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Abstract

We consider the multi-trip vehicle routing problem, in which each vehicle can perform several routes during the same
working shift to serve a set of customers. The problem arises when customers are close to each other or when their
demands are large. A common approach consists of solving this problem by combining vehicle routing heuristics with
bin packing routines in order to assign routes to vehicles. We compare this approach with a heuristic that makes use of
specific operators designed to tackle the routing and the assignment aspects of the problem simultaneously. Two large
neighborhood search heuristics are proposed to perform the comparison. We provide insights into the configuration of
the proposed algorithms by analyzing the behavior of several of their components. In particular, we question the impact
of the roulette wheel mechanism. We also observe that guiding the search with an objective function designed for the
multi-trip case is crucial even when exploring the solution space of the vehicle routing problem. We provide several best
known solutions for benchmark instances.
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1. Introduction

The multi-trip vehicle routing problem (MTVRP) is a variant of the vehicle routing problem (VRP) in which each
vehicle can perform one or more trips, also called routes, during the same planning period. The set of routes performed
by a given vehicle constitutes a tour whose total duration cannot exceed a given time limit. The MTVRP arises when
the demands of the customers are large compared to vehicle capacities or when the distances are relatively short. In
food distribution systems, drivers sometimes perform two, three or even more delivery routes during the same working
day.

It is common to solve the MTVRP by combining VRP and bin packing (BP) algorithms (Fleischmann, 1990; Taillard
et al., 1996; Petch and Salhi, 2004; Salhi and Petch, 2007; Olivera and Viera, 2007). Vehicle routes are first obtained
by applying VRP algorithms. These routes are then assigned to a fleet with a limited number of vehicles, generally by
applying BP techniques: each route is viewed as an item whose size corresponds to its duration and each vehicle as a
bin of capacity equal to the maximum allowed tour duration.

The main contribution of this work is to propose local search operators specifically designed for multi-trip variants of
the VRP. They stem from classical VRP operators and take into consideration the routing and route assignment aspects
of multi-trip problems. Our aim is to compare the performance of algorithms that incorporate these multi-trip operators
with those that treat the routing and the packing subproblems separately. Two adaptive large neighborhood search
(ALNS) algorithms (Ropke and Pisinger, 2006a,b; Pisinger and Ropke, 2007) are described: the ALNS with multi-trip
operators (ALNSM) and the ALNS combined with BP (ALNSP). Both algorithms are tested on the benchmark instances
of Taillard et al. (1996). The ALNSM yields very good results but is outperformed by the ALNSP which produces 10
new best known MTVRP solutions.

As a second contribution, we analyze the behavior of various ALNS components and we describe the interactions
between some of these. Every implementation option that was considered during the design phase of the algorithms is
given, not only the most efficient one, thus providing insights into the global behavior of the proposed ALNS metaheuris-
tics. We use the irace package (López-Ibáñez et al., 2011), an automatic configuration tool, not only as a fine-tuning
engine, but also as a means to gain meaningful algorithmic insights.

Section 3 describes the MTVRP along with some notations. Section 4 presents the specific multi-trip operators.
Section 5 details the ALNSM and ALNSP implementations. The results are then presented in Section 6, along with
further experiments about algorithm components in Section 6.4. Section 7 presents the conclusions.
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2. Literature review

Fleischmann (1990) was the first to address the MTVRP. He combined a modified savings heuristic with a BP
heuristic. Taillard et al. (1996) later proposed a three-phase method. First, a large number of VRP routes are generated
by constructing and modifying VRP solutions using a tabu search (TS) algorithm. Several VRP solutions are then built
based on the routes constructed in this first step. Finally, a BP procedure is applied to each VRP solution in an attempt
to generate feasible MTVRP solutions. In Brandão and Mercer (1998), a constructive procedure sequentially builds
an MTVRP solution that may involve overtime. A TS procedure then refines this solution by applying classical VRP
operators. Petch and Salhi (2004) proposed a multi-phase construction algorithm in which VRP solutions are iteratively
created and refined. Each is tentatively transformed through a BP procedure until a feasible MTVRP solution is found
or a stopping criterion is satisfied. Salhi and Petch (2007) applied a genetic algorithm in which chromosomes represent
ordered circular sectors. A savings heuristic is applied to solve VRPs within the circular sectors, and a BP heuristic then
creates MTVRP solutions out of the routes produced by the savings procedure. Olivera and Viera (2007) proposed an
adaptive memory programming (AMP) procedure combining TS and a BP heuristic. A memory of routes is initialized by
constructing VRP solutions by means of the sweep algorithm. The algorithm then iteratively creates and improves new
VRP solutions from routes that are randomly chosen in the memory. These VRP solutions are improved by applying a TS
procedure. A BP heuristic is used at each iteration of the TS heuristic in order to tentatively produce a feasible MTVRP
solution. The new routes are added to the adaptive memory and sorted according to the quality of the MTVRP solution
to which they belong. Cattaruzza et al. (2014b) provided state-of-the-art results for the MTVRP. These authors proposed
a memetic algorithm in which each chromosome defines a customer sequence. A modified split procedure (Prins, 2004)
partitions the customer sequences to tentatively obtain an MTVRP solution. The authors described a second version of
their algorithm in which a local search procedure reassigns routes to vehicles while at the same time performing a VRP
move. Recently, Mingozzi et al. (2013) developed an exact algorithm for the MTVRP which yielded an optimal solution
for 42 out of the 106 benchmark instances of Taillard et al. (1996). Their model combines a partitioning formulation
with valid inequalities. For an extensive review of MTVRP variants, the interested reader is referred to Cattaruzza et al.
(2014a).

3. Problem description and notations

Let G(V,E) be a complete undirected graph where V = {0, ..., n} is the set of nodes and E = {(i, j)|i, j ∈ V, i < j}
is the set of edges. Each node i = 1, ..., n represents a customer, while node i = 0 represents the depot. With each
customer i = 1, ..., n is associated a demand di that must be satisfied by exactly one delivery (i.e., split deliveries are
not allowed). A fleet of m identical vehicles is based at the depot. The travel time on edge (i, j) ∈ E is tij . Each vehicle
k = 1, ...,m has a limited capacity Q and a maximum allowed working duration Tmax, and must perform a tour Tk made
up of a set of routes starting and ending at the depot. The total demand of the customers served by any route of Tk
must not exceed Q, and the time needed to perform Tk must not exceed Tmax. The objective is to determine a set of
tours minimizing the total travel time while satisfying the constraints.

The metaheuristics that we have developed work on a relaxed version of the MTVRP called the R-MTVRP, in which
the tour duration constraints are not considered. In the following, we denote MTVRP solutions by S, and R-MTVRP
solutions by Ŝ. If at least one vehicle of an R-MTVRP solution Ŝ travels for a duration that exceeds Tmax, then Ŝ
contains some overtime. The overtime of vehicle k, denoted by Ok, is defined as Ok = max{0, Dk − Tmax}, where Dk is
the total duration of tour Tk. The total overtime of Ŝ is defined as OŜ =

∑
k=1,...,mOk. The objective function of the

R-MTVRP includes the total travel time, as well as the penalized overtime. The associated penalization factor will be
introduced later on. R-MTVRP solutions that do not contain overtime are also feasible MTVRP solutions.

Solutions to the well-known capacitated vehicle routing problem (CVRP) are used to explore the solution space
during the execution of the ALNSP heuristic. The CVRP is defined on the same graph G(V,E) as the MTVRP. The
fleet size is unlimited, while each vehicle having a capacity Q can perform only one route. The objective function to
be minimized is the total travel time. Let X be the set of routes that constitute a feasible CVRP solution. In order
to transform X into an R-MTVRP solution, each route of X has to be assigned to one of the m available vehicles.
All assignments of the routes in X that satisfy the MTVRP tour duration constraints yield MTVRP solutions that are
equivalent in terms of their objective function value since they have the same duration and contain no overtime. Finding
such a feasible assignment is equivalent to solving a BP problem where each route is an item with a size corresponding
to its duration, and each vehicle is a bin of capacity equal to the maximum allowed tour duration. Since the CVRP
fleet size is unlimited, if X is an optimal CVRP solution, then each feasible assignment of its routes provides an optimal
MTVRP solution.

Table 1 presents the recurring notations of this paper.
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Problem parameters

m Number of vehicles.
n Number of customers to be served.
Q Vehicle capacity.
Tmax Maximum allowed duration for tours.

Problem related notations

X CVRP solution.
S MTVRP solution.

Ŝ R-MTVRP solution.
Tk Tour performed by vehicle k.

Dk (resp., DŜ) Total duration of the tour performed by vehicle k (resp., of solution Ŝ).

Ok (resp., OŜ) Total overtime of vehicle k (resp., of solution Ŝ).
α Total overtime penalty factor in R-MTVRP solutions.

Algorithm related notations

ALNSM ALNS with multi-trip operators.
ALNSP ALNS combined with bin packing.
q Number of requests removed and reinserted during an ALNS iteration.
Hrem and Hins Set of removal heuristics and set of insertion heuristics.

Algorithmic parameters

αmin and αmax Minimum and maximum allowed value for α.
µ Adaptation factor for α.
ξ Number of iterations without resetting the value of α.

θ0 and η Initial temperature and cooling factor of the simulated annealing framework.
κ Factor used to set the minimum temperature as a fraction of θ0.

σ1, σ2 and σ3 Rewards influencing the heuristic selection process of the roulette wheel.
ρ and Θ Persistence factor and time segment of the roulette wheel.

υ and δ Determinants of the number of customers removed and reinserted in a given iteration.

p Randomization factor of removal heuristics.

Φ Relatedness measure parameter of Shaw removal heuristic.

λH and αH Overtime penalization factor and size of the historical memory.

γ and Γ Parameters of the tabu-edge mechanism for insertion heuristics.

λM and αM Overtime penalization factor and size of the adaptive memory of routes.
yM Randomization factor for route selection in the adaptive memory of routes.

ψ “Pre-acceptance” factor of solutions in the ALNSP algorithm.

ALNSiter Number of iterations of the ALNSP inner loop.

pUS Determinant of the neighborhood size of the US procedure.

Table 1: Recurring notations

4. Specific local search operators

The purpose of the proposed multi-trip operators is to manage the routing and the assignment aspects of the problem
simultaneously, instead of treating them independently. In MTVRP or R-MTVRP solutions, any reordering of the routes
of a given tour Tk leaves its total duration and overtime unchanged. However, the operators presented below are not
designed to treat routes as separate entities. Instead, they treat any tour Tk as a giant tour made up of the routes of
vehicle k, i.e., an ordered sequence of routes. More precisely, the representation of a tour starts with an origin depot, ends
with a destination depot, and contains the customer sequence of each of its routes. Each of these customer sequences is
separated by a depot that we call an “internal depot”. In the following, routes in Tk are said to be consecutive if their
respective customer sequences are only separated by one internal depot in the giant tour representation of Tk.

4.1. Removal and insertion operators

The specific removal and insertion operators presented below adapt to the MTVRP context destroy-and-repair
heuristics (similar to those used by Ropke and Pisinger (2006a) and Pisinger and Ropke (2007)).
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4.1.1. Inserting a customer in a multi-trip context

Let Ŝ be a partial solution of a given R-MTVRP. In Ŝ, a sequence of nodes (depots and customers) forming a tour
Tk is known for each available vehicle k, but some of the customers are not assigned to any vehicle. Some of the vehicles
may also be empty (the representation of the associated tour contains only the origin and the destination depots). The
solution Ŝ needs to be repaired by inserting in it the unrouted customers. Let vi and vi+1 be two consecutive nodes of
a tour Tk = (..., vi, vi+1, ...) in Ŝ. We consider four possible schemes to insert a customer vj between vi and vi+1:

• Scheme 1 : Tk ← (..., vi, vj , vi+1, ...),

• Scheme 2 : Tk ← (..., vi, vj , 0, vi+1, ...),

• Scheme 3 : Tk ← (..., vi, 0, vj , vi+1, ...),

• Scheme 4 : Tk ← (..., vi, 0, vj , 0, vi+1, ...).

Scheme 1 is the classical VRP insertion scheme. In scheme 2 (resp., 3), vj is also inserted between vi and vi+1 along
with a stop at the depot after (resp., before) visiting vj . In scheme 4, a new route containing a single customer vj is
created between vi and vi+1, i.e., two depots are inserted at the same time as customer vj .

4.1.2. Removing a customer in a multi-trip context

Let vi−1, vi and vi+1 be three consecutive nodes of a given tour Tk = (..., vi−1, vi, vi+1, ...) in an R-MTVRP solution
Ŝ. When removing vi, Tk becomes Tk ← (..., vi−1, vi+1, ...). If vi−1 and vi+1 are both depots, i.e., vi−1 = vi+1 = 0, one
of these is removed along with vi.

4.1.3. Merging consecutive routes

If capacity constraints allow it, consecutive routes of Tk may be merged together by removing the internal depot
that separates their respective customer sequences. Here we apply a merge operator during the course of the ALNSM
algorithm. Our specific implementation of this operator is described at the end of Section 5.3.1 that details our removal
heuristics.

4.2. Multi-trip improvement operators
Most classical improvement neighborhood structures for the VRP are usually classified into two categories: node-

based neighborhoods and edge-based neighborhoods. In node-based neighborhood structures, moves are performed by
repositioning or exchanging nodes in a given solution, while edge-based neighborhood structures work with edge deletions
and insertions. The difference between these two types of neighborhoods is often a matter of convenience. In this work, in
order to adapt these classical neighborhood structures for the multi-trip case, internal depots are treated as if they were
customers in a giant tour representation of each vehicle. Consider an example involving a typical node-based operator.
Suppose that there are two vehicle tours Tk = (..., vi−1, vi, vi+1, ...) and Tl = (..., vj−1, vj , vj+1, ...). Repositioning vi after
vj in Tl with the relocate operator leads to Tk ← (..., vi−1, vi+1, ...) and Tl ← (..., vj−1, vj , vi, vj+1, ...). Such a move can
be considered even if vi is a depot (i.e., vi = 0), as for any customer. Applying such multi-trip operators based on the
giant tour representation of each vehicle may result in having two consecutive depots in a tour, i.e., an empty route.
Removing one of them deletes this empty route and does not further alter the giant tour structure.

A drawback of adapting these well-known VRP operators is that the number of internal depots of a given tour can only
decrease or remain constant since moves can result in deleting consecutive depots. However, the multi-trip improvement
operators serve only during the post-otpimization phase of the ALNSM. Hence, we do not consider increasing the number
of depots.

5. Adaptive large neighborhood search

In order to compare the multi-trip operators with classical solution strategies involving routing and packing tech-
niques, we implement both solution approaches within a common framework, namely the ALNS scheme of Ropke and
Pisinger (2006a). It relies on a set of removal heuristics and a set of insertion heuristics which iteratively destroy and
repair solutions. The selection probability of each heuristic at a given iteration is influenced by its performance during
past iterations. Removal heuristics select customers to be removed based on criteria detailed in Section 5.3.1. Insertion
heuristics use greedy or regret mechanisms described in Section 5.3.2.

The algorithm components described throughout this section include several numerical parameters, whose values are
determined during a configuration phase. For this purpose, an automatic configuration tool, irace (López-Ibáñez et al.,
2011), is used for both algorithms. Some of the features described in this section are optional, i.e., the configuration
tool determines if they should be included or not in the final implementation of the methods. The configuration phase
is further described in Section 6.2.

4



5.1. Adaptive large neighborhood search with multi-trip operators (ALNSM)

The ALNSM algorithm explores the R-MTVRP solution space by means of multi-trip operators.

5.1.1. Initial solution

The construction of the initial solution is handled by a greedy heuristic, described in Section 5.3.2, using the four
multi-trip insertion schemes detailed in Section 5.3.2.

5.1.2. Objective function

As stated in Section 3, the objective function of the MTVRP is the total travel time which has to be minimized.
However, for most instances, obtaining a feasible solution is a challenging task. Hence, R-MTVRP solutions, whose
values contain both travel time and penalized overtime, are visited during the course of the ALNSM. Visiting R-MTVRP
solutions with high overtime can be interesting because they can guide the search towards new regions of the solution
space with shorter total durations.

The cost of a solution Ŝ is defined as CŜ =
∑
kDk +α

∑
k Ok, where α ∈ [αmin, αmax] is an adaptive parameter akin

to the objective function penalties described in Olivera and Viera (2007). At the beginning of the ALNSM, α is set to
αmin. A parameter µ ∈ [1, 2] is introduced to control the variation of the value of α. Each time a solution Ŝ is accepted:

• either Ŝ contains overtime and we would like to reduce it, so the value of α is set to min{αµ, αmax},

• or Ŝ contains no overtime and the search should focus on reducing the travel time, even if this results in overtime,
so the value of α is set to max{α/µ, αmin}.

The values of αmin, αmax and µ are determined during the ALNSM configuration phase, and so is ξ, the number of
iterations after which the value of α is reset to αmin. Resetting the value of the overtime penalty α prevents it from
remaining stuck at its maximum value αmax while trying to find a feasible solution. Note that whereas the acceptance
criterion is based on the above cost function which includes an adaptive overtime penalty factor α, improvement is in
contrast evaluated by checking whether the overtime of the new solution Ŝ ′ is smaller than the overtime of the incumbent
solution Ŝ. If both overtimes are equal, then the total durations are compared. The same reasoning holds to detect a
new best solution.

5.1.3. Acceptance criterion

When a new solution is created by destroying and reconstructing the incumbent solution, a simulated annealing
criterion is used to determine whether the new solution is accepted. Let Ŝ be the incumbent R-MTVRP solution and
let Ŝ ′ be the candidate examined for acceptance with CŜ′ > CŜ , then Pr(Ŝ ← Ŝ ′) = exp[−(CŜ′ − CŜ)/θCŜ ], where θ
is the temperature. At each iteration, θ is set to max{ηθ, θmin}, where η ∈ [0, 1] is the cooling factor. The parameters
that need to be configured are the initial temperature θ0, the cooling factor η, and κ, which determines the minimum
temperature as a function of the initial temperature, θmin = κθ0.

5.1.4. Destroy-and-repair

At every iteration of the ALNSM, the incumbent solution Ŝ is modified by removing q nodes from the solution and
reinserting them. Removals and insertions are respectively performed by a set Hrem of removal heuristics and a set Hins

of insertion heuristics based on the multi-trip removal and insertion operators described in Section 4.1. The removal and
insertion heuristics are described in Section 5.3. At the first iteration, q is equal to 1. During the course of the ALNSM,
the variation of q is based on its current value and on the acceptance of solution Ŝ created during the previous iteration:

• if Ŝ is accepted, then q = 1,

• if Ŝ is rejected and q < qmax, then q ← q + 1,

• if Ŝ is rejected and q = qmax, then q ← qlow.

The value of q can never exceed qmax = bυnc, where υ is a parameter smaller than 1. The value qlow is defined as
bqmax/δc, where δ is a parameter greater than 1. The rationale for using q ← qlow instead of q ← 1 is based on the
observation made in Ropke and Pisinger (2006a) that improvements rarely results from the use of very small values of
q when no new solution has been accepted for many iterations.
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5.1.5. Roulette wheel

Our roulette wheel mechanism is mostly the same as that of Ropke and Pisinger (2006a), except that we include
an additional normalization process to facilitate the configuration of the roulette wheel parameters with irace. At
each iteration of the ALNSM, weights wh, where h ∈ Hrem ∪ Hins, are used to randomly select a removal heuristic
hrem ∈ Hrem and an insertion heuristic hins ∈ Hins. The weights are kept constant during a certain number of
iterations Θ called a time segment. During the first time segment, all removal (resp., insertion) heuristics have the same
weight and

∑
h∈Hrem

wh = 1 (resp.,
∑
h∈Hins

wh = 1). In each time segment, these weights are updated as explained
below.

Each heuristic h ∈ Hrem∪Hins has a score Ωh reinitialized at zero at the beginning of every time segment. Whenever
a solution Ŝ ′ is accepted, the scores Ωh of both heuristics hrem and hins are updated: Ωh ← Ωh + σφ, where φ is equal

to 1 if Ŝ ′ is a new best solution, 2 if Ŝ ′ is an improved solution without being a new best one, and 3 otherwise. The
values σφ belong to the interval [0, 1] and are normalized to satisfy σ1 + σ2 + σ3 = 1. At the end of a time segment, Ωh
is set to Ωh/uh, where uh is the number of times heuristic h was used during the current time segment. If uh = 0 (which
may happen especially if the value of Ω̄h was small during former time segments), then we let Ωh take the same value
as in the previous time segment.

The scores are then normalized for Hrem and Hins, respectively:
∑
h∈Hrem

Ω̄h = 1 and
∑
h∈Hins

Ω̄h = 1, where Ω̄h is

the normalized score of h. At the end of a time segment, the weight of each heuristic is updated as wh ← (1−ρ)wh+ρΩ̄h
for h ∈ Hrem ∪ Hins, where ρ is a parameter, and (1 − ρ) represents the persistence of information from the previous
segments.

The values of Θ, σ1, σ2, σ3 = 1− σ1 − σ2 and ρ are determined during the configuration phase.

5.1.6. US local search

The US improvement procedure of GENIUS algorithm (Gendreau et al., 1992) is applied optionally to improve each
route of a solution. The configuration phase determines whether the US procedure is applied whenever a new best
solution is found, or whenever a solution is accepted to be the new incumbent, or never. Only those routes that were
modified since the last call of the procedure need to be optimized. A parameter pUS determines how many neighbors
are scanned at each move.

5.1.7. Stopping criterion

The parameters of the algorithm are tuned by solving an “anytime” parameter optimization problem. This means
that the parameters obtained at the end of the configuration phase are supposed to provide reasonably good results
independently of the running time of the algorithm or of the number of ALNSM iterations. In Section 6, we report
results for several stopping criteria. However, the general idea is the following: the algorithm stops after a given number
of iterations Iter if a feasible solution is found; else, the algorithm continues until a feasible solution has been found or
until a time limit proportional to the square of the instance size has been reached.

5.1.8. Post-optimization

Once the stopping criterion of the ALNSM is met, a post-optimization procedure is performed to improve the best
known solution. This procedure is a variable neighborhood descent (VND) (Hansen and Mladenović, 2001), i.e., a
descent heuristic that uses a list of neighborhoods to improve the solution at hand. These neighborhoods are based
on adaptations of well-known VRP operators, as described in Section 4.2. For the purpose of this post-optimization
phase, the overtime penalty α is fixed at a very high value to ensure that two solutions containing overtime are first
compared on this basis. If no overtime remains, then travel times are compared. Indeed, the primary goal is to decrease
the remaining overtime if any. However, if a feasible MTVRP solution is found, the post-optimization phase focuses on
decreasing its total duration while preserving feasibility. The post-optimization VND explores the neighborhoods in the
following order:

• the 2-opt neighborhood that treats each vehicle’s giant tour independently,

• the relocate neighborhood that relocates a chain of nodes from its current position to another position in the same
or in another vehicle,

• the exchange neighborhood that swaps two chains of nodes visited by the same or by different vehicles,

• the US procedure that re-optimizes each route separately.

The relocate and the exchange neighborhoods both treat a maximum chain length of four nodes. Neighborhoods with
chains of increasing length are sequentially treated as different neighborhoods. At the end of the post-optimization
phase, if there exist chains containing two consecutive depots, one of these is deleted.
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5.1.9. Method summary

The ALNSM method is summarized below as it was implemented for the configuration phase. Some of the design
options are determined by using irace as further explained in Section 6.2.

Algorithm 1 ALNSM

1: Construct an initial R-MTVRP solution Ŝ by using an insertion heuristic based on the four multi-trip insertion
schemes

2: Ŝbest ← Ŝ
3: q = 1; initialize the roulette wheel; initialize the adaptive parameters
4: while Stopping criterion is not met do
5: Roulette wheel: select a removal heuristic hrem and an insertion heuristic hins
6: Remove customers from Ŝ using hrem, creating a partial solution
7: Insert customers into the partial solution using hins, creating a solution Ŝ ′
8: if Acceptance criterion is met then
9: Optional: apply the US procedure on each route of Ŝ ′

10: Ŝ ← Ŝ ′
11: q ← 1
12: Update the value of the overtime penalty α
13: else
14: q ← q + 1, or q ← qlow if qmax was reached
15: end if
16: if Ŝ ′ is a new best solution then
17: Optional: apply the US procedure on each route of Ŝ ′
18: Ŝbest ← Ŝ ′
19: end if
20: Update the roulette wheel
21: end while
22: Apply post-optimization on Ŝbest

Note that even if Ŝ ′ is a new best R-MTVRP solution, it may be rejected. This situation only arises if Ŝ ′ is an
infeasible MTVRP solution, due to the use of an adaptive objective function (see Section 5.1.2).

5.2. Adaptive large neighborhood search for VRP combined with bin packing (ALNSP)

The ALNSP is based on two embedded loops: an outer loop and an inner loop. Let ζ be the iteration counter of the
outer loop. At the initialisation step (ζ = 0), a CVRP solution X 0 is built by means of a greedy heuristic described in
Section 5.3.2. An ALNS heuristic is applied to generate new CVRP solutions by iteratively destroying and repairing X 0

(inner loop). An adaptive memory of routes (AMR) is initialized with some of the routes generated during the ALNS.
At each following iteration of the outer loop (ζ ≥ 1), a CVRP solution X ζ is created from the routes of the AMR. Then,
in the inner loop, the ALNS iteratively modifies X ζ and the AMR is updated with new routes. The BP procedure is
crucial for choosing the routes that are stored in the AMR, as explained in Section 5.2.4.

5.2.1. Objective function and acceptance criterion

Even though the objective function of the MTVRP is to minimize the total travel time, the ALNSM algorithm uses
a modified objective function with penalized overtime in order to guide the search process towards good R-MTVRP
solutions. In the ALNSP, however, only CVRP solutions are created using ALNS iterations. Their quality is measured
in terms of total travel time. After an assignment has been made to create an R-MTVRP solution, an overtime measure
can be obtained.

In this work, we consider two versions of the ALNSP that differ in terms of the acceptance criterion of new solutions
created by ALNS iterations within the inner loop:

• In the first version, ALNSP(a), the acceptance criterion of new CVRP solutions is solely based on the CVRP
objective function (i.e., total travel time). If the quality of a candidate CVRP solution X ′ passes the acceptance
criterion, then the packing procedure is applied on X ′ in order to obtain the overtime measure of a corresponding
R-MTVRP solution Ŝ ′, and the AMR is updated accordingly.
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• In the second version, ALNSP(b), the acceptance criterion of a new CVRP solution X ′ is based on the quality
of the R-MTVRP solution Ŝ ′ obtained by applying the assignment procedure on X ′ before the evaluation of the
acceptance function. In order to reduce the computational effort, CVRP solutions that are unlikely to yield good
R-MTVRP solutions are discarded. The acceptance of a new CVRP solution X ′ is determined in two steps:

1. Let ψ ≥ 1 be a parameter called pre-acceptance factor. If the travel time DX ′ of the candidate solution is
not excessively deteriorated compared with that of the incumbent DX , i.e., if DX ′ ≤ ψDX , then a packing
procedure produces an R-MTVRP solution Ŝ ′ using the routes in X ′, and OŜ′ can be calculated. Else, X ′ is
automatically discarded without trying to evaluate the acceptance criterion.

2. If OŜ′ is calculated, then the candidate solution X ′ may be accepted or not based on the value of its cor-

responding R-MTVRP solution Ŝ ′. The penalty associated with overtime in the objective function is the
adaptive parameter α regulated exactly as in the ALNSM but reinitialized at each iteration of the outer loop.

In both versions of the ALNSP, a simulated annealing framework is used to accept or reject candidate solutions. This
framework is identical to that described for the ALNSM.

In order to detect improving or new best solutions within the inner loop and to accordingly update the roulette wheel,
only those solutions produced during the current iteration of the outer loop are taken into account. In the ALNSP(a),
the total travel times of CVRP solutions are compared. In the ALNSP(b), the comparison of R-MTVRP solutions
is performed exactly as in the ALNSM. During the course of the ALNSP, a global best R-MTVRP solution Ŝbest is
maintained by using the same criterion as for the ALNSM. Indeed, nothing guarantees that the best R-MTVRP solution
Ŝζbest found during a given iteration of the outer loop outperforms its predecessor Ŝζ−1

best .

5.2.2. Destroy-and-repair

The heuristics used to destroy and repair CVRP solutions are described in Section 5.3. The principle of these
heuristics is exactly the same as for the ALNSM, except that the specific multi-trip operators are not applied. The
number q of customers that are removed at each iteration evolves as in the ALNSM but its value is reset to 1 at each
iteration of the outer loop. The roulette wheel mechanism works as explained in Section 5.1.5 but is reinitialized at each
iteration of the outer loop.

5.2.3. Packing procedure

We apply the packing procedure of Olivera and Viera (2007) to assign the routes of a CVRP solution to m available
vehicles in order to produce an R-MTVRP solution. This allows us to associate an overtime measure to a CVRP solution.
First, a greedy heuristic iteratively assigns the longest route to the emptiest vehicle. If no feasible assignment is produced,
then a labeling algorithm repeatedly attempts to reduce the overtime of the tour having the longest duration.

5.2.4. Updating the AMR

The AMR is mostly based on principles proposed in Olivera and Viera (2007). It is a list of routes, say LM , created
during the course of the algorithm. Whenever a new R-MTVRP solution Ŝ is created by the packing procedure, LM
is updated by inserting the routes of Ŝ in the list. The routes in LM are sorted in increasing order of the cost of the
R-MTVRP solution to which they belong: routes belonging to “good” R-MTVRP solutions appear at the early positions
of the memory. CMŜ =

∑
kDk + αM

∑
k Ok is the modified cost function used to assess the quality of Ŝ for the purpose

of inserting its routes into LM . Unlike α, the value of αM is constant during the course of the algorithm.
Let RŜ be the set of routes of solution Ŝ. Since different R-MTVRP solutions may contain identical routes, it is

frequent that a route r of RŜ is already stored in LM , with index ir, before the update. In that case, if CMŜ is less than

the cost associated to the duplicate of r in LM , r is relocated accordingly at a position i′r < ir. The maximum size λM
of LM is determined during the configuration phase. If the size of LM exceeds λM after an update, the routes with the
highest positions are deleted until the size of LM becomes equal to λM .

5.2.5. Using the AMR to build the inner loop’s initial solution

At the beginning of each iteration ζ of the outer loop, a CVRP solution X ζ is created and used as an initial solution
for the inner loop. This is done by using the stored routes of LM when ζ > 0.
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Algorithm 2 Building a (partial) VRP solution from the AMR

Build a temporary copy L of LM : L ← LM
X ζ = ∅
while L 6= ∅ do

Choose one element r of L randomly
Add r to the set of routes in X ζ
Remove from L any route having one or more customers in common with r

end while

Whenever a route r is added in X ζ , the selection is performed randomly so that the routes that occupy first positions
in L have a higher probability of being chosen. At each iteration of the above procedure, the selected route is the one
at position bνyM × |L|c, where ν ∼ U [0, 1[ is a random number and yM is a parameter greater than 1. If customers
remain unserved after the above procedure, then X ζ is a partial CVRP solution and the unserved customers have to be
assigned. For this purpose, two options are considered and the configuration phase determines which one is applied:

• Insert unrouted customers directly into X ζ using the greedy heuristic described in Section 5.3.2 without multi-trip
operators.

• Build a separate set of routes Runrouted with the remaining customers using the same greedy heuristic as above
and then set X ζ ← X ζ ∪Runrouted. The creation of Runrouted keeps the routes selected from LM unchanged.

5.2.6. US local search

As in the ALNSM method, the US procedure of the GENIUS algorithm is optionally applied whenever a new global
best solution is found or whenever a solution is accepted.

5.2.7. Stopping criterion

The idea here is exactly the same as in the ALNSM except that the maximum number of iterations Iter is treated
globally: this limit is defined as the number of iterations of the outer loop multiplied by the number of iterations of the
inner loop. The latter is determined by a parameter ALNSiter. As for the ALNSM, if feasibility is not achieved after a
given global number of iterations, the ALNSP continues until a feasible solution is found or until a time limit is reached.

5.2.8. Post-optimization

Once the outer loop of the ALNSP terminates, a post-optimization procedure tentatively improves the best R-MTVRP
solution found. This procedure is a VND which considers VRP moves based on the routes of the R-MTVRP solution.
Neighborhoods are explored in the following order: 2-opt, relocate, exchange, and US. The 2-opt neighborhood treats
each route separately, meaning that the edges considered for deletion and reinsertion belong to the same route. The
relocate and the exchange neighborhoods both treat a maximum chain length of four nodes, exactly as in the ALNSM.
However, instead of considering the multi-trip version of the operators, each chain to be relocated or exchanged contains
customers of a single route. Note that, as in the ALNSM algorithm, the relocate and the exchange operators consider
moves within the same vehicle or involving two different vehicles. The US procedure is applied separately on each route
that was modified since the last call of the procedure. As with the other neighborhoods, as soon as an improvement is
made for one of the routes, the VND goes back to the 2-opt neighborhood. If the post-optimized R-MTVRP solution
still contains overtime after the VND is applied, then the packing procedure is called in the hope of achieving feasibility
or at least reducing overtime. However, if a feasible MTVRP solution was found, the packing procedure is not called
since the assignment of routes to vehicles does not impact the total travel time.

5.2.9. Summary of the two versions of the ALNSP heuristic

Both versions of ALNSP are summarized in Algorithms 3 and 4
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Algorithm 3 ALNSP(a): acceptance based on total duration

1: ζ ← 0
2: Create X 0 and apply the assignment heuristic to obtain Ŝbest
3: while Stopping criterion is not met do (Outer loop)
4: Build a new CVRP solution X ζ (out of the AMR for ζ > 0)
5: X ← X ζ
6: q = 1; initialize the roulette wheel and the adaptive parameters for this iteration
7: Initialize the inner loop’s iteration counter: iterinner ← 0
8: while iterinner < ALNSiter do (Inner loop)
9: Roulette wheel: select a removal heuristic hrem and an insertion heuristic hins

10: Remove customers from X using hrem, creating a partial CVRP solution.
11: Insert customers into the partial solution using hins, creating a CVRP solution X ′
12: if CVRP solution X ′ meets the acceptance criterion then
13: Optional: apply the US procedure on each route of X ′
14: X ← X ′
15: Apply the assignment heuristic on X and obtain Ŝ
16: Update the AMR with the routes of Ŝ
17: q ← 1
18: if Ŝ is a new global best solution then
19: Optional: apply the US procedure on each route of X
20: Update Ŝbest
21: end if
22: Update the value of the overtime penalty α
23: else
24: q ← q + 1, or q ← qlow if qmax was reached
25: end if
26: Update the roulette wheel
27: iterinner ← iterinner + 1
28: end while
29: ζ = ζ + 1
30: end while
31: Apply post-optimization on Ŝbest
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Algorithm 4 ALNSP(b): acceptance based on total duration and overtime

1: ζ ← 0
2: Create X 0 and apply assignment heuristic to obtain Ŝbest
3: while Stopping criterion is not met do (Outer loop)
4: Build a new CVRP solution X ζ (out of the AMR for ζ > 0)
5: X ← X ζ
6: Apply the assignment heuristic on X and obtain Ŝ
7: q = 1; initialize the roulette wheel and the adaptive parameters for this iteration
8: Initialize the inner loop’s iteration counter: iterinner ← 0
9: while iterinner < ALNSiter do (Inner loop)

10: Roulette wheel: select a removal heuristic hrem and an insertion heuristic hins
11: Remove customers from X using hrem, creating partial CVRP solution
12: Insert customers into the partial solution using hins, creating a CVRP solution X ′
13: if DX ′ < ψDX then
14: Apply assignment heuristic on X ′ and obtain Ŝ ′
15: if R-MTVRP solution Ŝ ′ meets the acceptance criterion then
16: Optional: apply the US procedure on each route of X ′
17: X ← X ′
18: Update the AMR with the routes of Ŝ ′
19: q ← 1
20: Update the value of the overtime penalty α
21: else
22: q ← q + 1, or q ← qlow if qmax was reached
23: end if
24: if X is a new global best solution then
25: Optional: apply the US procedure on each route of X
26: Update Ŝbest
27: end if
28: else
29: q ← q + 1, or q ← qlow if qmax was reached
30: end if
31: Update the roulette wheel
32: iterinner ← iterinner + 1
33: end while
34: ζ = ζ + 1
35: end while
36: Apply post-optimization on Ŝbest

5.3. Removal and insertion heuristics

The ALNSM and the ALNSP algorithms use insertion and removal heuristics at each iteration in order to destroy and
repair solutions. In the case of the ALNSM, the solutions treated by means of these heuristics are R-MTVRP solutions
where overtime is allowed. In the ALNSP context, these heuristics work on CVRP solutions.

5.3.1. Removal heuristics

At each iteration of the ALNSM or of the ALNSP inner loop, a removal heuristic is randomly chosen by the roulette
wheel mechanism. All removal heuristics randomly select customers to be removed. In most of these heuristics, random-
ization is applied based on a list of customers, denoted L, sorted according to the criterion of the considered heuristic.
The customers with a small index in the sorted list are more likely to be removed. As proposed in Ropke and Pisinger
(2006a), each time a customer is to be removed, an index rand is determined as bνyrem × |L|c, where ν ∼ U [0, 1[. The
customer with index rand is removed and L is updated. The same parameter yrem ≥ 1 controls the randomization level
of the worst removal heuristics, the Shaw removal heuristic, the historical removal heuristics, and the cloud removal
heuristic.

Random removal. In the random removal heuristic, q customers are randomly removed from a solution Ŝ or X using a
discrete uniform probability distribution.
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Worst removal. We adapt the worst removal heuristic of Ropke and Pisinger (2006a), employing different cost measures.
Let i be a customer of an R-MTVRP solution Ŝ or a CVRP solution X and Di

k (resp., Oik) be the total travel time

(resp., overtime if applicable) of the vehicle serving i in Ŝ or X . Let Di∗
k (resp., Oi∗k ) be the total travel time (resp.,

overtime) of the same vehicle if i is removed. Finally, let ci be the cost measure associated to i. In the different versions
of the heuristic, ci is defined as a) Di

k−Di∗
k ; b) Di

k−Di∗
k +α(Oik−Oi∗k ), where α is the overtime penalty for the current

iteration (see Section 5.1.2); c) (Di
k−Di∗

k )/c̄i, where c̄i is the average cost of customer i as defined in a over all preceding
iterations. Each cost measure gives rise to a different version of the heuristic. Of course, only a and c are applicable in
the case of the ANLSP since partial CVRP solutions do not contain the notion of overtime.

Shaw removal. The idea of removing customers based on their similarities was proposed by Shaw (1998) and extended by
Ropke and Pisinger (2006a). The first customer is chosen randomly and the remaining q−1 customers are chosen based on
their relatedness with the first one. In this work, the relatedness measure of a customer i with respect to customer j takes
into account the coordinates and the demands of both customers and is defined as Φ(tij/tmax) + (1−Φ)(|di−dj |/dmax),
where tmax is the maximum travel time between any pair of customers in G, dmax is the maximum demand, and Φ ∈ [0, 1]
is a parameter that determines the relative weights of the time and demand factors.

Historical removal. We exploit the historical information captured in previous iterations within two removal heuristics:
the route-based historical removal heuristic and the vehicle-based historical removal heuristic. These heuristics are
based on the Shaw removal heuristic with a relatedness measure that encompasses historical information about pairs of
customers. The principle is similar to that of the request graph removal heuristic of Ropke and Pisinger (2006b), except
that the weight hij of an edge (i, j) of the request graph is the average cost of the λH best solutions found so far with
i and j placed in the same route (resp. vehicle). The Shaw removal heuristic is applied, using 1/hij as the relatedness
measure of customers i and j. Whenever a new solution is visited, the historical memory is updated for each couple (i, j)
placed on the same route (resp., vehicle). For the purpose of both heuristics, the solution values are measured in terms
of the sum of duration and penalized overtime. The overtime penalization factor αH is a parameter whose value is fixed
to avoid inconsistencies between the solution costs stored within the historical memory. In the ALNSP algorithm, only
the route-based historical removal is used since the two heuristics are equivalent when each vehicle performs a single
route.

Cloud removal. The cloud removal heuristic tends to remove a “cloud” of customers that are geographically close to
one another, starting from a random customer i. In this case, the customers in L are sorted in increasing order of their
distance to the center of gravity of the set of customers already chosen to be removed. To compute this center of gravity,
only the coordinates of the customers are taken into account, not their demands, i.e., every customer to be removed is
given the same weight.

Route removal. In the route removal heuristic, one of the routes is completely removed, i.e., all its customers are removed
along with one of its internal depots if any. The removed route is the one having the smallest |q − nr| value, where nr
is the number of customers of route r. Ties are broken arbitrarily.

Merging routes. Merging two routes consists of removing the internal depot that separates their respective customer
sequences. In our ALNSM implementation, two versions of each removal heuristic are considered: with and without
merging routes. In both versions, customers are removed following the rules of the removal heuristic under consideration.
When empty routes are created, one of their internal depots is also removed, as explained in Section 4.1.2. In the version
that includes the merge operator, the remaining routes are merged recursively if possible starting from the left-most
route of each tour. That is, we consider the removal of each internal depot, in the order they appear in the tour sequence.
If the depot removal is feasible with respect to capacity constraints, then the merge is performed. The merge operator
is included by default in the removal heuristics. A single parameter determines whether the heuristic versions without
merge are also included in the ALNSM.

5.3.2. Insertion Heuristics

The insertion heuristics described below all follow the same principle: at each iteration, a customer is selected and
inserted in a partial solution Ŝ or X until all customers have been routed. When inserting a customer in Ŝ, two design
choices are considered during the configuration phase: the insertion cost is either the increase in travel time, or the
increase in travel time, plus the penalized increase in overtime. In the latter case, the associated penalty factor α is the
same as the one used for the acceptance criterion. In the “repair” phase of ALNSM, the four insertion schemes described
in Section 4.1 are embedded in insertion heuristics detailed below. When repairing a partial solution Ŝ by inserting
unrouted customers, overtime is allowed. Since the insertion costs are solely based on time related considerations, if a
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customer can be inserted with scheme 1 without violating the capacity constraints, then schemes 2, 3 and 4 do not need
to be considered as long as the triangular inequality holds. Similarly, scheme 4 needs to be considered only if any other
scheme is infeasible. In the ALNSP context, only scheme 1, which is the classical VRP insertion scheme, is used.

Greedy heuristic. The greedy heuristic iteratively adds a customer at its best possible position in the current partial
solution Ŝ or X . The customer is chosen so as to minimize the cost increment of the solution.

Route-based regret heuristic. In the context of VRP, it is common to employ regret heuristics in the construction phase
(e.g. Tillman and Cain, 1972; Potvin and Rousseau, 1993; Diana and Dessouky, 2004; Ropke and Pisinger, 2006a,b). A
simple approach is to define the regret as the slack between the cost of inserting a customer in its best possible route and
the cost of inserting the same customer in its second best route. Let ∆CRj,y be the variation in the value of the cost function

of Ŝ or X if customer j is inserted in the best possible position in the route where its insertion cost is the yth lowest. At
each iteration of the route-based regret heuristic, a customer i is selected as follows: i = argmaxj∈U{∆CRj,2 − ∆CRj,1},
where U is the set of unrouted customers. Customer i is then inserted in its minimum insertion cost position. The
regret-x heuristic generalizes this definition by considering all positions until the xth one: a customer i is selected as
argmaxj∈U

∑
y=2,...,x{∆CRj,y −∆CRj,1}.

Vehicle-based regret heuristic. The principle of this heuristic is the same as above except that vehicles are considered as
insertion choices, instead of routes. At each iteration, select customer i = argmaxj∈C

∑
y=2,...,x{∆CVj,y −∆CVj,1}, where

∆CVj,y is the variation in the value of the objective function if customer j is inserted at its best position in the vehicle

with the yth lowest insertion cost.

Position-based regret heuristic. At each iteration of the position-based regret-x heuristic, a customer i is selected such
that i = argmaxj∈U

∑
y=2,...,x{∆CPj,y −∆CPj,1}, where ∆CPj,y is the variation in the value of the objective function if

customer j is inserted in the position with the yth lowest insertion cost. Again, the customer insertion is performed at
minimum cost.

Insertion heuristics listing. Both route-based regret heuristic and position-based regret heuristic can be applied in
ALNSM and ALNSP. So can the greedy heuristic. However, the vehicle-based regret heuristic is only used in the
ALNSM. Indeed, since the insertion heuristics of the ALNSP work on partial CVRP solutions, this implies that each
vehicle performs a single route and thus routes and vehicles are equivalent. Whenever one of the regret heuristics is
applied, the value of x must be specified. In this work, a subset of the possible values of x is associated with each version
of the regret heuristic. When the roulette wheel randomly selects an insertion heuristic, the following choices are taken
into consideration:

Heuristic Possible values of x Applied in ... Implementation
Greedy - ALNSM, ALNSP by default
Route-based regret 2, 3, 4, 5 ALNSM, ALNSP optional
Vehicle-based regret 2, ...,min{4,m− 1} ALNSM optional
Position-based regret 2, 3, bq/2c, q ALNSM, ALNSP optional

For example, for the position-based insertion heuristic, four values of x are considered, and each gives rise to a different
candidate heuristic for the roulette wheel selection. The set of candidate insertion heuristics available for selection by
the roulette wheel in the ALNSM or ALNSP is determined in the configuration phase. The greedy heuristic is applied
by default, in conjunction with up to three of the above groups of regret heuristics for the ALNSM, and up to two in
the case of the ALNSP.

Tabu edges. The tabu-edge mechanism is an optional feature that affects the insertion process. The parametrization
phase determines whether it is used or not. The goal of this optional feature is to avoid inserting edges that have been
removed too often during previous ALNS iterations. If the tabu-edge mechanism is activated, the cost of edges are
modified when evaluating the insertion costs. For each edge (i, j), a penalty pi,j is initialized at 0. Each time a removal
heuristic is called, the penalties are updated as follows:

• if edge (i, j) was not removed during the current ALNS iteration, pi,j = pi,j × γ,

• if edge (i, j) was removed during the current ALNS iteration, pi,j = pi,j × γ + Γ.

The parameter γ ∈ [0, 1] represents the persistence of the penalty through ALNS iterations and Γ is the penalization of
the edges that are removed during the current ALNS iteration. Let ci,j be the real cost of edge (i, j). If the tabu-edge

mechanism is activated, the modified cost of an edge during the insertion phase is cmodifiedi,j = ci,j × (1 + pi,j).
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6. Computational experiments

We have performed extensive computational experiments to assess the performance of our heuristics and to analyze
the behavior of several algorithmic components.

6.1. Benchmark instances

We provide results obtained with both ALNSM and ALNSP methods for the 104 benchmark instances generated
by Taillard et al. (1996). Each of these is made up of three components: a CVRP instance, a fleet size m, and
Tmax = [τz∗/m], where z∗ is the total duration of the best CVRP solution obtained by the tabu search heuristic of
Rochat and Taillard (1995). The smaller the value of τ , the greater the difficulty to achieve feasibility. Two tour durations
were considered to create the benchmark instances: T1 = [1.05z∗/m] and T2 = [1.10z∗/m]. The CVRP instances used
to create the MTVRP benchmark instances are the instances CMT-1 to CMT-5, CMT-11 and CMT-12 of Christofides
et al. (1979), and the instances F-11 and F-12 of Fisher (1994). Combining these CVRP instances with different values
of m as shown in Table 2, and with the two values of Tmax, yields our 104 benchmark instances. In the following, all
MTVRP instances created from the same CVRP instance are said to form a class of instances.

CVRP instance Values of m z∗

(customers)

CMT-1 (50) 1,...,4 524.61
CMT-2 (75) 1,...,7 835.26
CMT-3 (100) 1,...,6 826.14
CMT-4 (150) 1,...,8 1028.42
CMT-5 (199) 1,...,10 1291.44
CMT-11 (120) 1,...,5 1042.11
CMT-12 (100) 1,...,6 819.56

F-11 (71, clustered) 1,...,3 241.97
F-12 (134, clustered) 1,...,3 1162.96

Table 2: Characteristics of the MTVRP benchmark instances

6.2. Automatic configuration

A configuration is a set of values assigned to the algorithmic parameters. The configuration of our ALNSM and
ALNSP algorithms is performed by using the irace package (López-Ibáñez et al., 2011), an automatic configuration
tool. For each algorithm, a set of parameters whose values need to be determined is provided to irace along with
their allowed range. We also supply irace with a set of MTVRP instances, called training instances. We determine
the training budget, i.e., the total number of configurations that should be tested. The automatic configuration tool
irace relies on an iterative process in which algorithm configurations compete with each other. In order to configure
an algorithm, i.e., assigning a value to each algorithmic parameter, irace initially generates several configurations. By
comparing the performances of the generated configurations on training instances, the configuration tool chooses those
that will be eliminated and those that deserve further investigation. Those configurations that are not eliminated during
a given iteration of the configuration process serve as a basis to generate more configurations in the next iteration. When
the total number of examined configurations hits the training budget, the automatic configuration tool yields a set of
configurations that are statistically equally well performing on the training instances. By default, irace returns seven
configurations, that we call “final configurations” for each algorithm.

To avoid biasing the results, the configuration of both algorithms is performed on a set of training instances which
contains none of the benchmark instances. Previous authors of MTVRP heuristics have configured their algorithm on a
small subset of benchmark instances. Working with as few as six or seven instances out of the 104 available may seem
insignificant, but in fact, many MTVRP instances share exactly the same underlying CVRP data. We have observed
that using training instances instead of a subset of benchmark instances for configuration purposes mainly results in a
slight decrease of the average quality of solutions measured over five runs. This suggests that the results we present
in Section 6.3 could be improved mainly in terms of robustness if a subset of benchmark instances was used as the set
of training instances during the configuration phase. We have constructed five CVRP instances whose distributions of
customer demands and coordinates simulate the CVRP instances of Christofides et al. (1979). We also used two clustered
CVRP instances from Taillard (1993), since they share common characteristics with those of Fisher (1994). We have run
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our ALNSM algorithm with a manual configuration to produce a z∗ value for each of these seven CVRP instances. We
set τ = 1.05 and chose different values of m to create a large number of MTVRP instances. We then ran the ALNSM
and ALNSP algorithms with manual configurations on these MTVRP instances in order to identify those for which the
algorithms usually fail to obtain a feasible solution. The training instances for irace were then mostly (but not only)
chosen as those that seemed difficult to solve for our ALNSM and ALNSP.

A cost function must be provided in order to optimize an algorithm configuration with irace. In the case of the
MTVRP, using the objective function of the problem (i.e., the total travel time) is not possible because infeasible solutions
may have a small travel time. This is why the objective function of the MTVRP considered during the configuration
phase was the travel time penalized with the total overtime of the solution, using a very large constant for the penalty
factor. This way, the focus is first set on feasibility. Also, since the running time of the algorithms may vary significantly
for a given instance, depending on whether and when a feasible solution is found, irace was used to provide acceptable
“anytime configurations”. These configurations can be outperformed by other sets of parameters for a given running
time, but they are assumed to provide acceptably good quality results for any running time. The training budget for
each of the two considered algorithms was set to 80 000. The training phase was performed on a cluster with 128 compute
nodes, each having two 8-cores Intel E5-2650 processors at 2.0 GHz and 64 GB of RAM (4 GB/core). Due to the high
degree of parallelization of our tests (up to 80 cores), a training only takes a few hours to find the statistically best
configurations.

Not only does the configuration tool determine the value of numerical parameters, but it also selects algorithmic
design options. For example, the cloud removal heuristic becomes available for selection through the roulette wheel only
if the corresponding Boolean parameter takes the value True in the configuration given by irace. In the following,
we divide the parameters into two categories for the sake of convenience: the Boolean parameters which represent a
design choice between two algorithmic options, and the numerical parameters, which take continuous or discrete values
contained in a given interval.

Table 3 provides a complete list of design choices. The leftmost column contains a classification of the parameters.
Each of the design choices can be set to True or False during the configuration phase. For both ALNS methods, the
value taken by the design choices in the seven final configurations is reported in the rightmost columns. All the design
choices took the same value for all the final configurations of the ALNSP and of the ALNSM respectively, except for
the use of the worst removal heuristic (variant b) in the ALNSM that was six times True and one time False (see the
asterisk in Table 3). In Table 4, the type and the range of all numerical parameters (either real or integer) are specified.
Some parameters are mandatory, irrespective of the implementation choices, while others must be configured only for
certain choices. We provide summarized data on the value taken by each numerical parameter in the final ALNSM and
ALNSP configurations.
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Design choice ALNSM ALNSP

Removal heuristics Use random removal. F F
Use worst removal (variant a). T T
Use worst removal (variant b). T∗ -
Use worst removal (variant c). F T
Use Shaw removal. T T
Use route removal. F F
Use cloud removal. F F
Use historical removal (route-based information). F -
Use historical removal (vehicle-based information). F F
Include removal heuristics without the merge operator. T -

Insertion heuristics Use position-based regret insertion. F F
Use route-based regret insertion. T T
Use vehicle-based regret insertion. F -
Use insertion costs with penalized overtime. T -
Use the tabu-edge mechanism. F F

Local search Use US on each new best solution. F F
Use US after a solution is accepted. F F

ALNSP (a) or (b) Accept a solution based on its penalized cost (T = ALNSP(b)). - T

ALNSP CVRP solutions When building a CVRP solution from the AMR, route the re-
maining customers separately.

- T

Table 3: Boolean parameters: design choices in the final configurations of ALNSM and ALNSP
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ALNSM ALNSP
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Objective function αmin integer, step 10 [0,100] [40,70] 60 70 [0,30] 10 30
(5.1.2, 5.2.1) αmax integer, step 10 [αmin,10000] [2900,7050] 4750 6610 [2890,6760] 4540 3770

µ real [1,2] [1.2131,1.7034] 1.425 1.5701 [1.333,1.9623] 1.6961 1.7446
ξ integer, step 100 [100,1000] [100,100] 100 100 [100,900] 400 300

Simulated annealing θ0 real [0.01,0.1] [0.07,0.0987] 0.0875 0.0709 [0.0703,0.0956] 0.0830 0.0876
(5.1.3) κ real [0,1] [0.7995,0.9953] 0.9200 0.9953 [0.1742,0.9484] 0.5933 0.6274

η real [0.9,1] [0.9373,0.9968] 0.9802 0.9373 [0.9599,0.9831] 0.9686 0.9781

Roulette wheel σ1 real [0,1] [0.1586,0.4777] 0.3145 0.4162 [0.0521,0.2675] 0.0971 0.0705
(5.1.5, 5.2.2) σ2 real [0,1] [0.0321,0.4196] 0.2977 0.2657 [0.1586,0.4777] 0.3145 0.2214

ρ real [0,1] [0.6796,0.9457] 0.8034 0.7158 [0.0072,0.934] 0.5621 0.7685
Θ integer, step 100 [100,5000] [1000,4700] 3400 4000 [500,4900] 2700 3000

Bounds on q (5.1.4) υ real, 2 digits [0.05,0.40] [0.34,0.39] 0.36 0.34 [0.25,0.40] 0.34 0.39
δ integer [5,10] [7,9] 8 9 [6,10] 8 9

Randomization factor (5.3.1) p real [1.10,10] [6.1684,8.0679] 6.968 7.2345 [3.1702,8.7392] 6.9649 8.2864

Shaw removal (5.3.1) Φ real [0,1] [0.7806,0.9916] 0.8934 0.9916 [0.7869,0.9631] 0.8593 0.8183

Historical removal λH integer, step 5 [5,100] - - - - - -
(5.3.1) αH integer, step 10 [10,10000] - - - - - -

Tabu-edge mechanism γ real [0,1] - - - - - -
(5.3.2) Γ real [0,10] - - - - - -

AMR λM integer, step 10 [10,500] - - - [280,460] 360 340
(5.2.4, 5.2.5) yM real [1,10] - - - [2.236,5.3719] 3.9841 4.4967

αM integer [0,100000], step 10 - - - [47520,76150] 62960 76150

ALNSP(b) pre-acceptance factor ψ real [1,1.10] - - - [1.0313,1.0947] 1.0714 1.0804
(5.2.1)

ALNSP inner loop (5.2) ALNSiter integer, step 100 [100,50000] - - - [8900,19600] 12500 9200

US (also for post-opt.) pUS integer [3,10] [4,6] 5 6 [5,8] 6 6

Table 4: Numerical parameters in the final configurations of ALNSM and ALNSP
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In Section 6.3, we present the results obtained on benchmark instances with one ALNSM configuration and one
ALNSP configuration. The chosen configurations are those that yield the best results in terms of feasibility on the
training instances for each algorithm. In the following sections, when we mention the results of the ALNSM and ALNSP
algorithms, we refer to these two specific configurations. The associated parameter values are provided in Tables 3 and 4.

6.3. Numerical results

Detailed numerical results were obtained for the ALNSM and ALNSP algorithms by running both configurations
five times on each of the 104 benchmark instances. The tests were performed on a computer with 3.20 Ghz processor
Intel(R) Core(TM) i7-3930K with 64 Gigabytes of RAM under Windows 7. Note that the amount of RAM used for a
single run is negligible.

The default stopping criterion for each run is to stop after 250 000 iterations if a feasible solution is found. In the
case of the ALNSP, this criterion is met when ζ×ALNSiter exceeds 250 000. If no feasible solution is found after 250 000
iterations, then the algorithm runs until it finds one, or until a time limit (n2/50 seconds) is reached.

We classify the benchmark instances as in Cattaruzza et al. (2014b). The instances in group 1 (G1) were solved to
optimality by Mingozzi et al. (2013). The instances in group 2 (G2) were not solved to optimality but are known to
be feasible. The five instances in group 3 (G3) are not known to be feasible. Note that instance CMT-4 with m = 7
and Tmax = T1 is classified in G3 in the paper by Cattaruzza et al. (2014b). Since a feasible solution has been found in
that same paper, this instance is now classified in G2. The total number of unsolved benchmark instances (out of the
complete set of 104 instances) is reported in Table 5 for our ALNSM and ALNSP algorithms and for previous authors.

Abbreviation Reference Unsolved

TLG Taillard, Laporte, and Gendreau (1996) 18
BM Brandão and Mercer (1998) 15
PS Petch and Salhi (2004) 28
SP Salhi and Petch (2007) 40
OV Olivera and Viera (2007) 6
CAFV Cattaruzza, Absi, Feillet, and Vidal (2014b) (algorithm MA) 6
CAFV+ Cattaruzza, Absi, Feillet, and Vidal (2014b) (algorithm MA+CLS) 5

ALNSM 7
ALNSP 5

Table 5: Number of unsolved benchmark instances for various algorithms

Tables 6 and 7 provide numerical results for both ALNS configurations. The best known solution value is optimal
and reported in bold for instances in G1. For instances in G2, the “Previous best known” column shows the best known
solution values provided by other authors when available. Bold numbers in our results indicate that we match or improve
the previous best known solution values. For each configuration, we record the best, the worst, and the average value
found over the runs yielding a feasible solution. These values are reported in terms of the percentage of deviation,
also called “gap” in what follows, compared with the previous best known MTVRP solution value for the considered
instance. For example, a gap of 1.3 gives a solution value of 1.013 × z∗MTV RP , where z∗MTV RP is the value reported in
the “Optimum” or “Previous best known” column. For both methods, the number of runs yielding a feasible solution is
given, as well as the number of runs yielding an optimal solution for instances in G1.

The ALNSM finds the optimal solution for 17 instances over the 42 of group G1. Optimal solution values were
obtained for 33 instances with the ALNSP. Both methods produce feasible solutions for all instances in G1. Every run
of the ALNSP yields a feasible solution for all instances. Concerning the instance set G2, a new best solution is found
by the ALNSM for instance CMT-2 with m = 6 and Tmax = 146. The same new best solution value is found by the
ALNSP along with five other improved best known solution values. The ALNSM and the ALNSP provide exactly the
previous best known solution values for three and nine instances respectively. The ALNSM yields feasible solutions for
55 instances out of 57 and the ALNSP produces feasible solutions for all instances. Table 8 provides a summary of the
computing times for both ALNS configurations. For each instance, the computing time of the run providing the highest
quality solution is recorded. Table 8 gives the average of these computing times for each instance class, considering only
those runs that produced a feasible solution. A comparison with other authors is difficult to make due to the different
stopping criteria and to the way computing times are reported. Also, data allowing a fair comparison between the CPU
speeds are not in general available. Olivera and Viera (2007) provide their computing time for the best of five runs on
each instance, allowing to calculate their average on each instance class. In Cattaruzza et al. (2014b), the computing
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CMT-1 1 551 524.61 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
2 275 533.00 0 4 0.6 2.8 1.4 2 5 0.0 1.9 1.0

1 577 524.61 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
2 289 529.85 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
4 144 546.29 0 1 2.3 2.3 2.3 2 5 0.0 1.8 1.1

CMT-2 1 877 835.26 0 5 0.3 0.7 0.5 0 5 0.0 0.5 0.2
2 439 835.26 0 5 0.2 0.7 0.4 3 5 0.0 0.1 0.0
3 292 835.26 0 5 0.1 0.6 0.3 1 5 0.0 0.6 0.1
4 219 835.26 2 5 0.0 0.6 0.3 0 5 0.0 0.4 0.1
5 175 835.80 0 5 0.9 2.5 1.7 0 5 0.0 0.1 0.1

1 919 835.26 0 5 0.1 0.9 0.5 2 5 0.0 0.2 0.1
2 459 835.26 2 5 0.0 0.6 0.3 0 5 0.1 0.2 0.1
3 306 835.26 0 5 0.2 0.7 0.5 0 5 0.0 0.2 0.1
4 230 835.26 0 5 0.0 0.8 0.4 1 5 0.0 0.1 0.1
5 184 835.26 1 5 0.0 0.5 0.2 2 5 0.0 0.1 0.0
6 153 839.22 0 5 0.2 1.2 0.7 5 5 0.0 0.0 0.0

CMT-3 1 867 826.14 0 5 0.2 0.5 0.4 2 5 0.0 0.3 0.1
2 434 826.14 0 5 0.4 0.5 0.5 0 5 0.2 0.4 0.3
3 289 826.14 0 5 0.4 0.6 0.5 1 5 0.0 0.4 0.3

1 909 826.14 0 5 0.5 0.9 0.7 0 5 0.2 0.4 0.3
2 454 826.14 0 5 0.4 0.6 0.5 1 5 0.0 0.4 0.3
3 303 826.14 0 5 0.3 0.6 0.5 3 5 0.0 0.4 0.1
4 227 826.14 0 5 0.5 0.9 0.7 1 5 0.0 0.4 0.3

CMT-11 1 1094 1042.11 2 5 0.0 0.0 0.0 2 5 0.0 0.4 0.2
2 547 1042.11 0 5 0.4 0.6 0.4 0 5 0.1 2.9 0.9
3 365 1042.11 2 5 0.0 0.0 0.0 3 5 0.0 0.7 0.2
5 219 1042.11 1 5 0.0 0.2 0.1 3 5 0.0 0.3 0.1

1 1146 1042.11 0 5 0.0 0.1 0.1 1 5 0.0 2.9 1.8
2 573 1042.11 0 5 0.0 0.1 0.1 3 5 0.0 0.7 0.3
3 382 1042.11 1 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
4 287 1042.11 0 5 0.0 0.2 0.1 5 5 0.0 0.0 0.0
5 229 1042.11 0 5 0.0 0.2 0.1 5 5 0.0 0.0 0.0

CMT-12 1 861 819.56 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
2 430 819.56 0 5 0.6 0.6 0.6 5 5 0.0 0.0 0.0
3 287 819.56 0 5 0.6 2.7 2.1 5 5 0.0 0.0 0.0
4 215 819.56 2 3 0.0 0.1 0.0 5 5 0.0 0.0 0.0

1 902 819.56 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
2 451 819.56 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
3 301 819.56 5 5 0.0 0.0 0.0 5 5 0.0 0.0 0.0
4 225 819.56 4 5 0.0 0.6 0.1 5 5 0.0 0.0 0.0
5 180 824.78 2 5 0.0 0.3 0.1 5 5 0.0 0.0 0.0
6 150 823.14 0 5 2.4 6.1 4.4 0 5 0.1 3.8 3.1

Total 54 203 113 210

Table 6: Computational results for the instances of group G1
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CMT-1 3 192 552.68 5 0.5 1.2 0.7 5 0.5 1.0 0.7

CMT-2 6 146 858.58 1 -0.38 -0.4 -0.4 4 -0.38 0.0 -0.2

7 131 844.70 5 1.3 2.0 1.7 5 0.4 0.7 0.5

CMT-3 4 217 829.45 5 0.3 1.3 0.7 5 0.0 0.1 0.0
5 173 832.89 3 1.7 2.3 2.0 5 0.0 1.5 0.5
6 145 836.22 5 1.5 2.8 2.1 5 0.0 3.1 1.5

5 182 832.34 5 0.1 0.2 0.1 5 -0.14 0.2 0.0
6 151 834.35 5 0.2 0.3 0.2 5 0.0 0.2 0.1

CMT-4 1 1080 1031.00 5 0.8 1.1 0.9 5 0.6 1.1 0.9
2 540 1031.07 5 0.4 1.2 0.8 5 0.8 1.0 0.9
3 360 1028.42 5 0.7 1.2 1.0 5 0.2 1.2 0.8
4 270 1031.10 5 0.9 1.4 1.1 5 0.6 1.4 1.0
5 216 1031.07 5 1.3 3.3 2.2 5 0.6 1.2 0.8
6 180 1034.61 5 2.4 4.0 3.5 5 0.7 2.2 1.7
7 154 1068.59 0 - - - 1 -0.11 -0.1 -0.1
8 135 1056.54 1 1.1 1.1 1.1 3 0.2 0.8 0.5

1 1131 1031.07 5 1.8 2.1 2.0 5 1.2 1.9 1.6
2 566 1030.45 5 1.5 1.8 1.6 5 1.6 1.8 1.7
3 377 1031.59 5 1.1 1.7 1.5 5 1.1 1.4 1.2
4 283 1031.07 5 1.0 1.5 1.3 5 0.6 1.4 1.1
5 226 1030.86 5 1.0 1.8 1.5 5 1.0 1.6 1.4
6 189 1030.45 5 0.9 1.9 1.6 5 1.1 1.6 1.3
7 162 1036.08 5 1.1 2.5 1.6 5 -0.33 0.6 0.1
8 141 1044.32 5 1.3 1.9 1.5 5 0.2 0.8 0.6

CMT-5 1 1356 1302.43 5 0.8 1.4 1.1 5 0.5 1.4 1.1
2 678 1302.15 5 0.8 1.4 1.2 5 0.8 1.4 1.1
3 452 1301.29 5 1.0 1.5 1.3 5 0.5 1.6 1.2
4 339 1304.78 5 0.7 1.4 1.2 5 1.0 1.6 1.2
5 271 1300.02 5 1.4 2.3 1.8 5 1.0 1.6 1.3
6 226 1303.37 5 0.8 1.3 1.0 5 1.1 1.8 1.4
7 194 1309.40 5 0.1 1.7 1.2 5 -0.32 1.0 0.6
8 170 1303.91 5 1.1 2.2 1.7 5 -0.06 1.7 1.0
9 151 1307.93 5 2.0 3.2 2.8 5 0.3 2.7 1.3

10 136 1323.01 1 2.2 2.2 2.2 5 0.0 0.8 0.5

1 1421 1299.86 5 2.8 3.2 3.0 5 2.7 3.2 3.0
2 710 1305.35 5 2.1 2.7 2.5 5 2.3 2.6 2.4
3 474 1301.03 5 2.0 2.7 2.4 5 2.2 3.1 2.6
4 355 1303.65 5 1.4 2.0 1.7 5 2.4 3.0 2.7
5 284 1300.62 5 1.6 2.3 2.0 5 2.4 3.1 2.7
6 237 1306.17 5 1.7 2.2 1.9 5 1.9 2.5 2.2
7 203 1301.54 5 2.0 2.5 2.3 5 2.5 2.6 2.6
8 178 1308.78 5 1.2 1.7 1.4 5 0.6 1.7 1.3
9 158 1307.25 5 1.3 1.9 1.7 5 0.6 1.5 1.1

10 142 1308.81 5 1.4 2.4 2.0 5 0.6 1.0 0.7

CMT-11 4 274 1078.64 5 0.0 1.1 0.4 2 0.0 0.7 0.3

CMT-12 5 172 845.56 0 - - - 1 0.0 0.0 0.0

F-11 1 254 241.97 5 0.0 0.0 0.0 5 0.0 3.2 1.3
2 127 250.85 1 0.0 0.0 0.0 4 0.0 0.0 0.0

1 266 241.97 5 0.0 0.0 0.0 5 0.0 0.0 0.0
2 133 241.97 5 4.8 4.8 4.8 5 0.0 0.0 0.0
3 89 254.07 3 0.3 1.1 0.6 5 0.0 0.0 0.0

F-12 1 1221 1162.96 5 0.9 1.2 1.0 5 0.1 2.1 1.2
2 611 1162.96 5 0.3 0.7 0.4 5 0.1 0.9 0.4
3 407 1162.96 5 2.6 4.4 3.5 5 0.1 2.5 1.2

1 1279 1162.96 5 0.4 0.7 0.5 5 0.0 1.0 0.5
2 640 1162.96 5 0.0 0.4 0.3 5 0.3 1.2 0.9
3 426 1162.96 5 2.1 2.1 2.1 5 0.1 1.1 0.8

Total 255 270

Table 7: Computational results for the instances of group G2
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times are calculated as the average of five runs for each instance and are then aggregated for each instance class. Olivera
and Viera (2007) use a 1.8 GHz AMD Athlon XP2200+ CPU, while Cattaruzza et al. (2014b) work with a Intel Xeon
2.80 GHz.
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CMT-1 (50) 24 47 16 10 30
CMT-2 (75) 34 61 29 25 118
CMT-3 (100) 40 67 27 52 173
CMT-4 (150) 88 78 68 169 493
CMT-5 (199) 135 85 125 354 1284
CMT-11 (120) 71 68 28 99 302
CMT-12 (100) 39 59 27 37 138
F-11 (71) 56 80 13 21 40
F-12 (134) 72 71 31 87 160

Table 8: Computing times in seconds for various algorithms

The quality of the results reported in Tables 6 and 7 tends to decrease with the instance size. However, as can be
seen from Table 8, computing times increase very slowly with the instance size if compared with the results reported by
previous authors. This can be observed in particular for the unclustered instances CMT-4 and CMT-5. Table 9 shows
the improvement in the quality of the results obtained on the largest instances when the number of iterations increases
from 250 000 to 1 000 000. Due to the definition of the stopping criterion, the running time of both ALNS algorithms
increases on average less than proportionally with the limit number of iterations.

21



Previous ALNSM (250k) ALNSM (1000k) ALNSP (250k) ALNSP (1000k)
VRP m Tmax best known Best Avg Best Avg Best Avg Best Avg

gap gap gap gap gap gap gap gap

CMT-4 1 1080.0 1031.00 0.8 0.9 0.6 0.7 0.6 0.9 0.3 0.6
2 540.0 1031.07 0.4 0.8 0.2 0.3 0.8 0.9 0.0 0.3
3 360.0 1028.42 0.7 1.0 0.4 0.6 0.2 0.8 0.1 0.4
4 270.0 1031.10 0.9 1.1 0.1 0.6 0.6 1.0 0.0 0.4
5 216.0 1031.07 1.3 2.2 0.2 1.2 0.6 0.8 -0.06 0.3
6 180.0 1034.61 2.4 3.5 1.3 2.7 0.7 1.7 0.4 0.6
7 154.0 1068.59 - - - - -0.11 -0.1 -0.14 -0.1
8 135.0 1056.54 1.1 1.1 0.6 0.6 0.1 0.5 0.1 0.3

1 1131.0 1031.07 1.8 2.0 1.2 1.5 1.2 1.6 0.9 1.2
2 566.0 1030.45 1.5 1.6 1.2 1.3 1.6 1.7 0.4 0.9
3 377.0 1031.59 1.1 1.5 0.6 0.9 1.1 1.2 0.9 1.1
4 283.0 1031.07 1.0 1.3 0.5 0.8 0.6 1.1 0.5 0.9
5 226.0 1030.86 1.0 1.5 0.2 0.5 1.0 1.4 0.3 0.7
6 189.0 1030.45 0.9 1.6 0.8 1.3 1.1 1.3 0.4 0.8
7 162.0 1036.08 1.1 1.6 0.2 0.6 -0.33 0.1 -0.39 0.1
8 141.0 1044.32 1.3 1.5 0.7 0.8 0.2 0.6 0.1 0.3

CMT-5 1 1356.0 1302.43 0.8 1.1 0.6 0.8 0.5 1.1 0.1 0.3
2 678.0 1302.15 0.8 1.2 0.5 0.9 0.8 1.1 0.3 0.6
3 452.0 1301.29 1.0 1.3 0.6 1.0 0.5 1.2 0.1 0.7
4 339.0 1304.78 0.7 1.2 0.3 0.6 1.0 1.2 0.2 0.4
5 271.0 1300.02 1.4 1.8 1.3 1.5 1.0 1.3 0.5 1.1
6 226.0 1303.37 0.8 1.0 0.7 0.9 1.1 1.4 0.0 0.6
7 194.0 1309.40 0.1 1.2 0.1 0.4 -0.32 0.6 -0.34 0.3
8 170.0 1303.91 1.1 1.7 0.7 1.4 -0.06 1.0 -0.06 0.7
9 151.0 1307.93 2.0 2.8 1.2 1.7 0.3 1.3 0.2 1.2

10 136.0 1323.01 2.2 2.2 1.0 1.0 0.0 0.5 -0.57 0.4

1 1421.0 1299.86 2.8 3.0 2.7 2.8 2.7 3.0 1.8 2.4
2 710.0 1305.35 2.1 2.5 2.1 2.2 2.3 2.4 1.6 1.9
3 474.0 1301.03 2.0 2.4 2.0 2.3 2.2 2.6 1.3 1.8
4 355.0 1303.65 1.4 1.7 1.3 1.6 2.4 2.7 1.6 1.7
5 284.0 1300.62 1.6 2.0 1.3 1.8 2.4 2.7 1.4 1.7
6 237.0 1306.17 1.7 1.9 1.5 1.6 1.9 2.2 0.8 1.2
7 203.0 1301.54 2.0 2.3 1.4 1.7 2.5 2.6 1.3 1.6
8 178.0 1308.78 1.2 1.4 0.8 1.2 0.6 1.3 0.1 0.8
9 158.0 1307.25 1.3 1.7 0.7 1.2 0.6 1.1 -0.23 0.4

10 142.0 1308.81 1.4 2.0 -0.09 1.0 0.6 0.7 -0.29 0.5

Table 9: Computational results with 1 000 000 iterations

The ALNSP algorithm produces high quality solutions for all benchmark instances known to be feasible. It also
improves the best known solution values on 10 instances. Even if the ALNSM is outperformed by the ALNSP both
in terms of feasibility and gaps, it still yields feasible solutions for 97 over the 99 instances in groups G1 and G2 and
improves the best known solution values on two instances.

Table 10 reports the longest tour ratios (LTR) for the instances of group G3. The LTR of an R-MTVRP solution
Ŝ measures the degree of infeasibility of Ŝ and is calculated by dividing the duration of the longest tour of Ŝ by Tmax.
Table 10 shows the best value over five runs for both algorithm configurations and also reports the values provided by
other authors when available. Both ALNS configurations produce values significantly smaller than those obtained by
other authors, except for Olivera and Viera (2007).

6.4. Parameter analysis

We now provide some insights on specific design choices and values taken by the numerical parameters. Our aim is
not to make an exhaustive analysis of all parameter values, but to focus on several aspects that have led to insightful
observations during our experiments. In order to see how the different design choices and numerical parameter values
affect the results, the configurations of both ALNS solution methods are performed while imposing constraints on
parameters in irace, which leads to constrained configurations. For example, the set of available heuristics may be
decided in advance by forcing some of the design choices to take True or False value. The parameters whose values
are defined before the configuration through irace are said to be the “constrained parameters”, while the others are
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CMT-1 3 1.115 1.041 1.026 1.030 1.024 1.028 1.029
CMT-1 4 1.027 1.027 1.085 1.056 1.027 1.027 1.033
CMT-2 7 1.073 1.088 1.060 1.102 1.009 1.008 1.004
CMT-12 6 1.064 1.072 1.029 1.029 1.014 1.017 1.014
F-11 3 1.075 1.011 1.020 1.027 1.020 1.020 1.020

Average 1.071 1.048 1.044 1.049 1.019 1.020 1.020

Table 10: G3: Longest tour ratios for various algorithms

called “free parameters”. A set of constrained parameters with their respective values is called a “partial configuration”.
Since testing a high number of configurations for experimental purposes is time consuming, the analyses presented in
this section were carried on the 52 benchmark instances with Tmax = T1 and with a modified stopping criterion (80 000
iterations and a time limit of n2/100 seconds).

6.4.1. Average configurations

An “average configuration” is constructed for each ALNS algorithm, based on the corresponding seven final configu-
rations (see Table 4). All design choices are set to the value that they take most often in the seven final configurations.
All numerical parameters are set to the average of the seven values that they take in the final configurations (rounded
if necessary). As mentioned in Section 6.2, the design choices nearly always take the same values over the seven final
configurations for both ALNS heuristics. Since the design choices seem to be stable, testing the average configurations
is interesting in order to see whether the value intervals matter more than the precise values in the case of numerical
parameters.

We tested each final configuration and both average configurations using the modified stopping criterion. Five runs
were performed on each of the 52 benchmark instances. For each configuration separately, the best and average gaps
were recorded for each instance. In Table 11 we present the average of these gaps on the 52 benchmark instances as
well as the number of unsolved instances for each configuration. The average number of runs yielding a feasible solution
is reported in the second column. These results suggest that the performance of the algorithms is not very sensitive
to variations of the numerical parameters as long as these are kept within a certain interval that can be evaluated by
examining the final configurations for each algorithm. For a given solution method, the average configuration produces
results similar to the ones of the final configurations.

Configuration Unsolved Average solved Average best gap Average gap

ALNSM-1 10 4.58 1.01 1.96
ALNSM-2 13 4.49 1.09 1.65
ALNSM-3 12 4.52 1.00 1.95
ALNSM-4 8 4.71 1.28 1.96
ALNSM-5 12 4.61 1.09 1.76
ALNSM-6 12 4.57 1.06 1.87
ALNSM-7 11 4.51 1.10 2.01

ALNSM-Avg 10 4.63 1.14 1.98

ALNSP-1 10 4.51 0.92 1.92
ALNSP-2 7 4.63 1.01 1.91
ALNSP-3 12 4.35 1.06 1.98
ALNSP-4 12 4.47 1.00 1.95
ALNSP-5 10 4.49 0.92 1.82
ALNSP-6 12 4.43 0.99 2.02
ALNSP-7 11 4.46 1.03 1.95

ALNSP-Avg 9 4.57 0.91 2.01

Table 11: Computational results for the final and average configurations of ALNSM and ALNSP
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6.4.2. Heuristics

This section aims at understanding the behavior of the different heuristics introduced in Section 5.3. To this end,
several sets of constrained configurations were produced:

• Use of a single given removal heuristic. For each removal heuristic in turn, the corresponding design choice is
set to True and all the design choices related to other removal heuristics are set to False. This ensures that the
constrained configurations produced by irace include only a single removal heuristic. The design choices related
to insertion heuristics are free parameters.

• Use of a single given insertion heuristic. For each insertion heuristic in turn, the corresponding design choice is
set to True, as well as that related to the greedy insertion. All design choices related to other insertion heuristics
are set to False. The greedy insertion may be seen as a simplification of the regret heuristic, where only the best
possible insertion position is considered; this is why it is set to True in all cases. The design choices related to
removal heuristics are free parameters.

For each partial configuration passed to irace, we obtain seven constrained configurations. We have tested the average
configurations obtained out of these constrained configurations. Table 12 shows the number of unsolved instances for
each average constrained configuration.
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ALNSM 16 13 23 10 9 18 17 26 44 17 12 21 12
ALNSP 16 14 - 16 10 18 - 21 - 14 11 - 12

Table 12: Number of unsolved instances for the average constrained configurations

As expected, the route removal heuristic performs very poorly when used on its own in the ALNSM method. In both
algorithms, the Shaw removal and the worst removal heuristics perform significantly better than the other heuristics when
used on their own, except for version b of the worst removal heuristic in the ALNSM algorithm which is outperformed by
the random removal heuristic. Note that none of the other removal heuristics outperforms the random removal heuristic
when used on its own.

For the ALNSP algorithm, all removal heuristics that performed better than the random removal heuristic when used
separately were chosen by irace in the final configurations, and all others were discarded. For the ALNSM algorithm,
irace discarded the c version of the worst removal heuristic and included the b version, but tests show that inversing
these two choices produces similar results. Results deteriorate slightly in the case where only one version of the worst
removal is included.

These observations suggest that ranking the heuristics based on their performances when used on their own should
provide a good a priori indication of which ones are promising for the overall design of the ALNS and which ones are
not. The same conclusion holds for the insertion heuristics. The regret heuristics based on positions or routes perform
well when used on their own and both yield good results within the ALNSM algorithm, even if irace chooses only the
route version in the final configurations. In fact, the quality of the results of the average ALNSM configuration improves
slightly by adding the regret based on positions. The regret insertion heuristic based on vehicles yields poor results when
used on its own with greedy. Again, for the ALNSP algorithm, irace chooses to keep only the regret heuristic based on
routes, along with the greedy insertion heuristic.

6.4.3. Online and offline heuristic selection

The parameters of the roulette wheel mechanism adapt the heuristic selection process by allowing online changes in
the heuristic selection probabilities. By extension, when all heuristics are available for selection by the roulette wheel,
we say that the heuristic selection is performed online. This is the case when all the design choices corresponding to the
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inclusion of removal or insertion heuristics are set to True in the partial configuration passed to irace. In contrast, when
these design choices are not constrained before the configuration phase, irace returns the set of heuristics available for
the roulette wheel. In this case, we say that the heuristics are configured offline. The roulette wheel mechanism still
plays a role in the online selection of the remaining heuristics but “unpromising” heuristics have already been discarded
offline. Table 13 shows the sigma values for ALNSM and ALNSP configurations for offline and online heuristic selection.
The offline configurations are the final ones. Note that since all numbers are rounded, the sum of the σφ values may not
be equal to 1.

ALNSM (offline) ALNSM (online) ALNSP (offline) ALNSP (online)
σ1 σ2 σ1 + σ2 σ3 σ1 σ2 σ1 + σ2 σ3 σ1 σ2 σ1 + σ2 σ3 σ1 σ2 σ1 + σ2 σ3

1 0.48 0.40 0.88 0.12 0.29 0.71 1.00 0.00 0.19 0.28 0.46 0.54 0.26 0.70 0.96 0.04
2 0.29 0.42 0.71 0.29 0.44 0.51 0.95 0.05 0.06 0.16 0.22 0.78 0.30 0.56 0.86 0.14
3 0.42 0.27 0.68 0.32 0.16 0.81 0.97 0.03 0.07 0.22 0.29 0.71 0.06 0.42 0.47 0.53
4 0.17 0.03 0.20 0.80 0.13 0.71 0.84 0.16 0.05 0.01 0.06 0.94 0.12 0.77 0.90 0.10
5 0.40 0.33 0.72 0.28 0.27 0.61 0.88 0.12 0.06 0.33 0.38 0.62 0.32 0.67 0.99 0.01
6 0.30 0.39 0.68 0.32 0.10 0.82 0.91 0.09 0.16 0.59 0.75 0.25 0.20 0.28 0.48 0.52
7 0.16 0.25 0.41 0.59 0.22 0.75 0.97 0.03 0.27 0.46 0.73 0.27 0.11 0.74 0.85 0.15

Av. 0.31 0.30 0.61 0.39 0.23 0.70 0.93 0.07 0.12 0.29 0.41 0.59 0.20 0.59 0.79 0.21

Std. 0.12 0.13 0.23 0.23 0.13 0.12 0.06 0.06 0.08 0.19 0.26 0.26 0.10 0.18 0.22 0.22

Table 13: Sigma values for the offline and online ALNSM and ALNSP configurations

In both the ALNSM and ALNSP heuristics, the value of σ3 is much smaller on average when all heuristics are available
for selection by the roulette wheel (i.e., in the online configurations). These values suggest that intensification is preferred
to diversification in the case where poor heuristic choices have not been discarded offline. This is especially true for the
ALNSM. In fact, whether poor heuristics are discarded offline or not, the average value of σ3 is significantly higher for
the ALNSP. This is not surprising since a well-diversified population of routes must reinforce the AMR mechanism.

Once poor heuristic choices have been discarded offline, no general tendency emerges concerning the ordering of
the σφ values, which may indicate that having three different σφ values does not have much importance. To test this
hypothesis, we modified the average configurations of ALNSM and ALNSP to produce three alternative settings in which
we fix the σφ values such that

• the intensification and diversification are equally rewarded: σ1 = σ2 = σ3,

• the focus is put on intensification: σ1 = σ2 = 0.4 and σ3 = 0.2,

• the focus is put on diversification: σ1 = σ2 = 0.1 and σ3 = 0.8.

Moreover, for both ALNS heuristics, we also performed a test with complete removal of the roulette wheel selection
mechanism: at each step, the removal and the insertion heuristics are chosen completely randomly. Table 14 summarizes
the corresponding results.

ALNSM ALNSP
Unsolved Average best gap Unsolved Average best gap

Average configuration, offline 10 0.95 9 0.98
One single sigma value, offline 13 1.02 12 0.91
Focus on intensification, offline 10 0.94 12 0.98
Focus on diversification, offline 12 1.13 9 1.08
No roulette wheel, offline 10 0.93 11 0.88
Average configuration, online 14 1.19 12 1.13
No roulette wheel, online 13 1.21 13 1.16

Table 14: Analysis of the roulette wheel mechanism

At first glance, it is unclear whether the focus should be set on intensification or on diversification when the heuristics
selection has been carried out offline. Moreover, the complete removal of the roulette wheel mechanism does not seem to
deteriorate the results. This suggests that with a careful offline heuristic selection, the roulette wheel mechanism does
not need to be implemented to further guide the heuristic selection online. Note from Table 4 that both ρ and Θ, which
respectively determine the persistence of roulette wheel knowledge and the roulette wheel time segment, take disparate
values, tending to accredit the fact that the configuration of the roulette wheel mechanism has little influence on the
numerical results of the algorithms.
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The most surprising result is the following: when the selection of heuristics is performed online, the complete removal
of the roulette wheel mechanism exhibits only a very slight deterioration of the results. However, the results obtained
by the average configuration for the online case are clearly worse compared with those of the average configuration with
an offline selection of heuristics by irace. Both in the case of ALNSM and ALNSP, doubling the parameters of the
stopping criterion (i.e., doubling the number of iterations and the time limit) is necessary to obtain a similar quality of
results, both in terms of feasibility and cost. This suggests that using the roulette wheel mechanism cannot effectively
compensate for a poor offline selection of heuristics. We view this result as significant since it does not seem to have been
previously reported in the ALNS literature. It is consistent with the extended experiments performed by Pellegrini et al.
(2012) for the traveling salesman problem and the quadratic assignment problem solved with ant colony optimization
algorithms. The authors show that adapting parameters online is ineffective as long as the value of these parameters is
carefully determined offline.

6.4.4. ALNSP: the use of the routes memory

When looking at the design choices of the final configurations of the ALNSP, we see that the acceptance criterion is
always the same: overtime is taken into account to determine the acceptance of new solutions (i.e., ALNSP(b) is chosen).
Moreover, irace always chooses to set a relatively high number of iterations for the inner loop, implying a small number
of calls to the AMR.

Table 15 shows the influence of ALNSiter on the results. For ALNSP(b), the average ALNSP configuration is modified
by setting different ALNSiter values. In order to compare ALNSP(a) with ALNSP(b), a constrained configuration is
passed to irace, imposing the ALNSP(a) acceptance criterion. An average configuration is deduced out of the seven
ALNSP(a) configurations obtained. It is then modified by setting different ALNSiter values.

ALNSP(b) ALNSP(a)

ALNSiter Unsolved Average best gap Unsolved Average best gap

100 11 1.07 15 0.98
200 9 0.99 14 0.85
500 9 0.86 13 0.79
1000 9 0.72 14 0.74
10000 8 0.75 14 0.71
80000 8 0.82 15 0.79

Table 15: Influence of the number of ALNS iterations on the performance of ALNSP

In the case of ALNSP(b), the quality of the results seems relatively stable when the number of iterations of the inner
loop varies as long as it is not too small. The best results are obtained with a few thousands iterations for the inner loop.
This suggests that the memory is not the key element of the method, and it can certainly be seen more as an occasional
perturbation. More experiments should be performed to assess whether other types of occasional perturbations may
offer similar advantages with less computational effort. Note that the final configurations use the solution completion
method where unrouted customers are placed into new routes. But in fact, our experiments show similar results when
the second option is used for completion (see the end of Section 5.2.5), meaning that leaving the routes chosen from
the memory unchanged when constructing a new initial solution for the inner loop of the ALNSP is not significantly
important. This is consistent with the above observation, suggesting that the adaptive memory is not a key element for
the success of the ALNSP.

For the ALNSP(a), the solution quality is good on average for feasible solutions but the number of unsolved instances
clearly increases. We deduce that including overtime in the objective function to guide the search mechanism is much
more crucial than the calls to the AMR. As is the case for ALNSP(b), the completion method where unrouted customers
are placed into new routes is always chosen by irace for ALNSP(a), but this time, the results of the average configuration
deteriorate if the alternative completion method is applied. This suggests that the overtime penalty mechanism included
in the adaptive memory of routes is used to compensate the lack of overtime penalty in the objective function.

6.5. New best solutions

We provide in Table 16 new best solution values for 14 instances of G2. Note that some of the improved solutions of
Table 7 are outperformed by those obtained with other configurations.
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Instance Previous best known New best known Configuration

CMT-2, m = 6, Tmax = 146 858.58 855.34 ALNSP (250k), ALNSM (250k)
CMT-2, m = 7, Tmax = 131 844.70 844.55 ALNSP, a final config. (250k)
CMT-3, m = 5, Tmax = 182 832.34 831.20 ALNSP (250k)
CMT-4, m = 5, Tmax = 216 1031.07 1029.65 ALNSM, a final config. (250k)
CMT-4, m = 7, Tmax = 154 1068.59 1067.10 ALNSP (1000k)
CMT-4, m = 7, Tmax = 162 1036.08 1032.07 ALNSP (1000k)
CMT-5, m = 1, Tmax = 1356 1302.43 1298.35 ALNSP, a final config. (80k)
CMT-5, m = 4, Tmax = 339 1304.78 1299.70 ALNSM, a final config. (250k)
CMT-5, m = 7, Tmax = 194 1309.40 1304.02 ALNSP, a final config. (250k)
CMT-5, m = 8, Tmax = 170 1303.91 1303.11 ALNSP (1000k)
CMT-5, m = 10, Tmax = 136 1323.01 1315.47 ALNSP (1000k)
CMT-5, m = 9, Tmax = 158 1307.25 1304.28 ALNSP (1000k)
CMT-5, m = 10, Tmax = 142 1308.81 1305.01 ALNSP (1000k)
CMT-12, m = 5, Tmax = 172 845.56 845.37 ALNSM, a final config. (80k)

Table 16: New best solution values

7. Conclusions

We have proposed multi-trip operators as an alternative to other approaches previously applied to the MTVRP. An
extensive computational comparison was performed by developing and testing two ALNS algorithms. The first one,
called ALNSM, includes multi-trip operators in heuristics that iteratively destroy and repair an R-MTVRP solution.
The second one, called ALNSP, iteratively modifies a CVRP solution and applies bin packing techniques to assign the
created routes to available vehicles, in order to produce R-MTVRP solutions. By testing numerically both methods
on benchmark instances, we have shown that multi-trip operators deserve at the very least to be further investigated.
Their integration into an ALNS framework yields high quality MTVRP solutions, close to the state-of-the-art results.
Unlike the methods that combine VRP heuristics with BP techniques, multi-trip operators tend to slowly modify the
route sequence of each vehicle. We believe that this may prove an advantage in more constrained problems, when the
feasibility is highly dependent on customer sequences. The proposed ALNSP algorithm not only yields feasible solutions
for all benchmark instances known to be feasible, but it also provides several new best solutions.

We used the automatic configuration tool irace to design and parametrize both solution methods, and experiments
were performed to gain insight into the algorithm configurations. Separate evaluations of removal and insertion heuristics
used in our ALNS algorithms suggest that the performance of a given heuristic, when applied on its own, is a good
indicator of its effectiveness when included in the final design of the algorithm.

The study of the performance of the algorithms for several settings of the roulette wheel mechanisms suggests that it
cannot on its own compensate for the absence of an offline heuristic selection. Moreover, when a careful offline selection
of heuristics is performed, the contribution of the roulette wheel mechanism is seen not to be significant. The search
mechanism of the ALNSP algorithm was also investigated and we have observed that integrating an R-MTVRP objective
function (that penalizes overtime) is crucial, even when working on CVRP solutions. Moreover, the role of the adaptive
memory does not seem to be critical for the success of the ALNSP heuristic.

Our experiments show the interest of using an automatic configuration tool, not only to improve the results obtained
with a given algorithm, but also to gain knowledge into its components. We are convinced that systematically analyzing
the behavior of several components is crucial because of the knowledge it generates, even though this is not sufficantly
emphasized in the VRP literature.
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Appendix

Tables A1, A2, and A3 provide detailed computational results obtained with ALNSM and ALNSP on the 99 instances
in G1 and G2 with 250 000 iterations. However this time, the best, worst, and average values over five runs are reported
both in terms of total travel time and “z∗-gaps”, as in Olivera and Viera (2007) and Cattaruzza et al. (2014b). For a
given MTVRP solution, z∗gap denotes the percent deviation of the solution value compared to the value of z∗ for the
corresponding CVRP instance class. In Table A4, the solution values obtained with 1 000 000 iterations are given for
instances of classes CMT-4 and CMT-5. Best known solution values are reported taking into account the new values
given in Table 16.
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Appendix

Gr CVRP m Tmax Best known
ALNSM (z∗-gaps) ALNSP (z∗-gaps) ALNSM (solution values) ALNSP (solution values)

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

G1 CMT-1 1 551 524.61 0.0 0.0 0.0 0.0 0.0 0.0 524.61 524.61 524.61 524.61 524.61 524.61
G1 z∗ = 524.61 2 275 533.00 2.2 4.4 3.0 1.6 3.5 2.6 536.37 547.87 540.56 533.00 543.05 538.15

G1 1 577 524.61 0.0 0.0 0.0 0.0 0.0 0.0 524.61 524.61 524.61 524.61 524.61 524.61
G1 2 289 529.85 1.0 1.0 1.0 1.0 1.0 1.0 529.85 529.85 529.85 529.85 529.85 529.85
G2 3 192 552.68 5.9 6.6 6.1 5.9 6.4 6.1 555.57 559.19 556.49 555.57 558.08 556.58
G1 4 144 546.29 6.5 6.5 6.5 4.1 6.0 5.3 558.64 558.64 558.64 546.29 556.21 552.23

G1 CMT-2 1 877 835.26 0.3 0.7 0.5 0.0 0.5 0.2 837.52 841.13 839.16 835.41 839.77 837.07
G1 z∗ = 835.26 2 439 835.26 0.2 0.7 0.4 0.0 0.1 0.0 836.71 841.13 839.01 835.26 835.77 835.46
G1 3 292 835.26 0.1 0.6 0.3 0.0 0.6 0.1 835.89 839.87 837.95 835.26 840.15 836.37
G1 4 219 835.26 0.0 0.6 0.3 0.0 0.4 0.1 835.26 840.56 837.35 835.28 838.60 835.95
G1 5 175 835.80 1.0 2.5 1.7 0.1 0.2 0.1 843.70 856.29 849.71 836.18 836.81 836.41
G2 6 146 855.34 2.4 2.4 2.4 2.4 2.8 2.5 855.34 855.34 855.34 855.34 858.58 856.15

G1 1 919 835.26 0.1 0.9 0.5 0.0 0.2 0.1 835.89 842.80 839.48 835.26 837.24 836.43
G1 2 459 835.26 0.0 0.6 0.3 0.1 0.2 0.1 835.26 840.14 838.05 835.77 836.78 836.17
G1 3 306 835.26 0.2 0.7 0.5 0.0 0.2 0.1 836.62 840.99 839.44 835.28 836.81 836.01
G1 4 230 835.26 0.0 0.8 0.4 0.0 0.1 0.1 835.28 842.21 838.62 835.26 835.89 835.74
G1 5 184 835.26 0.0 0.5 0.2 0.0 0.1 0.0 835.26 839.35 836.91 835.26 835.89 835.65
G1 6 153 839.22 0.6 1.7 1.2 0.5 0.5 0.5 840.65 849.28 844.89 839.22 839.22 839.22
G2 7 131 844.55 2.4 3.2 2.9 1.5 1.8 1.7 855.63 861.70 859.42 848.20 850.70 849.27

G1 CMT-3 1 867 826.14 0.2 0.5 0.4 0.0 0.3 0.1 827.85 830.64 829.64 826.14 828.67 827.35
G1 z∗ = 826.14 2 434 826.14 0.4 0.5 0.5 0.2 0.4 0.3 829.37 830.40 829.95 827.53 829.63 828.90
G1 3 289 826.14 0.4 0.6 0.5 0.0 0.4 0.3 829.75 830.94 830.36 826.14 829.45 828.84
G2 4 217 829.45 0.7 1.7 1.1 0.4 0.5 0.4 831.60 839.93 835.44 829.45 830.03 829.62
G2 5 173 832.89 2.5 3.1 2.8 0.8 2.4 1.3 847.19 852.08 849.62 832.89 845.63 837.10
G2 6 145 836.22 2.7 4.1 3.4 1.2 4.3 2.7 848.52 859.72 853.99 836.22 862.07 848.60

G1 1 909 826.14 0.5 0.9 0.7 0.2 0.4 0.3 830.27 833.68 832.31 827.39 829.63 828.66
G1 2 454 826.14 0.4 0.6 0.5 0.0 0.4 0.3 829.66 831.04 830.30 826.14 829.63 828.93
G1 3 303 826.14 0.3 0.6 0.5 0.0 0.4 0.1 828.87 831.40 830.29 826.14 829.45 827.22
G1 4 227 826.14 0.5 0.9 0.7 0.0 0.4 0.3 830.11 833.56 832.14 826.14 829.63 828.87
G2 5 182 831.20 0.8 1.0 0.9 0.6 0.9 0.8 832.89 834.20 833.25 831.20 833.79 832.46
G2 6 151 834.35 1.2 1.3 1.2 1.0 1.2 1.1 836.07 836.95 836.40 834.53 836.30 835.27

Table A1: z∗-gaps and solution values for 250k iterations for instance classes CMT-1, CMT-2 and CMT-3
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Gr CVRP m Tmax Best known
ALNSM (z∗-gaps) ALNSP (z∗-gaps) ALNSM (solution values) ALNSP (solution values)

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

G2 CMT-4 1 1080 1031.00 1.1 1.3 1.2 0.8 1.4 1.2 1039.62 1042.11 1040.57 1036.80 1042.48 1040.38
G2 z∗ = 1028.42 2 540 1031.07 0.6 1.5 1.0 1.0 1.2 1.1 1035.00 1043.75 1038.89 1039.04 1041.15 1040.18
G2 3 360 1028.42 0.7 1.2 1.0 0.2 1.2 0.8 1035.11 1041.12 1038.59 1029.99 1040.93 1036.68
G2 4 270 1031.10 1.1 1.6 1.3 0.9 1.7 1.3 1040.11 1045.38 1042.26 1037.29 1045.78 1041.73
G2 5 216 1029.65 1.6 3.5 2.4 0.9 1.5 1.1 1044.91 1064.69 1053.47 1037.71 1043.78 1039.82
G2 6 180 1034.61 3.0 4.7 4.1 1.3 2.8 2.3 1058.94 1076.44 1070.81 1041.57 1057.23 1051.85
G2 7 154 1067.10 - - - 3.8 3.8 3.8 - - - 1067.10 1067.10 1067.10
G2 8 135 1056.54 3.9 3.9 3.9 2.9 3.6 3.2 1068.09 1068.09 1068.09 1058.52 1065.40 1061.41

G2 1 1131 1031.07 2.1 2.4 2.3 1.5 2.1 1.9 1049.98 1053.09 1052.12 1043.85 1050.18 1047.74
G2 2 566 1030.45 1.7 2.0 1.8 1.8 2.0 1.9 1046.02 1048.90 1047.06 1047.03 1048.96 1048.30
G2 3 377 1031.59 1.4 2.1 1.8 1.4 1.7 1.6 1043.24 1049.52 1047.25 1042.43 1045.72 1044.37
G2 4 283 1031.07 1.3 1.7 1.6 0.8 1.6 1.4 1041.72 1046.17 1044.53 1036.82 1045.23 1042.76
G2 5 226 1030.86 1.2 2.0 1.8 1.3 1.8 1.7 1041.12 1049.28 1046.59 1041.32 1047.40 1045.56
G2 6 189 1030.45 1.1 2.1 1.8 1.3 1.8 1.5 1039.37 1049.89 1046.92 1041.81 1046.68 1043.63
G2 7 162 1032.07 1.8 3.3 2.3 0.4 1.3 0.9 1046.98 1061.89 1052.48 1032.87 1041.94 1037.56
G2 8 141 1044.32 2.8 3.5 3.1 1.7 2.4 2.1 1057.63 1064.44 1060.04 1046.25 1052.67 1050.38

G2 CMT-5 1 1356 1298.35 1.7 2.3 1.9 1.4 2.2 1.9 1313.50 1320.69 1316.51 1309.00 1320.33 1316.15
G2 z∗ = 1291.44 2 678 1302.15 1.6 2.3 2.1 1.6 2.2 1.9 1312.29 1320.72 1318.19 1312.34 1319.88 1316.07
G2 3 452 1301.29 1.8 2.2 2.0 1.3 2.4 2.0 1314.09 1320.22 1317.66 1307.84 1321.88 1317.35
G2 4 339 1299.70 1.7 2.4 2.3 2.1 2.7 2.2 1313.92 1322.99 1320.56 1318.18 1326.24 1320.20
G2 5 271 1300.02 2.1 3.0 2.5 1.6 2.3 2.0 1318.23 1330.18 1323.37 1312.70 1321.26 1317.52
G2 6 226 1303.37 1.8 2.3 1.9 2.0 2.7 2.3 1314.34 1320.89 1315.90 1317.33 1326.70 1321.55
G2 7 194 1304.02 1.5 3.1 2.7 1.0 2.4 2.0 1311.14 1332.11 1325.67 1304.83 1322.95 1317.57
G2 8 170 1303.11 2.1 3.2 2.7 0.9 2.7 2.0 1318.30 1332.55 1326.43 1303.11 1325.85 1317.20
G2 9 151 1307.93 3.3 4.6 4.1 1.5 4.0 2.6 1333.44 1350.38 1344.76 1311.45 1342.82 1325.44
G2 10 136 1323.01 4.7 4.7 4.7 2.5 3.4 2.9 1352.43 1352.43 1352.43 1323.30 1335.03 1329.40

G2 1 1421 1299.86 3.5 3.9 3.7 3.4 3.9 3.7 1336.33 1342.05 1339.43 1335.58 1341.29 1339.40
G2 2 710 1305.35 3.2 3.8 3.6 3.4 3.7 3.5 1332.97 1341.06 1337.75 1335.30 1339.68 1337.24
G2 3 474 1301.03 2.7 3.5 3.2 2.9 3.9 3.4 1326.57 1336.21 1332.52 1329.52 1341.97 1335.34
G2 4 355 1303.65 2.4 2.9 2.6 3.4 3.9 3.7 1322.37 1329.28 1325.21 1334.85 1342.15 1338.68
G2 5 284 1300.62 2.3 3.0 2.7 3.2 3.8 3.4 1321.10 1330.50 1326.57 1332.20 1340.63 1335.92
G2 6 237 1306.17 2.8 3.4 3.1 3.1 3.7 3.4 1327.93 1334.81 1331.43 1331.37 1338.90 1334.79
G2 7 203 1301.54 2.8 3.3 3.1 3.3 3.5 3.4 1328.08 1334.38 1332.03 1333.84 1336.02 1334.73
G2 8 178 1308.78 2.5 3.1 2.8 1.9 3.0 2.7 1324.14 1331.26 1327.35 1315.98 1330.71 1325.78
G2 9 158 1304.28 2.6 3.1 2.9 1.8 2.7 2.3 1324.40 1331.82 1329.46 1314.48 1326.46 1321.48
G2 10 142 1305.01 2.8 3.7 3.4 1.9 2.4 2.1 1327.28 1339.72 1334.89 1316.31 1322.24 1318.62

Table A2: z∗-gaps and solution values for 250k iterations for instance classes CMT-4 and CMT-5
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Gr CVRP m Tmax Best known
ALNSM (z∗-gaps) ALNSP (z∗-gaps) ALNSM (solution values) ALNSP (solution values)

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

G1 CMT-11 1 1094 1042.11 0.0 0.0 0.0 0.0 0.4 0.2 1042.12 1042.42 1042.36 1042.12 1046.50 1043.91
G1 z∗ = 1042.11 2 547 1042.11 0.4 0.6 0.4 0.1 2.9 0.9 1045.93 1047.94 1046.64 1043.11 1072.06 1051.67
G1 3 365 1042.11 0.0 0.0 0.0 0.0 0.7 0.2 1042.12 1042.42 1042.24 1042.12 1049.03 1044.66
G2 4 274 1078.64 3.5 4.7 4.0 3.5 4.2 3.9 1078.64 1091.03 1083.38 1078.74 1085.75 1082.24
G1 5 219 1042.11 0.0 0.2 0.1 0.0 0.3 0.1 1042.12 1043.89 1042.80 1042.12 1044.76 1043.04

G1 1 1146 1042.11 0.0 0.1 0.1 0.0 2.9 1.8 1042.12 1043.18 1042.74 1042.12 1072.51 1061.11
G1 2 573 1042.11 0.0 0.1 0.1 0.0 0.7 0.3 1042.12 1043.55 1042.81 1042.12 1049.18 1045.13
G1 3 382 1042.11 0.0 0.0 0.0 0.0 0.0 0.0 1042.12 1042.42 1042.18 1042.12 1042.12 1042.12
G1 4 287 1042.11 0.0 0.2 0.1 0.0 0.0 0.0 1042.12 1043.86 1043.03 1042.12 1042.12 1042.12
G1 5 229 1042.11 0.0 0.2 0.1 0.0 0.0 0.0 1042.12 1043.85 1042.91 1042.12 1042.12 1042.12

G1 CMT-12 1 861 819.56 0.0 0.0 0.0 0.0 0.0 0.0 819.56 819.56 819.56 819.56 819.56 819.56
G1 z∗ = 819.56 2 430 819.56 0.6 0.6 0.6 0.0 0.0 0.0 824.78 824.78 824.78 819.56 819.56 819.56
G1 3 287 819.56 0.6 2.7 2.1 0.0 0.0 0.0 824.78 841.38 837.02 819.56 819.56 819.56
G1 4 215 819.56 0.0 0.1 0.0 0.0 0.0 0.0 819.56 820.48 819.87 819.56 819.56 819.56
G2 5 172 845.37 - - - 3.2 3.2 3.2 - - - 845.56 845.56 845.56

G1 1 902 819.56 0.0 0.0 0.0 0.0 0.0 0.0 819.56 819.56 819.56 819.56 819.56 819.56
G1 2 451 819.56 0.0 0.0 0.0 0.0 0.0 0.0 819.56 819.56 819.56 819.56 819.56 819.56
G1 3 301 819.56 0.0 0.0 0.0 0.0 0.0 0.0 819.56 819.56 819.56 819.56 819.56 819.56
G1 4 225 819.56 0.0 0.6 0.1 0.0 0.0 0.0 819.56 824.78 820.60 819.56 819.56 819.56
G1 5 180 824.78 0.6 0.9 0.7 0.6 0.6 0.6 824.78 826.86 825.61 824.78 824.78 824.78
G1 6 150 823.14 2.8 6.6 4.9 0.6 4.3 3.6 842.90 873.46 859.52 824.16 854.82 848.69

G2 F-11 1 254 241.97 0.0 0.0 0.0 0.0 3.2 1.3 241.97 241.97 241.97 241.97 249.66 245.05
G2 z∗ = 241.97 2 127 250.85 3.7 3.7 3.7 3.7 3.7 3.7 250.85 250.85 250.85 250.85 250.85 250.85

G2 1 266 241.97 0.0 0.0 0.0 0.0 0.0 0.0 241.97 241.97 241.97 241.97 241.97 241.97
G2 2 133 241.97 4.8 4.8 4.8 0.0 0.0 0.0 253.56 253.56 253.56 241.97 241.97 241.97
G2 3 89 254.07 5.3 6.2 5.6 5.0 5.0 5.0 254.90 256.87 255.64 254.07 254.07 254.07

G2 F-12 1 1221 1162.96 0.9 1.2 1.0 0.1 2.1 1.2 1173.65 1176.51 1174.70 1164.51 1187.57 1176.71
G2 z∗ = 1162.96 2 611 1162.96 0.3 0.7 0.4 0.1 0.9 0.4 1166.25 1170.54 1167.39 1164.25 1173.89 1167.97
G2 3 407 1162.96 2.6 4.4 3.5 0.1 2.5 1.2 1193.23 1214.29 1203.11 1164.25 1191.58 1176.69

G2 1 1279 1162.96 0.4 0.7 0.5 0.0 1.0 0.5 1167.23 1171.52 1168.93 1163.30 1174.93 1169.02
G2 2 640 1162.96 0.0 0.4 0.3 0.3 1.2 0.9 1163.30 1167.09 1165.94 1166.52 1176.62 1172.91
G2 3 426 1162.96 2.1 2.1 2.1 0.1 1.1 0.8 1187.57 1187.86 1187.74 1164.25 1175.19 1171.95

Table A3: z∗-gaps and solution values for 250k iterations for instance classes CMT-11, CMT-12, F-11 and F-12
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Gr CVRP m Tmax Best known
ALNSM (z∗-gaps) ALNSP (z∗-gaps) ALNSM (solution values) ALNSP (solution values)

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

G2 CMT-4 1 1080 1031.00 0.9 1.2 1.0 0.5 1.2 0.9 1039.62 1042.11 1040.57 1036.80 1042.48 1040.38
G2 z∗ = 1028.42 2 540 1031.07 0.5 0.6 0.5 0.3 0.9 0.6 1035.00 1043.75 1038.89 1039.04 1041.15 1040.18
G2 3 360 1028.42 0.4 0.7 0.6 0.1 0.7 0.4 1035.11 1041.12 1038.59 1029.99 1040.93 1036.68
G2 4 270 1031.10 0.3 1.2 0.9 0.2 0.9 0.7 1040.11 1045.38 1042.26 1037.29 1045.78 1041.73
G2 5 216 1029.65 0.4 2.8 1.5 0.2 0.8 0.6 1044.91 1064.69 1053.47 1037.71 1043.78 1039.82
G2 6 180 1034.61 1.9 4.2 3.3 1.0 1.4 1.2 1058.94 1076.44 1070.81 1041.57 1057.23 1051.85
G2 7 154 1067.10 - - - 3.8 3.8 3.8 - - - 1067.10 1067.10 1067.10
G2 8 135 1056.54 3.3 3.3 3.3 2.9 3.2 3.1 1068.09 1068.09 1068.09 1058.52 1065.40 1061.41

G2 1 1131 1031.07 1.4 2.0 1.8 1.2 1.7 1.5 1049.98 1053.09 1052.12 1043.85 1050.18 1047.74
G2 2 566 1030.45 1.4 1.6 1.5 0.6 1.4 1.1 1046.02 1048.90 1047.06 1047.03 1048.96 1048.30
G2 3 377 1031.59 0.9 1.5 1.2 1.2 1.5 1.4 1043.24 1049.52 1047.25 1042.43 1045.72 1044.37
G2 4 283 1031.07 0.8 1.4 1.1 0.7 1.5 1.1 1041.72 1046.17 1044.53 1036.82 1045.23 1042.76
G2 5 226 1030.86 0.5 1.1 0.7 0.5 1.3 1.0 1041.12 1049.28 1046.59 1041.32 1047.40 1045.56
G2 6 189 1030.45 1.0 1.7 1.5 0.6 1.2 1.0 1039.37 1049.89 1046.92 1041.81 1046.68 1043.63
G2 7 162 1032.07 1.0 1.9 1.4 0.4 1.2 0.8 1046.98 1061.89 1052.48 1032.87 1041.94 1037.56
G2 8 141 1044.32 2.2 2.5 2.3 1.7 2.3 1.8 1057.63 1064.44 1060.04 1046.25 1052.67 1050.38

G2 CMT-5 1 1356 1298.35 1.4 1.9 1.6 0.9 1.6 1.2 1313.50 1320.69 1316.51 1309.00 1320.33 1316.15
G2 z∗ = 1291.44 2 678 1302.15 1.3 2.0 1.8 1.2 1.7 1.4 1312.29 1320.72 1318.19 1312.34 1319.88 1316.07
G2 3 452 1301.29 1.4 1.9 1.7 0.8 1.9 1.4 1314.09 1320.22 1317.66 1307.84 1321.88 1317.35
G2 4 339 1299.70 1.3 1.9 1.7 1.2 1.5 1.4 1313.92 1322.99 1320.56 1318.18 1326.24 1320.20
G2 5 271 1300.02 2.0 2.5 2.2 1.1 2.3 1.8 1318.23 1330.18 1323.37 1312.70 1321.26 1317.52
G2 6 226 1303.37 1.6 2.0 1.9 0.9 1.9 1.5 1314.34 1320.89 1315.90 1317.33 1326.70 1321.55
G2 7 194 1304.02 1.5 1.8 1.7 1.0 2.1 1.7 1311.14 1332.11 1325.67 1304.83 1322.95 1317.57
G2 8 170 1303.11 1.7 3.0 2.4 0.9 2.5 1.6 1318.30 1332.55 1326.43 1303.11 1325.85 1317.20
G2 9 151 1307.93 2.5 3.5 3.0 1.5 3.6 2.5 1333.44 1350.38 1344.76 1311.45 1342.82 1325.44
G2 10 136 1323.01 3.5 3.5 3.5 1.9 3.2 2.9 1352.43 1352.43 1352.43 1323.30 1335.03 1329.40

G2 1 1421 1299.86 3.3 3.7 3.5 2.5 3.3 3.0 1336.33 1342.05 1339.43 1335.58 1341.29 1339.40
G2 2 710 1305.35 3.2 3.4 3.3 2.7 3.4 3.0 1332.97 1341.06 1337.75 1335.30 1339.68 1337.24
G2 3 474 1301.03 2.8 3.2 3.0 2.1 3.0 2.6 1326.57 1336.21 1332.52 1329.52 1341.97 1335.34
G2 4 355 1303.65 2.2 2.9 2.6 2.5 2.9 2.7 1322.37 1329.28 1325.21 1334.85 1342.15 1338.68
G2 5 284 1300.62 2.0 2.8 2.5 2.1 2.7 2.4 1321.10 1330.50 1326.57 1332.20 1340.63 1335.92
G2 6 237 1306.17 2.6 2.9 2.7 1.9 2.6 2.4 1327.93 1334.81 1331.43 1331.37 1338.90 1334.79
G2 7 203 1301.54 2.2 2.8 2.5 2.0 2.8 2.4 1328.08 1334.38 1332.03 1333.84 1336.02 1334.73
G2 8 178 1308.78 2.1 2.7 2.5 1.5 2.6 2.1 1324.14 1331.26 1327.35 1315.98 1330.71 1325.78
G2 9 158 1304.28 2.0 2.8 2.4 1.0 2.1 1.6 1324.40 1331.82 1329.46 1314.48 1326.46 1321.48
G2 10 142 1305.01 1.3 3.0 2.4 1.1 2.0 1.8 1327.28 1339.72 1334.89 1316.31 1322.24 1318.62

Table A4: z∗-gaps and solution values for 1000k iterations for instance classes CMT-4 and CMT-5
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