highly dependent on each LS, 
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there can be high variability between individual trees allowing to explore differently the data space 

of the LS.  

 

The RF advantages are their non-parametric feature allowing approximation of any unknown 

functions f(x) without knowing their aprioiri shapes. The ensembling feature makes RF suitable 

for datasets with complex n-order interactions and high number of dimensions typical of large p 

small n datasets. In comparison, the classical parametric regression-based approaches tend to over-

fit to a greater extent such complex datasets requiring definition of additional parameters. Extra 

randomization conferred by a random pre-selection of the pool of the splitting variables via the 

definition of the mtry parameter, allows production of more diverse trees while giving a chance to 

lower ranked predictor variables (i.e. with lower score) being included as nodes of the growing 

trees [47]. This pre-selection amongst X gives an extra chance for other variables to appear in the 

context of other covariates.  

 

In addition, to all these advantages, RF also suffers from several pitfalls including use of GINI 

variable importance measure (Eq. 2.5) shown to be biased in the presence of predictors with many 

possible splits (e.g. continuous, multi-categorical) discussed in [48]. This selection bias is still 

present even in the case of the permutation-based variable importance measure (VIM) calculated 

from the previously built tree ensemble for each predictor variable (X) [48]. Strobl et al. suggested 

use of  sub-sampling, sampling without replacement, in combination with unbiased split criterion 

implemented in conditional inference forests [48]. In addition, RF showed selection bias towards 

correlated variables even after application of permutation-based VIM [48].   

 

Conditional Inference Forest (CIF) 

The unbiased conditional inference forest (CIF) algorithm was suggested as alternative to RF. The 

strengths of CIF include unbiased variable selection criterion, minimization of over-fitting by 

provision of stopping rule, ability to deal with additional response variable scales, robustness to 

different variable scales, conditional permutation-based VIM dealing with correlated predictors 

[44,45].  To achieve this, CIF divides variable selection and splitting into separate steps minimizing 
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bias and overfitting [48]. Figure 2.5 describes the main node variable selection steps as 

implemented in CIF. 

 

In addition, The CIF brings statistical notions to tree ensembles while using concepts from RFs 

such as permutation-based VIM and randomness conferred by mtry parameter. Importantly, the CIF 

addresses the RF bias and over-fitting issues [48].  

 

The R library party [49] implements conditional inference forests providing several options to 

control tree building including variable selection approaches including bootstrapping (replace=T) 

and sub-sampling (replace=F) options, multiple-testing Bonferroni (testtype=”Bonferroni”) and 

Monte Carlo (testtype=”MonteCarlo”) correction and  minimal significance threshold definition 

(mincriterion=0.95), minimum number of observations in a node (minsplit=20) amongst others.  

 

Select randomly m variables from X defining Xm = {x1 … xm} set 

where m is specified by the mtry parameter 

Select one covariate xj ∈ Xm via estimation of cmax1  

Assign xj to a tree node where xj is a node variable 

Search for the best split of the xj* via estimation of cmax2.  

Repeat previous steps if none of the stopping criteria are met 

Figure 2.5: Conditional inference tree node variable selection and splitting steps implemented during the tree growth. 

Legend: p is the total number of variables and q is the number of samples of the p x q input data matrix. 

The RF and CIF ensemble algorithms will be further used to infer gene networks from diverse 

biological data in the context of complex diseases (Chapter 5). 

                                                   

1 Standardized univariate linear test statistic of association between X and Y 𝑐 = |
𝑡−𝜇

∑
| . The statistic is computed for 

every m selected variables in Xm. cmax is the maximum out of all c statistics of Xm. Further details on cmax , t, μ and ∑ 

definitions are described in [49]. 

2 Standardized univariate linear two-sample statistic  𝑐 = |
𝑡𝐴−𝜇

∑
| quantifying the split quality of xj* . The statistic is 

computed on the response Y. The cmax measures the discrepancy between subsets A1* and A2* ∈ ℝq after a split at 

a cut-point (*). For further details on cmax and tA  statistics in the context of splitting refer to [49]. 



2. BACKGROUND 

 

43 

 

2.4. Networks 

2.4.1.  Network syntax 

Mathematically networks are referred to as graphs (G) composed of a set of nodes (V) and edges 

(E) connecting nodes defined as G = (V,E). That is V={v1, v2, v3, …} and E={(v1,v2),(v2,v3), …}. 

Depending on the context, nodes can be referred to as vertices and edges as links (Figure 2.6). 

 

Figure 2.6: Graphs: key elements  

Graphs which contain directed edges are directed while those that do not are  undirected. Figure 

2.6 displays undirected graph. The directed graphs should be used when the connection direction 

vivj does not imply existence of an opposite vj  vi direction.  

 

In addition, graph edges (E) can carry a weight w W such that w  ℝ. These graphs are weighted 

and can be expressed by G=(V,E,W). The weights wij and wji measure the association strength 

between the node pairs (vi, vj) and (vj, vi).  

 

The subgraph S=(V’,E’) is part of G=(V,E) such that V’ V, E’ E and E’  V’ x V’. A particular 

type of subgraphs is a clique when all its node pairs being connected. If clique contains the largest 

number of graph edges such clique is the maximum clique. The G is ‘complete’ when all graph 

nodes are being connected by n(n-1)/2 number of edges where n is the total number of nodes in G. 

 

The key graph theory concepts include graph size, order, density, node degree, shortest path, and 

betweenness. The graph size n is simply the number of nodes (v) in the set V. The order l is the 

number of edges in E. Node degree d is the number of nodes a given node is linked to. The range 
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of d is from 0 to n-1. The degree distribution is vector k=(ko, k1,…, kn-1) where ki represents the 

degree of the ith node. Thus, p(k) is the proportion of nodes in a graph with degree k (p(k) = # 

nodes with degree k / total # number of nodes). The shortest path (Lij) is the minimum number of 

edges/steps required to connect a pair of nodes {vi, vj} (Figure 2.7). For a pair of nodes, the shortest 

path requires to use three edges shown in red to connect vi with vj. Lastly, the node betweenness 

centrality (Ci) is defined as the number of shortest paths L that include ith node vi. The node 

betweenness measure is indicative of the node centrality in a graph and is linked to the traversal 

frequency based on the random walks between nodes [51].  

 

The degree distribution of nodes determines the network topology. It can be visualized by plotting 

p(k) against k on linear or logarithmic scales. The random networks are characterized by random 

edges. In these types of networks the node degrees follow Poisson distribution 𝑝(𝑘) =
𝑒−𝑐𝑐𝑘

𝑘!
 (where 

c is the constant). This indicates that nodes have approximately the same number of links 

approaching mean of k. Scale-free networks are heterogeneous with respect to the degree 

distribution with small number of highly connected (i.e. hubs) and large number of sparsely 

connected nodes. The degree distribution of such networks follows the power law 𝑝(𝑘) = 𝑘−𝛾  

where γ is the degree exponent. This indicates that in scale free networks the probability that node 

is highly connected is higher than in random networks. The scale-free networks are present 

everywhere from E.coli gene networks to World Wide Web (WWW). In scale free networks the γ 

typically takes values between 1.9-2.3 [52]. In addition, scale free networks have a shorter average 

path length (L) compared to random networks. 
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Figure 2.7: Example of the shortest path. The shortest path between vi and vj nodes is 3 

 

2.4.2.  Network medicine 

Section 1.2 presented biology as information science with a hierarchical organization of its 

components.  Networks simplify complex systems by presenting system elements by nodes and 

their interactions by edges (Figure 2.6). Biological networks model diverse interactions between 

macromolecules (DNA, mRNA, proteins, metabolites) and other species. The systems biology 

challenge is to model accurately and integrate networks spanning multiple information layers 

(Figure 1.1). From complex disease etiology point of view understanding of biological network 

functionality and dynamics is essential since complex diseases are caused by network perturbations 

[53]. Many studies identified marker genes and susceptibility loci, but functional information is 

still missing. This prompted emergence of network medicine field that applies systems biology and 

network science approaches to complex disease data [53,54]. The interactome networks can 

visualize and analyze many biological processes since nodes can be assigned to entities such as 

disease states, proteins, genes, patients while edges can represent physical interactions, 

transcriptional regulation, and similarity of disease phenotypes or gene expression profiles. In 

addition, networks incorporate intrinsic biological concept of robustness to perturbations. For 

example, transcriptional gene regulatory networks allow globally quantify impacts of introduced 

point mutations (perturbations) measured as changes of mRNA levels. Network medicine efforts 
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lead to promising results with better disease classifications and sub-typing via to integration of 

multiple omics data [55]. Perhaps future network medicine methods would allow disease 

classification not at organ resolution, but would also merge common disease etiologies allowing 

for more effective cure and patient prognosis [53].  

 

Biological networks can be broadly classified into three main types described by  Table 2.1 [56]. 

In this thesis work, we will mainly consider genetic networks. These networks represent expression 

regulation between genes. Regulatory proteins such as transcription factors (TFs) impact mRNA 

levels of their target genes. Such gene-gene networks are commonly referred to as gene regulatory 

networks (GRNs). The GRN can be seen as directed graph where a directed edge is drawn in 

regulatory protein expressed by ith gene (gi) impacts the expression of the jth gene (gj). Thus, the 

directionality of the TFTG is important. GRNs can be interpreted as a bipartite graph with two 

sets of genes divided into TF and TG groups.  

 

Epistatic networks also consider gene-gene interactions conditioned on a phenotype (e.g., disease 

phenotype) [57]. Such statistical networks are of a genetic type (see Section 1.3 and Figure 1.3). 

Nodes in these networks can be SNPs or genes, and edges are undirected but weighted. Weights 

indicate the strength of the association between SNP x SNP pairs and the phenotype. For example, 

the results of the GWAIS can be represented by an epistatic network after mapping of SNP x SNP 

interactions to the gene space and selection of appropriate significance threshold.  

Table 2.1: the main types of biological networks 

Type Description 

proteinic 
nodes are proteins and edges represent functional links or physical binding (i.e. protein complexes) or 

enzymatic reactions (metabolic networks) 

genetic nodes are genes (i.e. gene symbols) and edges represent regulatory links between gene pairs 

metabolic 
nodes are proteins (enzymes) or chemical species and edges represent the speed of reaction (i.e. flux). 

A pair of nodes is equivalent to a chemical reaction converting one entity into another 

ecologic nodes are species and connections are predator-prey relationships 

An important property of many biological networks is their scale-free topology [54]. Such network 

architecture confers robustness to stress, redundancy and evolutionary advantage. The redundancy 
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is important in cases when several pathways can provide similar functions and several routes can 

be taken to attain homeostatic conditions (e.g., such as adequate mRNA levels). 

 

2.4.3.  Network inference via tree ensembles 

The power of tree-based methods can be combined with graph theory resulting in network 

inference.  The tree-based methods like CIFs and RFs are used to rank potential gene-gene 

interaction edges between the ith and jth genes. Thus, a network inference algorithm consists in the 

assignment of weights (w) to putative regulatory links that can be considered as feature selection 

problem. In the case of classical CIF and RF methods (see Chapter 5) these weights are summarized 

by variable importance measure (VIM). After assignment of a threshold value (w ≤ t) one can obtain 

a weighted directed network such as gene regulatory network (GRN). GRNs are transcriptional 

regulatory networks summarizing relationships existing between transcription factor and target 

gene(s) [58]. Figure 2.8  summarizes the essential network inference steps. 

 

The inference of a GRN assumes that expression value of the ith gene is the result of the joint 

action of all other genes and factors spread across different omics data layers. Thus, these impacts 

on the expression of the ith gene can originate from multiple omics layers represented, for example, 

by genotype, expression, methylation and other data types. In this thesis, only the first three data 

types are being considered.  

 

There exist many methods to infer GRNs some of which are based on sparse linear regression [59], 

Bayesian-networks [60], Mutual Information [61], Correlation frameworks [62]. Using correlation 

framework one can simply calculate correlation between transcription factors and target genes. For 

a more detailed review of GRN methods please refer to the supplementary section of [63]. 
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Figure 2.8: Example of network inference via tree-based methods. The output is represented by ith gene (gi) and input 

by all other genes except the ith gene (g-i). The tree ensemble is built. The weight wij measures the strength of interaction 

between the ith and jth genes (gi – gj). The wij value calculation depends on the chosen method and is summarized by 

VIM. The above procedure was repeated p times corresponding to the total number of genes by re-assignment of a new 

output. A list of all gene-gene interactions is obtained with corresponding wij. The pairwise gene-gene interaction list 

represents a gene network were wij is a weight of an edge.  

 

GENIE3 [64] is a tree-based method for GRN inference using tree ensembles from the expression 

data. In its core, the method uses RF algorithm to assign weights to all potential gene-gene 

regulatory edges without employment of permutation-based VIM. In contrast, GENIE3 uses a total 

reduction of variance of the output variable in the child nodes after the split implementation of the 

parent node averaged over all trees in the ensemble. Thus, the final w is non-permutation-based 

VIM representing the strength of a given gene-gene interaction. Initially, GENIE3 was applied on 

the synthetic expression data from DREAM4 and 5 challenges [63,65,66], but recently was 

extended to multi-source context integrating genotype and expression data. The two integrative 

methods were suggested including GENIE3-SG-sep and GENIE3-SG-joint. The GENIE3-SG-sep 

separately builds two different models (i.e. tree ensembles) for each data source while GENIE3-

SG-joint builds a single joint model for both data sources (expression and genotype data) 

simultaneously. In simulated data of DREAM5 SysGenA challenge (Synapse:syn2820440) the 

https://www.synapse.org/#!Synapse:syn2820440/wiki/71029
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GENIE3-SG-sep+product method utilized a product of weights from expression and genotype data 

source (we and wm). The GENIE3-SG-sep+product showed top performance [67].  

 

We explored similar in concept tree-based ensemble methods to infer GRNs relying on the CIF 

framework. These methods including CIFmean are presented in detail in Chapter 5. The proposed 

network inference methods simultaneously borrow ideas from both statistical and machine-

learning disciplines. In addition, the performance of CIFmean and CIF variants is tested in simulated 

and real-life data. 

  

The CIFmean method relies on the CIF framework introduced in Section 5.3.2 providing a greater 

modularity and stricter tree growth rules. Contrary to RF-based methods, the method allows to 

select and split node variables based on statistical significance. The original permutation-based 

VIM of original CIF implementation is computationally too intensive. Similar to GENIE3, CIFmean 

calculates the wij by averaging over all trees in the ensemble. Thus, wij is simply an average of p-

values. The results of Chapter 5 indicate a competitive performance of CIFmean complemented with 

the relative ease of threshold definition and high scalability.  

 

Similarly to GENIE3-SG-sep, CIFmean can build separate models for each data source. 

Nevertheless, CIFmean has a limitation. Contrary to GENIE3-SG-joint, CIFmean cannot 

simultaneously infer a joint model from multiple data sources.  

 

2.5. Integration strategies 

Integration is loosely defined term and can mean different things in different contexts. Oxley et al. 

defines integration as  “the process of connecting systems into a larger system”[68]. Integration is 

often confused with fusion which is more closely related to concatenation of objects. Data fusion 

is a mapping of several objects onto a single one in an optimal fashion, whereas integration is more 

general and is defined as the process of connecting system components into a larger system which 

might have fused components in them [68].  Thus, data fusion and integration are not equivalent 

terms. Integration of omics data allows building systems which have components, interactions and 

functional states. Single omics data analysis is an assessment of interactions between all system 
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components at a particular layer including all cellular biochemical and molecular processes [69]. 

Examples of data layers include genomics, transcriptomic, proteomics and metabolomics.  For 

example, if considering transcriptomic layer, the elementary components are expression levels of 

genes and interactions are association measures between expression profiles describing 

transcription regulation. Instead of looking at all within interactions, one can consider interactions 

with other layers.  Exploration of complimentarily between layers can be beneficial as 

demonstrated by better prediction of disease states and tumorigenesis mechanisms in [70]. Thus, a 

comprehensive integrative analysis should consider within and between interactions of multiple 

layers integrating them into one “integrated system”. The advantages of studying such integrated 

systems go beyond benefits of merging data allowing to infer holistic models considering all types 

of interactions between the information layers. In our view, integration strategies can be divided 

into three main strategies [69,71,72] 

1. Change representation of each data source prior to analysis via generation of new constructs 

based on dimensionality principles. These can be represented by summary components 

(e.g., principal components, projections). For example in [33], a given gene can have 

information from several sources including mapped SNP, expression and functional data 

that can be aggregated into one feature such as genomic region of interest (ROI). The ROI 

method uses kernel PCA with clustering capabilities detailed in [33]. When different input 

data sources are considered, this new feature – ROI – is an integrated representation of 

multi-source data.      

2. Fuse/concatenate input data accounting for structure between omics layers. This method is 

especially useful when considering interactions between different types of omics data of a 

different scale (e.g., genomic – transcriptomic). For example, after concatenation of 

genomic and transcriptomic data, GENIE3-SG-joint builds a single joint model represented 

by ensemble of trees incorporating variables originating from different data sources [67]. 

Another example, uses Bayesian approach to study joint impact of the genome (SNPs) and 

transcriptome (expression probes) on the phenotype trait after concatenation of genomic 

and transcriptomic data [73].  

3. Analyze each data source separately generating a data-specific solution for each while 

ignoring inter-connections prior to obtaining an integrative result. For example, integrate 

results via concatenation of networks obtained separately from each data source generating 
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the final integrated network. The Similarity Network Fusion (SNF) networks [74] are a 

clear example of this strategy. Specifically, Wang et al. [74] showed how a fusion of several 

individual patient networks from each data source can result in a similarity network fusion 

allowing to better highlight different subject groups. Another example is GENIE3-SG-sep 

which calculates separately weights for each gene pair from each data source prior to 

integration step [67]. In addition,  Section 6.3 presents Regression2Net method that utilizes 

this strategy.  

 

In this thesis in Chapter 6 we propose solutions that are based on strategy 3. The integrated omics 

analysis can be subdivided into four steps 1) definition of biological problem and context; 2) data 

characterization and pre-processing; 3) integration analytics with validation and replication; 4) 

results interpretation. Each step has its own issues which are more accentuated compared to single 

omics data analysis. Chapters 6 and 7 provide suggestions to some of the issues with integrative 

omics analysis including replication, validation, visualization and collection of clinically relevant 

results, data storage and lack of adequate computational processing power [69]. 

 

2.6. Quality Control 

The phrase ‘garbage in, garbage out’ is especially true for genotypic data as it might contain many 

hidden unknown confounding factors leading to increased false positives. 

2.6.1.  Genotypic Data Quality Control 

In order minimize false positives due to detection of false positive associations, genotypic data 

from SNP arrays need to be cleaned and preprocessed prior to any statistical analysis [14]. Typical 

genotypic data quality control parameters include Hardy-Weinberg equilibrium (HWE), minor 

allele frequency (MAF) threshold, call rate of genotypes commonly referred to as Travemünde 

criteria [75]. Our lab developed the minimal GWAIS protocol for genome-wide association 

interaction studies [27] taking into account these criteria together will others including linkage-

disequilibrium levels (LD). Chapter 3 will further explain the importance of proper quality control 

steps exemplified in the ankylosing spondylitis WTCCC2 data. Below we describe in detail the 

main criteria related to genotypic data QC. 
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Hardy-Weinberg Equilibrium (HWE) 

Hardy-Weinberg equilibrium (HWE) refers to a constant undisturbed genetic variation in a 

population linked to frequencies of alleles at a given locus. Assuming complete independence, a 

given set of alleles should follow HWE. Due to specific factors impacting segregation of alleles 

such as non-random mating, natural selection, random genetic drift the allele frequencies are not 

constant from generation to generation and, thus, deviate from equilibrium. Since HWE describes 

an idealized state of genetic variation, it is important to check whether each SNP follows HWE in 

order to detect issues associated with hidden population structure and to minimize false positive 

results. Generally, during quality control filtering, SNPs that do not pass HWE threshold are 

excluded from the further analysis. Typical HWE p-value threshold is generally set at 10-4 [76]. At 

this threshold SNPs with HWE p-values < 10-4 would be eliminated from further analysis. 

Minor Allele Frequency (MAF) 

The minor allele frequency (MAF) refers to the relative frequency of the least frequent allele in a 

population. Allele frequency is calculated based on how many times a given allele occurs in the 

population at a given locus divided by the total number of alleles (major and minor). Changes in 

allele frequencies might be indicative of population structure and non-random allele segregation 

deviating from HWE. If MAF of a given SNP is in the 0.005 - 0.05 range, such SNP is considered 

to be rare, otherwise common [77]. MAFs can be also expressed on the % scale. 

 

Call Rate 

The genotypic call rate refers to the proportion of genotypes that are successfully genotyped out of 

the total number of samples. For example, given 100 samples and one SNP, the total of 95 

genotypes are obtained. The call rate of the considered SNP is 0.95. Commonly the call rate 

threshold is set at 0.95 level [14]. Markers that do not meet such threshold are considered to have 

too many missing genotypes and are removed from further analysis. 
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Linkage-Disequilibrium (LD) 

Linkage disequilibrium refers to the non-random association of alleles at different loci. LD again 

is linked to allele frequencies and factors impacting segregation of alleles. The levels of LD are 

measured by the deviation coefficient (D), normalized coefficient (D’) and correlation coefficient 

(r).  If two loci are in equilibrium, their genotypes are independent and D = 0. The genetic distance 

between a given pair of loci impacts LD as chromosomes can be considered as mosaics affected 

by cross-over events (i.e. recombination). The further a given pair of loci is located, the higher are 

the chances of a recombination event and, subsequently, the lower is the LD. This is because the 

increased recombination rates tend to reduce dependency between loci pairs and, consequently, 

drive down the LD measure [78]. 

 

2.6.2.  Methylome Data Quality Control  

DNA methylation data is accessible due to a relatively cheap cost of bisulfite sequencing (Bi-Seq) 

and methylation arrays processing. The Bi-Seq data acquisition and processing protocol steps 

include assessment of per-sequence and per-base quality plots, removal of adapter sequences from 

the 3’ ends of the bisulfite treated DNA reads, followed by the alignment and methylation calling. 

Given a set of methylation arrays, the protocol steps are platform dependent. Nevertheless, all 

protocols share similar microarray normalization procedures (see Section 2.6.3). Briefly, the M or 

β values are calculated measuring the degree of methylation of the CpG sites followed by 

background normalization minimizing variation across arrays. In the case of Illumina 450k 

Methylation Arrays, there are several tools addressing the quality control needs including minfi R 

library [79]. For more details on common QC protocols for Bi-Seq and methylation arrays 

technologies please refer to [80] and [81]. 

 

2.6.3.  Expression Data Quality Control  

Microarray expression data requires normalization procedures to ensure adequate levels of quality 

control thanks to minimization of technical and systematic biases. Some of these biases include 

different sample handling procedures imposed by different processing centers (batch effect), 

different microarray manufacturers, different amounts of starting material applied to microarray 
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chip, partial degradation of mRNA due to accidental contamination with nucleases, low probe 

sensitivity to poorly expressed genes coupled to high background to signal levels [82], non-specific 

probe binding, etc.  

 

For example, when comparing identical microarrays with different amounts of starting sample 

material a scaling problem arises. The higher the amounts of total RNA, the higher are the signal 

intensities across all microarray probes. Fortunately, normalization and scaling procedures between 

and within arrays would ‘center’ expression data on a common median. One of the most popular 

normalization algorithms are Robust Multiarray Analysis (RMA) and MASS 5.0 implemented in 

affy R package [83]. In addition, the R package limma provides a complete quality control pipeline 

with input and normalization functions [84].     

 

A typical RMA normalization protocol is generally characterized by the following main stages 

including subtraction of average probe background levels from raw probe intensity values, data 

transformation to log2 scale, quantile normalization, and, finally, the linear model fitting leading to 

estimation of a normalized expression value of the probe [85].  RMA assumes a normal distribution 

of the global background signal. For a short review on microarray expression data processing and 

normalization please refer to [86].   
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3. The impact of protocol changes for genome-wide 

association SNP x SNP interaction 

3.1.  Chapter summary 

In this chapter we empirically explore genome-wide SNP x SNP interaction (GWAIS) protocols. 

Specifically, we cover practical aspects of GWAIS analysis with MB-MDR and BOOST 

algorithms. The impact of key parameters on the final outcomes is investigated and compared 

across the 10 protocols focusing on MB-MDR and BOOST as the leading analytic strategies. 

Whereas BOOST represents a classic approach of SNP x SNP interaction discovery via logistic 

regression, MB-MDR represents data dimensionality reduction approaches that do not necessarily 

make assumption about genetic mode of inheritance. A better understanding about the effect of 

changing a few parameters in analysis protocols (e.g., regarding allowable LD between SNPs or 

regarding prior biological SNP filters) is needed to put significant findings for epistasis in the 

“correct” perspective. Apart from providing a contribution to fine-tune existing analysis for 

genome-wide association (GWA) large-scale epistasis screening, we illustrate on real-life data for 

WTCCC2 – ankylosing spondylitis (AS). Here, we investigate the effect of different routes in the 

GWAIS protocol and obtain novel insights into the pathology of AS. 

 

Problem: Genome-wide association interaction studies (GWAIS) have increased in popularity. 

Yet to date, no standard GWAIS protocol exists. In practice, any GWAIS workflow involves 

making choices about quality control strategy, SNP filtering, linkage disequilibrium (LD) pruning, 

analytic tool to model or to test for genetic interactions. Each of these can have an impact on the 

final epistasis findings and may affect their reproducibility in follow-up analyses. In most cases the 

degree of these impacts are largely unknown. Choosing an analytic tool is not straightforward, as 

different such tools exist and current understanding about their performance is based on often very 

particular simulation settings. In the present study, we wish to create awareness for the impact of 

(minor) changes in a GWAIS analysis protocol can have on final epistasis findings. In particular, 

we investigate the influence of marker selection and marker prioritization strategies, LD pruning 

and the choice of epistasis detection analytics on study results, giving rise to 10 GWAIS protocols. 
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Discussions are made in the context of the ankylosing spondylitis (AS) data obtained via the 

Wellcome Trust Case Control Consortium (WTCCC2). 

 

Results: As expected, the largest impact on AS epistasis findings is caused by the choice of 

marker selection criterion, followed by marker coding (co-dominant or additive), followed by the 

LD pruning. In MB-MDR, co-dominant coding of main effects is more robust to the effects of LD 

pruning than additive coding. We are able to reproduce previously reported epistasis involvement 

of HLA-B and ERAP1 in AS pathology. In addition, our results suggest involvement of MAGI3 and 

PARK2, responsible for cell adhesion and cellular trafficking. Gene Ontology (GO) biological 

function enrichment analysis across the 10 considered GWAIS protocols suggests a possible 

association of AS to Central Nervous System (CNS) malfunctions, specifically, nerve impulse 

propagation and in neurotransmitters metabolic processes. 

 

Keywords: Genome-wide association interaction studies (GWAIS), epistasis, protocol adoption, 

ankylosing spondylitis  
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3.2.  Introduction 

High-throughput technologies give access to unprecedentedly vast amounts of data such as Single 

Nucleotide Polymorphisms (SNPs). In Genome Wide Association Studies (GWAS), thousands of 

these are scanned for their potential association with traits of interest, such as a disease status. Hard 

to disentangle are complex traits which assume an intricate interplay between genetic, 

environmental and/or many other unknown factors. For these traits added benefits can be obtained 

by using methods that account for biological and statistical interactions, rather than by adopting 

strategies that analyze each SNP at a time. This is the subject of Genome-wide association 

interaction studies (GWAIS), which usually focus on pairwise SNP-SNP interactions. It is believed 

that GWAIS can lead to novel or improved clinical and biologically relevant hypotheses. 

 

Many strategies exist to carry out a GWAIS, such as those based on generalized linear regression 

models (GLM), BOOST [1], Dimensionality Reduction (MB-MDR) [2], BiForce [3], Bayesian 

Models (e.g., BEAM) [4] and several others [5-7]. For extensive reviews, please refer to [6,8,9]. 

All of these methods have their pros and cons, but the problems or hurdles encountered during the 

analysis are largely overlapping. Common hurdles to overcome include dealing with high 

dimensionality, handling a huge multiple testing problem, limiting computation time (when 

assessing statistical significance), and controlling false positive rates [6]. Unfortunately, often 

when novel GWAIS analysis methods are introduced the impact on epistasis findings of changes 

in the GWAIS protocol are given limited attention. Some examples of key protocol parameter 

changes related to marker filtering/prioritization, LD thresholds in marker pruning, a priori 

assumptions about operating two-locus inheritance models, main effects correction. It is essential 

to differentiate between global two-locus testing (i.e. not differentiating between main effects and 

interaction effects) and specific interaction testing (i.e. testing for the interaction between two loci 

itself, above and beyond the main effects). Specific interaction testing requires making adjustments 

for lower-order effects, and hence proposing a particular encoding scheme for lower-order effects. 

Several authors have commented upon the limitations of an additive encoding scheme for SNPs in 

SNP x SNP interaction studies and recommended co-dominant coding [10]. 

 

In this study, we investigated the impact on final epistasis results of changing one or more 

parameter settings in a GWAIS protocol, leading to 10 interesting strategies (Figure 3.1 and Table 
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S3.1). These strategies are motivated by prior theoretical work [2,11,12] and recent epistasis tool 

developments. As a benchmark protocol, we took the one proposed by [8]. As analytic tools we 

chose BOOST [13], motivated by its popularity and computational efficiency due to a Boolean data 

representation, and MB-MDR (e.g., [2]), because of its non-parametric nature regarding epistasis 

models and its ability to correct for confounders or lower-order effects. In brief, BOOST handles 

binary traits and fits a full generalized linear model with main SNP effects (2 degrees of freedom 

(df) for each main effect) and SNP-SNP interaction effects (4 df). Significant (specific) interactions 

are identified via a Log-Likelihood Ratio Test (LRT) based on 4 df. The Bonferroni correction is 

proposed as a multiple testing corrective measure. In contrast, MB-MDR handles binary, 

continuous, and censored traits, and first carries out a dimensionality reduction procedure while 

pooling risk-alike multi-locus genotype combinations together. Its final test statistic contrasts high 

risk versus low risk multi-locus genotypes. While correcting for multiple testing, the significance 

is assessed via the resampling-based strategy proposed by [14]. For additional details about MB-

MDR and BOOST, we refer to [1,2,12,15]. To achieve our goal, we used real-life ankylosing 

spondylitis (AS) data from the Wellcome Trust Case Control Consortium (WTCCC2). Ankylosing 

spondylitis (AS) is a common form of inflammatory arthritis occurring in approximately 1 to 14 

out of 1,000 adults globally [16]. Apart from confirming previously known AS associated genes 

[17,18], we will show that combining different protocols may give new insights into disease 

pathology. 

 

3.3.  Methods 

3.3.1.  Data Quality Control 

Approved access to Wellcome Trust Case Control Consortium (WTCCC2) data, in particular via 

EBI accession no. EGAS00000000104, EGAD00010000150, EGAD00000000024 and 

EGAD00000000022, resulted in a dataset composed of 2005 ankylosing spondylitis (AS) cohort 

samples, and 3000 British 1958 Birth Cohort (BC) and 3000 National Blood Donors (NBS) Cohort 

samples. The 1788 cases were of British Caucasian origin recruited by Nuffield Orthopedic Centre, 

Oxford and Royal National Hospital for Rheumatic Diseases, Bath. The first batch of case samples 

were genotyped on an Illumina 670k platform; the last two batches of control samples were 

https://www.ebi.ac.uk/ega/studies/EGAS00000000104
https://www.ebi.ac.uk/ega/datasets/EGAD00010000150
https://www.ebi.ac.uk/ega/datasets/EGAD00000000024
file:///C:/Users/Kirill/Documents/Research2012/Ankylosing_Spondolytis_study/MANUSCRIPT/Genomics_Research_submission/EGAD00000000022
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genotyped on an Illumina 1.2M platform. No imputation was done for these genotypes. We used 

PLINK [19]  to select 6,587 subjects (1788 cases plus 4799 controls), 3409 of which were male 

and 2864 female, and 487,780 SNPs, according to criteria described in [17]. Briefly, SNPs showing 

MAF < 0.01, Hardy-Weinberg p-values < 5 × 10-20 and SNPTEST information measure < 0.975 

were excluded. The dataset inflation factor (λ) was estimated as 1.02917. The QC-ed genotype data 

were stored in GEN format and were converted to PED and MAP files using GTOOL from Oxford 

University, UK [20].   

 

 

 

 

Figure 3.1: Summary of 10 GWAIS protocols included in this study and applied to AS data, the ankylosing spondylitis 

dataset from [17]. The number of SNPs retained at each step is shown in parenthesis. The bottom nodes refer to GWAIS 

protocol abbreviations and chosen parameters, following protocol components as described in [21] [8]. The 

abbreviations additive and co-dominant refer to SNP main effects correction encodings in MB-MDR (see [10]). The 

abbreviation gammaMAXT and MAXT refer to the SNP x SNP interaction significance assessment strategies 

implemented in MB-MDR [15] (see Methods). 
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3.3.2.  Additional data handling 

Depending on the GWAIS protocol of choice, additional data manipulations were required, such 

as marker prioritization or LD pruning (Figure 3.1). We prioritized markers with the Biofilter 2.0 

software developed by Ritchie et al. [22]. The Biofilter 2.0 uses a list of public biological databases 

(sources) such as KEGG, BioGRID, MINT, via the Library of Knowledge Integration (LOKI), to 

generate pairwise gene-gene interaction models [13]. No disease-specific information was used, 

but available knowledge about gene-gene interactions from different biological resources called by 

Biofilter 2.0 [22]. The advantage of such an approach is an 11-fold reduction of the original marker 

set, without selection bias introduction towards a particular disease. The disadvantage of any pre-

filtering method is that useful information may be disregarded and biologically relevant SNPs 

removed from further analysis protocols. In practice, taking the 487,780 SNPs from [17] as a 

starting point, we applied Biofilter 2.0 with a minimum implication index threshold of 3, meaning 

that at least 3 data sources confirmed the associated gene-gene interaction. This resulted in the 

generation of 8,288 gene-gene models and a set of 44,018 unique SNPs (Figure 3.1).  

 

To reduce the number of tests and the number of false positives based on genomic proximity (for 

instance, redundant epistatic SNP pairs), some GWAIS protocols involve LD filtering or pruning 

(Figure 3.1). As motivated and recommended by [21], we adopted a rather mild pruning threshold 

of r2>0.75, still allowing for moderate LD but removing strong LD. Pruning at r2>0.75 threshold 

implies that every SNP pair in the pruned dataset has an r2 of at most 0.75. The proposed threshold 

offers a balance between power gain and false positives due to high LD. In practice, LD-pruning 

was performed considering the sliding windows of size 50 (i.e. 50 markers) with window 

increments of 1 marker. For any pair of markers under testing whose r2>0.75, the first marker of 

the pair was discarded, as implemented in SVS Version 7.5 (Golden Helix, Inc.) [23].  After LD 

pruning, the original marker dataset reduced from 487,780 to 321,565 markers. After LD pruning, 

the biofiltered data (Biofilter 2.0) reduced from 44,018 to 30,426 markers (Figure 3.1).  

 

3.3.3.  Interaction testing 

To test for interactions we used two software tools: BOOST [13] and MB-MDR [2]. We extended 

the original BOOST algorithm as it did not deal with missing genotypes and so as to properly adjust 
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the number of degrees of freedom (df) in case less than 3 genotypes was observed for a marker. 

Our implementation of BOOST was coded in C++, and was coined Epishell. For more details we 

refer to [11,24]. Notably, a similar adaption of BOOST was implemented in the PLINK software 

(PLINK version 1.9, called via “--fast-epistasis boost”). In practice, for the MB-MDR 

methodology, we used the algorithms implemented in MBMDR version 3.0.2 [15] that provides 

several advantages over classic MDR [25] or BOOST, such as the ability to analyze different trait 

types within the same framework, as well as non-parametric model free testing for two or three-

order interactions while adjusting for lower order effects or relevant confounders. Since MBMDR 

versions 2.0 – 4.1.0 require significant computational resources to run on a genome-wide scale, we 

were not able to use these MB-MDR versions on unfiltered data, at the time of analysis. Hence, in 

the initial study, all MB-MDR based protocols (Figure 3.1) were implemented on a reduced dataset 

via Biofilter 2.0. The default main effects correction in MB-MDR is a co-dominant one. As was 

mentioned in [26], it is important to correct for main effects in a co-dominant way to avoid false 

epistasis signals.  To allow for exhaustive epistasis screening with MB-MDR (protocols #9 and 

#10 - Figure 3.1), we used its gammaMAXT implementation introduced in MBMDR version 4.2.2  

as in [27]. The latter has advantages over the original MAXT algorithm [15] when more than 105 

SNP pairs need to be investigated in a large-scale epistasis study. 

 

Results obtained from either one of the 10 GWAIS protocols included in this study were compared 

to results obtained in the reference study [17]. In particular, as statistical interactions may be 

indicative for important main effects [28], we compared SNPs derived from significant SNP pairs 

to the list of 49 SNPs in Supplementary Table S2 of [17] that passed quality control in their 

replication analysis. Also, significant SNP pairs obtained in this work were compared to the 

reference panel of 102 SNP-SNP pairs tabulated in Supplementary Table S5 of [17]. The latter 

table lists all considered SNP pairs for interaction testing, using an additive x additive term in a 

logistic regression model (i.e. additive encoding of SNP main effects and interaction).  

3.3.4.  Assessing consistencies between protocols 

The overlap between GWAIS protocols (Figure 3.1) in identifying the same significant SNP pairs 

was graphically presented via the Euler diagram (Figure 3.2) with the software VennMaster 0.38 

[29]. For each of the SNP pairs tested, ranks were computed, for each protocol separately, with 
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rank 1 assigned to the SNP pair with the smallest multiple testing corrected p-value.  Then, SNP 

pairs that were common to each protocol were retained, in order to be able to compare exhaustive 

with non-exhaustive protocols. A total of 207 SNP pairs were retained. These are listed in online 

Table S3.4, together with their associated protocol-specific p-values, and were subsequently used 

to calculate “distances” between protocols. In particular, we calculated the squared Euclidean 

distance between 10 GWAIS protocols using 10 input vectors containing 207 ranks each. These 

207 ranks for each protocol corresponded to relative positions of the common 207 SNP pairs 

amongst all ordered SNP pairs (from highest to lowest significance). For example, the ranks for 

the rs12026423 x rs7528311 pair in protocols 1 to 10 were 232, 2300, 97, 61, 259, 151, 59892, 

43598, 15807, and 5418 respectively. We used complete linkage cluster agglomeration with 

hclust() to build a dendrogram (hierarchical tree) [30] (Figure 3.3). The use of SNP pair ranks 

coupled with hierarchical clustering allows an unbiased qualitative comparison of the top findings 

derived via different GWAIS protocols.  

 

In addition, to assess the effects of MAFs on top findings in each protocol, we selected the top 

1000 SNP pairs for each GWAIS protocol. We subsequently defined the following MAF classes 

or bins, using interval notations: 1) (0-0.05) (MAF<0.05; less common minor allele); 2) [0.05-0.10) 

(0.05 ≤ MAF < 0.10; moderate occurrence of the minor allele); 3) [0.10-0.50) (0.10 ≤ MAF < 0.50; 

rather common minor allele). Two-dimensional bins were defined by combining the 

aforementioned three 1-dimensional bins as follows: 1) (0-0.05)/(0-0.05); 2) [0.05-0.10)/(0-0.05); 

3) [0.10-0.50)/(0-0.05); 4) [0.05-0.10)/[0.05-0.10); 5)[0.05-0.10)/[0.05-0.10); 6)[0.10-0.50)/[0.10-

0.50). Note that for any SNP pair falling into one of these six 2-dimensional bins, the MAF of the 

first SNP in the pair will be larger or equal than the MAF of the second SNP in the pair, unless 

perhaps when both SNPs belong to the same one-dimensional bin.  

3.3.5.  Biological relevance 

The SNP to gene symbol annotation (when possible) was done using SCAN – a SNP and CNV 

Annotation Database [31]   The SCAN database accepts a list of SNPs, maps them to genomic 

coordinates and outputs corresponding gene symbols, provided that the SNP is located within a 

gene coding region, which is helpful in assessing putative biological function and context. We then 

performed GO enrichment analyses [32] on the top 1000 most significant SNP pairs, by GWAIS 
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protocol. In practice, we used the topGO library in R that takes into account the GO graph structure 

and removed nodes (GO terms) that had a low number of annotated genes, i.e. less than 10 [33,34]. 

The weight01 algorithm was chosen based on the author’s recommendations and due to benefits 

incorporation from the elim and weight algorithms [33]. Significance of each GO term, per 

protocol, was based on Fisher’s exact test. Overall significance across all protocols was assessed 

via Fisher’s combined probability test at a significance level of 0.05. 

 

3.4.  Results 

3.4.1.  Consistency between interaction results derived from different GWAIS 

protocols 

A graphical representation, showing the overlap of significant findings between considered 

GWAIS protocols is presented in Figure 3.2. The significant SNP pairs (multiple testing corrected) 

retrieved via GWAIS protocol #1-#10 (Figure 3.1) are tabulated in online Table S3.3.  

 

The largest number of significant SNP pairs were obtained for protocols that use additive encoded 

corrections for main effects (protocols #7, #8).  Over 2000 significant pairs were detected with an 

exhaustive implementation of BOOST on LD-pruned data (protocol #2).  The number of significant 

SNP pairs reduces significantly when BOOST is used exhaustively on un-pruned data (protocol 

#1; 226 pairs). 
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Figure 3.2: Euler diagram capturing significant SNP pairs identified in each of the 10 GWAIS protocols (Table S3.1). 

Each circle represents a set of the significant SNP pairs in the corresponding GWAIS protocol. Protocol numbers 

match the protocol referencing used in Figure 3.1.   

 

All other protocols identified less than 130 significant epistasis signals; the most liberal is protocol 

#3 (BOOST on filtered data), the most conservative is protocol #6 (MB-MDR on biofiltered and 

LD-pruned data), also using a co-dominant encoding scheme to correct the interaction testing for 

lower order SNP effects. Furthermore, only few of the findings obtained via exhaustive protocols 

(BOOST, #1-#2) were retrieved via protocols that first biofiltered the data (protocols #3-#8). With  

the same protocol for LD pruning on biofiltered data, both BOOST and MB-MDR in co-dominant 

main effects correction mode, gave partially overlapping results (Figure 3.2). In effect, over 97% 

of significant SNP x SNP interactions identified via MB-MDR protocols #5 and #6 were identified 

in BOOST protocols #3 and #4, respectively (Figure 3.2 and Table 3.3).   
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Figure 3.3: Consistency between GWAIS protocols based on 207 common SNPs. Each SNP pair has a protocol-

specific rank, which is stored in a protocol-specific vector. The dendrogram shows the distance between protocols, 

obtained via hierarchical clustering of 10 vectors (referring to the 10 GWAIS protocols included in this study) of length 

207 and the Euclidean distance measure. The Euclidean distances themselves are listed in Table 3.2. 
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Via hierarchical clustering (see Methods for details), the largest distance between protocols (i.e. 

the smallest overlap between top findings, not necessarily significant) was obtained for exhaustive 

screening protocols: protocol #1 -  BOOST without pruning and protocol #2 – BOOST applied on 

LD-pruned data (Figure 3.3). The effect of LD in BOOST applications is less pronounced when 

data were first biofiltered. Actually, the smallest distance between protocols was observed between 

protocols #3 (BOOST without LD pruning) and  #4 (BOOST applied to LD-pruned data). In 

general, the effect of LD on SNP pair rankings seems to be smaller in non-exhaustive protocols as 

compared to the exhaustive protocols considered. This is true for the exhaustive protocols #9 and 

#10 where LD pruning had a very significant impact on final results rankings (Figure 3.3). The 

second smallest distances observed between protocols was between #5 and #6 (MB-MDR with co-

dominant correction of lower-order effects on the pre-selected data) and between #7 and #8 (MB-

MDR with additive encoding of main SNP effects on the pre-selected data). Within non-exhaustive 

screening protocols (#3-#8), analyses that used an additive encoding to adjust for SNP main effects 

while testing for interactions stood out;  all protocols involving epistasis detection analytics with 

co-dominant encoding schemes of some sort clustered together (Figure 3.3). The gammaMAXT 

exhaustive protocols involving additive main effects correction provided very dissimilar result to 

all considered protocols sharing no common SNP x SNP pairs (data not shown). Notably, MB-

MDR gammaMAXT applied in non-exhaustive settings provided identical results to MB-MDR with 

MAXT multiple testing correction (i.e. distance zero – data not shown). A closer look at the 

overlapping significant SNP pairs across all 10 GWAIS protocols, reveals that only 3 out of 207 

SNP pairs (rs12026423/rs7528311, rs11964796/rs13194019 and rs13194019/rs1784607) met 

statistical significance at α=0.05, according to at least one GWAIS protocol (Table S3.4). 

 

We furthermore investigated whether any of the 49 main effects SNPs reported in [17] were 

supported by our SNP-SNP interaction results across the 10 tested GWAIS protocols (see Methods 

for more details). With GWAIS protocols #5, #6, #7 and #8 based on the MB-MDR framework, 

we were able to confirm rs9788973 (p-value 0.49), which maps to HLA-B and rs30187 (p-value 

1.1x10-9), which maps to ERAP1 [17]. These SNPs occurred in the pairs rs2523608 x rs9788973 

and rs30187 x rs284498 (see Table 3.2). 

Table 3.1: Most significant SNP pairs across 10 adopted GWAIS analysis protocols. All p-values are multiple testing 

corrected, either Bonferroni-based (BOOST protocols) or re-sampling based (MB-MDR protocols). 
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SNP A SNP B 

GWAIS protocols 

Gene A 

  

Gene B 

  

BOOST MB-MDR 

#1 #2 #3 #4 #5 #6 #7 #8 

#

9 #10 

rs12026423 rs7528311+ 0.009 0.004 7.72E-05 3.69E-05 0.401 1 0.001 0.004 1 1 MAGI3 MAGI3 

rs11964796 rs13194019++ 1 1 0.024 0.012 0.401 1 1 0.995 1 1 PARK2 PARK2 

rs13194019 rs1784607+++ 1 1 0.144 0.069 0.401 1 1 0.995 1 1 PARK2 PARK2 

+ rs12026423/rs7528311 are separated by 13833 bp, r2 = 0.0178; ++ rs11964796/ rs13194019 are separated by 9824 bp and r2 = 

0.0309; +++ rs13194019/rs1784607 are separated by 3127 bp and r2 = 0.0610 

 

Only GWAIS protocols #7 and #8 coined the aforementioned two pairs as being statistically 

significant. None of the 102 SNP pairs listed in [17] were found to be statistically significant in our 

re-analysis, regardless of the protocol used. Relaxing the conditions, we determined the number of 

SNP pairs with a SNP that occurred in at least one of the 102 SNP pairs reported by [17]. A total 

of 38 such SNP pairs were detected. These are listed in online Table S3.5. From these, only 8 

significant SNP pairs were highlighted by at least one of our GWAIS protocols (in particular, 

protocol #7 and #8 - Table 3.3)  

Table 3.2: Significant pairs containing one of the 49 SNPs associated to main effects [17], obtained via the 10 GWAIS 

protocols. 

SNP A SNP B 

GWAIS protocols 

Gene A Gene B #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

multiple testing adjusted p-values 

rs2523608 rs9788973* 1 1 1 1 1 1 0.001 0.001 1 1 HLA-B  MAP2K4  

rs30187* rs2844498 1 1 1 1 1 1 0.001 0.002 1 1 ERAP1 NA 

*SNPs that occurring as main effects SNPs in Supplementary Table 2 of [17] are highlighted in bold. 
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Figure 3.4: Effect of SNP MAFs on ranked epistasis results. For each protocol, the top 1000 epistasis results are 

presented. Each SNP pair was ordered such that the SNP with the largest MAF was assigned to locus A, and the SNP 

with the lowest MAF to locus B. The numbers in red refer to the # of SNP pairs that were assigned to each 2-

dimensional MAF bin. Protocol numbers match the protocol referencing used in Figure 3.1. 
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To investigate the influence of MAFs on epistasis findings using different protocols, we defined 

six 2-dimensional bins (see Methods for more information). The allocation of top 1000 epistasis 

findings (significant or not) to either of these bins is presented in Figure 3.4. Hence, adding up the 

number of allocated SNP pairs to each bin (red numbers in Figure 3.4), within the same protocol, 

gives 1000. Within the exhaustive protocols (#1 and #2, respectively, BOOST applied to unpruned 

and LD-pruned data; #9 and #10, respectively, MB-MDR applied to unpruned and LD-pruned 

data), there is a tendency for SNP pairs each having MAF ≥ 0.05 to occur in the top 1000. The 

same is observed for non-exhaustive protocols, in particular those that rely on additive encodings 

when adjusting for main effects (protocols #7 and #8, MB-MDR applied to unpruned and LD-

pruned data, respectively) and those that rely on codominant main effects encoding schemes 

(protocols #3-#6). The highest number of SNP pairs (out of 1000) with MAFs < 0.05 were obtained 

with exhaustive BOOST screening on unfiltered and unpruned data (protocol #1), followed by MB-

MDR applied unpruned pre-selected data (protocol # 5). In general, all protocols give rather similar 

results, apart from protocols for which all of the top 1000 SNP pairs involved at least one SNP with 

MAF≥0.10. For protocols #1-#6, the percentage of SNP pairs appearing in the top 1000 list with at 

least one MAF < 0.05 ranged from 0.2% (protocol #2) to 5.9% (protocol #1). 

 

3.4.2.  AS pathology relevance 

To provide a biological context, we performed a GO functional enrichment analysis on the top 

1000 SNP pairs identified within each individual GWAIS protocol. Each SNP was mapped to a 

gene, when possible (see Methods for additional details). A GO term was considered when at least 

10 of these genes were annotated to them. This led to a total of 1326 common GO terms across all 

10 GWAIS protocols with combined p-values < 0.05 (online Table S3.6). Top 10 GO terms are 

shown in Table 3.2. Using a significance level of 0.05, significant combined p-values were obtained 

for GO terms related to the central nervous system (CNS). In particular, links between AS 

pathology and nervous system signal transmission via synapses biological processes was observed 

via e.g., GO:0007411 (combined p-value: 7.86x10-77), GO:0007268 (combined p-value: 2.00x10-

36), and GO:0043524 (combined p-value: 2.91x10-17). To a lesser degree, we also observed a link 

between AS and immune system processes that involve antigen processing and presentation via 

MHC complex: combined p-value for GO:0002479 of 1.77x10-8 (not corrected for multiple 
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testing). Other overall significant GO terms were linked to biological processes such as membrane 

transport (GO:0055085, combined p-value: 3.04x10-50) and sudden response to stimuli 

(GO:0001964, combined p-value: 1.48x10-10) without a clear association to AS. In addition, we 

detected an involvement of the Notch pathway responsible for the proliferation of neurons 

(GO:0007219, combined p-value of 1.02x10-5), again linking AS to CNS processes. 

Table 3.3: Statistically significant SNP x SNP interactions that contain a SNP occurring in at least one of 102 SNP 

pairs listed in  Supplementary Table 5 in Evans et al. [17]*. 

GWAIS 

protocol 
SNP A SNP B Chr A Chr B  p-value Gene A Gene B 

#8 
rs30187* rs2844498 5 6 0.002 ERAP1 MICB 

rs30187* rs2523608 5 6 0.038 ERAP1 HLA-B 

#7 

rs10050860* rs2844498 5 6 0.001 ERAP1 MICB 

rs10050860* rs2523608 5 6 0.001 ERAP1 HLA-B 

rs30187* rs2844498 5 6 0.001 ERAP1 MICB 

rs30187* rs2523608 5 6 0.001 ERAP1 HLA-B 

rs2523608 rs10781500* 6 9 0.001 HLA-B SNAPC4 

rs2844498 rs10781500* 6 9 0.001 MICB SNAPC4 

* - SNPs that were analyzed in Supplementary Table 5 by [17] are highlighted.



 

 

 

Table 3.4: Top 10 Significant GO terms related to top 1000 SNP pairs per GWAIS protocol, based on Fisher's combined p-value at a significance level of 

0.05. Protocol-specific p-values are also reported. 

GO ID GO Term Description 
GWAIS protocols 

combined* 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

GO:0007411 axon guidance 5.2E-02 1 4E-16 4.4E-18 1.9E-12 2.2E-15 1.2E-13 5.7E-16 5.7E-16 1 7.9E-77 

GO:0030168 platelet activation 5.8E-01 1 2.9E-15 2.3E-15 3.2E-11 1.2E-10 4.1E-09 1.2E-11 1.2E-11 1 3.9E-58 

GO:0055085 
transmembrane 

transport 
4.7E-02 1.6E-01 1.8E-09 1E-09 3.2E-11 5.4E-11 6E-09 1E-12 1E-12 5.5E-01 3.0E-50 

GO:0007268 synaptic transmission 2.2E-02 1 8E-10 3.1E-08 1.5E-06 2.4E-09 6.3E-07 5E-08 5E-08 1 2.0E-36 

GO:0007173 

epidermal growth 

factor receptor 

signaling pathway 2.1E-02 1 7.8E-10 1.4E-11 2.4E-07 6.8E-07 2.4E-05 7.2E-06 7.2E-06 1 1.6E-34 

GO:0008543 

fibroblast growth factor 

receptor signaling 

pathway 9.8E-02 1 5.4E-08 6.9E-11 5.1E-07 1.8E-08 2.2E-04 3.6E-04 3.6E-04 1 3.0E-30 

GO:0007202 

activation of 

phospholipase C 

activity 1.0E-02 1 2.6E-08 9.4E-09 1.8E-06 6.8E-06 5.1E-06 3.9E-06 3.9E-06 1 6.4E-30 

GO:0006112 
energy reserve 

metabolic process 1.8E-01 1 9.9E-07 3.4E-09 1.2E-04 1.8E-07 5.9E-06 3.6E-05 3.6E-05 1 1.5E-26 

GO:0042493 response to drug 1.3E-01 5.6E-01 2.7E-05 1.4E-09 5.1E-03 9.8E-05 1.9E-07 6.6E-08 6.6E-08 6.1E-01 7.9E-26 

GO:0006198 
cAMP catabolic 

process 5.2E-03 1 5.1E-04 2.5E-05 2.9E-06 5.6E-08 1.0E-05 1.5E-06 1.5E-06 1 6.0E-25 

* - Combined p-values summarize information across the 8 considered protocols. The most relevant GO terms for AS are indicated in bold, as well as, GWAIS-specific p-values 

when < 0.05. The exhaustive list of significant GO terms is shown in online Table S3.6



 

 

 

3.5. Discussion 

In our study, we demonstrated that choices about data filtering, pruning and lower order effects 

adjustment may cause substantial variation in epistasis findings. We showed this by making 

changes to the reference GWAIS protocol we published earlier [8], giving rise to 10 GWAIS 

protocols under investigation in this work (Figure 3.1). The reference GWAIS protocol consists of 

a set of guidelines designed to address problems of epistasis reproducibility in the context of 

genome-wide epistasis screening with thousands of SNP markers. It contains recommendations on 

rigorous data quality control steps, exhaustive or non-exhaustive marker screening, LD pruning 

thresholds and the selection of a suitable analytic epistasis detection tool.  

 

Based on our results (for instance Figure 3.3) the major cause of heterogeneity in findings is the 

choice about which markers to retain in the analysis. We referred to it as “pre-selection of markers”. 

We used filtering based on biological knowledge to make educated pre-selections, using a 

compendium of biological databases via Biofilter 2.0 [22]. The effects of pre-selections on the 

number of SNPs can be huge, as was exemplified on AS: before selection, 487,780 SNPs; after 

selection, 44,018 SNPs. This has huge consequences for subsequent analyses. In a negative sense, 

there is a risk of removing pairs of SNPs that may lead to interesting new hypotheses, for which 

no reported evidence exists in existing biological data repositories. In a positive sense, less multiple 

tests are need to be performed, hereby reducing computation time and potentially also the number 

of false positives. Seeking a balance between potentially improving the power of the GWAIS by 

relying on prior knowledge versus decreasing the chance of missing important findings remains a 

challenging task. When inspecting the overlap between significant results for each protocol, it is 

therefore not surprising that little overlap may exist between significant results obtained via 

exhaustive protocols and significant results obtained via non-exhaustive protocols. In fact, for the 

AS data we re-analyzed, no overlap was found at the SNP level (see Figure 3.2 and Figure 3.3 

protocols #1-#2 versus #3-#8). Furthermore, the protocol adopted by [17] makes a heavy pre-

selection of markers. Only those SNPs showing a significant association with AS via main effects 

GWAs were considered. This involved 15 SNPs, half of which were also included in the 487,780 

SNPs that served as input to our own GWAIS protocols (#1-#10): rs30187, rs10781500, 

rs10865331, rs11209026, rs2297909, rs378108, rs11209032. The likelihood ratio interaction tests 
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adopted in their work were similar to the ones implemented in BOOST. However, whereas in 

BOOST tests are based on 4 df, interaction tests in [17] were based on 1 df (testing departure from 

additivity on the log-odds scale). Hence, it is not surprising that none of the significant SNP pairs 

reported in [17] can be reproduced in our study. Notably, neither BOOST nor MB-MDR in our 

protocols adjusted for population stratification. In contrast, [17] did correct for potential population 

stratification using a two-stage approach involving Bayesian clustering and Hidden Markov 

models. In theory, this may explain additional differences between our analyses and the ones 

performed in the reference study [17]. However, given that the inflation factor based on median X2 

for the AS data is 1.029, we believe that no adjustments were necessary and hence no spurious 

results were generated as a result of not correcting for population stratification in our adopted 

protocols. 

 

Our results, visualized in Figure 3.3, suggest that the second largest cause for heterogeneity in 

significant findings, derived from different protocols, is the adopted encoding scheme for genetic 

variants. This is clear for the non-exhaustive protocols included in our study (#5-#8). It is less clear 

for exhaustive protocols, since the ones included in our study only considered co-dominant 

encoding schemes (#1-#2). However, our experience with other real-life applications seems to 

support our suggestion also for exhaustive protocols (data not shown). Previous theoretical work 

also showed that additive encodings for lower order effects may increase false positives rates in 

interaction studies [10]. This is in line with the large number of significant interactions identified 

via protocols #7 and #8 (Figure 3.3). It is very unlikely that over 50,000 significant interactions 

highlighted by these protocols are genuine, and are caused by the (strong) main effects blurring the 

epistasis signal [10].  

 

The third largest cause for heterogeneity is attributed to differences in employed LD-pruning 

approaches. Here, the effect of LD-pruning (i.e. pruning at r2 > 0.75 or not) was more pronounced 

under additive encoding schemes (protocols #7 versus #8) as opposed to co-dominant encoding 

strategies (protocols #3 versus #4, and protocols #5 versus #6). Therefore, it is important to discuss 

the primary interaction study performed in [17], targeting additive x additive interactions, with 

caution, and in the light of the adopted pruning protocol.  Figure 3.3 shows that the effects of LD 

pruning are more severe for exhaustive protocols compared to non-exhaustive protocols. This is 
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not surprising, given that the LD pruning in the first implies a reduction of about 150,000 SNPs, 

compared to less than 15,000 SNPs in the second. Hence, although potentially more significant 

SNP pairs can be revealed in protocol #1 (exhaustive, BOOST, unpruned), less significant pairs 

are highlighted as compared to protocol #2 (exhaustive, BOOST, LD-pruned; Figure 3.3). This can 

be explained by the reduced number of tests to account for Bonferroni corrections. The reverse is 

observed for protocols #3 (BOOST, pre-selected) and #4 (BOOST, pre-selected and LD-pruned). 

Here, protocol #4 gives rise to less significant SNP pairs compared to protocol #3 (Figure 3.3). 

There is still a reduction of the multiple testing burden in protocol #4 is true, but this cannot explain 

the phenomenon. More likely, an increased number of redundant epistasis signals (due to high LD 

between some marker pairs) are an explanatory factor. The same can be observed for MB-MDR-

based protocols #5 and #6. In particular, again LD pruning as part of protocol #6 gives rise to a 

smaller number of significant SNP x SNP interactions (47 – see Figure 3.2) compared to protocol 

#5 (no LD pruning; 77 – see Figure 3.2). Note that MB-MDR and BOOST use quite different 

multiple testing correction strategies. In case of BOOST, a conservative Bonferroni correction is 

advocated. In MB-MDR, a permutation-based maxT strategy is implemented, which relies on 

subset pivotality to guarantee strong FWER control at α = 0.05. 

 

Less common and rare variants tend to increase false positive rates, when inappropriate tests are 

used, as reported in [35,36]. According to [35] rare SNPs with MAF < 0.05 showed a significantly 

higher likelihood of being classified as false positives in the logistic regression based GWAS [35]. 

For BOOST-based protocols (#1 - #4), the percentage of top 1000 SNP pairs with at least one MAF 

< 0.05 that were statistically significant (multiple testing corrected), was respectively 5.9%, 0.2%, 

4.9 % and 2.4% (data not shown). For MB-MDR based protocols (protocols #5-#6) the percentage 

of such SNP pairs was respectively 0.1% and 0.2%, smaller than with BOOST-based protocols. 

However, for MB-MDR based protocols #7 and #8 (using additive encoding schemes for main 

effects adjustment), the percentages were higher (4.8% and 5.3%, respectively). This is in line with 

earlier findings about MB-MDR performance [10,12,26]. When MB-MDR is applied to rare 

variants, three factors are at play. First, FWER can be elevated due to violations of the subset 

pivotality assumption in the built-in maxT multiple-testing correction procedure [37]. Second, 

when marker frequencies are rare, less than 10 individuals may contribute to a multi-locus genotype 

combination, in which case there is no power to assess whether this combination is related to a 
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significantly higher or lower disease risk. As a consequence, the power to detect an interaction with 

such a combination may be hampered. Third, additive coding will always give rise to increased 

false positives, irrespective of whether rare or common variants are considered.   

 

The fact that protocols #7 and #8 were the only ones that were able to highlight significant 

interactions, with either one of the 49 main effects SNPs listed in Evans et al. 2011, namely 

rs2523608 x rs9788973 and rs310787  x rs2844498 (Table 3.2), is not surprising. MB-MDR with 

additive encodings has a tendency towards generating more liberal test results than MB-MDR with 

co-dominant encodings [10,12]. The SNPs rs9788973 and rs2523608 map to the genes MAP2K4 

and HLA-B. The HLA-B gene showed very strong association to AS (rs4349859 p-value <10-200) 

in [17] and was also related to AS in other studies [38,39]. In addition, the rs2523608 x rs9788973 

pair resides in the coding regions of the HLA-B x MAP2K4 genes (Table 3.2), suggesting that AS 

pathology is not only linked to irregularities in peptide presentation to immune cells via major 

histocompatibility complex (MHC), but also to dysfunctions in intra-cellular signaling pathways.  

 

Focusing on the common SNP pairs between GWAIS protocols in our study (207 pairs), only 3 

showed a significant interaction in at least one protocol (Table 3.1), pointing towards the genes 

MAGI3 and PARK2. The gene MAGI3 controls intracellular signaling cell-cell adhesion and 

communication [40]. In the context of AS, MAGI3 potentially regulates cell-cell communication 

and adhesion of the cells in the inflamed joint areas between spinal discs and vertebra. PARK2 was 

suggested before as a candidate gene for AS in [41]. Mutations in the PARK2 gene can cause 

alteration in cellular trafficking and protein degradation [42]. In [43], alterations incorrect antigenic 

peptide presentation by major histocompatibility complex (MHC) class I molecules to CD8+ T 

lymphocytes were linked with an early onset of chronic inflammation and AS. Further alteration 

in protein degradation, partially controlled by PARK2, may also suggest an alteration in the proper 

disposal of antigens. The aberrations in this process may potentially contribute to chronic 

inflammation of the spine followed by AS onset. 

 

Only 20 pairs were common between our 10 protocols and the list of the 102 SNP x SNP 

interactions investigated in [17]. Clearly, several interesting pairs are missed by only looking at 

SNP pairs that are tested by all considered protocols (i.e. common SNP pairs). Imputation, to make 
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the SNP x SNP pool more alike between protocols, may not only over-rule removal of SNPs after 

biofiltering (for which one may have had good reasons), it may also induce additional LD between 

SNPs, which may hugely increase false positives, depending on the analytic tool used. 

Interestingly, 8 significant SNP x SNP interactions were detected for which at least one SNP was 

present in the 102 SNP pairs of [17] (Table 3.3). These 8 pairs involved the SNPs rs30187, 

rs10050860 and rs10781500, and allowed to reproduce the statistically interacting gene pair 

ERAP1 x HLA-B reported in [17] via the interactions rs3018 x rs2523608, rs10050860 x rs2523608 

and rs30187 x rs2523608 (Table 3.3). Notably, these findings were obtained with the only 

protocols using additive main effects encodings (protocols #7 and #8). Evans and colleagues also 

primarily based their interaction testing on additive encodings.  

 

However, by allowing more SNPs for interaction testing than in [17], we identified gene pairs not 

previously associated to AS: ERAP1 x MICB, MICB x SNAPC4 and HLA-B x SNAPC4 (Table 3.3), 

pointing towards interacting loci or regions between chromosome 5 and 6, and between 6 and 9. 

MICB is MHC Class I Mic-B Antigen linked to cell immune response and is functionally similar 

to MHC Class I encoded by the HLA-B gene. MICB is implicated in rheumatoid arthritis [44]. 

SNAPC4 encodes small Nuclear RNA Activating Complex important for proper functioning of 

RNA Polymerase II and III. ERAP1 encodes for endoplasmic reticulum aminopeptidase that trims 

peptides.  

 

One of the top 1326 common GO terms across GWAIS protocol #1-#10 was GO:0002479 (online 

Table S3.6). This term is functionally related to antigen processing and exogenous antigen 

presentation via MHC class I, TAP-dependent  It may suggest that that AS pathology is partially 

caused by the inability of ERAP1 aminopeptidase to correctly trim HLA class I-binding peptides 

and subsequently to present them to MHC complexes [18]. This possibly causes deregulation of 

the innate immunity and chronic inflammation of spine tissues that are typical symptoms displayed 

by AS patients [45]. Also appearing in the top 10 are GO terms linked to neural transmission 

processes (Table 3.4). This agrees with AS known disease pathology characterized by consistent 

pain and inflammation in the spine – part of the central nervous system (CNS). In particular, the 

GO terms highlighted in bold in Table 3.4 and online Table S3.6 (column 1), even though based 

on the top 1000 SNP x SNP interactions (not necessarily statistically significant) may suggest a 
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link between AS and mutations in genes involved in nerve impulse transmission and propagation 

(GO:0007411, GO:0007268, etc.). Furthermore, GO:0007219 (online Table S3.6), linked to genes 

of the Notch signaling pathway (e.g., RBP-J, PSEN1, ADAM10), suggests AS interference with the 

correct development and growth of nerve tissue [46]. It was shown by [47] that the Notch pathway 

also controls angiogenesis and that Vascular Endothelial Growth Factor (VEGF) and Angiopoietin 

(Ang) are both over-expressed in synovial tissues of Psoriatic Arthritis and Rheumatoid Arthritis 

patients. 

 

3.6.  Conclusions 

Any GWAI analysis involves making choices about the input data (e.g., filtering using candidate 

genes or using prior biological knowledge), about LD-pruning thresholds, about adjusting for lower 

order effects (and how to encode these), and about the selection of the analytical tool (e.g., non-

parametric, semi-parametric or fully parametric), as well as, the corrective method for multiple 

testing  [8]. We have shown that even slight differences in protocols to perform a Genome-Wide 

Association Interaction (GWAI) study may hamper the results reproducibility. We did so by 

applying the 10 GWAI protocols to real-life genome-wide SNP data on ankylosing spondylitis 

(AS) and controls.  

 

Choices about marker selection (for instance filtering based on prior knowledge) are the most 

severe, as it may give rise to a dramatic reduction in SNPs for further GWAI analysis [6,8,48]. 

Although biofiltering may reduce the ability to generate novel hypotheses about interactions [48], 

when doing so the effects of LD pruning and other protocol parameters seem to be less impactful 

on the final analysis results. More work is needed though to fully understand the interplay between 

LD-pruning and filtering strategies commonly adopted in GWAIS and to derive operational 

guidelines.  In general, the second largest cause for heterogeneity in GWAI results is the adopted 

encoding scheme to adjust the interaction analysis for the lower-order effects [21].  The third largest 

cause is the adopted LD-pruning strategy. To date, no published work exists that comprehensively 

investigates the effect of LD on epistasis findings derived from several analytic tools. In order not 

to waste carefully acquired data, researchers are often tempted to adopt exhaustive screening tools 

whenever computationally feasible. As suggested in [8], we nevertheless advocate LD-pruning at 
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an r2 of 0.75, to increase power, yet to reduce the generation of redundant (significant) SNP x SNP 

interactions. Exhaustively applying BOOST to LD-pruned AS data at an r2 of 0.75 generated over 

2,000 significantly interacting SNP pairs. The existence of moderate LD may induce 

multicollinearity in regression models and may increase the number of false positives (even when 

using a conservative multiple testing correction method such as Bonferroni). It shows that when 

applying a GWAI protocol, the results should be interpreted and discussed under the appropriate 

context, which includes the limitations and strengths of the adopted protocol, hereby addressing its 

different components.  

 

Finally, with so many tools for GWAI analysis around, truly comparing these remains a challenging 

task in the absence of reference synthetic data sets that are rich enough to capture real-life 

complexities. Care has to be taken when “replicating” interactions with analytic tools that have a 

tendency to generate false positives: Can one be sure that one is not replicating a false positive? 

Clearly, no single tool will fit all. Tools are heterogeneous in their ability to recognize specific 

active epistasis modes and several such modes are likely to occur throughout the genome. This 

observation puts limitations to strategies that use agreement between different GWAIS approaches 

as evidence for an interaction. It also favors the development of a hybrid SNP x SNP interaction 

detection tool, combining the best of several worlds when screening the genome. 
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3.8.  Chapter highlights 

In this chapter, we compared different methodologies in GWAIS. We assessed how 

genetic information is implicated in complex diseases such as AS. We successfully 

validated SNP x SNP  phenotype epistasis methodologies on the genome-wide and 

smaller scales via MB-MDR and EpiShell tools. Importantly, we brought more 

awareness of careful parameter selection during QC steps of any GWAS and GWAI 

protocol. In the next chapter, we will incorporate gene expression as an additional 

data source to the interactions mining task (i.e. trans/cis epistatic eQTLs 

identification). 
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3.9.  Appendix 

Table S3.1: Parameters used to run ten GWAI protocols  

GWAI protocol #1* #2* #3* #4* 

LD pruning NO YES NO YES 

LD pruning threshold NA R2>0.75 NA R2>0.75 

Analytical tool 

(epistasis detection) 
BOOST BOOST BOOST BOOST 

Running parameters 
permutations=0, 

 min test stat=54 

permutations=0, 

 min test stat=54 

permutations=0,  

min test stat=54 

permutations=0,  

min test stat=54 

Input dataset size 

(number of SNPs) 
487,780 321,565 44,018 30,426 

GWAI protocol #5* #6* #7* #8* 

LD pruning NO YES NO YES 

LD pruning threshold NA R2>0.75 NA R2>0.75 

Analytical tool 

(epistasis detection) 
MB-MDR MB-MDR MB-MDR MB-MDR 

Running parameters 

-mt MAXT, 

permutations=999, -a 

CODOMINANT, 

 -m 10, -x 0.1 

-mt MAXT, 

permutations=999, -a 

CODOMINANT,  

-m 10, -x 0.1 

-mt MAXT, 

permutations=999, -a 

ADDITIVE, -m 10, -x 

0.1 

-mt MAXT, 

permutations=999, -a 

ADDITIVE,  

-m 10, -x 0.1 

Main effect correction co-dominant co-dominant additive additive 

Input dataset size 

(number of SNPs) 
44,018 30,426 44,018 30,426 

GWAI protocol #9* #10*   

LD pruning NO YES   

LD pruning threshold NA R2>0.75   

Analytical tool 

(epistasis detection) 
MB-MDR MB-MDR   

Running parameters 

-mt gammaMAXT, 

permutations=999, -a 

CODOMINANT, 

 -m 10, -x 0.1 

-mt gammaMAXT, 

permutations=999, -a 

CODOMINANT,  

-m 10, -x 0.1 

  

Main effect correction co-dominant co-dominant   

Input dataset size 

(number of SNPs) 
487,780 321,565   

 
(*) Legend:    

protocol #1 - BOOST exhaustive - BOOST entire data (487,780 SNPs);   

protocol #2- BOOST exhaustive LD pruned (321,565 SNPs);  

protocol #3 - BOOST pre-selected (44,018 SNPs);   
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protocol #4 - BOOST pre-selected LD pruned (30,426 SNPs);    

protocol #5 - MB-MDR pre-selected CODOMINANT (44,018 SNPs);  

protocol #6 - MB-MDR pre-selected CODOMINANT LD pruned (30,426 SNPs); 

protocol #7 - MB-MDR pre-selected ADDITIVE (44,018 SNPs);   

protocol #8 - MB-MDR pre-selected ADDITIVE LD pruned (30,426 SNPs).   

protocol #9 - MB-MDR exhaustive CODOMINANT - gammaMAXT (487,780 SNPs); 

protocol #10 - MB-MDR exhaustive CODOMINANT LD pruned - gammaMAXT (321,565 SNPs); 

Table S3.2: Euclidean distances amongst GWAI protocols (ref. to Figure 3.1) 

  

GWAI protocol 

BOOST MB-MDR 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

G
W

A
I 

p
ro

to
co

l B
O

O
S

 T
 

#1 0                   

#2 9,123,905 0                 

#3 17,155,486 8,031,864 0               

#4 17,241,213 8,117,600 85,745 0             

M
B

-M
D

R
 

#5 17,290,386 8,166,857 136,725 53,636 0           

#6 17,304,827 8,181,254 149,798 64,508 18,013 0         

#7 15,884,721 6,882,567 2,434,639 2,487,225 2,508,128 2,522,599 0       

#8 16,343,189 7,268,044 1,378,617 1,432,511 1,454,519 1,469,530 1,065,717 0     

#9 14,253,250 5,506,100 3,966,195 4,033,412 4,059,666 4,077,675 2,591,591 2,975,847 0 . 

#10 15,991,829 6,914,928 1,572,583 1,638,264 1,664,079 1,682,085 1,568,040 950,823 2,395,651 0 

Note: highest distance is highlighted in red; the lowest distance in green; 

(*) Legend:    

protocol #1 - BOOST exhaustive - BOOST entire data (487,780 SNPs);   

protocol #2- BOOST exhaustive LD pruned (321,565 SNPs);  

protocol #3 - BOOST pre-selected (44,018 SNPs);   

protocol #4 - BOOST pre-selected LD pruned (30,426 SNPs);    

protocol #5 - MB-MDR pre-selected CODOMINANT (44,018 SNPs);  

protocol #6 - MB-MDR pre-selected CODOMINANT LD pruned (30,426 SNPs); 

protocol #7 - MB-MDR pre-selected ADDITIVE (44,018 SNPs);   

protocol #8 - MB-MDR pre-selected ADDITIVE LD pruned (30,426 SNPs).   

protocol #9 - MB-MDR exhaustive CODOMINANT - gammaMAXT (487,780 SNPs); 

protocol #10 - MB-MDR exhaustive CODOMINANT LD pruned - gammaMAXT (321,565 SNPs); 

 

Table S3.3: Significant SNP pairs with multiple testing adjusted p-values (<0.05). (See the online supplement) 

Table S3.4: List of common 207 SNP pairs amongst 10 GWAI protocols findings (including significant and non-

significant SNP pairs). (See the online supplement). 

Table S3.5: Annotated Evans' et al. (2011) 38 SNP pairs out of 102 listed in Supplementary Table 5 of [17]. These 

pairs contain one SNP (in bold) that was present amongst the significant findings of the 10 GWAI protocols. (See the 

online supplement) 

https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
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Table S3.6: Significant GO terms related to top 1000 SNP pairs per GWAI protocol, based on Fisher's combined p-

value at a significance level of 0.05. Protocol-specific p-values are also reported. (See the online supplement) 
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4. Integrative network-based analysis of cis and trans 

regulatory effects in asthma 

4.1.  Chapter summary 

The previous chapter main topic was the two-way (SNP x SNP) interactions in relation to a 

complex trait. We highlighted the importance of rigorous data pre-processing prior to or as part of 

a GWAI analysis. In this chapter, we extend the application of the MB-MDR methodology to gene 

expressions as traits. In contrast to Chapter 3, as many GWAIS are performed as there are gene 

probes in the available transcriptome data (one per each gene probe).  

 

Presence or absence of a genetic marker at a given locus may lead to different mRNA expression 

levels which constitutes an example of DNA-RNA biological interaction. In addition, the genetic 

marker can be either located nearby of the target gene (i.e. cis) transcription start site (TSS) or 

further away (i.e. trans). These trans and cis DNA-RNA interactions commonly referred to as trans 

and cis expression quantitative trait loci (eQTLs) can be detected via classical statistical approaches 

(e.g., linear regression). As highlighted in Section 1.3, there is a difference between statistical and 

biological interactions which not always correspond to one another and are not necessarily  directly 

translatable. Since false positives is a problem especially in datasets with p>>n datasets, where p 

is the number of variables and n are observations. The inferred DNA-RNA interactions ideally 

should be experimentally validated and rigorous multiple-testing correction applied. In addition, 

the most of the trans eQTL and cis eQTL methods do not capture the complexity of DNA-RNA 

transcriptional processes as they analyze each eQTL locus in isolation without consideration of 

entire genomic context. Taking into consideration interactions between loci with respect to 

expression trait by the statistical eQTL model is a step forward towards holistic biologically 

relevant models. In this chapter, we introduce trans/cis eQTL model which takes into account 

interaction effects between trans and cis loci with respect to an expression trait.  

 

Identification of interactions within and between omics data layers is an active area of research [1-

3]. Glass et al. developed an innovative message parsing  method PANDA [3] accounting for a 

‘cross-talk’ between multiple omics data layers resulting in an aggregated consensus gene 

regulatory network (gene - gene interaction network). Also inspired by the work on integrative 
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omics by several other authors, such as [2,3], we developed an MB-MDR based trans/cis epistatic 

eQTL detection methodology, designed to better account for inter- and intra- cross-talk between 

DNA and RNA omics information layers.  

 

Problem: We are interested in the role of DNA-RNA interactions and of DNA effect modifiers 

of genetic markers on gene expression levels. Specifically, using MB-MDR and a given pool of cis 

eQTLs we develop and validate a trans eQTL epistasis protocol to detect effect modifiers to cis 

SNP  gene-expression relationships. These effect modifiers are assumed to be outside the 

boundaries of the target gene (i.e. in trans). We use the identified epistasis signals (for trans SNP 

x cis SNP  gene expression level) to build a gene regulatory network. The network can be seen 

as a gene-based statistical epistasis network. The complex disease context is asthma. Our epistatic 

trans/cis eQTL method needs to deal with false positives in the presence of a huge number of tests 

performed between trans and cis loci pairs and the expression trait. Adequate control of false 

positives is still an open question in epistatic eQTL analyses. Our goal is to explore different 

multiple testing corrections within the context of the chosen real-life dataset. 

 

Results: Valuable information can be retrieved from the inclusion of trans modifier effects to cis 

eQTL  gene expression associations, as was shown on available data for asthmatic children [4]. 

Multiple testing is an issue and exclusion of SNPs with MAF<0.20 from the analysis results in a 

permutation-based False Discovery Rate (FDR) and Familywise Error Rate (FWER) of less than 

0.05. In our real-life application to asthma we observe a pathway overlap between trans and cis 

gene sets mapped from trans/cis and cis eQTLs of 18.7%. The trans gene set is defined by mapping 

the trans locus of the trans/cis eQTL loci pair to the nearest gene. Moreover, the trans/cis eQTL 

network is rather sparse with maximal cliques only reaching the size of 2 genes. In the context of 

asthma an important transcription regulation pathway (REACTOME: R-HSA-212436) is 

highlighted by both the trans and cis gene sets included in the above-mentioned 18.7% overlap. In 

addition, the epithelial cell adhesion pathway (REACTOME: R-HSA-418990) is enriched in the 

trans gene set and is known to be strongly linked to asthma disease etiology [5]. A differential 

network analysis between smokers and non-smokers suggests strong environmental impact of 

smoking on topological and biological properties of the derived trans x cis eQTL gene networks. 
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Among the most impacted biological functions are those related to the immune system and DNA 

repair. 

 

Keywords: cis-regulation, trans-regulation, eQTLs, gene regulatory networks, MB-MDR, 

asthma, CAMP, smoking 
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4.2.  Introduction 

Asthma is a complex disease characterized by the interplay of genetic and environmental 

components. It is diagnosed in 43 out of 1000 individuals worldwide according to the World Health 

Organization [6]. Its prevalence is increasing, especially in children. In the USA, the disease 

prevalence almost doubled over a 20 years period (1984-2004), reaching 8 to 10% [7].  The exact 

causes and triggers of this complex disease are to a great extent unknown. It is believed that causes 

are linked to the Western culture aspects including increased exposure to allergens, immunization 

shots, and cleaner living conditions [7]. The pathological aspect of asthma is characterized by 

chronic inflammation of airways with episodes of airway obstruction. The airway tissue is 

infiltrated with CD4+ T-helper, eosinophils and other cells controlling the inflammation processes 

resulting in airway remodeling.  Specifically, the airway wall thickens from 10 to 300% leading to 

a reduction of air flow causing “breathlessness”.  There are different types of asthma but allergic 

asthma is the most common with ~80% prevalence rates  [7]. A more detailed description of asthma 

subtypes can be found in Section 6.2.2. 

 

A given locus associated with expression of a gene is commonly referred to as expression 

Quantitative Trait Locus (eQTL). Expression QTL studies are often performed as a functional 

follow-up to GWAS and GWAIS. However, these treat each genetic locus independently from 

others in assessing genome – transcriptome associations.  A vast amount of publications exist on 

eQTL analyses [8-11]. Classical one-way legacy cis eQTL methodologies include sparse partial 

least squares (SPLS) [12], Haley-Knott regression (HK) [13], and composite interval mapping 

(CIM) [12,14]. Briefly, eQTL studies involve the identification of genetic variants (i.e. causal loci) 

that either affect expression of nearby (cis eQTLs) or distant genes (trans eQTLs), respectively. In 

general, cis eQTLs are found to be more common (16.9%) compared to trans eQTLs (0.2%) in 

complex disease data [15]. While cis eQTLs provide a better understanding of direct genotype 

effects, trans eQTLs are valuable in the identification of indirect effects caused by downstream 

affected genes (Figure 2.2), thus potentially providing a deeper understanding of disease pathology. 

The power of eQTL studies lies in their ability to combine genetic and expression data [16]. Yet, 

only a limited number of studies exist that investigate the influence of genetic interactions on gene 

expression [8,9,17,18]. In this Chapter 4 we consider trans/cis epistatic eQTLs that measure 
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association of trans and cis loci pairs with respect to expression trait. These eQTLs are 

schematically depicted by Figure 2.2C. 

 

In this chapter, eQTL loci in cis, may be impacted by other distant loci (not mapped to the targeted 

cis gene), here called loci in trans. (Figure 2.2 and Figure 4.1). This novel integrated view, 

considering epistatic interactions between trans and cis loci affecting gene expression, may shed 

new light on gene - gene interaction networks and may increase our understanding about biological 

mechanisms underlying complex traits under investigation. As mentioned before, most of the 

current studies separately study trans and cis-regulation (i.e. trans and cis eQTL mappings) without 

consideration of their potential synergistic interaction effects. In contrast, our approach is 

specifically designed to detect the trans/cis gene regulation synergies: effects of trans genetic 

components modifying cis-eQTL associations. We identify statistically significant trans x cis 

epistatic eQTL interactions using MB-MDR [19] introduced in Section 2.3.2. Significant 

interactions are subsequently translated to gene - gene networks and analysed via standard network 

analysis tools. Application of our methodology to genome and transcriptome data from the 

childhood asthma management program (CAMP) [4], shows that there is up to 18.7% overlap in 

biological functions between trans and cis transcription regulatory components corresponding to 

the trans x cis eQTL interactions. The main overlapping functions include immune system and 

signaling pathways, amongst others. Our integrative trans/cis eQTL methodology reaches 

acceptable FWER levels: less than or equal to 0.05 extensively studied in Section 4.4.2. The 

proposed methodology is a step forward towards integrative trans/cis eQTL analysis, harnessing 

the power of both statistical and network-based approaches. In the sequel, we explain the proposed 

methodology in a greater detail. 

 

From statistical point of view identification of associations between SNPs (predictors) and gene 

expression (trait) data led to the development of multiple methods based on logic regression 

[20],simulated annealing [21], tree-based to search for possible genome-transcriptome interactions 

[22]. Validation of statistical significance of the identified eQTLs is a delicate issue. Most studies 

employ cross-validation error or model size reduction via variable pre-selection. Given the 

complex nature of the epistatic trans/cis eQTL analysis and a large number of interaction 

hypotheses, a careful selection of multiple testing correction strategy is required. Compared to 
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classical single locus eQTL analysis testing a single locus at a time, the multiple testing issue is 

particularly severe in epistatic eQTL analysis due to significantly larger number of hypotheses. 

This prompted development of novel multiple testing correction solutions for epistatic eQTL 

analysis that can broadly be divided into ‘both significant’ or ‘either significant’ requiring either 

one or both loci to meet a significance threshold [9]. Storey et al. applied a step-wise ‘either 

significant’ epistatic eQTL method [23] where for a given trans/cis eQTL pair they first selected a 

single cis locus, followed by the selection of the secondary trans locus provided the largest 

improvement in statistical power over the first single locus model. As multiple test control they 

applied FDR cut-off at 0.05 and showed that epistatic loci affected 14% of the S.cerevisiae genes 

[23]. Another example of ‘either significant’ method is given by Fish et al. [24] which first 

identified cis eQTLs with marginal p-value < 0.05 via classical regression model with top 3 

principal components followed by likelihood ratio test (LRT) comparing full model to a reduced 

model lacking the interaction term. FDR at 0.05 (p-value ≤ 1.328x10-5) was selected as multiple 

testing correction.  The ‘both significant’ solution selects trans/cis eQTL loci such that at both 

trans and cis loci have strong marginal association effects to the expression trait. Carlborg et al. 

[25] applied genome-wide regression-based scan considering all potential cis and trans loci with 

significant marginal effects using randomization test based on genetic algorithm followed by 

epistatic eQTL scan amongst the selected loci. Their epistatic model was regression-based and 

includes both the marginal genetic effects and the four pairwise interaction terms to account for 

additive and dominant effects between loci pairs.  The type I errors were controlled via empirically 

derived population-based, genome-wide significance thresholds from  randomization testing based 

on permutations of the predictor variables (i.e. loci) with regard to expression trait as discussed in 

[26]. Other solutions in order to alleviate stringent multiple testing burden reduce the number of 

markers (i.e. predictors) and, therefore, decrease the number of hypotheses to test. Similar to 

Chapter 3, complementary information such as knowledge of disease etiology, known list of 

marker genes, physical protein interaction data can improve statistical power, lower stringency of 

thresholds, and alleviate computational requirements [27]. Suthram et al. [28] applied a prior 

information from protein-protein interaction networks to fine-map eQTLs. Finally, Boulesteix et 

al. proposes a novel approach for calculation of multiplicity adjusted significance of the SNP x 

SNP eQTL pair via estimation of the maximally selected chi-square statistic assuming its 
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multivariate normal distribution under the null hypothesis of no association between the SNP pair 

[29]. 

 

In our epistatic trans/cis eQTL MB-MDR-based methodology, the multiple testing corrections are 

done at both cis eQTL and trans/cis eQTL loci selection stages similar to ‘both significant’ 

approach of [9]. At cis eQTL stage the multiple testing correction is done via classical Benjamini, 

and Hochberg FDR correction method [30] at the 0.05 threshold.  At trans/cis eQTL search stage 

with fixed cis eQTL locus the multiple testing corrections are done for each expression trait. These 

corrections are based on the built-in step-down MAXT correction implemented in MB-MDR [31]. 

 

4.3.  Methods 

4.3.1.  Data 

The childhood asthma management program (CAMP) is composed of 1348 subjects (728 males 

and 620 females) [4]. We chose a subset with 177 subjects of Caucasian origin with age ranging 

between 16 and 25 years. For each selected subject peripheral blood CD4+ lymphocytes were used 

to extract 19,451 gene expression values and 528,890 SNPs via the Illumina HumanRef-8 v2 

Expression BeadChip platform and Human550-Quad and Human610-Quad Illumina platform [32]. 

Excellent concordance rates of minimum 99.89% between the two genotype platforms were 

observed based on the 4 subjects genotyped on both platforms [32]. 

 

To assess the impact of smoking (i.e. environmental variable), the 177 subjects were further 

subdivided into 87 smokers (S) and 90 non-smokers (NS) groups. The “TobaccoSmoke” and 

“EnvironmentSmoke” were used as environmental selection variables.  The NS group was 

formed by non-smoker subjects (TobacoSmoke=0) that were also not exposed to environmental 

effects of second-hand smoke (EnvironmentSmoke=0).  Specifically, the177 subjects part of 

either NS or S groups were either smokers not exposed to secondhand smoke 

(TobaccoSmoke=1, EnvironmentSmoke=0) or smokers also exposed to secondhand 

smoke (TobaccoSmoke=1 and EnvironmentSmoke=1), or non-smokers exposed to 

secondhand smoke (TobaccoSmoke=0, EnvironmentSmoke=1). 
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In our analyses, non-imputed genotype data were used. After data filtering and general quality 

control (QC) steps in PLINK 1.9 [33] and GenABEL library in R [34], the final genomic data 

consisted of 189,969 SNPs for 177 subjects. The QC steps involved filtering out SNPs with HWE< 

1e-05, MAF < 0.20, call rate < 0.98 and r2 > 0.75 (LD pruning). Gene expression data were 

normalized using quantile-quantile normalization [35] as implemented in the lumi R library [36]. 

Gene expression values for 16,020 genes were available for all 177 subjects, but only 1763 selected 

(one expression probe per gene) corresponding to the 1763 cis eQTLs.  

 

4.3.2.  eQTLs epistasis mapping 

The proposed trans x cis eQTL hybrid analysis pipeline couples a traditional a priori eQTL search 

with a posteriori trans x cis eQTL epistasis analysis, allowing the identification of novel trans/cis 

eQTL regulators. A trans x cis eQTL interaction is a statistical interaction between a trans SNP 

and a cis eQTL where trans SNP modifies the effect of the cis eQTL SNP. Next, the identified 

trans/cis eQTL interactions are visualized as a gene - gene network and analyzed as such.  

 

The cis gene mapping was defined by cis SNPs located 50Kb upstream and downstream from the 

cis eQTL open reading frame (ORF). The trans genes were defined by trans SNPs located at least 

2 Mb away of the cis eQTL ORF. These trans SNPs, although interacting with the cis eQTL SNP, 

were physically mapped to the nearest ORF. 

 

Figure 4.1: Definition of cis and trans SNPs with respect to the open reading frame (ORF) of an eQTL gene. ORF is 

the region of DNA that codes for protein and includes both intron and exon sequences. A trans x cis eQTL pair refers 

to a SNP pair involved in a trans x cis eQTL interaction and is defined by trans and cis SNPs defined schematically 

by this diagram. 
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Starting point of the analysis work flow (Figure 4.2) is a cis eQTL analysis. Such an analysis, using 

linear regression and least squares parameter estimation, revealed 1763 significant cis hits  

corresponding to 1585 unique genes [32] The linear model had the form Y=β0 + β1X, where X 

represents a locus (i.e. SNP, additive encoding) and Y gene expression intensity for its 

corresponding gene. The regression coefficients β0 and β1 were estimated via least squares 

estimation.   

 

Figure 4.2: General workflow diagram of the trans/cis eQTL methodology. A total number of 1763 cis eQTLs 

identified in step 2 were used as “seeds” for subsequent trans/cis eQTL analysis. Thus, the 1364 trans/cis eQTLs SNP 

pairs contained one of the previously identified cis eQTLs.  

In order to identify genes with trans-regulatory (modifying) effects, we used MB-MDR which can 

test for 2-way and 3-way interactions [19,37] with categorical input predictor variables.  Briefly, 

MB-MDR performs dimensionality reduction procedure by pooling multi-locus genotype 

combinations into high, low and no-risk categories followed by association tests between trait and 

genotypes. For additional details about MB-MDR, we refer to [19,31,37] and Chapter 3. Trans loci 

were defined as follows: we used 2 Mb windows upstream and downstream of a gene’s ORF to 

delimit start and end locations of the cis region. Any SNP outside this region was considered to be 

in trans with respect to this gene. MB-MDR runs were, thus, able to identify those genes whose 

expression is regulated by the interaction of trans and cis eQTL SNPs (step 3 of Figure 4.2).   To 

deal with multiple testing of 1763 genes (gene expressions), larger effect sizes with gene expression 

as trait values, and in particular to reduce the computational burden related to permutation-based 

significance assessment within MB-MDR, a two-stage interaction approach was developed. In the 

first stage, we identified potential trans/cis SNP pairs with significance assessment based on 103 

permutations. In the second stage run, only the significant SNP pairs from the first run were used 

to produce final results based on 107 permutations. The MB-MDR run settings included continuous 

trait (--continuous), the MAXT algorithm to adjust for multiple testing errors (-mt MAXT), 
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co-dominant main effect correction (-a CODOMINANT). MAXT [31] was used, rather than the  

gammaMAXT  algorithm [38] as only trans x cis eQTL interactions with a fixed list of 1763 cis 

eQTLs were considered reducing significantly the search space, and, hence, computational 

requirements. 

 

4.3.3.  Controlling false positives 

Statistical interactions can be produced by process other than true biological epistatic interactions 

including type I errors, presence of population structure in the data (i.e. population stratification), 

technological artifacts (e.g., batch effects, dye bias), linkage disequilibria between loci pairs, etc. 

Stringent experimental designed are required in order to account for all potentially false non-

epistatic interactions, especially at the genome-wide scale with upper limit of 528,890 x 1763 

interactions. The multiple-testing corrections both done at the cis eQTL and trans/cis eQTL 

inference stages. The raw cis eQTL p-values were FDR corrected at the 0.05 threshold following 

Benjamini and Hochberg method [30,32] The false positives in trans/cis eQTL runs were 

controlled via the MAXT algorithm [31] implemented in MB-MDR [19] . 

 

Given the complex nature of analysis rigorous estimation of false positive rates of the trans/cis 

eQTL analysis were done on the permutated data. Using the 1763 cis eQTLs as initial seeds, for 

each cis eQTL a total of 100 trans x cis eQTL permutation-based epistasis screenings were 

performed, on data naively derived from the original data by only permuting the target gene’s 

expression levels. Since the expression levels for each gene were permuted individually 100 times, 

the correlation structure between the cis genes was broken. Note that the correlation structure 

between all cis and trans eQTL SNPs was preserved. The permuted data was used to calculate 

various types of the family-wise error (FWER) defined as the probability of making one or more 

false discoveries, or type I errors, among all the hypotheses. Different FWERs can be computed 

highlighting possibility of having a false interaction within each trans/cis eQTL run (FWERwithin), 

between trans/cis eQTL runs (FWERbetween), or globally across all trans/cis eQTL runs 

(FWERglobal). In FWERwithin we are limiting our attention to either all ~528,890 interaction 

hypotheses within each trans/cis eQTL run in isolation. For each cis gene the FWERwithin was 

computed as the number of permutations with at least one significant trans x cis SNP pair at p-
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value < 0.05 out of 100 replica runs. The FWERbetween took a wider context by accounting for all 

hypotheses of the 1763 trans/cis eQTL runs (~528,890 x 1763). The FWERbetween is defined as the 

number of cis eQTL genes with at least one significant trans x cis SNP pair at p-value < 0.05 out 

of 1763. The FWERbetween represents more closely the network inference context where both trans-

cis and cis-cis interactions take place and where a given node can potentially participate in both 

types of interactions. Finally, the FWERglobal represents the entire procedure and is the most 

stringent case since for each permutation (i.e. replica run with ~528,890 x 1763 hypotheses) a 

possibility of having at least one false positive across all 1763 trans/cis eQTL MB-MDR runs is 

tested. 

 

The false discovery rates (FDR) within each trans/cis eQTL MB-MDR run and within each of the 

100 replica runs was also computed. This provided a more refined picture on the error rates of our 

trans/cis eQTL procedure given the complex context associated to real-life data as described above. 

The FDR within each replica run was computed by counting the number of false positives trans/cis 

loci with p-value < 0.05 over the total number of loci within a given replica. Each replica run with 

1763 trans/cis MB-MDR eQTL runs contained approximately 877,615 loci pairs. 

 

In addition to the classical permutation strategy with only the response variables being permuted, 

more refined strategies to generate replicates could have been adopted, such as obtaining a replicate 

by keeping a “cis region” – gene expression “pair” intact and permuting such pairs in the presence 

of all other SNPs. This ensures that correlation between cis eQTL gene and SNP is maintained, but 

not between the remaining trans SNPs. While other strategies are interesting venues to take, the 

permutation-based FWER and FDR results shown in Chapter 4 are based on the classical 

permutation scheme affecting only the expression values corresponding to the cis eQTL genes. 

 

4.3.4.  SNP to gene mapping and pathway enrichment 

The significant trans x cis eQTL SNP pairs (p-value < 0.05) identified from 1763 selected cis 

eQTLs were pooled together. Next, the trans/cis eQTL SNP pairs were mapped to the nearest genes 

using biomaRt [39,40] and GenomicFeatures R libraries [41], leading to 1078 trans and 411 cis 

eQTL genes, respectively. Gene and pathway Venn diagrams were built with the help of venneuler 
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R library [42], to facilitate the overlap estimation between trans and cis-regulation components.  

The overlap is composed of 30 genes which were common to both trans and cis eQTL significant 

gene sets (p-value < 0.05). These are all listed in Table S4.2. These genes both can act as trans and 

cis transcriptional regulators. 

 

Pathway enrichment was performed by first mapping genes to Reactome pathways (human) 

extracted from MsigDb [43]. In particular, the aforementioned 1078 trans and 411 cis genes were 

mapped to 674 Reactome pathways. Fisher’s exact test [44] was used to assess pathway enrichment 

of cis and trans eQTL gene sets against the entire set of 16,020 unique genes. The p-values thus 

obtained from 2x2 contingency tables, storing gene counts associated with a given pathway, were 

Bonferroni corrected for 674 Reactome pathways.  

 

4.3.5.  Network analysis 

We built a weighted directed gene-gene network G using the list of 1364 statistically significant 

trans x cis eQTL interaction SNP pairs (Figure S4.1 and Figure 4.8). The igraph package [45] was 

used to visualize and analyze the resulting network. The 1364 p-values associated with those 

significant pairs were used as edge weights. This led to a network G with 1459 nodes and 1347 

edges.  

4.3.6.  Differential network analysis 

We used differential network analysis (DNA) to investigate the impact of smoking. Such an 

analysis enables the identification of topological changes between gene networks derived from 

smokers and non-smokers. For NS and S groups, a weighted gene network GNS and GS was built 

using 1552 and 707 significant trans x cis eQTL SNP pairs, respectively. Again, we used the igraph 

package [45]. For differential network analysis (DNA) the GNS and GS networks were converted 

into unweighted networks and subsequently merged into one differential network GD using the 

XOR rule. The XOR rule merging concentrates on edge differences between the GNS and GS 

networks. For example, if 1 denotes edge presence and 0 its absence, the following GD will be 

obtained after application of the following rules to GNS and GS: {0,1}= 1 or {1,0}=1, but {1,1}=0 

and {0,0}=0.  The resulting XOR differential network, GD, highlights differences between NS and 
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S groups, potentially induced by condition-specific gene-gene interaction patterns and regulatory 

mechanisms. 

 

4.4. Results 

Using an initial pool of 1763 cis eQTLs, subsequent trans x cis eQTL epistasis analyses identified 

a total of 1364 statistically significant trans/cis eQTL SNP pairs (p-value < 0.05). These are listed 

in the Supplementary Table S4.1.  These trans x cis SNP pairs were mapped to the nearest genes 

as described in the Section 4.3.4.  

 

Figure 4.3: Overlap between the “cis” and “trans” eQTL gene sets of the significant 1364 trans/cis eQTL SNP pairs.  

The “trans” and “cis” gene set refers to genes associated with the significant trans SNPs of the 1364 trans/cis eQTL 

SNP pairs. The numbers represent the unique gene counts. The overlap area was 2.014 % (30 genes) of the total 

combined trans and cis areas. Common genes are listed in Table S4.2. 

 

This resulted in cis and trans separate gene sets. The overlap reached 2.014 % of the total area 

(Figure 4.3). Annotated 30 genes common to both trans and cis gene sets are listed in 

supplementary Table S4.2. 

 

4.4.1.  Pathway enrichment 

From the 1364 trans/cis eQTL SNP pairs, pathway enrichment analysis identified significantly 

enriched pathways partially listed in Table 4.1 (top 20 are shown).  Pathway enrichment analysis 

showed strong involvement of the immune system and signaling components in both trans and cis 

gene sets. The trans gene set was dominated by central nervous and cell-cell communication 

pathways while the cis gene set was dominated by cell cycle and expression control pathways. The 
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overlap between cis and trans pathways is shown by the Venn diagram for both groups in Figure 

4.4. These 71 overlapping cis and trans pathways are listed in Table S4.3. Alternatively, the 5 most 

significant pathways enriched in the gene set common to both trans and cis gene sets are immune 

system (R-HSA-168256), adaptive immune system (R-HSA-1280218), class I MHC mediated 

antigen processing presentation (R-HSA-983169), DNA repair (R-HSA-73894), insulin receptor 

signalling cascade (R-HSA-74751) (see Table 4.1 and Table S4.3).   

 

 

Figure 4.4: Overlap between “cis” and “trans” significantly enriched pathways obtained from the list of 1364 trans/cis 

eQTLs.  The numbers refer to significantly enriched pathway counts. The overlap area is 18.7% (71 genes) of total 

combined trans and cis areas. Pathways are listed in Table S4.3. 

4.4.2.  Control of type I error rates 

Three types of FWER were computed (FWERwithin, FWERbetween and FWERglobal) with 

progressively stringent conditions as described in Section 4.3.3. The FWERwithin estimates error 

rates within each trans/cis eQTL run ignoring existence of other epistatic runs. The FWERwithin is 

calculated as the number of permutation runs with at least one type I error hypothesis out of 100 

permutation replica runs. The FWERbetween estimates type I error rates considering all 1763 

trans/cis eQTL runs and is calculated as the number of eQTL runs with at least one false positive 

signal out of 1763. The FWERglobal estimated type I errors globally across all 1763 trans/cis eQTL 

epistatic and 100 permutation replica runs (176,300). Thus, the FWERglobal is the ratio out of 100.  

In addition, the false discovery rate (FDR) per replica was also computed to provide a more refined 

detail on the number of false positives per each replica. Compared to FWER, FDR procedures are 

less stringent providing a greater number of epistatic signals albeit at potentially greater type I error 

rates. 
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The median of 1763 FWERwithin values were 0.04 at 0.05 significance threshold (p-value < 0.05), 

meanwhile the median on 100 FWERbetween was 0.05. The FWERwithin was within the MB-MDR 

advertised FWER < 0.05 under co-dominant main effects correction mode [46]. The most stringent 

FWERglobal taking into account the whole procedure including 100 replicates with 1763 runs each 

was 1. This means that within each permuted replica there was at least one trans/cis eQTL SNP 

pair with p-value < 0.05. The distribution of FWERwithin and FWERbetween together with their 

corresponding density functions are shown in Figure 4.5. 

 

The trans/cis eQTL analysis median per replica false discovery rate (FDR) based on 100 

permutations across 1763 trans/cis eQTLs was 0.000143. The median FDR per replica run shows 

approximate number of false positive signals that one might expect from the entire procedure across 

the 1763 trans/cis eQTL runs.  The histograms showing the distribution of FDR per replica run are 

presented in Figure 4.6. The FDR median and mean considering individually each trans/cis eQTL 

MB-MDR run over the 100 permutations (a total of 1763x100 FDR values) was 0 and 

0.0001543062, respectively. 

 

The correlation between the expression traits of the 1763 eQTL genes was rather low. The 

computation was done amongst the 1763 x 1763 possible pairs (1,554,084).  The 25 th and 75th 

quantile reached values of -0.12 and 0.13. The respective distribution of Pearson correlation values 

across all pairs is shown in Figure 4.7 with median at 7.201*105, mean at 0.01044, and standard 

deviation at 0.217. 
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Figure 4.5: Distribution of FWERwithin and FWERbetween in subplots A) and B), respectively. A) the FWERwithin mean 

and medians are 0.0506 and 0.04; B) the FWERbetween mean and medians are 0.0506 and 0.0501; The density function 

is shown in red. FWERwithin and FWERbetween see Section 4.3.3. Note we consider a false positive result any trans/cis 

loci pair with p-value < 0.05. The FWER values are computed based on complete 100 permutation-based trans/cis 

eQTL replica runs on the null data where only response variable was permuted as described in Section 4.3.3.  
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Figure 4.6: Distribution of false discovery rate (FDR) per 100 permutation replicas each containing 1763 trans/cis 

eQTL runs. The FDR was defined as number of false positives within each replica permutation run containing 

approximately 877,615 trans/cis loci pairs. FDR per replica run is defined in Section 4.3.3. The false positive result is 

any trans/cis loci pair with p-value < 0.05. The red line represents the density function.  

 

Figure 4.7: Distribution of the Pearson correlation values of all unique cis eQTL gene pairs (1,554,084). The mean 

and median was 0.0104 and 0 with standard deviation of 0.21, respectively. 
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4.4.3.  Network analysis 

The trans/cis eQTL graph G, derived from the earier obtained 1364 significant trans x cis SNP x 

SNP interactions, contained a total of 1459 nodes and 1347 edges (see Figure S4.1 and Figure 4.8). 

Only nodes with 2 or more edges are shown. Nodes with degree > 8 are shown in red while nodes 

with degree >2 are shown in orange. The obtained network did not exhibit cliques with >2 nodes.  

The network G reached a graph density of 6.33*10-4 (graph density is the ratio of the number of 

edges in a given graph over the total number of possible edges) and can be assumed to have a scale-

free topology (Figure 4.9). This was confirmed by fitting power law to the 1459 total degree values 

of the graph (p(k)~k-γ). The Kolmogorov-Smirnov test statistic was 0.0968 with the corresponding 

p-value 0.9998 and exponent γ= 1.6. The typical value of scale-free networks the 2< γ < 3  [47]. 

Based on this data, the null hypothesis was not rejected and trans/cis eQTL graph G scale-free 

topology confirmed. 

 

4.4.4. Differential network analysis 

Directed gene networks, GNS for non-smoker NS and GS for smoker S separately, were based on 

1552 and 707 significant trans x cis SNP interaction pairs, respectively (Figures S4.2 and S4.3).  

The network GNS contained a total of 1492 nodes and 1474 edges. The GS network included a total 

of 907 nodes and 689 edges (Figures S4.2 and S4.3). As can also be observed from their graphical 

presentations, GNS was more sparsely connected than GS with respective 6.62*10-4 and 8.38*10-4 

graph densities. A total of 322 nodes with degree ≥ 1 were common to both GNS and GS. These 

common nodes are listed in Table S4.5.   

 

In order to highlight condition-specific differences between non-smokers and smokers a 

differential network GD was built from GNS and GS. The resulting GD network contained a total of 

331 nodes and 291 edges (Figure 4.10). The GD average graph density was estimated at 5.32*10-3 

and was 6 times higher than that of the GNS and GS. The largest maximally interconnected sub-

graph (i.e. clique) was the only one and contained the following genes BCL11A, LEPR and 

PPP1R13L. The highest total degree nodes included BCL11A, HDDC2, SERAC1 and TMEM136. 

  



4. TRANS-EQTL EPISTASIS PROTOCOL 

 

111 

 

Table 4.1: Top 20 significantly enriched Reactome pathways in trans and cis sets from 1364 trans/cis eQTLs 

trans pathways cis pathways 

ID pathway name p-value* ID pathway name p-value* 

R-HSA-

168256 
IMMUNE SYSTEM 

1.22E-50 

R-HSA-

69278 
CELL CYCLE MITOTIC 

3.78E-57 

R-HSA-

372790 
SIGNALING BY GPCR 

4.82E-46 
R-HSA-

168256 
IMMUNE SYSTEM 

8.97E-53 

R-HSA-
112316 

NEURONAL SYSTEM 
5.16E-45 

R-HSA-

1280218 

ADAPTIVE IMMUNE 

SYSTEM 2.09E-47 

R-HSA-
500792 

GPCR LIGAND BINDING 
9.73E-35 

R-HSA-
69278 

CELL CYCLE 
8.25E-46 

R-HSA-

382551 

TRANSMEMBRANE TRANSPORT 

OF SMALL MOLECULES 
3.59E-33 

R-HSA-

983169 

CLASS I MHC MEDIATED 

ANTIGEN PROCESSING 

PRESENTATION 7.19E-41 

R-HSA-

1266738 
DEVELOPMENTAL BIOLOGY 

9.39E-33 

R-HSA-

380259 

LOSS OF NLP FROM 

MITOTIC CENTROSOMES 8.62E-32 

R-HSA-

388396 

GPCR DOWNSTREAM 

SIGNALING 
4.54E-32 

R-HSA-

380270 

RECRUITMENT OF MITOTIC 

CENTROSOME PROTEINS 
AND COMPLEXES 9.43E-30 

R-HSA-
373076 

CLASS A1 RHODOPSIN LIKE 
RECEPTORS 1.39E-26 

R-HSA-
73894 

DNA REPAIR 
2.41E-28 

R-HSA-

416476 

G ALPHA Q SIGNALLING 

EVENTS 1.44E-26 

R-HSA-

74751 

INSULIN RECEPTOR 

SIGNALLING CASCADE 1.21E-27 

R-HSA-

112315 

TRANSMISSION ACROSS 

CHEMICAL SYNAPSES 

2.80E-26 

R-HSA-

983168 

ANTIGEN PROCESSING 

UBIQUITINATION 

PROTEASOME 

DEGRADATION 2.21E-27 

R-HSA-

1280218 
ADAPTIVE IMMUNE SYSTEM 

2.19E-24 
R-HSA-
392499 

METABOLISM OF PROTEINS 
7.37E-27 

R-HSA- 
881907 

GASTRIN CREB SIGNALLING 
PATHWAY VIA PKC AND MAPK 7.82E-24 

R-HSA-
166520 

SIGNALLING BY NGF 
1.48E-26 

R-HSA-

112314 

NEUROTRANSMITTER 
RECEPTOR BINDING AND 

DOWNSTREAM TRANSMISSION 

IN THE POSTSYNAPTIC CELL 4.52E-22 

R-HSA-

453274 
MITOTIC G2 M PHASES 

5.53E-26 

R-HSA-

1296071 
POTASSIUM CHANNELS 

5.37E-21 

R-HSA-

1474244 

EXTRACELLULAR MATRIX 

ORGANIZATION 4.32E-25 

R-HSA-

392499 
METABOLISM OF PROTEINS 

6.01E-20 

R-HSA-

69620 
CELL CYCLE CHECKPOINTS 

1.45E-24 

R-HSA-

109582 
HEMOSTASIS 

2.53E-19 

R-HSA-

6782210 

GAP-FILLING DNA REPAIR 
SYNTHESIS AND LIGATION 

IN TC-NER 4.58E-24 

(R-HSA-

373752 
NETRIN1 SIGNALING 

6.25E-19 

R-HSA-

446652 
IL1 SIGNALING 

1.62E-23 

R-HSA-

212436 

GENERIC TRANSCRIPTION 

PATHWAY 1.07E-18 

R-HSA-

74752 

SIGNALING BY INSULIN 

RECEPTOR 1.66E-23 

R-HSA-

418990 

ADHERENS JUNCTIONS 

INTERACTIONS 2.89E-18 

R-HSA-

69183 

LAGGING STRAND 

SYNTHESIS 4.76E-23 

R-HSA-
168638 

NOD1 2 SIGNALING PATHWAY 2.89E-18 R-HSA-
6783310 

REGULATION OF THE 

FANCONI ANEMIA 

PATHWAY 

5.15E-23 

Note: * Fisher’s exact p-values were Bonferroni adjusted to the total number of Reactome pathways (674). The 

pathways in bold are related to immune system. 
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Figure 4.8: Directed trans/cis eQTL network G composed of 1459 nodes. Nodes with degree ≥ 2 are shown. No 

cliques containing more than 2 nodes were found. Nodes with degree ≥ 8 are shown in red while nodes with degree ≥2 

but < 8 are shown in orange. The node names correspond to gene symbols representing SNPs mapped to the nearest 

genes (see Methods). 
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Figure 4.9: Total degree distribution for the trans/cis eQTL network G. The total node degrees represent the sum of 

the “in” and “out” degrees. The associated genes of the selected highest degree nodes are indicated. The total degree 

distribution is also available in online Table S4.4.  

 

Figure 4.10: Differential undirected network GD built from GNS and GS networks. The GD highlights the three nodes 

LEPR, BCL11A, PPP1R13L, members of the unique largest clique of size 3. No other cliques were present in the GD. 

The node names correspond to gene symbols.  
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4.5.  Discussion 

One of the main bottlenecks in large-scale eQTL epistasis analysis is the huge number of tests that 

need to be performed. This causes computational challenges and demands on IT-infrastructures, as 

well as statistical challenges in that adequate corrections for multiple testing need to be made. As 

indicated in the introduction section, different routes can be travelled by to deal with multiple 

testing challenges. Some solutions are pragmatic such as arbitrary FDR threshold selection at 0.05 

in ‘either significant’ and ‘both significant’ [9] eQTL mapping solutions [23,24], while others are 

more elaborate including integration of prior knowledge (e.g., protein-protein interaction 

networks)[28]. The problems of adequate multiple testing procedures application and selection of 

sensible methods to detect biologically relevant epistatic eQTLs are not entirely independent from 

each other. In addition to classical the regression-based tests discussed in Section 4.2 to detect 

eQTLs, there are several others such as the median test (MED) and tests based on mutual 

information (MI) (see [48]). The MB-MDR was not used to detect marginal effects (1D) of the cis 

eQTLs, as it was not intended for 1D screening of SNPs and, hence, also does not perform well in 

this context. MB-MDR was used during 2D screening of trans/cis epistatic eQTLs as described in 

Section 4.3.2. As discussed in Section 4.2, the majority of eQTL epistasis runs are performed in a 

regression context using additive encoding or a combination of additive and dominant encodings 

as in [25]. As shown in Chapter 3, additive encoding schemes may elevate the number of false 

positives, regardless of the adequacy of the multiple testing correction [49,50]. 

 

A typical eQTL and epistatic eQTL study is faced with a huge number of hypotheses tests between 

genetic loci and expression traits requiring sensible multiple testing correction strategy. Classical 

Bonferroni correction are often overly conservative. In addition, transcriptome and genome data 

presents complicated correlations, population stratification, linkage disequilibrium between loci 

pairs, batch effects and others existing further complicating multiple testing problem. These 

underlying sources of error can lead to statistical artefacts (i.e. false positives) [51]. In addition to 

FDR, permutation-based and maker selection methods extensively used in eQTL studies 

introduced in Section 4.2, other approaches are also used to simulate the null distribution of either 

responses or predictors via resampling-based permutation or bootstrap procedures [51]. 

Nevertheless, the later multiple-testing procedures are computationally prohibitive due to large-
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scale eQTL data sets. Several heuristic approaches were introduced to alleviate computation burden 

and to provide approximate p-values. One of them relies on Monte Carlo to approximate the 

distribution of the test statistic [52], while others use a Bayesian approach to estimate model 

parameters such is in [53]. As demonstrated by [54], a more liberal FDR approach adopted by 

many eQTL studies as compared to FWER. Nevertheless, FDR, used as a measure of global error, 

often fails to control false discoveries at the set threshold (e.g., 0.05) due to the improper definition 

of true discovery [54]. Peterson et al. suggests to divide hypotheses into “families” and estimate 

FDR within each family via the proposed hierarchical testing procedure [54].  

 

Since our epistatic eQTL MB-MDR based methods uses MAXT [31] for multiple-testing control 

and significance assessment, the permutation methods merit further discussion.  As defined in [55] 

permutation runs fall in three categories: (1) a direct permutation scheme that relies on a fixed 

number of permutations; (2)  an  adaptive  permutation  scheme 

which  maintains  a  reasonable  computational  load  by  adjusting  the  number of permutations to 

the significance level of the eQTL pairs; (3) a beta approximation which models the permutation 

outcome via a beta distribution. These permutation suggestions are made within a linear regression 

context. In a framework as provided by MB-MDR, the approaches implemented in the MB-MDR 

software [31] are (1)  and (3), with possibility of using a gamma distribution instead of a beta 

distribution [38]. The reason for not using the permutation scheme (3) the latter is that our order 

statistics from an epistasis MB-MDR screen with MAXT correction cannot be considered to be 

coming from independent loci (multilocus seen as a new variable) and, hence, can no longer be 

assumed to follow beta-distribution. 

 

Despite a large number of multiple testing solutions, there is not a readily a way to translate 

multiple testing correction methods from the single locus main effects eQTL scene (1D) to the 

epistasis eQTL one (2D). In the future we expect development of more tailored multiple testing 

correction approaches for epistatic eQTL studies In addition there exist approaches [56,57] that 

explicitly take into account the linkage disequilibrium structure among variants which is also one 

of the potential causes of elevated false positives . Therefore, the impact is of LD on "epistasis" 

findings needs further investigation in eQTL settings. In Chapter 3 we have shown that MB-MDR 

is only modestly impacted by LD provided prior biological knowledge is used. More work is 
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needed to investigate optimal approaches to incorporate prior knowledge into eQTL epistasis 

screenings. 

 

Our epistatic eQTL MB-MDR method implements adaptive permutation scheme (2) [55] via the 

step-wise approach based on 103 and 107 permutation steps. The adapted adaptive permutation 

scheme uses the same number of samples at each stage while decreasing the total number of 

predictor loci. Contrary to [55] we adopted a pragmatic strategy with fixed the number of 

permutations in order to reach as high as possible resolution. The resulting approach invests more 

time over significant hits and discards insignificant ones allowing to reach a high number of 

permutations (up to 107) at reasonable computational cost.  The adopted epistatic eQTL MB-MDR 

based analysis used a large number of permutations and rigorous FWER checks since the MAXT 

permutation based p-values are dependent on the total number of predictor variables. This was also 

observed in Chapter 3 on unpruned and LD pruned datasets (see Table 3.1). Thus, one needs to 

allow for fluctuation of p-values and semi-empirically estimate possibility of having false positive 

interaction at the significance threshold of 0.05 which was extensively done in Section 4.4.2.  

 

As first rigorous measure the Bonferroni correction for the number of cis expression traits 

considered (here 1763), though computationally trivial, is overly conservative (p-value < 2.83 * 

10-5) and fails to account for correlations between genes at the transcriptome level, which do exist 

as shown in subsequent Chapters 5 and by numerous studies [2,3,47,58]. For instance, when 

supplementing our strategy with the Bonferroni correction at the significance threshold of 2.83 * 

10-5, only 3 SNP pairs were identified shown in Table S4.6. As stated earlier, Bonferroni correction 

especially in epistatic scenarios is very conservative. In order to decrease the number of effective 

tests and, thus, increase the significance threshold, several groups have proposed the use of the 

effective number of markers (Meff) for the adjustment of multiple testing. We adopted the Meff 

method by [59] that takes into account the correlation patterns amongst the expression traits which, 

in our case, are cis eQTLs. As demonstrated by the FWERwithin results and previous studies [46,60], 

the trans/cis epistatic eQTL MB-MDR runs have already been adequately corrected for multiple 

testing. Thus, the only multiplicity not adjusted for is the correlatedness between the gene 

expressions. Due to low correlation between the cis eQTL genes as shown in Figure 4.7 there was 

no significant drop in the threshold (p-value < 3.05 * 10-5, compare to p-value  of 2.83 * 10-5) 
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resulting in the identification of the same 3 epistatic SNP pairs (Table S4.6). The FWERglobal at p-

value < 3.05 * 10-5 and < 0.05 cut-offs were 0.02 (2/100) and 1 (100/100). The FWERglobal as 

described in Section 4.3.3 was obtained for the entire procedure including 1763 trans/cis eQTL 

MB-MDR and 100 permutation-based replica runs. Considering the extremely large number of 

tests, the FWERglobal is a very stringent condition causing likely to miss important biological 

epistatic interactions. Thus, the FWERbetween controlling for error rates within and between the 1763 

trans/cis epistatic eQTL runs is a more realistic and adequate quality control check. The 

FWERbetween even at threshold of 0.05 reached median of 0.04 (88.5/1763) as indicated in Figure 

4.5. Thus our findings at relaxed threshold condition set at p-value < 0.05 are valid and adequately 

controlled against multiplicity and correlation effects as discussed above. The FWERwithin at 0.05 

confirms MB-MDR ability to control false positives at 0.05 level. 

 

In addition to statistical complexities of eQTL studies one also needs to assess biological relevance 

of results in the dataset which, in our case, is asthma. The final result of our trans/cis epistatic 

eQTL method is transcriptional gene regulatory network further explored in Chapters 5 and 6. 

Transcriptional regulation of genes is complex and assumes interactions within transcriptome and 

other omics information layers. Genes can be regulated by nearby gene regulatory elements such 

as promoters, but also by enhancers located thousands of kilobases (kb) away from a given gene 

[61]. Hence, both cis-regulatory eQTL [62,63] and trans-regulatory eQTL analyses [64] are useful. 

In general, processes of gene expression can be rather complex and involve both epigenetic and 

interaction components. For instance, epigenetic components such as methylation and histone 

modification are also known to play important roles in gene expression regulation. Not as 

thoroughly investigated are large-scale genetic epistasis screenings for transcriptomes. One of the 

issues is related to epistasis detection analytics itself. A multitude of epistasis analytics are 

available, each of them potentially highlighting differential genetic architectures underlying 

interaction mechanisms. The performance of parametric regression-based analytics seems to be 

more depending on the underlying genetic models, as compared to semi- or non-parametric 

methods [65,66]. Also, the most heavily used epistasis detection tools (often regression-based) 

target linear interactions only. Moreover, performance may highly depend on the adopted multiple 

comparison adjustment procedures, which is already substantial in genome-wide epistasis 

screening, but becomes even more elevated when gene expressions are alternatively considered as 
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“traits” in the epistasis screening. Therefore, in this work, we have used the MB-MDR framework 

as an epistasis screening tool, hereby overcoming several of the aforementioned shortcomings and 

allowing for confounder adjustments. A second issue encapsulates analytics and concerns the 

differential use of epistasis screening protocols. We have shown that minor changes in such 

protocols (e.g., Gusareva et al. [49]), combined with regression-based (BOOST)[67] or non-

parametric dimensionality reduction methods (MB-MDR), can have a dramatic impact on findings 

(see also Chapter 3 and [50]). One of these changes is data reduction. Though the more reliable 

biological prior information is used in the process, the more stable the results are obtained via 

different protocols. Therefore, we propose to first screen for cis eQTL effects, define trans regions, 

and to look for interaction between trans x cis eQTL SNPs in relation to the quantitative trait of 

the cis eQTL. This implies that the all of the considered interactions will have at least one 

significant main effect. Our trans x cis eQTL epistasis screening relies on a previously published 

GWAIS protocol which advocates mild LD pruning at a threshold of r2 >0.75 [49]. This protocol 

also advocates restricting attention to MAF ≥ 0.05. However, we took a more stringent decision 

and only included SNPs with MAF ≥ 0.20. Our motivation was two-fold: 1) to increase the utility 

of results in clinical practice and 2) to avoid an abundance of false positives (data not shown). 

Notably, by only pairing SNPs to cis eQTLs that are outside a sufficiently large cis-region (2 Mb 

upstream and downstream of the gene ORF), we dramatically reduce the emergence of spurious 

interactions (redundant interactions caused by LD between markers). Since thousands of 

interactions need to be evaluated, adequate assessment of significance is a major concern. For the 

step-down MAXT approach as implemented in MB-MDR, FWER is strongly controlled provided 

the assumption of subset pivotality holds [68]. However, several cis genes are considered 

interchangeably as traits, imposing as many GWAIS as there are cis genes.  This implies that all 

MB-MDR MAXT corrected p-values, still need to be adjusted for the number of GWAIS, so as to 

keep FWER under control. We did so using Bonferroni correction.  Concerning the MAXT 

corrected p-values, we observed the need to implement a large number of permutations. This need 

is caused by the large number of interaction hypothesis tested (~528,890 x 1763) across all 1763 

trans/cis eQTL runs. Although no exhaustive epistasis screening is performed, the level of accuracy 

needed in MB-MDR p-value estimation and associated computational burden is still cumbersome.  

Therefore, we first assessed interaction significance on the basis of 103 permutations and followed 

up significant findings with 107 permutations. Note that 0.05/1763 = 2.8 10-5. Even though the 
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effect sizes for main gene expression traits (i.e. cis eQTLs) are larger than those for complex 

disease traits explored in Chapter 3, due to the fewer number of contributing factors, in case of the 

trans/cis eQTLs the threshold was too strict resulting in only 3 significant pairs (Table S4.6). We 

acknowledge that this procedure, which involves testing a subset of pairs, may give rise to overly 

optimistic p-values. However, when reducing the SNP space via LD pruning and thus testing a 

smaller number of SNP pairs, MB-MDR typically gives rise to a smaller number of significant 

findings (See Chapter 3 - Figure 3.2).  Regardless, to test FWER control of our implemented 

trans/cis eQTL epistasis protocol, we estimated FWER on 100 null data replicates.  

 

The overlap between trans and cis gene sets generated for the significant trans/cis SNP pairs was 

quite low 2.014% (Figure 4.3) but was considerably higher at the pathways level reaching 18.7% 

figure (Figure 4.4). A closer look at the enriched pathways in trans and cis gene sets highlighted 

common functionalities. In particular, the immune and signaling components were strongly shared 

between cis and trans gene sets: antigen processing  (REACTOME: R-HSA-983168) and adaptive 

immunity (REACTOME: R-HSA-1280218) (Table 4.1). Interestingly, the trans gene set was the 

most significantly enriched for transcription regulation pathways (REACTOME: R-HSA-212436) 

(Table 4.1), and may point towards significant modulation effects on transcription regulation 

excreted by trans components. In addition, the trans gene set was also enriched for cell adhesion 

pathways (REACTOME: R-HSA-418990). The involvement of cell adhesion pathways in asthma 

was  highlighted by previous studies:  Bentley et al. found elevated expression of ICAM-1 and 

VCAM-1 adhesion molecules by endothelial cells in asthma patients [5]. Analysis of the cis gene 

set showed significant enrichment in signaling pathways (Table 4.1). In particular, the involvement 

of G-protein coupled receptor (GPCR) via signaling via GPCR pathway (REACTOME: R-HSA-

372790) was identified and confirmed by previous GWAS study in relation to asthma [69] (Table 

4.1). In addition, cis eQTLs showed particularly strong enrichment in cell cycle and DNA damage 

repair pathways including G1 phase (REACTOME: R-HSA-69236), and inhibition of replication 

initiation of damaged DNA (REACTOME: R-HSA-113501) (Table 4.1). 

 

In the context of asthma, 0.0055 % of the trans genes (CMA1, CRB1, SETDB2, IFNG,    HLA-

DRA, CCL2) and 0.0073 % of the cis genes (SOD2, GSTT1, IL1RN) are known asthma genes,  

none of the 30 cis genes that were also active as trans modifiers  are known asthma genes as per 

http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_75842
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_75774
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_12627
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_14797
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_14797
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_1590
http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=REACT_329
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123 disease-causing genes identified in admixed USA population listed in the interactive Asthma 

Gene Browser [70].  Cadherins are important for asthma in the maintenance of epithelial tissue 

integrity [71].  This was supported by significant enrichment of genes of the cell-cell junction 

organization pathway (REACTOME: R-HSA-421270) in trans genes (p-value of 1.22 x 10-14). 

Cadherins CDH13, CDH4 and CDH6 obtained degrees 2, 2 and 1 in G respectively (Figure 4.9 and 

Table S4.4). Nodes MAP2K1, DDA1 and DCTN5 in G received comparatively high total degrees 

of 10, 3 and 12, respectively. MAP2K1 encodes mitogen-activated protein kinase 1 and is one of 

the key signaling enzymes highlighting importance of the signaling component in asthma [72]. 

Other highly interconnected genes included DDA1 - DET1 and DDB1 Associated 1 and DCTN5 - 

Dynactin 5.  DDA1 is involved in degradation while DCTN5 participates in cellular cargo 

movements thanks to the cytoplasmic dynein motor machinery. The largest maximally 

interconnected sub-graph (i.e. maximum clique) in G consisted of no more than 2 genes indicating 

rather the strong sparsity of the trans/cis eQTL network G (Figure 4.8). In general, 0.0431% 

(63/1459) of the genes in network G with degree ≥ 8 are reported known asthma genes.  

 

Smoking stratified analysis revealed both topological and biological differences. The non-smoker 

network GNS has a larger sparsity compared to GS for smokers, although both networks were built 

on similar numbers of individuals. Interestingly, the size of the GNS network is larger than GS, but 

the degree distribution for GNS (Figure S4.2) shows higher degrees than for GS . The lower sparsity 

of the GS is partially due to the MAP2K1 which has an extremely high total degree of 160 (Figure 

S4.3). The largest maximally interconnected sub-graph (i.e. maximum clique) in the differential 

network GD derived from GNS  and GS consisted of LEPR, BCL11A, PPP1R13L genes (Figure 4.10). 

Interestingly all 3 genes are linked to the immune system, specifically, lymphomas are 

characterized by abnormalities in T and B cells. LEPR is leptin receptor involved in the regulation 

of fat metabolism and normal generation of lymphocytes [73]. There is a very strong relationship 

between obesity, leptin and asthma. Obesity is a major asthma susceptibility risk factor and a 

modifier of asthma control and severity. Obese asthmatics also demonstrate greater resistance to 

glucocorticoid therapy. Leptin levels are directly correlated with degree of obesity, and there is 

considerable data demonstrating an important role for Leptin in asthma and allergic inflammation: 

leptin levels are increased in allergic airway inflammation, and increasing leptin levels augment 

the allergic response in mice [74]. In humans, leptin levels in obese asthmatics are higher than in 

https://research.cchmc.org/mershalab/AsthmaGeneBrowser/Home.html
https://research.cchmc.org/mershalab/AsthmaGeneBrowser/Home.html
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obese non-asthmatics, and compared to controls, and leptin is a potent stimulator of macrophage-

induced inflammation [75]. The leptin receptor is expressed on bronchial epithelium, but this 

expression decreases with increasing asthma severity [76]. BCL11A is B-cell CLL/lymphoma 11A 

zinc finger protein (i.e. transcription factor) modulating responses of B cells through IL4 and, thus, 

is vital for normal T-cell, B-cell and dendritic cell development [77]. BCL11A is often hyper-

mutated and translocated within B-cell heavy chain. This marker has a strong association with the 

B cell malignancies [78]. In addition, BCL11A is a critical activator of RAG1 and RAG2 in B cells 

[79], and  BCL11A deficiency in experimental models results in a marked reduction in the ability 

of the immune system to generate an antiviral response [80]. 

 

PPP1R13L codes protein phosphatase 1, regulatory subunit 13 like that interacts with B-cell 

lymphoma (BCL) family of genes [81]. Similar to BCL11A, its translocations are strongly 

associated with B-cell malignancies. In addition, PPP1R13L is associated with obesity and lipid 

metabolism [82]. The gene, also known as RAI, is a major inhibitor of both RELA and nuclear 

factor kappa-B (NFKB), two central modulators of inflammation. RAI binds to the p65 subunit of 

NFKB, and also inhibits tumor necrosis factor-alpha-induced activation of NFKB  [83]. Thus 

LEPR, BCL11A, PPP1R13L genes, members of the largest clique, were not just topologically, but 

also biologically strongly linked. They suggest that the major driver of the differential network GD 

is an immune component coupled to the damaging effects of smoking. 

 

4.6.  Conclusions 

In the present study, we showed that cis eQTLs for asthma are often co-regulated jointly by trans 

SNPs. As a tool we used MB-MDR screening methodology to detect trans x cis eQTL interactions 

for a pre-determined set of cis eQTLs. The developed protocol maintained adequate control over 

FWER. We identified significant functional overlap between trans and cis gene regulatory 

components that included immune and signaling pathways, amongst others. The network-based 

approaches were proven to be powerful in confirming results of the joint trans/cis gene set 

enrichment analyses. Although further work is needed to fully understand the impact of our 

findings, the network-based MB-MDR hybrid approach, as introduced in this work, seems to be 
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useful in highlighting meaningful gene-gene interactions and biological mechanisms, while 

integrating transcriptome and genome data.  

 

4.7.  Chapter highlights 

In this chapter we investigated DNA-RNA interplays via a novel hybrid approach, 

combining genome-wide epistasis screening with MB-MDR and network theory. 

The MB-MDR method was proven to be flexible enough to identify meaningful gene 

- gene interactions, as obtained from networks derived from statistically significant 

trans x cis eQTL interactions. In order to guarantee adequate FWER control of our 

approach, and to enhance clinical applicability of findings, we restricted attention to 

genetic markers with MAF ≥ 0.20. The FWER of our adaptive step-wise trans/cis 

eQTL method calculated on the permuted null data at the p-value < 0.05 threshold 

was within the acceptable range of 0.04 - 0.05 validating our epistatic findings. The 

9 genes were known asthma markers according to the Asthma Genome Browser [70]. 

The LEPR, BCL11A, PPP1R13L genes are members of the largest clique of our gene-

gene interaction network have strong biological links to asthma and can be 

considered as a new set of the disease markers.  Gene-way and pathway-level 

analyses pointed towards previously reported asthma-relevant mechanisms, but also 

pointed towards novel routes for further investigation. 
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4.9.  Appendix 

Figure S4.1: The complete weighted directed gene network G built using the list of 1364 significant trans/cis eQTLs 

complimenting Figure 4.8. (See the online supplement) 

Figure S4.2: The complete weighted directed gene network GNS built using the list of 1552 significant trans/cis eQTLs 

complimenting Figure 4.10. (See the online supplement) 

Figure S4.3: The complete weighted directed gene network GS built using the list of 707 significant trans/cis eQTLs 

complimenting the differential network GD shown in Figure 4.10  (See the online supplement) 

Table S4.1: The complete list of significant trans/cis eQTLs. (See the online supplement) 

Table S4.2: The list of 30 common genes of the trans/cis and cis eQTL genes sets. See online supplement. (See the 

online supplement) 

Table S4.3: The 71 common significantly enriched pathways between trans/cis and cis eQTL genes sets. (See the 

online supplement) 

Table S4.4: Total degree distribution of nodes of the trans/cis eQTL network G (see Figure 4.5). (See the online 

supplement) 

Table S4.5: The common list of nodes between GNS and GS networks with the corresponding total degrees. (See the 

online supplement) 

Table S4.6: The 3 significant epistatic trans/cis eQTL pairs both at Bonferroni and Meff method [59] thresholds 

trans SNP cis SNP p-value* trans gene cis gene trans gene name cis gene name 

rs12060945 rs4711338 4.3e-06  RTCD1 ITPR3 
RNA 3'-Terminal 

Phosphate Cyclase 

Inositol 1,4,5-

Trisphosphate 

Receptor, Type 3 

rs12582824 rs12420868 2.68e-05 CLEC4D LRRC56 

C-Type Lectin 

Domain Family 4, 

Member D 

Leucine Rich 

Repeat Containing 

56 

rs954639 rs1045895 2.83e-05 SEC23IP LEPR 
SEC23 Interacting 

Protein 
Leptin Receptor 

* per cis gene multiple-testing adjusted via MAXT as implemented in MB-MDR [31] 

https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
https://orbi.ulg.ac.be/handle/2268/199583
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5. Practical aspects of gene regulatory network 

inference via conditional inference forests from 

expression data 
 

5.1. Chapter summary 

In previous chapters, interactions always involved a genetic (SNP-based) layer of information in 

relation to a complex disease trait, in this chapter we restrict attention to transcriptome layers of 

information and the inference of gene-expression networks in a well-defined population (here, a 

group of individuals exhibiting the same phenotype). Only one transcriptome per subject is 

considered, either derived from synthetic or real-life expression microarray data. 

 

In particular, in this work we propose a novel framework to create GRNs, based on Conditional 

Inference Forests (CIFs) as proposed by Strobl et al. [1] and gene expression data. Our framework 

consists of using ensembles of Conditional Inference Trees (CITs) prior to network construction. 

We show on synthetic microarray data from the DREAM challenges that the original 

implementation of CIFs with conditional permutation scheme leads to improved performance 

compared to Breiman’s implementation of Random Forest (RF). Although more work is needed to 

improve on speed, especially when fully exploiting the advantages of conditional inference trees 

in the context of heterogeneous and correlated data via a conditional permutation scheme, we show 

that the CIF methodology can be flexibly inserted in the GRN inference framework to mine for 

biologically meaningful interactions. In contrast, networks derived from well-tuned CIFs, obtained 

by simply averaging p-values over tree ensembles (CIFmean) are a particularly attractive less 

computationally intensive alternative: adequate performance is combined with computational 

efficiency. Moreover, thresholds for variable selection are based on significance levels for p-values 

and hence do not need to be tuned. The latter is important when working with real-life biological 

data, for which the truth is largely unknown. Finally, the CIF’s theoretical advantage in the 

presence of multiple omics data, measured on different scales, makes it a promising tool for 

integrative omics data analyses. 
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Problem: GRN inference using real-life expression data is not novel, but to our knowledge 

available algorithms and methodologies fail to provide adequate performance on real-life data with 

genome-wide scales. This has to do with the complexities linked to expression data, including 

complex correlation patterns of the expression profiles, systematic measurement biases due to 

different binding efficiencies per microarray probe, variable amounts of RNA per sample, etc. [2]. 

In addition, most of the classical statistical analysis methods used to assess differential gene 

expression (t-test, ANOVA, F-test) ignore dependencies of genes (i.e. correlation structure) which 

are omnipresent in real-life gene-expression data [3].  Therefore, it is essential to have a tool 

available that can reliably derive gene - gene interactions from gene expression data. In this chapter, 

we employ and compare the GRN inference potential of non-linear tree-based algorithms such as 

RFs and CIFs.  We investigate whether CIFs can provide suitable GRN inference performance as 

compared to RF in small-scale and genome-wide scenarios. In addition, we assess performance 

impact of main tuning parameters such as the number of variables to pick from at a given tree node 

(mtry), and of different multiple-testing correction options (Bonferroni, Monte-Carlo), as well as 

performance sacrifices after omission of the permutation step during estimation of variable 

importance measure (VIM), etc. In addition, we explore the benefits of the conditional permutation 

scheme that makes CIFs so unique. Finally, testing theory to practice, we build a GRN from type 

1 diabetes (T1D) expression data and provide biologically plausible gene interaction hypotheses. 

 

Results: CIF based methods that utilize both test statistic and p-value as VIMnode show similar 

and at times better than RF GRN inference performance. For example in DREAM4 data [4] CIFcond, 

CIF and RF reach performance DREAM scores of 34.24, 33.92 and 33.50, respectively. Due to 

significant computational runtime requirements the classical CIF methods [1,5,6] cannot be applied 

to GRN contexts with >100 genes requiring the introduction of alternative heuristic methods – 

CIFmean. This method is based on averaging of node-specific p-values of a conditional inference 

tree. The highest performance measured via AUROC and AUPR across all datasets was for CIFmean 

test-statistic (Uncorrected) and CIFmean p-value (Monte-Carlo) at mtry values equal to 1/3 of input 

variables. We discover and confirm highly statistically and biologically relevant interactions 

between IL2RA and FOXP1 members of IL-2 signaling pathway linked to type 1diabetes. 
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5.2.  Introduction 

Real-life biological systems display interactions and regulation schemes that are part of complex 

pathways or networks.  Understanding these networks is important to unravel gene regulatory 

mechanisms or the genetic basis of complex disease traits. The availability of genome-wide 

transcriptome data offers opportunities and challenges for data analysts to extract gene regulation 

information directly from gene expression profiles: genes regulate each other’s expression and 

activity.  

 

One of the challenges when dealing with data derived from high-throughput technologies (i.e. 

omics data) involves the curse of dimensionality. This refers to the fact that number of variables p 

is usually much larger than the number of samples n for these data and, hence, model parameter 

estimation becomes unstable. Ignoring the p>>n issue and adhering to classical statistics, is bound 

to generate singularities in matrix algebra (e.g., singular matrices) [7]. The curse of dimensionality 

particularly applies to transcriptome data derived via RNA-seq, but also holds true for microarray-

based data that typically considers between 10,000 and 57,000 transcripts, depending on the 

platform and organism [8]. One way to circumvent this problem is to reduce the number of 

variables. This can be done by using prior biological knowledge leading to biologically motivated 

constraints, or via mathematical/statistical variable selection algorithms. Alternatively, novel 

representations of the data are looked for, such as principal components in a lower-dimensional 

linear space [9] or kernels for non-linear data dimensionality reduction [10].Graph structures are 

easy to interpret and naturally represent biological networks [11]. These networks may refer to 

genes and gene products or to networks between macro- and micro-molecules, possibly integrating 

different data sources with different interaction profiles in a single consensus network [12]. 

Importantly, biological networks  show a scale-free as discussed in [13]. This implies that only a 

small number of nodes in the network are highly connected and that the majority of nodes are 

connected to only a few neighboring nodes. Usually, connected nodes in such networks are said to 

be “interacting”. However, this does not necessarily mean that the nodes (or the compounds they 

represent) are physically interacting. Note that several so-called physical interaction networks may 

miss true interactions as well and often contain non-functional interactions [14]. Gene regulatory 
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networks (GRNs) represent directed functional linkages existing between genes and regulatory 

elements most frequently associated with transcription factors [15]. 

 

In this work, the envisaged biological networks are functional GRNs for which “interactions” 

depict either direct or indirect regulatory relationships [16].  The framework we develop relies on 

hybrid tree-based variable selection and GRN inference. One of the advantages of trees and 

ensembles of trees [17] is their ability to effectively and rapidly dissect complex data spaces such 

as those generated by gene expression microarrays. Trees and random forest methodology belong 

to the class of recursive partitioning methods, that aim to recursively partition the space spanned 

by all input variables into partitions of observations with similar responses. The final partitions 

may be characterized by highly complex interactive patterns between input variables, although care 

has to be taken when interpreting interactions in the context of random forests [18]. For a general 

overview on classification and regression trees, we refer to [19].  

 

Single tree-based models can over-fit data at hand and, hence, to underestimate classification 

errors. Several measures can be taken to overcome these issues, including the building of unpruned 

trees on multiple bootstrap samples as implemented in Breiman Random Forests (RF) [20] and the 

separation of variable selection and node splitting steps [21]. Such a separation is implemented in 

Conditional Inference Trees (CIT) and Conditional Inference Forests (CIFs) [1,21]. At the heart 

lies an unbiased tree algorithm [21,22] that do not artificially favor splits in variables with many 

categories or continuous variables [23]. CIFs present several advantages over classical RFs 

including separation of node selection and splitting steps to overcome tree-based variable selection 

bias [5], resampling with replacement to handle ensemble variable selection bias introduced by 

bootstrap sampling [21], a conditional permutation scheme to deal with correlated input features 

[1], and the possibility of natural threshold selection for variable importance measures (VIMs),  as 

we will show later. Hence, a CIF-based methodology theoretically encompasses categorical and 

continuous input variables that are possibly inter-related and measured on different scales, hereby 

paving the way for combined analysis of multiple data sources. For these reasons, and having 

integrative analyses of heterogeneous and interconnected omics data in mind, we chose CITs and 

CIFs as the basis of our novel network construction and inference methodology, despite the fact 

that random forests rather than CITs or CIFs are widely applied in bioinformatics contexts [24]. In 
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the belief that computational efficiency can be reached by optimizing the program code and 

CIT/CIF underlying algorithms, we focus on investigating the impact of parameter choices in CIT 

and CIF (e.g., related to multiple testing correction and the number of randomly selected variables 

at each tree node) on the performance of proposed gene regulatory network construction methods 

in synthetic and real-life data settings. 

 

The CIFmean source code and run scripts developed in the context of this manuscript are freely 

available through via  https://bitbucket.org/kbessonov/cifmean and www.statgen.ulg.ac.be. 

 

5.3.  Methods 

5.3.1.  Data sources  

We obtained publicly available gene expression data from the DREAM 2, 4 and 5 challenges 

[4,25,26] and the GEO public repository (GEO #: GSE43488).  

 

In particular, we used gene expression data on 3456 E.coli genes from DREAM2, containing 320 

transcription factors (TF), for 300 subjects [27]. The 320 TFs were considered as input variables 

to our proposed strategies (Figure 5.1). As the gold standard (GS) network we took evidence from 

RegulonDB [28] of experimentally verified regulator (TF) - target gene (TG) relationships.   

 

The DREAM4 In Silico Network Challenge data only contained synthetic microarray expression 

data derived from 5 GS networks, each with 100 nodes [4,25,29]. Thus, each dataset contained 100 

genes collected on 100 samples. Since no list of potential regulators existed, all 100 genes were 

considered as input variables.  

 

The DREAM5 Network Inference Challenge data consisted of three GS networks 1-3, with 

respectively 1643, 4511 and 5950 genes. The GS network 1 data contained synthetic (simulated) 

gene expression data represented by 1643 genes and 195 regulators for 805 samples. The GS 

network 2 real-life E.coli expression data was characterized by the 4511 genes containing 334 TFs 

collected on 805 subjects.   

https://bitbucket.org/kbessonov/cifmean
file:///F:/Documents/RESEARCH_Integromics/THESIS/REVIEWS/May_2016_CH124_67/www.statgen.ulg.ac.be
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Figure 5.1:  Gene regulatory network framework based on CIT /CIF, adapted from [17,30]  

a) Given gene expression data for a number of subjects or individuals, consider iteratively each gene expression as output (response) 

and remaining gene expression as input (predictors).  

b) Construct a conditional inference tree (CIT) or conditional inference forest (CIF) per input/output. 

c) Per node, aggregate over all available tree(s) to obtain a variable importance measure (VIMglobal). Construct a non-symmetric 

adjacency matrix and, hence, a directed network. 

d) Compare the obtained predicted network to a gold standard, whenever such a standard is available or use performance metrics 

such as area under the ROC curve (AUROC) or area under the precision-recall curve (AUPR). 

 

The DREAM5 GS network 3 also involved real-life data on an organism, this time S.cerevisiae. 

The corresponding gene expression data included 5950 genes containing 333 regulators and was 

collected on 536 samples. For each scenario, the entire set of regulators was used as starting set for 

variable selection.  

 

As a case study, we took human microarray expression data from a type 1 diabetes (T1D) study in 

children [31], obtained via the public GEO database (GEO #: GSE43488). As the gold standard we 

considered the verified set of transcription factor–target gene sets from [27] that used a variety of 

sources, including the Transcriptional Regulatory Element Database (TRED) [32], Pazar [33], 

PubMed, and the Transcription Regulatory Regions Database (TRRD) [34], among others. The 

resulting unique list of gene-gene pairs was composed of 1617 genes (245 TFs and 1372 target 

genes). These 1617 genes, evaluated on 121 samples, served as input to the considered analytic 

tools. A summary of the available data is given in Table 5.1. 
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Table 5.1: Data characteristics 

Data GS available  Real-life Nr of genes Nr of TFs Nr of Samples 

DREAM2 (E.coli) Y Y 3456 320 300 

DREAM4  network 1 Y N 100 100** 100 

DREAM4  network 2 Y N 100 100** 100 

DREAM4  network 3 Y N 100 100** 100 

DREAM4  network 4 Y N 100 100** 100 

DREAM4  network 5 Y N 100 100** 100 

DREAM5  network 1 Y N 1643 195 805 

DREAM5  network 2 (E.coli)  Y Y 4511 334 805 

DREAM5  network 3 
(S.cerevisiae) 

Y Y 5950 333 536 

Case study: T1D (Human) N* Y 1617 245 121 

*tentative gold standard was built based on the prior knowledge of the transcription factor–target gene interactions 

extracted from public databases (see Methods) 

**all 100 genes were used as potential TFs; no list of potential regulators was specified 

 

5.3.2.  CIT/CIF-based network inference methodologies 

A schematic representation of our proposed GRN framework is given in Figure 5.1 (adopted from 

[17,30]). In particular, for a given omics data set, with molecular information that can be mapped 

to a gene, for instance transcriptome data, and assuming a one-to-one mapping of transcripts to 

genes, each transcript (gene) is subsequently taken as output (response) and the remaining 

transcripts (genes) are taken as input (predictor variables). For each response, a CIF/CIT is 

constructed and for each response-predictor gene pair a variable importance measure (VIM) is 

calculated (see below). These measures per gene are either based on a single CIT or are aggregated 

over several CITs in gene-based CIFs, depending on the view taken to construct a network from 

trees. In general, a (statistically) “significant” VIM for gene X in predicting gene Y will lead to a 

connection between X and Y in the network. Because of the direction of prediction, the connection 

is presented as a directed edge, naturally giving rise to a directed network (i.e. GRN). The so-called 

predicted network is compared to a gold standard (when available), using network prediction 

performance criteria as suggested by [26,29]:  
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1) the area under the receiver operating characteristic curve (AUROC),  

2) the area under the precision-recall curve (AUPR), and  

3) the DREAM challenge specific score.  

 

The ROC curve plots the sensitivity (i.e. true positive rate) versus 1 minus specificity (i.e. 1 minus 

the true negative rate) and is well-known in statistics. Precision-Recall curves or PR curves are 

often used in Information Retrieval and offer an alternative to ROC curves for skewed class 

distributions. An algorithm may be a good performer based on ROC but not based on PR. Whereas 

recall is defined as the true positive rate, precision is defined as the fraction of examples classified 

as positive that are truly positive. When the number of unconnected nodes exceeds the number of 

connected nodes in the GS networks, as is the case with GRNs, more information about 

comparative performance of methods can be retrieved from precision-recall curves [35].  For more 

details about ROC-PR comparisons, we refer to [35]. The overall score summarizes performance 

over several network scenarios and is defined as in [26] as the mean of the (- log10-transformed) 

network specific p-values pPR and pROC. The PR and ROC p-values are derived from the original 

AUPR and AUROC values by comparison of obtained areas with those obtained from a simulated 

null distribution based on 25,000 random networks [26].  

 

In what follows, we briefly describe the network inference schemes considered in this work. Each 

of these schemes involved particular choices of VIMs and, hence, different gene-gene network 

(GRN) building strategies: 

  

CIT: Here, the global null hypothesis of independence between any of the predictors and the 

response under consideration is tested by means of the conditional distribution of linear statistics 

in the permutation test framework of [36]. When this hypothesis cannot be rejected, the procedure 

stops. Otherwise, the predictor with the strongest association to the response is selected. We define 

the node’s variable importance measure as its measure of association with the response (i.e. the p-

value of the corresponding association test) and denote it as VIMnode. When a variable appears 

multiple times in the tree, the VIMnode value corresponding to the largest node for that variable (i.e. 

with the largest sample size) is taken.  Next, the most optimal split for that node is sought (i.e. the 
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split that maximizes a split statistic). The split statistic is based on standardized linear statistics as 

before. For more details, we refer to [5].  

 

CIF and CIFcond: In this work, both GRN inference schemes build an ensemble of conditional 

inference trees via the R party package version 1.0-11 [1,5,6]. The cforest_control() function 

therein defines parameters that control the tree building. Unless stated otherwise, we passed the 

following parameters described in [6] to cforest_control(): teststat="quad", testtype="Univariate", 

fraction=0.632, replace=F, mincriterion=0.95, minsplit=20, ntree=1000, mtry=k/3 . Note that 

teststat="quad", testtype="Univariate", and replace=F correspond to the recommendations given 

in [21], so as to construct unbiased random forest. The mtry parameter (i.e. the number of variables 

randomly selected at each node) was set to k/3, with k representing the total number of possible 

predictors in the data as recommended by [37] . While the cforest() function creates ensembles of 

trees from a training section of the input data, the function varimp() uses the out-of-bag (OBB) 

samples to calculate the importance of each predictor variable with respect to target response.  In 

particular, for each gene predictor / gene response pair, the varimp() function outputs the mean 

decrease in accuracy (%IncMSE), indicating how much the mean square error (MSE) increases 

after permutation of the OOB samples averaged over all trees of the forest. Thus, large values of 

%IncMSE are suggestive of a gene pair’s importance. Because for forests, a node’s variable 

importance is aggregated over several trees, we denote it by VIMglobal. In practice, its calculation 

was made by the varimp() function with parameters nperm=100  and OOB=T. Hence, we used a 

total of 100 data permutations and OOB samples in the testing phase. In the case of CIFcond the 

conditional parameter in the varimp() function was set to true (i.e. variable importance was 

assessed via the conditional importance measure of [23]), while in CIF it was set to false. 

 

CIFmean: In contrast to CIF and CIFcond, we passed the following tree growth parameters to the 

function ctree_control(): teststat="quad", testtype="Univariate", fraction=0.632, replace=F, 

mincriterion=0.95, minsplit=20, ntree=1000, mtry=k/3. Because in CIFmean variable importance 

is assessed within a statistical framework, based on formal testing and p-values, the obtained p-

values were compared to a significance level of 0.05 (i.e. mincriterion=0.95). In addition, a 

minimum number of 20 individuals were required in a node before it was considered for node 

splitting (minsplit=20). A node’s variable importance VIMglobal was aggregated over several trees 
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according to the formula in the Eq. 5.1, with n(Xj) - the number of trees that contain the variable Xj 

as a node and 𝑝𝑋𝑗
𝑡  - the p-value related to the association test between predictor gene j and response 

gene i in tree t of the ensemble (VIMnode). As before, when gene j (Xj) occurs twice in the same tree, 

only the p-value corresponding to the largest sample node is considered. We use CIFmean p-value 

to refer to network inference strategies in which VIMglobal is calculated using p-values aggregated 

via the Eq. 5.1. The other VIMnode aggregation schemes including the Fisher’s combined, the 95th 

quantile-based, the weighted mean were not further tested as they provided a lower performance 

in small-scale DREAM4 data. In case testtype=”Teststatistic” in the ctree_control() function 

above, not p-values but raw test-statistics are used to aggregate over trees. We refer to this strategy 

as CIFmean test-stastistic.  

 

𝑉𝐼𝑀𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑎𝑖𝑗 =
∑ 𝑝𝑋𝑗

𝑡𝑇
𝑡

𝑛(𝑋𝑗)
 Eq. 5.1 

 

Breiman RF: We implemented classic random forest (building 1000 trees) with the randomForest 

library (version 4.6-7) in R [20,38] and the default options with mtry=k/3. Similar to the CIF and 

CIFcond methodologies described above, VIMglobal importance measures were permutation based 

and reflect the mean decrease in accuracy (%IncMSE) before and after permutation of OOB 

samples. The OOB samples were derived based on sampling with replacement (bootstrapping) 

equivalent to the replace=T in the CIF. They were computed via the function 

importance(…)[,”%IncMSE”].  

 

The conditional inference framework and multiple-testing:  Previously, we indicated that we 

based the stopping criterion during node selection in CIT or CIF on univariate (multiple testing 

uncorrected) p-values as invoked by testtype="Univariate" in ctree_control(). However, it is also 

possible to use a stopping rule based on test statistics rather than p-values. In comparison to the 

second, the first does not make assumptions about the nature of large-sample distributions. 

Currently, in the software, it is only possible to explicitly account for multiplicity in the node 

selection, when using a stopping rule based on p-values (testtype="Univariate"), either by relying 

on Bonferroni (testtype="Bonferroni") or Monte Carlo (testtype="MonteCarlo") strategies. In 

practice, with Bonferroni correction, a node’s variable importance measure VIMnode is calculated 
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using the formula 1-(1-praw)k where k is the total number of input predictor variables minus 1 [6].  

The Monte Carlo multiple-testing corrected p-values are attached to a node (VIMnode) calculated  

based on permutations and min-p procedure [6].   

 

In the next section, we report results of extensive simulation studies, using the aforementioned 

network inference schemes and assess their robustness to altered parameter choices. In addition, 

we explore their utility on real-life data applications and formulate recommendations of our 

proposed GRN framework in data integrative contexts. 

 

5.4.  Results 

5.4.1.  Evaluation of CIT/CIF-based GRN inference with DREAM4 data 

Based on the DREAM overall score criterion (see Methods section), the best performers were 

CIFcond (34.24) and CIF (33.92), followed by RF (33.50) and CIFmean based on aggregation of test-

statistic (27.39) rather than p-values (23.75, 23.61, 23.23) (Figure S5.1). Amongst the CIFmean 

methodologies based on p-value aggregation, the best performers were GRN methodologies that 

utilized multiple testing (MT) correction. The Monte Carlo based MT correction was the most 

effective (23.75), closely followed by Bonferroni (23.61). The prediction performance of GRNs 

derived from a single tree (CIT p-value (Uncorrected)), compared to CIFmean p-value (Monte Carlo) 

was 1.8x lower: 13.17 compared to 23.75. The AUROC and AUPR in the 5 networks separately 

showed quite diverse performance trends amongst the considered GRN inference methods, as can 

be observed from Figure 5.2. The strong performance of CIFcond is confirmed by both AUROC and 

AUPR.  However, it is quite computational intensive strategy (Table 5.2). The computations of 

methods detailed in Table 5.2 were run on a single core of an Intel L5420 processor clocked at 

2.50 Ghz. For 100 genes and 100 subjects, Breiman’s RF implementation was the fastest method, 

closely followed by CIFmean p-value (Bonferroni). For this reason, and because it is an easy-to-

implement strategy giving rise to a statistically grounded threshold for variable importance, we 

will focus on CIFmean and will investigate how we can further optimize its performance.   
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Figure 5.2: DREAM4 performance results – mtry=k/3. AUROC and AUPR expressed performance of considered GRN 

inference methodologies for each of the 5 DREAM4 networks included in the study and described in the methods 

Section 5.3.2.  Table S5.1 complements this figure with specific AUROC and AUPR values.  

 

The parameter mtry can have a large impact on GRN inference performance, as can be seen from 

Figure 5.3 for CIFmean. The highest DREAM4 overall scores were obtained for mtry=k, hence using 

all possible input predictors, with the exception of CIFmean p-value (Bonferroni). For the latter 

approach, mtry=k/3 seemed to be a reasonable choice.  
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Table 5.2: Runtime estimates of the family of CIF methods on a single CPU 

Method Min* h* 

CIT p-value (Uncorrected) 0.30 0.005 

CIF 41,600 (416 x 100) 693 

CIFcond 120,000 (1,200 x 100) 2,000 

CIFmean p-value (Uncorrected) 12.35 0.205 

CIFmean p-value (Bonferroni) 3.8 0.063 

CIFmean p-value (Monte Carlo) 1,288 21.5 

CIFmean test-statistic (Uncorrected) 14.6 0.24 

RF 0.79 0.013 

*The input consisted of 100 genes and 100 samples (i.e. DREAM4 data). The estimated times assume serial runs 

without any parallelization (single thread). For settings description associated to each method, please refer to the 

Methods section. 

 

 

 

 

 

 

Figure 5.3: DREAM4 performance results – variable mtry. The performance of the CIFmean methods at various mtry 

values assessed via the DREAM4 overall score. Overall scores are averages over 5 networks.  
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Figure 5.4: DREAM2 performance results – variable mtry. a) The performance of the CIFmean methods based on the 

total area of AUROC and AUPR. b) A more detailed view of the AUROC and AUPR dynamics as a function of the 

mtry parameter. Table S5.2 complements this figure with specific AUROC and AUPR values. 
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5.4.2.  Evaluation of CIFmean-based GRN inference with DREAM2 data  

The top performer based on AUROC and AUPR was RF followed by CIFmean test-stastistic 

(Uncorrected) and CIFmean p-value (Monte Carlo) (supplementary Figure S5.2). The Monte Carlo 

multiple-testing correction provided the best performance amongst the CIFmean p-value methods 

(supplementary Figure S5.2). Note that since only a single data scenario was available for 

DREAM2, it was not possible to compute a DREAM global score for each method but instead, we 

considered the sum of AUROC and AUPR. 

 

Contrary to DREAM4 results, the optimal mtry parameter based on AUPR and AUROC across all 

CIFmean methods, with the exception of Bonferroni, was at default value of k/3. In case of CIFmean 

p-value (Bonferroni), the highest performance was reached at mtry maximal value of k (Figure 5.4). 

 

5.4.3.  Application of CIFs to DREAM5 data 

Using the DREAM5 overall score developed in [26], the best performers were RF (63.28), followed 

by CIFmean p-value (Monte Carlo) (54.02) and CIFmean p-value (Uncorrected) (53.59). Very low 

performance was demonstrated by CIFmean p-value (Bonferroni) showing ~8.5x performance drop 

compared to CIFmean p-value (Monte Carlo): 6.32 compared to 54.02 (Figure S5.3 and Figure 5.5).  

 

 

Figure 5.5: DREAM5 performance results - mtry=k/3. The GRN inference performance levels across CIFmean 

methodologies. Performance is quantified via the DREAM5 overall score as defined in for instance [26]. Table S5.3 

complements this figure with specific AUROC and AUPR values. 
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The default mtry value of k/3 provided the optimal performance for CIFmean uncorrected for 

multiple testing and CIFmean with Monte Carlo based multiple testing corrected p-values. For 

CIFmean with Bonferroni corrections and for CIFmean test-statistic (Uncorrected), the maximal value 

of mtry provided the highest performance (Figure 5.6). 

 

Figure 5.6: DREAM5 performance results – variable mtry. The performance of the CIFmean methods at various mtry 

values were assessed based on DREAM5 overall score averaged over 3 DREAM5 networks.  

 

5.4.4.  Case Study: T1D data 

Since for these data 1617 nodes and 212 samples were available, we restricted attention to CIFmean 

-based GRNs. The performance in human real-life data from T1D patients significantly dropped 

across all CIFmean methods. The performance differences between CIFmean methodologies were 

minimal though. The best performer at default mtry=k/3 was CIFmean p-value (Monte Carlo) 

followed by CIFmean p-value (Bonferroni) (supplementary Figure S5.4). The impact of the mtry 

parameter across CIFmean methods greatly varied (Figure 5.7a). In case of the CIFmean p-value 

method with Monte Carlo multiple testing correction, the highest performance was achieved at the 

default mtry setting of k/3, although the performance is rather stable across the considered values 

for mtry. With Bonferroni correction, the maximum value of mtry at k gave the most performance 

benefits. The CIFmean p-value (Uncorrected) method showed the lowest performance changes with 

varying mtry parameter values (Figure 5.7a). The default mtry value of k/3 was clearly suboptimal 

for CIFmean test-statistic (Uncorrected) and CIFmean p-value (Bonferroni). The significant drop in 

AUROC and AUPR is even more striking in (Figure 5.7b). 
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Figure 5.7: The T1D Case study performance results – variable mtry. a) Performance of the CIFmean methods based 

on the AUROC and AUPR. b) A more detailed view of the AUROC and AUPR dynamics as a function of the mtry 

parameter. As the gold standard the verified set of TF/TG sets from [27]. 

From a practical point of view, considering a threshold p-value of 0.01, the GRN inferred with the 

best performer CIFmean p-value (Monte Carlo) in this data scenario, highlighted a total of 89 
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interactions. Amongst them is a highly significant pair involving forkhead box P1 (FOXP1) and 

the IL-2 receptor-α (IL2RA), with respective p-value based global variable importance measure of 

0.0057 (Table 5.3).Both IL2RA and FOXP1 are well known T1D markers involved in IL-2 

signaling pathway [39]. Table Table 5.3 lists other significant pairs linked to IL2RA.  

Table 5.3: CIFmean p-value (Monte Carlo) significant pairs from the T1D dataset 

Gene A Full Name A Gene B Full Name B p-value 

SMAD7 SMAD family member 7 IL2RA interleukin 2 receptor, alpha 0.002308 

FOXP1 forkhead box P1 IL2RA interleukin 2 receptor, alpha 0.0057 

FOXO3 forkhead box O3 IL2RA interleukin 2 receptor, alpha 0.0073 

BCL3 B-cell CLL/lymphoma 3 IL2RA interleukin 2 receptor, alpha 0.010556 

FOXA2 forkhead box A2 IL2RA interleukin 2 receptor, alpha 0.01156 

STAT1 
signal transducer and activator of 

transcription 1, 91kDa 
IL2RA interleukin 2 receptor, alpha 0.013757 

 

5.5.  Discussion 

Networks come in different flavors, depending on their aim and the biological entities that serve as 

input during their construction. Examples of networks include gene regulatory networks (GRN) 

[40], co-expression networks [41-43], differential networks [44], metabolic networks [45]. Our 

inferred networks were directed. Genes were taken as nodes and “variable importance measures” 

were taken as weights to edges. The measures were derived from conditional inference trees (CITs) 

or conditional inference forests (CIFs). The reason for relying on conditional inference trees rather 

than classic regression trees was that we were ultimately interested in developing a network 

inference method that enables the integration of different data types (for instance, methylome, 

genome and transcriptome data).  These data types generate measurements on differential scales, 

requiring re-scaling in order to avoid biased selection of features. Specifically, Breiman’s Random 

Forests [20] are known to be biased towards features with larger number of possible splits [21]. 

 

In addition, correlations between features are frequent in biological data (e.g., co-expression 

networks rely on “correlations” between gene expressions). Rather than reducing the data to obtain 

independent features (e.g., via components theory which would complicate node definition and 
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interpretation), a method that can directly deal with correlated features is highly desirable. Our 

results showed that the conditional inference forests (CIF) framework can outperform classic 

Random Forest, especially when features are correlated or are of different measurement types as 

was demonstrated in DREAM4 data (Figure 5.2 and Figure S5.1). 

 

In particular, CIFcond applied to relatively small data from DREAM4 (100 nodes and sample size 

of 100), outperformed all other considered methods based on AUPROC and AUPR performance 

measures, including RF. The added value of CIFcond to RF seems to be rather small at first sight, 

but given its theoretical optimality in the presence of correlated data (as is the case here: multiple 

genes are co-expressed), we would generally favor CIFcond over RF. Note that only weak 

correlation patterns existed between gene expressions in DREAM4 data, averaged over all  

networks, only 2.20±0.91% of gene pairs showed a correlation > 0.3 (supplementary Figure S5.5). 

Interestingly, for network 4 the AUROC of CIFcond was largely suboptimal to RF, whereas for 

AUPR, the CIFcond slightly outperformed RF (Figure 5.2). Clearly, single tree-based techniques are 

not to be recommended for GRN inference purposes (Figure 5.2). 

 

Interestingly, having a closer look at DREAM4 scenarios and Figure 5.2 and AUPR, CIFmean with 

a stopping-rule based on test statistics rather than p-values outperformed all other CIFmean 

methodologies. This may be due to the fact that CIFmean test-statistic (Uncorrected) does not make 

any assumptions about the shape or nature of the test statistic’s distribution. Hence, it would be 

interesting to investigate in more detail the relation between GS network properties, the nature of 

the input variables and the performance of CIFmean test-statistic (Uncorrected), possibly combined 

with a maxT [46] approach to derive multiple testing corrected p-values. The same observation was 

made for DREAM2 data (Figure 5.4). 

 

Among the p-value based CIFmean methodologies, CIFmean p-value (Monte Carlo) was the best 

performer for DREAM4 (Figure S5.1) and DREAM2 (Figure S5.2). For DREAM5 data scenarios, 

CIFmean p-value (Monte Carlo) did not only outperform all p-value based CIFmean methodologies, 

but also CIFmean based on test statistic (Figure 5.5). In DREAM5, CIFmean p-value (Monte Carlo) 

was closely followed by the not correcting for multiple testing CIFmean strategy - CIFmean p-value 

(Uncorrected) (Figure 5.5 and Figure S5.3). All these results seem to indicate the added value of 
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adjusting for multiplicity during node selection, despite it being more computationally intensive 

(Table 5.2).    

 

The most optimal mtry value highly depended on the data scenario, respectively DREAM2, 

DREAM4 and DREAM5 (Figure 5.3, Figure 5.4 and Figure 5.6). For CIFmean p-value 

(Uncorrected) methodology, the most optimal values were respectively k and k/3. For CIFmean p-

value (Bonferroni) they were 5 and k with k/3 being a reasonable alternative. For CIFmean p-value 

(Monte Carlo) they were k and k/3 and for CIFmean test-statistic (Uncorrected) they were k/3 and 

k. It is only for DREAM5 data that the number of samples largely exceeds the number of the input 

variables (i.e. TFs) considered for analysis. Hence DREAM5 more closely resembles a classic 

regression context, compared to the other data scenarios, for which it has been shown that there is 

little improvement by using unpruned bagging strategies (i.e. mtry=k).  However, all data scenarios 

would typically not be handled in a classic regression framework. The higher the discrepancy 

between the number of samples compared to the number of input variables (p>>n; as is the case 

for most real-life data examples with human samples), the more we expect mtry=k to do well, as 

was observed for T1D data (Figure 5.7). For practical reasons, our CIF-based GRN inference 

framework takes mtry=k/3 as a default.  

 

From a theoretical point of view and on small data sets CIFcond is to be preferred (Figure 5.2 and 

Figure S5.1). From a practical point of view, more work is needed to use CIFcond principles for 

GRN inference purposes. Based on the DREAM4 data represented by networks composed of 100 

nodes, the computation time of CIFmean p-value (Uncorrected) was 12.35 minutes versus 0.79 

minutes for RF (Table 5.2). Analyzing 4511 nodes of the DREAM5 network 2 took CIFmean p-

value (Uncorrected) 3232 minutes versus 6054 minutes for RF. Hence, it seems that the larger the 

data, with the same mtry parameters, the larger the computation time advantage of CIFmean over RF 

may be. Clearly, as CIFcond already took approximately 2 hours analyzing 100 node network versus 

12.35 minutes for CIFmean p-value (Uncorrected), it is infeasible to use it on large data sets at the 

moment. Modifying CIFcond to reduce computation time is the subject of future projects.   

 

The GRN inference in eukaryotic expression data is complex [47]. Therefore the drop in 

performance of CIFmean p-value (Monte Carlo) (Figure 5.7), compared to for instance DREAM4 
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data (Figure 5.2), on type 1 diabetes (T1D) data is not surprising. Low correction between 

expression levels between genes is possibly due to transcription factor regulation acting on the 

protein rather than on the transcript level via post-translational modifications, unknown latent 

variables, genes exhibiting functional overlaps, several levels of regulation not caused by 

transcription factor binding [48], epigenetic component and others. This may result in gold standard 

networks with heavy reliance on protein-protein binding but poor expression level changes [26].  

Nevertheless, CIFmean identified highly relevant T1D genes connected to IL2RA, a well-known 

marker of T1D. This suggests the potentials of CIFmean – based GRN inference in unraveling 

biologically relevant mechanisms. Among the genes listed in Table 5.3 is STAT1, a member of the 

STAT protein family, which is critical in IL2 signaling and regulation of T cell activity. 

Perturbations in IL2 signaling pathway were found to be closely associated to onset of T1D, 

highlighting the importance of the immune system and cytokine signaling components [39].  The 

FOX family of proteins and BCL3 highlight the immune system involvement in T1D. The SMAD  

family of proteins is also key to T1D, as they are associated with TGFβ and BMP pathways. 

Mutations in SMAD genes are strongly associated with diabetes, as previously reported in [49]. 

Note that these results were obtained by taking the threshold of 0.01. The optimal threshold in the 

ROC curve (i.e. the point closest to the top-left part of the plot) was 0.0038 with specificity and 1-

sensitivity confidence intervals of 0.55-0.56 and 0.45-0.52 respectively (based on 2000 bootstrap 

samples).  

 

Finally, CIF’s separate node selection and splitting association steps coupled to general association 

measure based on framework developed by Strasser and Weber [36] offer opportunities to handle 

different input data types, for instance RNA-seq and microarray expression data. This framework 

is linked to derivation of permutation-based linear test-statistic measuring association between 

predictors and responses detailed in [50]. Performance of CIF based methodologies was not yet 

tested on RNA-seq data, which is often characterized by small sample sizes. Since RNA-seq 

transcriptome data are ideally modeled via a negative binomial regression model that considers 

overdispersion [51], we plan to expand the choice of association tests currently incorporated in CIF 

methodologies. In addition, since these tests will rely on a regression framework, they can 

potentially be adjusted for confounding factors. In brief, the CIF framework provides generality 

and flexibility for enhancements in many contexts, including integrative multi-omics data analysis. 
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In future work, our aim is to avoid a posteriori data integration (for instance fusing a methylome-

transcriptome, genome-transcriptome, transcriptome-transcriptome networks via [52]), but to 

develop a feasible CIF- based gene regulatory network inference method that can handle 

methylome, genome and transcriptome data as joint input to predict gene expression. 

 

5.6. Conclusions 

In this work, we investigated the performance and practical use of conditional inference trees 

(CITs) and forest (CIFs) to infer gene regulatory networks from synthetic and real-life data. 

Synthetic data and data on model organisms were made available by the Dialogue on Reverse 

Engineering Assessment and Methods (DREAM) project [4,25,29]. Real-life data on type 1 

diabetes was obtained from the GEO public repository (GEO #: GSE43488).  We have shown that 

conditional inference framework suggested by [5] offers interesting possibilities for data 

integration, provided computational efficiency can be enhanced. In real-life settings of high-

dimensional biological data, we recommend to use the CIF-based GRN inference approach based 

on conditional inference forests and node-specific p-values, adjusted for multiplicity by Monte 

Carlo resampling. In addition, we recommend randomly selecting about 1/3rd of the input variables 

at each node in the forest. Although more computationally intensive, this approach is less 

dependent on the number of randomly selected variables at each node (mtry) than conditional 

inference trees with Bonferroni corrected p-values. Averaging node-specific p-values over trees in 

CIF ensembles and using these as variable importance scores to weight network edges, greatly 

facilitates construction of weighted networks such as GRNs. Indeed, for classic forests-derived 

variable importance scores it is not obvious to set a threshold defining which two nodes need to be 

connected in a network, unless ROC or PR curves are constructed based on gold standard and the 

optimal threshold is derived from those. The statistical framework that underpins CIFs naturally 

leads to setting an overall “significance” level, such as 0.01. Adopting this strategy on microarray 

gene-expression data for 121 type 1 diabetes patients and 1617 genes gave meaningful results, 

supported by the literature.  

  



5. GENE EXPESSION NETWORKS 

 

154 

 

5.7. Chapter highlights 

The CIF-based GRN inference methods developed in this chapter were compared 

amongst themselves and to classical RF using microarray expression data. 

Specifically, to our knowledge, it was the first time that CIFs have been applied for 

GRN inference (from microarray data). Methods built on CIFmean were shown to be 

scalable (avoiding computationally expensive permutation-based Variable 

Importance Measures), while providing an acceptable performance as compared to 

reference methods such as RF,  CIF and CIFcond implemented in randomForest 

(version 4.6-7) [20,38] and party [6] R libraries. The CIFmean method can only work 

with single data source at a time. Thus, in the next chapter we will consider multiple 

omics sources at once to derive integrate gene-networks. 
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5.9.  Appendix 

 

Figure S5.1: DREAM 4 performance results - mtry=k/3. The GRN inference performance levels across the 8 

methodologies described in methods section. Performance is quantified via the DREAM4 overall score as defined in 

for instance [26].  

 

Figure S5.2: DREAM2 performance results  - mtry=k/3. The performance of the CIFmean and RF methods based on 

the total area of AUROC and AUPR using the default settings with the mtry=k/3. 
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Figure S5.3: DREAM5 performance results - mtry=k/3 showing AUROC and AUPR per each network.  
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Figure S5.4: T1D Case study performance results - mtry=k/3. The performance of the CIFmean methods based on the 

total area of AUROC and AUPR using the default settings with the mtry=k/3.  
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Figure S5.5: DREAM4 GS networks. The DREAM4 GS networks size 100 from 1 to 5 along with the basic network 

measures.  
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Table S5.1: DREAM4 methodology rankings - default settings 

Method 
Overall  

score* 

Network 1 Network 2 Network 3 Network 4 Network 5 

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR 

CIF 33.92 0.678 0.151 0.683 0.150 0.758 0.230 0.711 0.217 0.744 0.234 

CIFcond 34.24 0.665 0.154 0.677 0.151 0.748 0.237 0.719 0.226 0.736 0.244 

CIT p-value 

(Uncorrected) 13.17 0.574 0.075 0.562 0.075 0.626 0.156 0.613 0.105 0.612 0.085 

CIFmean p-value 

(Uncorrected) 23.23 0.643 0.113 0.658 0.119 0.724 0.155 0.718 0.153 0.733 0.094 

CIFmean p-value 

(Bonferroni) 23.61 0.713 0.102 0.690 0.112 0.743 0.144 0.738 0.133 0.754 0.075 

CIFmean p-value 

Bonferroni (ver. 

party) 24.34 0.732 0.108 0.687 0.110 0.743 0.138 0.749 0.138 0.763 0.083 

CIFmean p-value 

(Monte Carlo) 23.75 0.658 0.118 0.656 0.127 0.716 0.158 0.729 0.143 0.736 0.096 

CIFmean test-

statistic 

(Uncorrected) 27.39 0.703 0.101 0.697 0.147 0.735 0.178 0.743 0.169 0.758 0.095 

RF 33.50 0.659 0.156 0.665 0.136 0.768 0.246 0.747 0.216 0.427 0.213 

*Based on the DREAM4 overall score criterion (see Methods section) 

Table S5.2: DREAM2 methodology rankings - default settings 

Method AUROC AUPR 
precision (TP/TP+FP) 

1* 2* 5* 20* 100* 200* 

CIT  0.500 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

CIFmean pvalue (Univariate) 0.611 0.019 0.048 0.080 0.089 0.196 0.130 0.020 

CIFmean p-value (Bonferroni) 0.595 0.009 0.002 0.004 0.005 0.005 0.010 0.014 

CIFmean p-value (Monte Carlo) 0.616 0.020 0.077 0.125 0.172 0.247 0.139 0.019 

CIFmean test-statistic (Uncorrected) 0.620 0.029 0.333 0.182 0.278 0.417 0.242 0.024 

RF 0.633 0.049 1.000 1.000 0.714 0.606 0.500 0.036 

*-precision values when number of true positives is 1,2,5,20,100 or 200 

Table S5.3: DREAM5 methodology rankings - default settings 

Method 
Overall 

score* 

Network 1 Network 2 Network 3 

AUROC AUPR AUROC AUPR AUROC AUPR 

CIT p-value (Uncorrected) 0.69 0.697 0.142 0.591 0.035 0.514 0.019 

CIFmean p-value (Uncorrected) 53.59 0.832 0.323 0.636 0.08 0.516 0.019 

CIFmean p-value (Bonferroni) 6.32 0.763 0.099 0.571 0.027 0.507 0.018 

CIFmean p-value (Monte Carlo) 54.02 0.832 0.322 0.641 0.081 0.516 0.019 

CIFmean test-statistic (Uncorrected) 42.66 0.832 0.262 0.642 0.066 0.534 0.021 

RF 63.28 0.82 0.369 0.621 0.088 0.521 0.021 

*Based on the DREAM5 overall score criterion (see Methods section) 
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6. Contributed work  

6.1. Chapter summary 

Methods development and practical application should go hand in hand. Therefore, we 

endeavoured on multiple projects in which interaction tools (such as conditional inference trees) 

and network-based integration (such as those encapsulated in a regression framework) can be 

applied, refined, and, thus, better understood.  

 

This chapter briefly describes contributed work including projects involving conditional inference 

framework application to asthma sub-type classification (Section 6.2) followed by integration of 

methylome and transcriptome data via Regression2Net method (Section 6.3) 

 

In Section 6.2, we briefly describe the work that was contributed to the University of Liege patent 

#203-17 - Method for the Diagnosis of Airway Disease Inflammatory Subtype. Using conditional 

inference forests (CIFs) inference framework introduced in previous chapters, we created binary 

classifier based on the most highly relevant volatile organic compounds (VOCs) that was able to 

discriminate between asthma sub-types. Kyrylo Bessonov’s contribution consisted in the analysis 

of the exhaled breath profiles of patients diagnosed with various sub-types of asthma.  

 

In Section 6.3 we describe Regression2Net. This involves network inference followed by network 

analysis. As disease case context we consider glioblastoma multiforme. We infer separate gene-

gene networks only using transcriptome data (Expression-Expression interactions) or combining 

transcriptome and methylome data (including Expression-Methylation relations). 

  

The Regression2Net integrated analysis project provided interesting results with regards to gene 

regulation by consideration of both methylation and expression components. In particular, strong 

methylation component, typical to cancers, and complex regulatory gene expression patterns were 

confirmed. The inferred networks highlighted common and distinct functional components shared 

between transcriptome and methylome data sources. For example, genes involved in energy 

metabolism pathways were shared between the two data components while genes involved in 

various cancer types, cell cycle control and immune system responses pathways were not. Overall, 



6. CONTRIBUTIONS 

166 

 

the Regression2Net method is an example of the  third integration strategy 3 introduced in Section 

2.5 (analyze each data source separately). Regression2Net is based on penalized regression that 

was practically applied to concrete real-life dataset yielding biologically interesting results of 

methylation-expression gene regulation under the context of cancer data. 

 

Kyrylo Bessonov’s contributions to the Regression2Net project included joint code development 

of the pathway enrichment module, pathway enrichment analysis, results presentation, 

interpretation and validation in the context of the disease pathology, and final manuscript drafting.  
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6.2. Identification of asthma sub-types via breath profiles analysis 

(patent #203-17) 

6.2.1.  Section summary 

This section of Chapter 6 briefly describes the work that was contributed to the University of Liege 

patent #203-17 - Method for the Diagnosis of Airway Disease Inflammatory Subtype. The 

contribution consisted in the analysis of the exhaled breath profiles of patients diagnosed with 

various sub-types of asthma. Using conditional inference forests (CIFs) inference framework 

introduced in previous chapters, we were able to create binary classifier based on the most highly 

relevant volatile organic compounds (VOCs) to discriminate between asthma sub-types. 

 

Problem: Classification of asthma sub-types is important in clinical setting as subpopulation of 

asthmatics respond differently to anti-inflammatory treatment. Depending on four known types of 

asthma, the treatment therapies vary. Administration of the wrong therapy to asthmatic patients can 

cause side effects and low efficacy of the treatment [1]. The breath volatile organic compounds 

(VOC) can be used to classify asthmatics and are relatively easy to obtain. Using the sparse VOC 

data on 276 asthmatics can the CIF-based classifier provide acceptable performance based on 

AUROC and AUPR measures? Are identified VOCs individually provide a good binary 

classification performance? What are optimal quality control and CIF settings leading to highest 

classification performance? 

 

Results: Three binary classification scenarios were considered eosinophilic / neutrophilic (E/N), 

eosinophilic / paucigranulocytic (E/P), neutrophilic / paucigranulocytic (N/P) asthma subtype 

classification scenarios. The CIFs under binary classification scenarios identified 3,7-

dimethylnonane, nonanal, hexane, 1-propanol, 2-hexanone, 3-tetradecene and pentadecene as the 

most class discriminating VOCs. The classification AUROC and AUPR values for E/N were 0.8844 

and 0.9193, for E/P were 0.9945 and 0.9757, for N/P 0.8459 and 0.8090 

 

Keywords: classification, CIFs, VOCs, asthma 
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6.2.2.  Introduction 

Asthma is a complex disease with many inflammatory subtypes and complex underlying regulatory 

mechanisms as was mentioned in Chapter 4. Classification of asthma subtypes via volatile organic 

compounds (VOC) profiles was proven to be a successful and non-invasive approach in brain, 

prostate and lung cancers. Breath volatile organic compounds originate from endogenous products 

of metabolism or from ingested exogenous sources such as food and water.  Application of VOC 

profiling in asthma patients holds a high potential for early disease detection and subtyping together 

with patient monitoring capabilities. There are four distinct inflammatory subtypes of asthma: 

eosinophilic, neutrophilic, mixed granulocytic and paucigranulocytic. Currently, the popular non-

invasive detection includes the collection of mucus from lower airways (i.e. sputum) followed by 

cell count (eosinophils, neutrophils, etc.). Based on the sputum cell count, the four asthma subtypes 

are more precisely classified as follows: 1) eosinophilic subtype (>3% eosinophils in the sputum); 

2) neutrophilic subtype (=76% neutrophils); 3) paucigranulocytic subtype (<3% eosinophils and 

<76% neutrophils); 4) mixed granulocytic subtype (>3% eosinophils and >76% neutrophils) [2]. 

The appearance of new therapies to treat asthma calls for more accurate asthma sub-type detection. 

Some of the treatments include administration of inhaled corticosteroids (ICS) [3] and 

administration of monoclonal anti-IL-5 antibodies [4] and others. For example, in the case of 

eosinophilic asthma subtype, administration of ICS is highly beneficial since it quickly reduces the 

percentage of eosinophils contained in the sputum from asthmatics and represses the release of Th2 

cytokines from lymphocytes and eotaxin from epithelial cells [3]. Each asthma subtype is 

characterized by different responses to the same therapy in terms of efficacy and adverse reactions.  

For example, inhaled corticosteroids treatment is the most popular and efficient in eosinophilic 

(allergic) asthma cases, but are inefficient or even detrimental in paucigranulocytic and 

neutrophilic asthma subtypes. Thus, it is clinically relevant to correctly diagnose the asthma 

subtype in order increase treatment efficiency and reduce risks of adverse effects in patients.  

 

The proposed analysis that addresses the above needs relies on feature selection and binary 

classification analysis based on conditional inference forest (CIF) framework [5] presented in 

Section 5.3.2. The identified VOCs provide the best discrimination between asthma types based on 

variable importance (VIM) and classification accuracy measures.  
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6.2.3.  Methods 

The exhaled breath of 276 patients was analyzed for the presence of volatile organic compounds 

(VOCs). The patients were recruited from the University of Liege (Belgium) asthma clinic between 

October 8, 2010 and January 2014. The 122 patients were classified having eosinophi lic, 90 

paucigranulocytic, 50 neutrophilic and 14 mixed granulocytic asthma. The mixed type of asthma 

was not included in the analysis due to low sample size and rarity. Gas chromatography and time-

of-flight mass spectrometry (GC/MS) was used to identify VOCs present in exhaled breath from 

patients. Total of 3327 VOCs across samples were detected via GC/MS. Thus, the VOC numbers 

are in the 1-3327 range with VOC# representing the consecutive number of the input data matrix 

of 276 x 3328 dimensions including the class column (i.e. response). Conditional inference forests 

(CIFs) were used to build the ensemble of trees (i.e. forest) used to estimate discrimination 

importance (i.e. asthma subtype prediction) of each VOC. We tested binary eosinophilic / 

neutrophilic (E/N), eosinophilic / paucigranulocytic (E/P), neutrophilic / paucigranulocytic (N/P) 

asthma subtype classification scenarios. The main protocol consisted of three main steps: 

 

1) Data quality control (QC) criteria. Since data was sparse, extra quality control step need to be 

taken. It consisted in the requirement of minimum of 10 subjects per each VOC in order to increase 

results reliability. The input data consists of area unit (AU) values of the gas chromatographic 

peaks of each detected VOC compound. The E/N, E/P and N/P scenarios contained 561, 714, and 

429 QC’ed VOCs respectively. 

 

2) Tree building parameters. The Conditional Inference Forest from party R package library [5,6] 

and cforest_control() used the following parameters: cforest_control(teststat="quad", 

testtype="MonteCarlo",  fraction=0.65, replace=F, mincriterion=0.99, minsplit=30, ntree=999, 

nresample=9999, mtry=0, maxdepth=0,  savesplitstats = F). The default high number of 

resamplings fixed at 9999 allowed to more accurately estimate null distribution. The minimum 

number of samples per node variable fixed at 30 also provided the stringent selection criteria. These 

changes were taken as an extra precaution against data sparsity. A total of 999 conditional inference 

trees were built on the 75% of patient samples (i.e training data). The significance threshold of 0.01 

(p-value < 0.01) specified by mincriterion=0.99 was applied. The stopping criteria included no 

restriction on the tree depth (maxdepth=0) and minimum of 30 samples per tree node 
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(minsplit=30). In addition, the set mtry=0 parameter allowed to consider all predictor variables 

(i.e. 3327 VOCs) as node variables candidates.   

 

3) Selection of VOCs. The variable selection consisted in the calculation of classical variable 

importance measure (VIM) defined by ‘mean decrease in MSE’ (%IncMSE) for all QC’ed predictor 

variables in each scenario (VOCs). Each analysis yielded a ranked list of predictor variables 

calculated with the help of varimp() function defined in the party library [5,6]. The VIM represented 

the strength of the VOCs asthma subclass prediction ability (i.e. discriminatory power).  

 

4) Classification performance. The CIF from each scenario (E/N, E/P and N/P) was used to 

classify samples from the test data representing the 25% of the original samples. The standard 

classification measures including the area under the ROC and PR curves - AUROC and AUPR 

assessed CIF classification performance. 

 

5) Single VOC classification. The binary classification via a single VOC was implemented in 

order to simplify and increase transparency of the classification process. The classification was 

done via the mean VOC areas of previously selected 9 VOCs via the CIFs.  The mean areas were 

calculated for each VOC for each of the 3 considered asthma types (E, N and P). The default class 

was assigned to a class with the largest mean area. For example, the default class for VOC1913 is 

neutrophilic with area units (AU) of 14,343,580 and 66,581,501 corresponding to E and N classes. 

All patients with the selected VOC areas greater than the mean were assigned to the default class. 

Meanwhile, all patients with less or equal areas were assigned to the other class. For example, 

given two classes {eos}and {neutro} with the largest mean area of 66,581,500 units in the {eos} 

class, the patients would be classified according to these two simple classification rules: {AU >= 

66,581,500.8}  {neutro}, {AU  < 66,581,500.8 } {eos}. The performance of such simple 

classification rules was tested in all three scenarios and accuracy and precision are reported in 

Figure 6.2.4. 
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6.2.4.  Results 

The variable selection identified the most important variables with respect to asthma classification 

in the E/N, E/P and N/P scenarios. Only a few VOCs obtained higher VIM values across three 

scenarios as shown in Figure 6.2.1. Please refer to Table 6.2.1 for VOC chemical identity. VOC337 

(hexane) was deemed important in both E/N and E/P with highest importance value in E/P scenario. 

Overlap in other VOCs was not observed. The highest VIM absolute values were seen in E/N 

classification scenario. Total of 5, 5 and 2 VOCs from the E/N, E/P and N/P scenarios were selected 

as the most important VOCs (Figure 6.2.1). 

 

The areas of the selected VOCs, representing the compound amount, were compared in the three 

asthma sub-classes. The 9 boxplots in Figure 6.2.3 allow visually assess discriminatory power of 

each VOC based on another criterion – the area distribution and the mean of each asthma sub-class. 

The largest variance in areas between the 0.25 and 0.75 quantiles is quite significant especially in 

the neutrophilic sub-group (Figure 6.2.3) There was a positive trend observed between VIM values 

and the mean area differences between the sub-groups. For example, VOC1913 and VOC337 have 

the largest mean differences and also VIM values (Figure 6.2.1 and Figure 6.2.3).  

 

The box plots also showed presence of outliers in each top-performing VOCs shown as dots in 

Figure 6.2.3. The VOC areas are quite variable across patients even within each of three groups. 

After identification of most influential VOCs in predicting asthma sub-class, the previously built 

CIFs were tested under classification context. The adopted CIF–based method achieved extremely 

good classification performance close to theoretical maximums as indicated by AUROC and AUPR 

curves shown in Figure 6.2.3. 
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Figure 6.2.1: variable importance measure (VIM) in E/N, E/P and N/P binary sub-asthma classification scenarios 

calculated from conditional inference forests (CIFs). Legend: E – eosinophilic, N – neutrophilic, P – paucigranulocytic 

asthma. For chemical identities of highlighted VOCs please refer to Table 6.2.1.  

 

Table 6.2.1: VOC mappings to compound names 

VOC ID Compound name Formula 

VOC1913 3,7-dimethylnonane C11H24 

VOC2105 nonanal C9H18O 

VOC2376 - - 

VOC337 hexane C6H14 

VOC253 1-propanol C3H8O 

VOC903 2-hexanone C6H12O 

VOC923 unknown - 

VOC2622 3-tetradecene C14H28 

VOC2853 pentadecene C15H30 
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Figure 6.2.2: AUROC and AUPR curves from the CIFs binary classification of the N/P, E/P and N/P scenarios where 

E-eosinophilic, N- neutrophilic and  P-paucigranulocytic athma sub-types. The red line diagonal line indicates random 

guess – the minimal classifier threshold. Table 6.2.2 lists areas under the curves.  



6. CONTRIBUTIONS 

174 

 

 

Figure 6.2.3: VOCs box plots across three sub-types of asthma (Eosinophilic, Neutrophilic and Paucigranulocytic). 

The red line indicates mean area under the peak and ‘eos’, ‘neutro’ and ‘pauci’ are asthma types. 
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Table 6.2.2: CIFs classifier performance in asthma type binary classification 

Classification task AUROC AUPR 

E/N 0.8844 0.9193 

E/P 0.9945 0.9757 

N/P 0.8459 0.8090 

* legend: E/P - Eosinophilic versus paucigranulocytic; N/P -  neutrophilic versus paucigranulocytic; E/N - eosinophilic 

versus neutrophilic; 

 

One of the important aims of this study was applicability, easy of use, and direct translation of the 

results to clinic settings. Since classification of new patients entails use of previously inferred CIFs 

composed of tree ensembles, the patient classification via CIFs requires computing facilities and 

bioinformatics expertise. A simpler classification relying on areas of individual VOCs was 

implemented as single VOC classification rules based on AU cutoff thresholds shown in Table 

6.2.3. Performance of each VOC classifier rule was assessed via accuracy and precision. The 

selected 9 VOCs also show good performance (Figure 6.2.4) with accuracy and precision in 0.58-

0.728 and 0.591– 0.73 ranges, respectively.  The highest binary classification performance via 

single VOC approach is seen in P/N, followed by E/N and E/P scenarios. 

 

Table 6.2.3: Single VOC classification rules based on area units (AU) 

VOC scenario Classification  rule 

VOC1913 E/N {AU >= 66581500.8}  {neutro}, {AU < 66581500.8 }  {eos} 

VOC2105 E/N {AU >= 4221547.1}  {neutro}, {AU < 4221547.1 }  {eos} 

VOC253 E/N {AU >= 84535600.7}  {neutro}, {AU < 84535600.7 }  {eos} 

VOC337 E/P {AU >= 17700387.4}  {pauci}, {AU < 17700387.4 }  {eos} 

VOC903 E/P {AU >= 4388495.2}  {pauci}, {AU < 4388495.2 }  {eos} 

VOC923 E/P {AU >= 638517.7}  {pauci}, {AU < 638517.7 }  {eos} 

VOC2622 P/N {AU >= 7618566.1} -> {neutro}, {AU < 7618566.1 }  {pauci} 

VOC2853 P/N {AU >= 8955716.6}  {neutro}, {AU < 8955716.6 }  {pauci} 

* legend: E/P - Eosinophilic versus paucigranulocytic; N/P -  neutrophilic versus paucigranulocytic; E/N - eosinophilic 

versus neutrophilic; 
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Figure 6.2.4: Accuracy and precision of each individual VOC under N/P, E/P and N/P scenarios where E- eosinophilic, 

N- neutrophilic and P-paucigranulocytic athma sub-types. Table 6.2.1 provides VOC number to chemical name 

conversion. 

 

6.2.5.  Discussion 

The results proved that that patient classification via CIFs is possible despite scarcity and high 

variability of the VOC input dataset. The adopted CIF-based method achieved excellent 

performance indicators both in variable selection and classification domains (Figure 6.2.1 and 

Figure 6.2.2). Interestingly the number of VOCs with high VIMs was rather small indicating a 

complex architecture of the VOC input data as stated above. The most complex scenario was N/P 

where only 2 VOCs were selected  and the lowest AUROC and AUPR values compared to other 

classification scenarios were observed (Table 6.2.2). Conversely, the E/P was the simplest 

classification scenario obtaining the largest AUROC and AUPR values. The specificity of CIFs was 

also highlighted by the minimal overlap between identified VOCs considering each binary 

classification scenario. This shows that CIFs are diverse across considered scenarios. 

 

The boxplots provided insights into the meaning of the VIM values assigned by CIFs (Figure 6.2.3). 

Most of the 9 selected VOCs show low variability in their means but rather large variance 
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indicating the heterogeneity of data and fluctuation in areas (Figure 6.2.3). The VOCs with highest 

mean variation across the 3 asthma subtypes were VOC337, VOC903 and VOC1913. These three 

VOCs obtained highest VIM in E/P and E/N scenarios (Figure 6.2.1) indicating a positive link 

between VIM and mean differences across the groups. In addition, large variance in areas of the 

selected VOCs (Figure 6.2.3) suggested that use of areas of single VOCs for classification purposes 

is sub-optimal as compared to CIF-based classification. 

 

Nevertheless, the classification performance of a single VOC was tested due to simplicity and ease 

of application in clinical settings. The classification rules applied to the VOC dataset are detailed 

in Table 6.2.3. In general, rules based on a single VOC achieved a lower classification performance 

as compared to CIFs. Still classification performance is acceptable with ~30% of estimated error 

margin. For E/P, E/N and N/P scenarios VOC203, VOC2622 and VOC1913 were the top 

performers, respectively. The classification rules in Table 6.2.3 can be used for simplified 

classification of patients in a clinical setting without access to computational facilities. 

 

6.2.6.  Conclusions 

In this work, we were able to apply the unbiased conditional inference forests framework under 

feature selection and classification contexts achieving very good performances in the variable 

selection and binary classification of asthma subtypes. The limitations of our approach lie in rather 

small sample size and heterogeneous VOC data requiring additional validation study. The 

application of CIF-based classifier is recommended due to its spectacular performance in the 

classification context. Nevertheless, in future the simplified classifier based on individual top 

ranked 9 VOCs will be tested first under the context of the asthma subtype diagnosis. Future 

clinical studies will validate results with possible development of a diagnosis device. 
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6.2.7.  Section highlights 

In this section we applied the CIF method to difficult classification task. The VOC 

data is sparse creating extra difficulties in data analysis such as stringent quality 

control and model inference steps on a training part of data. Here, the CIF binary 

classification results were excellent. The multiclass classifications might be 

problematic given data limitations. The section described on how practically apply 

classification scenarios to clinical setting. Further validation studies in new patients 

are needed to verify our findings. 
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6.3. Regression2Net - Integration of Gene Expression and Methylation 

to unravel biological networks in glioblastoma patients 

 

6.3.1.  Section summary 

In this work we describe Regression2Net, a computational approach that is able to integrate gene 

expression and genomic or methylome data. The Regression2Net is a two-step fusion integration 

method (see Section 2.5). First, penalized regressions are used to build Expression-Expression (EE) 

and Expression-Genome (EG) or –Methylome (EM) networks. Second, network theory is used to 

highlight important communities of genes. 

  

Problem: A new strategy needs to be devised to integrate multiple omic layers resulting in a 

single GRN. The expression (E) and methylome (M) data layers are used to generate EMnet and 

EEnet networks. The integration step is done during assembly of the EMnet and EEnet into 

ANDnet, XORnet and INTnet networks. The biological significance and relevance of the three 

network fusion strategies (AND, XOR and INT) needs to be determined and validated in the context 

of glioblastoma.   

 

Results: When applying our approach Regression2Net to gene expression and methylation 

profiles from individuals with glioblastoma multiforme (GBM), we identified 284 and 447 unique 

sets of candidate genes potentially associated with the glioblastoma pathology. In-depth biological 

analysis of these networks revealed genes that are related to energy metabolism, cell cycle control 

(AATF), immune system response and various cancer types. Importantly, we observed significant 

over-representation of cancer-related pathways including glioma, especially in the methylation 

network. This confirms the strong link between methylation and glioblastomas. We, furthermore, 

identified potential glioma suppressor genes ACCN3 and ACCN4 linked to NBPF1 neuroblastoma 

breakpoint family in the expression network. Numerous ABC transporter genes (ABCA1, ABCB1) 

present in the expression network suggest drug resistance of glioblastoma tumors. 

 

Keywords: penalized regression, lasso, glmnet, glioblastoma, transcriptome, methylome 
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6.3.2.  Introduction 

Glioblastomas are aggressive brain tumors affecting glial cells of the central nervous system 

including astrocytes and oligodendrocytes. The exact causes are not fully understood but current 

experimental evidence suggests that its onset is linked to mutations in gene p53, the essential cell 

cycle control protein and the neurofibromin 1 - NF1, inhibitor of RAS signaling pathway [7]. In 

oligodendrocyte tumors, the key marker OLIG2 that regulates oligodendrocyte differentiation is 

not expressed [8]. Additional studies confirm that the key markers of glial cancers are related to 

nerve cell development BMP-BMPR/RAS- APK and PI3K- activated signaling pathways. The 

genetic inheritance component of glioblastomas is thought to be weak based on heterogeneity of 

genetic alternations of known disease markers amongst subjects [9]. This heterogeneity 

enormously complicates the development of effective therapies. However, exploiting the 

availability of high-throughput omics data, together with the development of novel computational 

data integrative analysis techniques, may facilitate formulating targeted biological and clinical 

hypotheses. These hypotheses potentially speed up research and improve early detection and 

diagnosis of glioblastomas in clinical settings.  

 

Several authors have indicated the added value of integrative omics analysis that involve the 

integration of at least two different omics data types, referring to different biological components 

in a cell. The methodologies to analyze such data are starting to emerge, with the biggest success 

stories reported for 2-omics analyses. Examples of 2-omics analyses include eQTL [10] and 

meQTL [11] analyses that respectively assess the influence of genetic and epigenetic markers on 

gene expression. Combining >2 omics data types is much more complex, given the hierarchical 

structure and interdependencies such data entails [12-14].  With a few exceptions, most methods 

integrate >2 different data sources by combining evidence obtained from pairwise analyses [14]. 

These evidence are often based on the derivation of standard measures of association, linking 

epigenetic markers to gene expression combined with gene expression analysis [15]. 

 

In this work, we develop a novel integration pipeline, Regression2Net, which combines 

information from for instance methylation and gene expression data via penalized regressions to 

construct gene-based networks. We, furthermore, applied our method to publicly available data for 

individuals affected by glioblastoma multiforme. The original glioblastoma pre-processed and 
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partially annotated data were obtained from [16]. By comparing the topology of the integrated 

networks derived from the inferred Expression-Expression and Expression-Methylation networks, 

and via subsequent functional analysis, we identified a list of genes with potential interest to the 

trait under consideration. In addition, our approach was capable of discovering biological 

mechanisms that may further enhance our understanding of the disease. Although experimental 

verification is needed to validate the novel formulated hypotheses in this work, our approach 

highlighted pathways that are significantly associated to glioblastoma. This suggests that our 

approach is one step forward towards translating in silico pieces of evidence to the patient bedside. 

In the next section, we motivate and provide details about the proposed integrative analysis pipeline 

Regression2Net.  

6.3.3.  Method 

The Regression2Net uses a combination of penalized regression analysis and network theory to 

find structure in multi omics data. The main goal of Regression2Net consists in inferring gene 

network topologies and to derive meaningful key communities of disease-associated genes based 

on integrated data.  To facilitate the explanation of our approach, we assume having transcriptome 

and epigenome data, collected on the same set of individuals. We split the entire analytic pipeline 

in four parts, which we describe below (Figure 6.3.1).   

 

Figure 6.3.1: General workflow diagram of the Regression2Net methodology consisting of 4 stages. 

Part 1 – penalized regression. Here, we consider each gene as response and its value is regressed 

(via penalized regression) against the remaining genes. Since both gene expression and methylation 

data may contribute to a gene measurement, we perform two types of regression: one in which only 

gene expression data are used, and one in which gene expression data (i.e. gene expression probes) 

are used at the response level and methylation data (i.e. methylation probes) as potential 

explanatory information. The regressions consecutively consider each gene’s expression as a 

dependent variable (response) and remaining gene expressions or methylation data as independent 
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variables, according to the type of regression. Mapping of probes to genes is based on genomic 

location of the probe to the nearest gene as in [16]. Note that, for instance, the number of 

methylation probes associated to a given gene may vary and hence multiple methylation probes 

may be considered as explanatory variables to gene expression. The strategy for variable selection 

and their “significance” assessment with penalized regression is based on principles outlined in 

[17] and was evaluated to synthetic data in [18]. In practice, Regression2Net currently leverages 

penalized linear regression with L1-norm penalty (Eq. 6.1). Given Xi the expression of gene i and 

the expression profiles of the remaining genes (referred to as X, for simplicity), the L1−norm 

penalized estimate consists of providing a solution for Eq. 6.1. The vector of regression coefficients 

Θ determines the conditional independence structure among predictors. 

 

                                     Θ̂a,λ =  argmin
s.t.  Θ:Θa=0 

(
1

n
 |Xi − XΘ|2

2 + λ|Θ|1)                             Eq. 6.1 

 

One important feature of the L1-norm penalty consists in the tendency to shrink many coefficients 

to zero and to consequently remove them from the set of predictors X. This is an effective way to 

provide sparse solutions, which in turn lowers the variance of the selected regression coefficients. 

The variance that is lower than the one provided by non-penalized regression approaches is usually 

associated to the higher bias of the prediction, as explained in [19]. However, since our goal is to 

perform variable selection, we do not consider higher bias as a harmful limitation. It would be so 

if we were interested in predicting the expression value of the response genes. It is known that the 

crucial parameter that directly determines the rate of false positives and false negatives is the 

shrinkage factor λ in the Eq. 6.1. Regardless of a number of methods specifically designed to 

estimate λ reported in [20-22], we perform 10-fold cross validation on a subset of the dataset, which 

provides an optimal estimate of the shrinkage factor. At the end of the iterative procedure, two 

collections of genes (corresponding to the two types of regressions) with their “explanatory genes” 

are obtained. 

 

Part 2 – network construction. All explanatory genes are subsequently connected to the genes they 

explain. In practice, all aforementioned connections are stored within an adjacency matrix A, the 

entries of which (Aij) being binary values 0/1 that show if gene i and gene j are connected or not, 
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thus obtaining two networks (one only using gene expression and one linking methylation to gene 

expression). The first network will be referred to as EEnet (Expression-Expression network) and 

the second to EMnet (Expression-Methylation network). In the presence of multiple probes per 

gene, two genes are connected in an EMnet (EEnet) network when at least one methylation (gene 

expression) probe is selected as significantly associated to the outcome (Xi) by the regression 

algorithm. 

 

Part 3 - identification of important genes. Here, the aim is to employ network-theory concepts to 

select the most important genes from the derived networks. These networks can be analyzed 

separately and results compared, or they can be integrated into a single combined network prior to 

analysis. A fundamental concept that needs to be clarified is the concept of “importance”. A simple 

procedure to select the most interesting (important) genes from a network is to consider its degree 

distribution. Note that the node degree or betweenness centrality of a specific node in a network is 

a local topological measure. These local topological network descriptions can be summarized into 

a global description of the network via the degree distribution p(k). This distribution gives the 

proportion of nodes in the network having degree k (see Section 2.4.1). Therefore, a possible 

procedure to select “significant” genes would take into consideration highly connected genes in the 

EEnet and EMnet network, driven by the degree distributions of the respective networks. However, 

since degree correlations (i.e. dependency of two nodes being connected in the network on the 

node’s actual degrees) determine the actual network structure [23], Regression2Net adopts a 

different procedure. 

 

Basically, aiming to increase the stability of important gene identification from different network 

resources (such as EEnet and EMnet), an integrated network is composed from its constituents 

EEnet and EMnet, prior to network interpretation. We do this in three possible ways, hereafter 

referred to as ANDnet, XORnet and INTnet.  The edges in ANDnet are the edges that exist in both 

EEnet and EMnet. Here, XORnet is built by all the edges that are present in the EMnet but not in 

the EEnet. INTnet is a fused network of EEnet and EMnet using the approach of [16] adapted to 

gene-based adjacency matrices (with entries 0 and 1) underlying EEnet and EMnet, rather than 

similarity matrices between individuals (with numerical values which need to be normalized). In 

practice, un-normalized EEnet and EMnet networks are iteratively updated with information from 
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the other network, making them more similar after each step leading to a gradual shaping of the 

INTnet [16]. The finally fused network is converted to an adjacency matrix by replacing strictly 

positive matrix entries with 1. Once an integrated network is obtained via ANDnet, XORnet or 

INTnet, we select all connected genes (i.e. with node degree ≥1) from each network, giving rise to 

three lists of unique genes that enter the last part of the integrative analysis methodology. 

 

Part 4 - annotation protocol and pathway enrichment analysis. In order to assess the significance 

of the selected genes in Part 3 in relation to the disease of interest, we perform an annotation and 

pathway enrichment analysis, supplemented by literature searches. In practice, we use the R 

package biomaRt (R version 2.20.0) to annotate genes from gene expression data and the R 

packages GGHumanMethCancerPanelv1.db to annotate genes from methylation panels. The 

selected annotation criteria include gene full name, chromosome name, ensemble gene and 

transcript IDs. KEGG pathway enrichment analysis is performed with the R package KEGGprofile 

[24] on non-overlapping genes from the unique gene lists derived from ANDnet and XORnet 

networks. The minimum threshold to accept a significant pathway is set to p-value<0.05 and is 

computed from a hypergeometric distribution for testing whether a pathway is over-represented in 

our gene list, compared to KEGG. Reported p-values are Bonferroni-corrected to deal with multiple 

testing.   

 

The Regression2Net code is written in R is freely available at 

https://bitbucket.org/kbessonov/regression2net/ and via http://www.statgen.ulg.ac.be 

 

6.3.4.  Data 

The data at our disposal are heterogeneous datasets composed of gene expression and methylation 

profiles of 215 individuals affected by glioblastoma already considered in a study of patient 

similarity in [16]. DNA methylation probes (in total 1305) and mRNA (in total 12042) probes 

covered 680 and 12,042 genes, respectively. For more details about the platforms that generated 

the data, we refer to [16].  

 

https://bitbucket.org/kbessonov/regression2net/
http://www.statgen.ulg.ac.be/
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6.3.5.  Results 

6.3.5.1.  Data and network characteristics 

The number of methylation probes associated with a given gene ranged between 0 and 4. These 

methylation probes are not uniformly distributed across the genome mapped to only 680 genes. We 

found a strong predominance of methylation probes located in the 5’UTR regions of the genes 

according to the  Golden Gate Human Methylation Cancer Panel 1 [25] – Gene expressions were 

in 1-1 correspondence to gene expression probes. Basic topology analysis of the ANDnet and 

XORnet networks (see Method section) developed on real-life data for glioblastoma multiforme 

showed degree distributions in line with scale-free networks (Figure 6.3.2 and Figure 6.3.3). No 

distinct pattern between degrees and the relative number of methylation probes per gene has been 

found. From the ANDnet and XORnet networks, we identified 284 and 730 probes with node degree 

≥1, respectively. After gene mapping, this resulted in respective unique gene lists of length 284 

and 447. These gene lists were submitted to in-depth biological analyses.  

 

Figure 6.3.2: Total degree distribution of the ANDnet network of edges present in both EEnet and EMnet, Node index 

represents the node number 
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Figure 6.3.3: Total degree distribution of the XORnet network of edges present in EMnet but not in EEnet 

6.3.5.2.  Annotation of the ANDnet and XORnet unique gene lists 

The aforementioned 284 and 447 unique gene lists were annotated to biological functions and 

pathways in order to provide biological context in relation to glioblastoma pathology. Amongst the 

284 ANDnet genes (online Table S6.3.1) are the two Amiloride-Sensitive Brain Sodium Channels 

encoded by ACCN3 and ACCN4. These genes were shown to be linked to the neuroblastoma 

breakpoint family NBPF1 genes related to the development of glioblastoma [26]. The NBPF1 

genes are thought to be involved in brain development and the neuroblastoma onset [27].  When 

looking for the presence of transcription factors (TFs) amongst the genes of the ANDnet network, 

we noticed AATF and ABT1. They play an important role in the context of glioblastoma due to the 

fact that gene AATF controls crucial apoptotic cell death processes and gene ABT1 is responsible 

for basal transcription control via interaction with class II promoter sequences and onset of 

schizophrenia [28,29]. Genes belonging to the ATP-binding cassette (ABC) are numerous in the 

ANDnet network. These transporter proteins are often involved in drug resistance [30]. Their strong 

presence amongst ANDnet genes suggests a complex gene regulatory mechanism that involves 

synergetic methylation and expression components. The complex regulation of the ABC genes has 

been confirmed in [26]. Overall, the ANDnet network is mainly composed of genes related to 
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energy metabolism, while the XORnet network is formed by genes related to various cancer 

pathways, cell cycle control and immune system responses (online Table S6.3.2). 

 

6.3.5.3.  Enrichment analysis 

The results of the KEGG pathway enrichment analyses are reported in Table 6.3.1, Table 6.3.2 and 

Table 6.3.3. Functional and pathway analyses of the 284 ANDnet genes revealed significant 

pathway enrichment in cancer-related genes, energy metabolism, ATP-binding membrane 

transporters, transcription regulation, cell cycle control proteins and other biological functions 

(Table 6.3.1 and Figure 6.3.4). Energy metabolism and ABC transporters genes are only significant 

in the ANDnet network. This shows that these biological processes can have both expression and 

methylation regulatory components [31]. Pathway analysis identified an important Glioma 

pathway (KEGG:hsa05214) enriched only in the XORnet network. The metabolic pathway in 

cancer (KEGG:hsa05200) is enriched in both the XORnet and ANDnet networks (Table 6.3.2). The 

following genes, exclusively present in the XORnet, are linked to KEGG:hsa05200: AXIN1 - axin 

1, FGF7 - fibroblast growth factor 7, FZD9 - frizzled class receptor 9, NKX3-1 - NK3 homeobox 

1, and TGFB1 transforming growth factor, beta 1. 

 

The relevance of some genes belonging to this pathway is supported by literature, specifically 

regarding gene NKX3-1, which is known to be implicated in prostate cancer development in adult 

mice [32], and gene FGF7, implicated in brain tumors [33]. 

 

In addition, the pathways identified in INTnet are most similar to those identified in XORnet (Table 

6.3.2). Common pathways relate to cancer (KEGG:hsa05200) and glioma (KEGG:hsa05214).  
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Figure 6.3.4: ANDnet network overlap with the significant pathways. The highlighted genes belong to the significant 

pathways indicated in Table 6.3.1 while non-highlighted (white) genes have not been linked to any significant pathway. 

The size of each node is determined by betweenness, defined as the number of shortest paths going through the node 
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Table 6.3.1: ANDnet enriched pathways   

 

KEGG pathway gene ratio p-value 

ABC transporters 32/44 8.45E-41 

Cytokine-cytokine receptor interaction 23/265 6.77E-05 

Pathways in cancer 25/327 2.17E-04 

Fatty acid metabolism 8/43 9.13E-04 

Valine, leucine and isoleucine degradation 8/44 1.12E-03 

Bile secretion 10/71 1.50E-03 

Malaria 8/51 4.01E-03 

Propanoate metabolism 6/32 9.43E-03 

Hematopoietic cell lineage 10/88 1.20E-02 

 

Table 6.3.2: XORnet enriched pathways   

 

KEGG pathway gene ratio p-value 

Pathways in cancer 79/327 2.52E-37 

Melanoma 22/71 1.05E-11 

Prostate cancer 22/89 2.06E-09 

Focal adhesion 33/200 3.79E-09 

Colorectal cancer 16/62 5.24E-07 

Bladder cancer 13/42 9.49E-07 

Toxoplasmosis 23/133 1.80E-06 
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Cytokine-cytokine receptor interaction 34/265 1.81E-06 

Small cell lung cancer 17/85 1.40E-05 

Endometrial cancer 13/52 2.05E-05 

p53 signaling pathway 15/69 2.19E-05 

T cell receptor signaling pathway 19/108 2.48E-05 

Regulation of actin cytoskeleton 28/214 2.80E-05 

Basal cell carcinoma 13/55 4.42E-05 

Chagas disease (American trypanosomiasis) 18/104 6.76E-05 

ErbB signaling pathway 16/87 1.16E-04 

Fc epsilon RI signaling pathway 15/79 1.59E-04 

Pancreatic cancer 14/70 1.73E-04 

MAPK signaling pathway 30/268 3.03E-04 

Chronic myeloid leukemia 14/73 3.06E-04 

Leishmaniasis 14/73 3.06E-04 

Glioma 13/65 4.00E-04 

Hedgehog signaling pathway 12/56 4.00E-04 

Acute myeloid leukemia 12/58 6.13E-04 

Renal cell carcinoma 13/70 1.02E-03 

Adherens junction 13/73 1.71E-03 

Cell cycle 18/128 1.72E-03 

Axon guidance 18/130 2.16E-03 

Hematopoietic cell lineage 14/88 3.47E-03 

Toll-like receptor signaling pathway 15/102 5.11E-03 

Malaria 10/51 5.93E-03 

Neurotrophin signaling pathway 17/127 5.96E-03 

Osteoclast differentiation 17/128 6.64E-03 

Non-small cell lung cancer 10/54 1.05E-02 

Natural killer cell mediated cytotoxicity 17/136 1.51E-02 

Wnt signaling pathway 18/151 1.82E-02 

Rheumatoid arthritis 13/92 2.56E-02 

Leukocyte transendothelial migration 15/117 2.83E-02 
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Table 6.3.3: INTnet enriched pathways   

 

KEGG pathway gene ratio p-value 

Pathways in cancer 109/327 2.22E-22 

ABC transporters 34/44 3.15E-21 

Hematopoietic cell lineage 37/88 4.11E-10 

Cytokine-cytokine receptor interaction 69/265 9.94E-08 

Chagas disease (American trypanosomiasis) 36/104 6.23E-07 

Bladder cancer 20/42 2.24E-06 

p53 signaling pathway 27/69 2.37E-06 

Melanoma 27/71 5.02E-06 

Osteoclast differentiation 39/128 8.93E-06 

Focal adhesion 52/200 1.94E-05 

T cell receptor signaling pathway 34/108 2.63E-05 

Prostate cancer 29/89 9.18E-05 

Malaria 20/51 1.48E-04 

Pancreatic cancer 24/70 2.84E-04 

Toll-like receptor signaling pathway 29/102 2.22E-03 

Chronic myeloid leukemia 23/73 2.51E-03 

Leishmaniasis 23/73 2.51E-03 

MAPK signaling pathway 57/268 4.53E-03 

Non-small cell lung cancer 18/54 8.04E-03 

Fc epsilon RI signaling pathway 23/79 1.11E-02 

Regulation of actin cytoskeleton 47/214 1.19E-02 

Glioma 20/65 1.29E-02 

Toxoplasmosis 33/133 1.37E-02 

Cell cycle 31/128 3.72E-02 

Leukocyte transendothelial migration 29/117 3.83E-02 

B cell receptor signaling pathway 21/75 4.28E-02 
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6.3.6.  Discussion 

We combined EEnet and EMnet into integrated networks: either ANDnet, XORnet or INTnet. The 

motivation to derive XOR type of networks is our belief that expression-based gene-gene 

interactions may be quite different from methylation-based gene-gene interactions, which may be 

of interest on its own. INTnet provides a more elaborate way of integrating EEnet and EMnet 

information based on the non-linear combination method of [16]. In our application, the INTnet 

approach gave rise to the same adjacency matrix as we would obtain by connecting two genes 

whenever a connection was present in the EEnet or in the EMnet. The highest number of 

significantly enriched pathways was identified with XORnet (Table 6.3.2), indicating the 

importance of methylation regulation in glioblastoma. Notably, whatever integrative network 

approach was followed, the quality of the integrated network would depend on the quality of the 

constituent networks.  

 

Currently, in Regression2Net, mapping results for methylation probes to genes does not account 

for gene length, neither for the number of methylation probes in a gene. In the presence of multiple 

methylation probes per gene, two genes are connected in the EMnet network when at least one 

methylation probe has been selected by penalized regression. We consider this an acceptable 

strategy due to the fact that the mapped Expression-Methylation network (EMnet) of interest in our 

strategy is an unweighted one. Potentially, larger genes may have increased chances to get 

connected in a network, as those genes include a higher number of methylation probes.  

 

In total, we identified a total of 10 pathways amongst the 38 XORnet KEGG pathways linked to 

cancer. The most interesting functional links amongst candidate genes of the XORnet network are 

those between genes NCAM – neural cell adhesion molecule and FGF7 - fibroblast growth factor 

7. The FGF competes with NCAM for FGF receptor binding (FGFR) that results in alteration of 

FGFR signalling [33]. Aberration in the expression levels of gene NCAM and excessive FGFR 

signalling have been shown to be correlated with tumor onset [34,35]. Thus FGF family of proteins 

also plays an important role in neurological disorders through alteration of FGFR signalling. In 

addition, the transcription regulation functions of the XORnet network are represented by 

transcription factors FOSL2 and SIN3B involved in cell proliferation and other oncogenic activities 

(Table S6.3.2). We have shown that there is an added value in constructing and functionally 
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analyzing both XORnet and ANDnet networks, since they may give complementary information. 

A possible interpretation of the topology of the ANDnet network is that the 284 genes in the ANDnet 

network (Table S6.3.1) are controlled by both an expression and methylation component (two 

connected genes in ANDnet are by definition connected in both the EEnet and EMnet networks).  

 

Importantly, a total of 25 out of 284 genes of the ANDnet network and 79 out of 447 genes of the 

XORnet network were linked to the KEGG metabolic pathway in cancer (KEGG:hsa05200). We 

consider this to be a significant result as it suggests that glioblastoma cancers seem to be strongly 

linked to the methylation component, which in turn perturbs the expression component [36]. This 

is directly reflected within the topology of the EEnet and EMnet networks. Enrichment analysis of 

the 447 genes of the XORnet network (genes with degree ≥1) showed consistent presence of 

pathways related to cancer and biological processes including various types of carcinomas, cell 

signalling and immune system responses. This supports evidence that cancers have a very strong 

methylation component, confirmed by many studies [31,36,37]. Also, KEGG pathway enrichment 

analysis performed on the genes of the ANDnet network identified 4 pathways that are common to 

both the ANDnet and XORnet network, including cytokine-cytokine receptor interaction, metabolic 

pathways in cancer, malaria and haematopoietic cell lineage pathways. This suggests that genes in 

these subsets may display highly complex regulations. 

 

6.3.7.  Conclusions 

In this work we have described a computational method and integration methodology based on 

penalized regression and graph theory: Regression2Net. Using data on genome-wide gene 

expression and methylation we applied our method in the context of glioblastoma pathology.  We 

biologically validated our findings by means of annotations, pathway enrichment analysis and 

literature searches. Our integrative analysis methodology, which includes the construction of 

XORnet and ANDnet networks, highlighted the added value of network integration prior to 

functional analysis. We were able to confirm the strong methylation component in glioblastoma 

pathologies. The evidence provided by our findings, supported by the literature, strongly suggests 

the potentials of our proposed strategy.   
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6.3.8.  Section highlights 

The Regression2Net method was successfully applied to real-life data. A total of 3 

strategies were used including AND, XOR and INT. Functional analysis of the 

inferred networks showed strong links to cancer and cell cycle control pathways. The 

shortcoming of Regression2Net strategy is that it builds an unweighted GRN without 

assessment of statistical significance of network edges between gene nodes. 
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6.3.10.  Appendix 

Table S6.3.1: ANDnet 284 gene annotations. (See the online supplement). 

Table S6.3.2: XORnet 447 gene annotations. (See the online supplement). 
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7. General Discussion and Future Perspectives 

7.1.  Introduction 

The main theme of this thesis work is detection of biological interactions in multi omics-data via 

the development of integration methodologies including epistatic trans/cis eQTL MB-MDR, 

CIFmean, and Regression2Net covered in Chapters 3, 4, and 6. The above mentioned interaction 

mining methods aim to extract “useful knowledge” from multiple omics data sources – part of the 

Big Data to Knowledge (BD2K) process introduced in Section 1.1. Due to the complexity and 

broadness of covered topics, this thesis work in the network medicine and omics integration fields 

only addressed the ‘tip of iceberg’. Big interest in the data integration and network medicine fields 

[1] promises to fill the remaining knowledge voids in future and provide solutions such as 

personalized medicinal care solutions [2]. The later sections will link our main achievements 

throughout this thesis work in the context of the set aims introduced in Section 1.6. We start our 

discussion from GWAIS detecting statistical epistatic interactions between genotypes and 

phenotypes (Figure 1.4) transitioning to other types of interactions in the context of omics data 

integration. 

7.2.  Optimal GWAIS protocol 

The results of Chapter 3 showed the importance of proper GWAIS protocol tuning and assessment 

of each protocol parameter. Due to significant variation in results we recommend a thorough 

description of parameters used in every GWAIS. It remains to be seen if the presented results 

generalize well to other datasets in the context of complex diseases as the heterogeneity (e.g., 

different sub-populations, batch effects, etc.) might have a significant impact on a final results 

variation. The dendrogram (Figure 3.3) turned out to be a very useful tool to show relative distances 

between GWAIS protocols graphically. Compared to original publication [3], this thesis provided 

additional results on MB-MDR application to genome-wide setting via gammaMAXT algorithm 

[4]. Unfortunately, due to high computational requirements of the classical exhaustive MAXT 

algorithm, we were not able to compare obtained gammaMAXT results with the MAXT ones on the 

genome-wide scale.  
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The main objective of Chapter 3 was a further evaluation of GWAIS protocol [5] via a case study 

on AS. The relative ranking of parameters based on their impacts on final results is very specific 

and can be easily used as the checklist in any GWAIS. The dataset size with and without prior 

variable pre-selection was identified as the most impactful factor (compare protocols #1 and #3, 

#5 and #9 of Figure 3.3). This finding is not surprising as datasets with a lower number of variables 

have a lower search space and, thus, narrower rank ranges resulting in lower overall distances 

between SNP pairs. We saw smaller overall distances amongst the GWAIS protocols relying on 

pre-filtered data as compared to the exhaustive ones (Figure 3.3). The reduction of the original 

dataset and variable pre-selection has a strong potential pitfall – removal of relevant variables 

limiting the discovery of novel epistatic interactions. Thus, variable selection should be ideally 

based on a well-founded hypothesis embedded in sophisticated algorithms. To this end, trees 

intrinsically implement recursive data partitioning dividing original data into subsets. The data 

structure of these subsets can be locally explored and relevant variables selected. The tree-based 

algorithms such as RF and CIF are well suited to explore interactions in omics datasets with large 

number of interactions as stated in [6]. Application of tree-based methods for variable selection to 

an existing GWAI protocol presented in Chapter 3 is promising, but would require a careful tuning 

on simulated or gold standard data. At present due to incompleteness of human interactome maps 

and lack of wet-lab empirical data hinders development of reliable gold standards [7].  

 

The LD pruning effects on the final results in GWAS and GWAIS is an area of active research. 

The correction patterns of genotype frequencies represented by LD can give mild to significant 

impacts as was partially shown in Chapter 3. In case BOOST-like protocols relying on logistic 

regression framework, the impacts can be quite significant. Thus, incorporation of LD structures 

into epistasis detection algorithms is a desirable feature and helps identification of additional causal 

indirectly linked SNPs [8,9].  We found very few studies exploring the impact of LD on result 

reliability of the GWAS and GWAIS meriting further exploration.  Further developments should 

consider incorporation of markers LD structure and development of a reliable gold standard 

allowing fine-tuning of each epistasis detection methodology. The LD structure is also of concern 

in eQTL studies  [10,11] that link genomics and transcriptomic data. Elevated LD between a pair 

of markers might lead to false positives as discussed in the subsequent section.  
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7.3.  Trans-eQTL epistasis protocol for eQTL detection 

GWAIS considered in the previous section only assess the impact of the genotypic component 

(SNP) on a phenotypic trait (e.g., disease status). The eQTLs consider the impact of genotype 

(DNA) on gene expression levels (RNA). In the context of GWAS and GWAIS, eQTLs represent 

an intermediate layer that can potentially impact phenotype providing visual clue as to DNA-RNA 

interaction. Integrative eQTL studies covering both gene-gene interactions and 

phenotypic/functional components are becoming more widespread [12-14]. This allows to better 

account for the complexity of biological systems as the relationships between omics information 

layers are more complex than currently appreciated [15]. 

 

Another major issue of most eQTL studies is that they treat eQTL loci as totally independent 

entities failing to incorporate possible correlation structure (i.e. LD) existing between genetic 

markers [16]. Under this independence scenario, only additive and cumulative loci effects are taken 

into account that can miss a large number of important gene-gene interactions and loci with small 

marginal (i.e. main) effects [16].  Most of the current eQTL studies use linear regression to detect 

associations between genotype and expression. As explained in Section 1.3, the assumption of 

linear associations under biological context is rather primitive and can potentially ignore complex 

interaction patterns.  

 

Gene expression intensity levels may be correlated due to other confounding factors, as apparent 

from gene co-expression networks [17]. Co-expression between expression levels of genes tends 

to correlate with common biological function and is important to account for in eQTL study in 

addition to LD patterns. Most of epistatic eQTL studies use models that consider expression traits 

separately assuming no correlation. In Chapter 4 we presented epistatic trans/cis eQTL MB-MDR 

method that also did not take into account correlations between the cis eQTL genes as it was very 

low (see Figure 4.7). Future eQTL studies should take into account both correlation structures 

existing between expression traits and between loci pairs as it is another source of false positives. 

For example, new approaches include eQTLs in the construction of weighted co-expression 

networks such as in [18]. To increase the accuracy of eQTL mappings one can resort to fine-

mapping studies that offer a more detailed analysis and can verify previous eQTL mappings while 
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providing additional insights. For example, a fine-mapping study of importin 8 gene (IPO8) in 

human liver tissue samples identified several factors affecting eQTLs detection including 

mutations occurring within the 3’UTR region [19]. One simple naïve way is to assign different 

weights to interaction effects between eQTL loci based on corresponding LD value. Yet another 

way is to incorporate LD into an eQTL model as a covariance matrix. This was addressed by 

Guseva et al. [20] which designed an imputation-based transcriptome-wide association study 

(TWAS) that measured expression-trait associations based on cis eQTLs.  

 

An open-ended question, especially in epistatic eQTL studies, is sensible significance assessment 

and proper multiple testing correction. In case of our MB-MDR based epistatic eQTL method 

presented in Chapter 4, the default significance level of 0.05 (e.g., p-value < 0.05) was adequate 

even at an extremely large interactome search space. The FWER rates were less or equal to 0.05 

(see Section 4.4.2). The low correlation between cis eQTL genes might have kept FWER rates at 

acceptable levels with the need of additional multiple testing corrections. Still owed to the presence 

of other unknown confounder factors, the selected significance trans/cis epistatic eQTL threshold 

at p-value < 0.05 might have provided overly optimistic results. Future releases of the trans/cis 

eQTL MB-MDR protocol should account for a greater number of confounding factors such as LD, 

gene expression correlation and missing/swapped data. In other words, selected p-value threshold 

might not be adequate at scenarios with more pronounced correlation structure. Another important 

issue with eQTL studies is a proper multiple testing correction especially in the case of epistatic 

eQTLs as discussed in Section 4.5 due to the presence of a huge number of genetic markers and 

expression traits. To this end, various strategies are introduced in Section 4.2 ranging from re-

sampling [21] to step-wise selection of relevant markers [22]. One of the easiest and most obvious 

ways to correct for multiple testing is a Bonferroni’s method but, in agreement with other studies, 

this method is too conservative [23]. Indeed, after application of Bonferroni correction to our 

trans/cis eQTL results only 3 SNP pairs were identified listed in Table S4.6.  Another way to cope 

with multiple testing is to decrease the total number of hypotheses via calculation of the effective 

number of tests (Meff) as per Nyholt's method [24]. However, this approach has been shown to be 

susceptible to correlation structures between SNPs (i.e. LD) [23].   As discussed in Section 4.5, the 

adopted Meff method by [25] based on utilization of eigenvalues of a correlation matrix takes 

advantage of correlations between expression traits. Nevertheless, the low number of highly 
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correlated expression traits did not provide any improvement over classical Bonferroni correction. 

Since MB-MDR adequately corrects for multiple testing as demonstrated by FWERwithin (Figure 

4.5) and low correlation patterns are seen between expression traits, no further corrections were 

necessary. Still, development of novel approaches that both take into account correlation structures 

present in genotype and expression data is still needed. The most promising method is mutual 

information based by Szymczak et. al [26]. This method uses mutual information measure which 

intrinsically incorporates correlation notion existing between variables assuming that one random 

variable contains information about the other. Also, in the Szymczak et. al method the significance 

of final association scores is based on 105 permutations. It still remains to be seen if Szymczak et. 

al  [26] method can maintain adequate error rates under epistatic eQTL context involving 

interaction of SNP pairs possibly dependent on LD patterns.  

 

Translation of computational predictions to clinical setting is very compelling. It is highly desirable 

to validate eQTL results experimentally via targeted point mutations of a selected loci and 

quantification of expression variations. The need of reliable experimental wet-lab eQTL validation 

protocols is especially relevant given that most detected eQTLs lack molecular mechanism(s) of 

association (i.e. biological epistasis). Integrative eQTL studies are more frequent nowadays 

pooling evidence from various sources. For example, several studies exist that integrate eQTL and 

PPI data [27,28] , eQTL and phenotypic data [20]. 

 

In Chapter 4 we presented a method that takes into account joint interaction effects of cis and trans 

loci. The proposed model better reflects a biological reality characterized by complex multi-level 

regulatory programs with underlying cross-talk between cell functional programs (e.g., cell cycle) 

[29]. The statistical framework of the method does not assume linear associations between 

genotype and expression and is semi-parametric with the inherent support of joint effects between 

several loci. The proposed MB-MDR method coupled to gene network analysis proved to be 

theoretically and practically sound as it is based on biologically relevant hypotheses combining 

benefits of statistical and network analyses. In addition, to our knowledge, this is the first study 

that showcased MB-MDR under the trans/cis eQTL epistatic context on real-life complex disease 

data. The major advantage of the proposed method lies in its novel integrated view on trans/cis 

eQTL regulation instead of classical one-way isolated individual mining of trans and cis eQTL 
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loci. In addition, a modular nature of the method allowed us to measure the overlap between 2-way 

trans/cis and 1-way cis only regulatory program components reaching 18.7% pathway overlap 

(Figure 4.4). Thanks to semi-parametric MB-MDR nature that lacks linearity assumption between 

predictor and response variables, the method allowed exploring interactions with the minimum 

specification of parameters. In addition, results from Chapter 3 showed that MB-MDR can 

successfully handle a moderate strength LD (r2 = 0.75) based on the results on ankylosing 

spondylitis WTCCC2 data where LD received the lowest impact ranking compared to other 

parameters (see Figure 3.3). Another study confirmed our previous conclusion showing that even 

in the presence of a very strong LD (r2 = 0.9) MB-MDR performance declined very mildly based 

on FWER increase of only 0.01 [30]. Although the impact of LD on MB-MDR performance is an 

opened ended question, the proposed trans/cis eQTL MB-MDR-based method can handle LD 

which is not the case with classical regression-based methods where LD causes multicollinearity 

issues that can’t be easily remediated. [31]. The MB-MDR tolerance to LD was shown in Chapter 

3, specifically Figure 3.3, where there was minimal distance between MB-MDR CODOMINANT 

protocols 5 and 6 applied on pre-selected data. Another benefit of the proposed method lies in its 

ability to concentrate on epistatic trans and cis eQTL loci interaction effects while correcting for 

main effects (one-way associations). Finally, the network component of the method allowed to 

offer valuable complementary global interaction view using as input an individually listed trans/cis 

eQTL results. Specifically, the topology of the inferred directed p-value weighted network (Figure 

4.8) allowed identification of the key hub trans/cis eQTL genes unrevealing molecular mechanisms 

of the complex and heterogeneous disease - asthma. Despite the advances in eQTL detection 

methods there is a large room for further improvements including accountability for the LD 

patterns, more accurate loci gene mapping, the inclusion of higher order interactions (e.g., 3-way 

interactions), integration of several biological evidence from different sources (e.g., expression, 

phenotypic impacts, etc.).  

 

Finally, expansion of eQTL methods to deal with higher-order interactions is highly desirable. The 

incorporation of phenotype data into eQTL detection methods is also very promising pioneered by 

transcriptome-wide association study of Gusareva et al. [20]. By taking into account disease status, 

condition specific epistatic eQTLs can be detected making them highly relevant to clinical settings. 

An example of such effort that not only considers gene-gene interactions under co-expression but 
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also under co-regulation contexts via the shared set of eQTL loci is represented by the eQTL-based 

gene–gene co-regulation network (GGCRN) method[32]. 

 

From a biological point of view, eQTLs are frequently the hotspots of the co-expression and PPI 

networks involving genes sharing common biological function or process [16,29,33]. For example, 

a study of Zhu et al. indicated that co-expression and PPI networks in yeast show a large topological 

overlap in which cis eQTLs are more likely to be linked to the hub-genes [33]. Thus, an integrative 

analysis of eQTL results coupled to network topology and functional annotation assessments is 

important and can reveal relevant gene regulatory mechanisms linked to the dataset context.  

 

7.4.  GRN inference via trees from microarray expression data 

The previous chapters of this thesis explored different methods to detect gene-gene interactions. 

Later functional analysis of interactions via pathway enrichment and literature search linked them 

to complex disease etiology highlighting plausible pathological mechanisms. Due to their 

versatility and performance, the tree-based methods were applied in the context of gene 

regulatory/transcriptional network inference describing gene-gene interactions. Both pure machine 

learning and hybrid statistical/machine learning tree-based methods were explored via Random 

Forest (RF) and Conditional Inference Forest (CIF) algorithms, respectively. In Chapter 5 we took 

a closer look at the CIF method which offers attractive features. These features are conditional 

permutation scheme, a solid statistical framework for estimation of node significance, stringent 

stopping criteria controlling tree growth. Especially the conditional permutation feature of CIFs 

was of great interest since biological variables display various degrees of correlation (e.g., LD 

structure between markers, co-expressed genes, transcription factor – target gene expression links, 

etc.). Due to computational limitations, the conditional permutation scheme was only tested on a 

simulated data [34] requiring further tests on a real-life omics data. Unfortunately, the Hothorn’s 

conditional permutation scheme implemented in the party R library [35] was not scalable to 

genome-wide and transcriptome-wide contexts due to its high computational demands especially 

accentuated during conditional permutation scheme (see Section 5.4.1).   
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In light of these shortcomings, a significantly speedier non permutation-based version of CIFs was 

introduced. This novel approach, CIFmean, averaged the node-specific association values, expressed 

in a form of a test-statistic or a p-value, without the need of additional computationally demanding 

permutation steps in the variable importance measure (VIM) calculation. In practice, this 

simplification of VIM calculation brought up significant speed gains at an expense of performance. 

The performance drop in most cases was not significant allowing CIFmean to compete effectively 

with the reference methods such as RFs. The time advantage of the CIFmean over RF was almost 2 

fold in the DREAM5 network composed of 4,511 nodes (3,232 minutes versus 6,054 minutes, 

respectively). 

 

The speed of tree-based methods is especially critical in directed network inference since all 

possible pair-wise interactions need to be considered. Thus, the complexity of exhaustive 

implementations is often exponential O(exp).  Hence, network inference is highly time-demanding 

and performance sacrifices are well justified. Fortunately, there exist alternatives including various 

variable aggregation strategies, dynamic programming and others. Some of variable aggregation 

strategies explore feature similarity and prior knowledge (e.g., biological relevance). Fortunately, 

tree-based methods for networks can be easily parallelized thanks to independent tree inference of 

the forest and VIM calculation for each gene-gene interaction.  

 

One negative caveat associated with all tree-based methods is the need to tune them up tree 

inference parameters requiring possession of a gold standard and a training set. The common 

parameters to tune are mtry and ntrees referring to the number of randomly picked variables and 

number of trees in a forest, respectively. Our results also confirmed a strong CIF performance 

dependence on mtry parameter. A positive performance trend with increased mtry value was 

especially seen in CIF-based methods across synthetic and real-life datasets (see Chapter 5) with 

optimal value ranging between 5 and 1/3 of all input variables (mtry=k/3).  In this thesis, optimal 

parameters for CIFmean methods were highlighted across the diverse datasets (see Section 5.4). 

 

The information on biological systems is increasing in diversity as more and more omic datasets 

become available thanks to advancements in high-throughput screening technologies and IT 
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infrastructure [15]. The holistic views of systems biology require clever and biologically sound 

omic data integration discussed in the subsequent section. 

 

7.5.  Integration  

Increased accessibility to diverse high-throughput technologies steadily increases the number of 

omics data types representing various omics layers (e.g., genotypes, expression, methylation, copy 

number variation, protein-protein, microbiome, etc.). Many studies related to complex diseases 

contain one or more diverse sources of data requiring novel ways of data integration. As mentioned 

in Section 2.5, data integration and fusion are two different terms with integration taking a broader 

context [10,36]. Data processing is especially challenging in integrative context due to different 

data structures and formats [37]. When integrating data, one is inevitably faced with probe 

aggregation issue involving multiple probes mapping to the same entity (e.g., gene). One can adopt 

probe aggregation schemes based on physical and functional mapping, but there are alternative 

approaches where one can combine, for example, genomic and methylomic data in a “clever way” 

via kernel PCA summarizing a given region of interest (ROI) [38]. Compared to functional and 

physical probe mapping strategies, the ROI-based method seems to be the most promising as 

information from multiple probes is aggregated into a single construct. The ROI profiles can 

represent, for example, genes or pathways and will be built by calculating similarities measures 

based on diffusion kernel and PCA components. In addition, incorporation of graph structures 

makes it possible to incorporate valuable information from other omic layers (e.g., PPI networks). 

Currently in our lab the ROI based integration pipeline is being developed with future MB-MDR 

extension to accommodate ROI profiles. 

 

The functional probe aggregation based on association tests between probes and target gene 

expression can be adopted for SNP probe aggregation. This approach mimics a typical eQTL study 

measuring marginal cis eQTL effects. We proposed selection of probe with the strongest 

association (e.g., minimal p-value). As association measure for the SNP probe aggregation, we 

suggest median test (MED) proposed by Ziegler et al. [26] since there non-normal distribution of 

the expression data is accounted for via mutual information measure coupled with permutation-
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based significance assessment. MED is more powerful for long-tailed distributions [39].   

 

Also, one needs to take into account the LD structure patterns existing between loci as commented 

in Chapter 3. Although MB-MDR in Chapter 3 was minimally affected by LD structure in pre-

selected data, LD is still an issue to be addressed by novel association measures relevant for probe 

aggregation and eQTL contexts. For example, Gusareva et al. developed a novel method that takes 

LD structure into account via covariance matrix during the association quantification between cis 

SNP, expression and phenotypic trait in transcriptome-wide association study (TWAS) [20]. 

 

In Section 2.5 integration methods were broadly classified into three categories one of which were 

explored in this thesis work (strategy 3). Specifically, a separate analysis of each data source (see 

Section 1.3) was explored in the case of Regression2Net method where expression-expression and 

expression-methylation networks were separately inferred and combined into a final ANDnet, 

XORnet or INTnet networks. This methodology allows for different ‘flavors’ of network fusion 

integration highlighting either consensus or uncooperative interactions present in both data sources 

summarized by ANDnet and XORnet, respectively (Section 6.3.3). Nevertheless, this leaves a user 

with integration choices that are difficult to choose.  

 

7.6.  Perspectives 

The rapid increase of genomic, transcriptomic, proteomic, metabolomic and other types of data 

from high-throughput sources, has increased the need for an integrative analysis requiring practical 

solutions to Big Data to Knowledge (BD2K) problem [40] (see Section 1.1). In the near future we 

should expect a steady increase of studies that utilise different types of integration [40]. Before 

taking a major leap towards the new generation of multi-omics interaction methods, several major 

theoretical and practical obstacles remain to be solved including standardization of omics data 

deposition, proper quality control, speedier and parallelized versions of currently available 

methods, improved visualization and accessibility. The future generation of integrative methods 

needs to address problems related to decreased run-time requirements, correlation patterns, and 

other hidden confounder factors. The new generation of integrative algorithms should incorporate 

quality measures to assess reliability of the input data in order to achieve significant improvements 
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in several performance criteria including increased accuracy and decreased false positive and false 

negative rates [40].  In addition, future studies should solve an open question of meaningful 

validation and gold standard procurement to allow for more accurate and unbiased assessment of 

new integrative methods under similar conditions [41].  

 

Big Data expansion prompted  the development of self-evolving genetic algorithms (GA) such as 

biological natural language processing (NLP) [42], incorporating automatic learning and a certain 

degree of mutation/alteration after integration of previously unseen new training samples. The self-

evolving algorithmic feature seems to be very attractive in the context of Big Data era and NP-hard 

problems characterized by extremely large search spaces. Feature selection methods incorporating 

GA in the context of marker selection are already appearing [43,44].  

 

An integrated understanding of interactions in the genome, the transcriptome, the proteome, the 

environment mediated by the underlying cellular network, gives a firm ground for future advances. 

Identification of the relevant system components via integrative approaches will better characterize 

complex diseases thru identification of the key functions to be possibly altered via drugs. It will 

require strong collaboration between machine learning, statisticians, computer scientists, and 

biologists to implement new data integrative algorithms that may lead to an increased 

understanding of complex diseases. Ultimately, we need to better understand cell functioning and 

the act under ‘think globally, act locally’ paradigm [7]. 
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